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ABSTRACT
Background. Global demand for food has led to increased land-use change, particularly
in dry land ecosystems, which has caused several environmental problems due to the
soil degradation. In the Cuatro Cienegas Basin (CCB), alfalfa production irrigated by
flooding impacts strongly on the soil.
Methods. In order to analyze the effect of such agricultural land-use change on soil
nutrient dynamics and soil bacterial community composition, this work examined an
agricultural gradient within the CCB which was comprised of a native desert grassland,
a plot currently cultivated with alfalfa and a former agricultural field that had been
abandoned for over 30 years. For each site, we analyzed C, N and P dynamic fractions,
the activity of the enzyme phosphatase and the bacterial composition obtained using
16S rRNA clone libraries.
Results. The results showed that the cultivated site presented a greater availability
of water and dissolved organic carbon, these conditions promoted mineralization
processes mediated by heterotrophic microorganisms, while the abandoned land was
limited by water and dissolved organic nitrogen. The low amount of dissolved organic
matter promoted nitrification, which is mediated by autotrophic microorganisms. The
microbialN immobilization process and specific phosphatase activitywere both favored
in the native grassland. As expected, differences in bacterial taxonomical composition
were observed among sites. The abandoned site exhibited similar compositions than
native grassland, while the cultivated site differed.
Discussion. The results suggest that the transformation of native grassland into
agricultural land induces drastic changes in soil nutrient dynamics as well as in the
bacterial community. However, with the absence of agricultural practices, some of the
soil characteristics analyzed slowly recovers their natural state.

Subjects Biodiversity, Ecology, Ecosystem Science, Soil Science
Keywords Alfalfa, Resilience, Bacteria community, Soil nutrients, Microbial activity,
Medicago sativa L.

INTRODUCTION
Rising global food demand due to population growth has caused an increase in rates of
land-use change to agricultural production in dry ecosystems (Lepers et al., 2005;Reynolds et
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al., 2007). This has led to several environmental problems, including deforestation, habitat
fragmentation, biodiversity reduction, changes to global biogeochemical cycles, water
and soil contamination and degradation (Reynolds et al., 2007; Rey-Benayas & Bullock,
2012). In these perturbed dry lands, the main drivers of desertification are soil nutrient
losses caused mainly by erosion, soil salinization and the reduction of soil water retention
capacity through the deterioration of soil physical properties (D’Odorico et al., 2013). This
soil degradation reduces agricultural productivity and the fields are eventually abandoned.

Themain characteristics of intensive agriculture that affect soil properties is the reduction
of organic matter inputs, soil tillage, fertilization and irrigation (McLauchlan, 2006). It has
been reported that soil organic matter (SOM) is reduced by 16–77%, as a consequence
of agriculture (Murty et al., 2002). This is mainly through the decrease in organic matter
inputs and the increase in soil organic decomposition because of increased tillage and soil
temperatures (Trasar-Cepeda et al., 2008; Beheshti, Raiesi & Golchin, 2012). The practice of
tillage disrupts the physical properties of the soil, affecting soil water and nutrient dynamics
(Six, Elliott & Paustian, 1999; Zeleke et al., 2004; Bronick & Lal, 2005). Fertilization with
nitrogen, mainly in the form of ammonium, promotes faster nitrification and the release
of H+ ions into the soil solution, thus lowering soil pH (Moore, Klose & Tabatabai, 2000)
and the continuous irrigation increases the leaching of salts through the soil profile
(Raiesi, 2004). However, when agricultural fields are abandoned, some salts accumulate
in the topsoil, promoting salinization, a process that is favored in desert ecosystems
(Rietz & Haynes, 2003; Pan et al., 2012). Furthermore, plant succession is slower in desert
ecosystems than in wet tropical ecosystems; for example, recovery of vegetation requires
at least 40 years in the former, while in the latter it can be achieved in less than 10 years
(Lesschen et al., 2008;Wang et al., 2011).

Agriculture also has an effect on the composition of the soil microbial community.
For instance, some changes in microbial composition have been reported as a result of
agricultural land-use in tropical (Waldrop, Balser & Firestone, 2000) as well as desert (Ding
et al., 2013) andMediterranean ecosystems (Garcia-Orenes et al., 2013). However, the effect
on soil microbial diversity is unclear; some studies have described increases in biodiversity
(Jangid et al., 2008) while others have reported decreases (Lupwayi, Rice & Clayton, 1998).
Chaudhry et al. (2012) found higher soil microbial diversity in agricultural fields managed
with organic rather than chemical fertilization. These authors found that the composition
of the bacterial community in the organically fertilized soil was dominated by the phyla
Proteobacteria, Bacteroidetes and Gemmatimonadetes, while the groups Actinobacteria
and Acidobacteria were predominant in the chemically fertilized soil. The dominant
phyla in the organically fertilized soil have been associated with high nutrient availability,
whereas the Acidobacteria have been related to nutrient-poor soils (Fierer, Bradford
& Jackson, 2007). The effect of long-term agricultural management on soil microbial
communities is similarly unclear; in some studies, even after 9 years of abandonment,
the soil microbial composition remains similar to that of the cultivated soil (Buckley &
Schmidt, 2001). However, an agricultural field abandoned for over 45 years presented a
soil microbial community that was similar to one in soil with native vegetation cover
(Buckle & Schmidt, 2003). These results demonstrate the need for further study in order
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to understand the effect of succession of agriculture management upon the composition
of the soil microbial community.

The worldwide area of degraded agriculture fields was estimated to be 12,400,000 km2

in 2007 (Rey-Benayas & Bullock, 2012), of which 20% corresponded to dry ecosystems
(Lepers et al., 2005; Reynolds et al., 2007). In Mexico, around 121 km2 and 45 km2 of
grassland were converted to agriculture and abandoned lands, respectively, between 2005
and 2010 (Colditz, Llamas & Ressl, 2014). For this reason, evaluation of the capacity for
soil restoration in the cultivated fields of dry lands is a priority for crop production and
ecosystem conservation. This capacity can be evaluated in the context of ecosystem stability,
which has two main components: resistance and resilience (Pimm, 1984). The former is
the capacity of the ecosystem to face a disturbance without undergoing structural changes,
while the latter reflects the time required for the ecosystem to return to its pre-disturbance
condition (Pimm, 1984). Orwin & Wardle (2004) proposed indices for evaluating these
two attributes of soil stability, which are accurate for providing a relative quantitative
measurement when comparing soil conditions under perturbation. The quantitative
measure of soil stability allows evaluation of the magnitude of soil degradation and its
capability for restoration.

In the Cuatro Cienegas basin (CCB) in Mexico, alfalfa (Medicago sativa L.) production
with gravity irrigation involves flooding the fields with oasis water that is channeled through
open canals for hundreds of km. This practice unequivocally threatens the sustainability
of the CCB wetland and degrades the soil and vegetation. In order to analyze the effect of
such agricultural land-use on the soil nutrient dynamics (C, N and P) and composition
of the soil bacterial community, we examined an agricultural gradient within the CCB
composed of three sites with the same soil type but under contrasting management: a
native desert grassland, a plot with an alfalfa crop and a former agricultural field that had
been abandoned for over 30 years. We predicted that the alfalfa production disrupts the
mechanisms of soil nutrient transformation and strongly affects the composition of the
soil bacteria. To test these hypotheses, we analyzed C, N and P dynamic fractions and used
this data to calculate the homeostasis of the microbial community. The enzymatic activity
of alkaline phosphatase was also quantified and bacterial composition was determined
through the use of 16S rRNA clone libraries.

MATERIAL AND METHODS
Site description
This study was carried out in the Cuatro Cienegas basin (CCB; 26◦50′N and 102◦8′W)
at 740 masl, in the Chihuahuan desert in Mexico. The climate is seasonally arid
with an average annual temperature of 21 ◦C and annual precipitation of 252 mm
(http://smn.cna.gob.mx/). Jurassic-era gypsum is the dominant parent material on the
western side of the basin, while Jurassic-era limestone dominates on the eastern side (McKee,
Jones & Long, 1990). According to theWRB classification (2007), the predominant soils are
Gypsisol and Calcisol on the western and eastern sides of the basin, respectively. The soil
within the CCB is characterized by low P concentrations (ranging between 70–200 µg g−1).
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These values are lower than the P values of other soils within the Chihuahuan desert
(500–1,000 µg g−1; Tapia-Torres & Garcia-Oliva, 2013). The main vegetation types
are halophyte-grassland dominated by Sporobolus airoides (Poaceae) and desert scrub
dominated by species from the Euphorbiaceae and Zygophyllaceae families (Perroni,
Garcia-Oliva & Souza, 2014). Agricultural activity in the CCB began in the early decades
of the 20th century but has increased in the last 30 years and it mainly consists of the
production of alfalfa for cattle fodder. Alfalfa (Medicago sativa L.) is grown by flooding the
fields and introducing large quantities of fertilizer. In some years, sorghum (Sorghum spp.)
is cultivated, but the alfalfa cultivation dominates the agricultural surface (INEGI, 2011).
However, these fields must eventually be abandoned due to degradation of the soil, mainly
through salinization.

Field sampling
Sampling sites were located on the eastern side of the CCB. An agricultural gradient was
established comprising three sites of shared soil type (Calcisol) but contrastingmanagement
was all located in flat areas: native desert grassland, a plot cultivated with alfalfa and a former
agricultural field that had been abandoned for over 30 years. The native desert grassland
was in the Pozas Azules reserve (26◦49′30

′′

N and 102◦1′27
′′

W) where Sporobolus airoides
is the dominant plant species (Tapia-Torres et al., 2015a). The cultivated alfalfa field was
located in the Cuatro Cienegas ejido (26◦58′47

′′

N and 102◦02′13
′′

W) and covered an area
of 2.7 ha with high fertilizer inputs and irrigation by flooding every month. The plot was
fertilized withmonoammonium phosphate (11-52-00) dissolved in the water for irrigation.
The water for irrigation had a pH value of 8.5 with a high electrical conductivity (150 mS
m−1). This alfalfa plot has been under cultivation for 20 consecutive years and the alfalfa is
harvested every month. Finally, the abandoned field was also in the Cuatro Cienegas ejido
(26◦58′57

′′

N and 102◦01′8
′′

W) and presented minimum plant cover (less than 30% of the
area). Oscar Sánchez Liceaga, Héctor Castillo González, the personnel of APFF Cuatro
Cienegas (CONANP) and the people in charge of Rancho Pozas Azules (PRONATURA)
gave us the permission to collect soil samples on their respective properties. At each site, a
100× 50 m plot was delimited and then divided into 10 sections at a distance of 10 m apart.
A random sampling transect was then established in each section, with topsoil samples
taken to a depth of 15 cm at ten sampling points (every five meters) in September 2011;
these samples were then mixed to form one composite sample. In total, 10 such composite
samples were taken in each plot. Soil for biogeochemical and enzymatic activity analysis
was stored in black plastic bags and refrigerated at 4 ◦C. In order to characterize the
bacterial community at each site, 100 g of composite samples were immediately stored in
liquid nitrogen until subsequent DNA extraction.

Laboratory analyses
Soil nutrient and enzymatic analyses
Soil pH was measured in deionized water (1:2 w:v) using a digital pH meter (Corning)
and soil electrical conductivity was measured by conductivity meter (Hannan Instruments
Inc., Houston, USA). A subsample (100 g) was oven-dried at 75 ◦C to constant weight
for soil moisture determination using the gravimetric method in order to adjust for water
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content when expressing nutrient concentration on the basis of dry soil mass. All C forms
analyzed in all samples were determined in a total carbon analyzer (UIC model CM5012,
Chicago, USA), while the N and P forms analyzed were determined colorimetrically in
a Bran-Luebbe Auto analyzer 3 (Norderstedt, Germany). Prior to the total soil nutrient
analyses, soil samples were dried and ground with a pestle and mortar. Total carbon (TC)
and inorganic carbon (IC) were determined by combustion and coulometric detection
(Huffman, 1977). Total organic carbon (OC) was calculated as the difference between TC
and IC. For total N (TN) and total P (TP) determination, samples were acid digested with
H2SO4, H2O2, K2SO4 and CuSO4 at 360 ◦C. Soil N was determined by the macro-Kjeldahl
method (Bremmer, 1996), while P was determined by the molybdate colorimetric method
following ascorbic acid reduction (Murphy & Riley, 1962).

Available, dissolved and microbial nutrient forms were extracted from field moist
soil samples. Available inorganic N (NH+4 and NO−3 ) was extracted from 10 g of fresh
soil subsamples with 2M KCl, followed by filtration through a Whatman No. 1 paper
filter (Robertson et al., 1999) and determined colorimetrically by the phenol-hypochlorite
method. Available (inorganic) and labile (organic) P was determined by extraction with
0.5M NaHCO3 at pH 8.5 according to Hedley sequential P fractionation (Tiessen & Moir,
1993) and quantified as described above for orthophosphate.

Dissolved nutrients were extracted with deionized water after shaking for 45 min and
filtering through a Millipore 0. 42 00B5m filter (Jones & Willett, 2006). Prior to acid
digestion, one aliquot of the filtrate was used to determine dissolved ammonium (DNH+4 )
and inorganic P (IP) in deionized water extract. Total dissolved nitrogen (TDN) was
digested using the macro-Kjeldahl method. Total dissolved P (TDP) was also acid digested
and determined by colorimetry. Total dissolved carbon (TDC) was measured with an
Auto Analyzer of carbon (TOC CM 5012) module for liquids (UIC-COULOMETRICS).
Inorganic dissolved carbon (IDC) was determined in an acidification module CM5130.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic
phosphorous (DOP) were calculated as the difference between total dissolved forms and
inorganic dissolved forms.

Microbial C (Cmic), N (Nmic) and P (Pmic) concentrations were determined by the
chloroform fumigation extraction method (Vance, Brookes & Jenkinson, 1987). Fumigated
and non-fumigated samples were incubated for 24 h at 25 ◦C and constant moisture.
Microbial C was extracted from fumigated and non-fumigated samples with 0.5 M K2SO4

and filtered through Whatman No. 42 filters (Brookes et al., 1985). The concentration of
C was measured in each extract as total and inorganic C concentration by the method
described before. Microbial C was calculated by subtracting the extracted carbon in
non-fumigated samples from that of fumigated samples and dividing the result by a KEC

value (the extractable part of microbial biomass C) of 0.45 (Joergensen, 1996). Microbial
N was extracted with the same procedure used for Cmic, but the extract was filtered
through Whatman No. 1 paper. The filtrate was acid digested and determined as TN by
Macro-Kjeldahl method (Brookes et al., 1985). Microbial N was calculated as for Cmic, but
divided by a KEN value (the extractable part of microbial biomass N after fumigation) of
0.54 (Joergensen & Mueller, 1996). Microbial P was extracted using NaCO3 0.5M at pH
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8.5, after which the fumigation-extraction technique involving chloroform was performed
(Cole et al., 1978). Microbial P was calculated as for Cmic and Nmic and converted using
a KP value (the extractable part of microbial biomass P after fumigation) of 0.4 (Lathja
et al., 1999). Microbial P was determined colorimetrically by the molybdate-ascorbic acid
method using an Evolution 201 Thermo Scientific Inc. spectrophotometer (Murphy &
Riley, 1962). Finally, Cmic, Nmic and Pmic values were normalized on a dry soil basis.

Because P is considered the most limited soil nutrient in the east-side of the CCB
(Tapia-Torres et al., 2015), alkaline phosphatase activity was analyzed colorimetrically
using ρ-nitrophenol (ρNP) substrates, according to Tabatabai & Bremner (1969) and
Eivazi & Tabatabai (1977). For this analysis, 2 g of fresh soil and 30 ml of modified
universal buffer (MUB) at pH 9 were used for the exoenzyme extraction. Three replicates
and one control (sample without substrate) were prepared per sample. Three substrate
controls (substrate without sample) were also included per assay. We centrifuged the tubes
after the incubation period and then 750 µl of supernatant was diluted in 2 ml of deionized
water and absorbance of ρ-nitrophenol (ρNP) measured at 410 nm on an Evolution
201 Thermo Scientific Inc, spectrophotometer. Exoenzyme activities were expressed as
micromoles of ρNP formed per gram dry weight of soil per hour (µmol ρNP [g SDW]−1

h−1). This value was standardized by Cmic concentration for expression as a specific enzyme
activity (µmol ρNP [mg Cmic]−1 h−1).

Molecular analyses
Total DNA was extracted using the hydroxyapatite spin-column method (Purdy et al.,
1996). DNAmolecular weight and quality were confirmed using agarose gel electrophoresis.
The 16S rRNA gene was amplified from each sample using a polymerase chain reaction
(PCR) with the universal primers F27 (5′AGAGTTTGATCMTGGCTCAG3′) and R1492
(5′GGTTACCTTGTTACGACTT3′). Three independent PCRs were performed for each
sample. The PCR reactions were 50 µl in volume and contained 2µl of DNA, 1 µl PCR
buffer 1× 0.5 mM MgCl2, 0.2 mM dNTP mixture, 0.2 mM of each primer, 1 unit of
platinum Taq DNA Polymerase High Fidelity (Invitrogen), 5% DMSO and 0.05 mg of
BSA. The PCR was performed in a thermal cycler (MJ Research, Watertown, MA) under
the following cycling program: initial denaturation step at 94 ◦C for 5 min, then 30 cycles
at 94 ◦C for 1 min, 52 ◦C for 1 min,and 72 ◦C for 1 min 20 sec, with a final extension
step at 72 ◦C for 30 min and storage at 4 ◦C. The three reactions were pooled and purified
in a 1% agarose gel using the QIAquick gel extraction kit (Qiagen). The purified fragment
was cloned into the vector PCR 2.1 and transformed into Escherichia coli following the
manufacturer’s instructions (Invitrogen). Only plasmids containing inserts were isolated
for sequencing with the Montage Plasmid Miniprepkit (Millipore). The insertion within
the plasmids was sequenced with the Sanger method using the vector-based primer 27F.

Data analysis
Stoichiometric homeostasis
The degree of community-level microbial C:N and C:P homeostasis (H ′) by soil
microorganisms was calculated with the formula proposed by Sterner & Elser (2002):
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H ′= 1/m. (1)

In Eq. (1), m is the slope of loge C:NR (Carbon and Nitrogen in the resources) versus loge
C:NB (Carbon and Nitrogen in the microbial biomass) or slope of loge C:PR (Carbon and
Phosphorus in the resources) versus loge C:PB (Carbon and Phosphorus in the microbial
biomass) scatterplot. H ′� 1 represents strong stoichiometric homeostasis, while H ′≈ 1
represents weak or no homeostasis (Sterner & Elser, 2002).

Resistance and resilience index
Nutrient concentration and enzymatic activity data were both analyzed for resistance and
resilience using the indices proposed by Orwin and Warlde (2004). The grassland site
was considered as the control (C0), the cultivated site as the disturbance (P0) and the
abandoned plot was used for measuring resilience 30 years after the cessation of agriculture
management (Px). Resistance (RS) was calculated as follows:

RS= 1− ((2|D0|)/(C0+|D0|)). (2)

In Eq. (2), C0 represents the control soil and D0 is the difference between C0 and the
disturbed plot (P0). In addition, resilience (RL) was calculated as follows:

RL= ((2|D0|)/(|D0|+|DX |))−1(3). (3)

In Eq. (3), DX is the difference between C0 and Px . Both indexes are bounded by −1 and
+1, if the value is−1 means less resistance or resilience, while the+1 value means maximal
resistance or resilience.

Bioinformatics analysis
Sequencing quality evaluation as well as cloning vector removal were performed using the
sorftware PHRED (Ewing & Green, 1998). For processing and classification of the sequence
data, the open source software package Mothur (v 1.15.0; Schloss et al., 2009) was used.
Sequences were screened for potential chimeric reads using Chimera.slayer (Haas et al.,
2011) and the linked SILVA template database. High-quality sequences were compared
against the SILVA database in order to obtain their taxonomic rank. A pairwise distance
matrix was calculated across the non-redundant sequences, and reads were clustered into
operational taxonomic units (OTUs) at 3% distance, using the furthest neighbor method
(Schloss & Handelsman, 2005). In addition, the Simpson and Shannon (H) indices, Chao
species richness estimator and rarefaction curves were estimated.

Statistical analysis
One-way ANOVA was used to identify differences in nutrient concentrations and
enzymatic activity between the sites of the agricultural gradient (grassland, cultivated
field and abandoned field). Log-transformations were applied where the data deviated
from normality. When ANOVA indicated a significant site effect, mean comparisons were
performed with Tukey’s multiple comparisons test (Von Ende, 1993).

Pearson correlations were used to explore relationships among soil parameters. Principal
Components Analysis (PCA) was conducted in order to group soil samples with active
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nutrients forms (dissolved, available and microbial) and enzymatic activity. Similarly,
Canonical Analysis was conducted with soil nutrients (available, dissolved organic and
pH) as the independent variables and nutrients within microbial biomass and phosphatase
activity as dependent variables. All analyses were performed using R software 2.10.1
(R Development Core Team, 2009).

RESULTS
Soil nutrients
Soil nutrients
The abandoned and cultivated plots had the highest and the lowest soil pH and soil
electrical conductivity, respectively (P < 0.0001 and P = 0.0002 for pH and electrical
conductivity, respectively; Table 1). Total organic C, N and P concentrations differed
among management gradient plots. Total organic C was almost two times greater in the
cultivated plot than in the other two plots (P < 0.0001; Table 1), whereas the cultivated and
grassland plots presented the highest and the lowest N and P concentrations, respectively
(P < 0.001 and P < 0.0001 for N and P, respectively; Table 1). As a consequence, the
highest C:P and N:P ratios were in the grassland plot (P < 0.0001 for both C:P and N:P),
while the C:N ratio did not differ among plots (Table 1).The cultivated plot presented
higher DOC and DOP than the other two plots (P < 0.0001 and P < 0.001 for DOC and
DOP, respectively), but DON presented no differences among plots (Table 1). Similarly,
the cultivated plot presented a greater concentration of ammonium than the other two
plots (P < 0.0001), but the highest values of nitrate and available P were in the abandoned
and the grassland plots, respectively (P < 0.0001 for both NO3 and available P; Table 1).

Nutrients within microbial biomass
The cultivated plot had higher C and N concentrations within the microbial biomass
(P < 0.0001 for both Cmic and Nmic), but did not differ from the abandoned plot in terms
of microbial P (Table 1). However, the grassland plot had higher Nmic concentration than
the abandoned plot and, consequently, the C:N and C:P ratios of the microbial biomass
did not differ among plots, but the N:P ratio was highest in the cultivated plot (P = 0.05).

Using the equation for C:N and C:P homeostasis (H ′), the soil microbial community
did present a strong elemental homeostasis for phosphorus acquisition in the three sites
(H ′= 6.25, 9.35 and 12.9 respectively for cultivated, grassland and abandoned plots). For
nitrogen acquisition, however, the microbial community of the cultivated soil presented
a weak homeostasis (H ′ = 0.63), while the grassland (3.23) and abandoned plot (5.29)
presented higher homeostasis.

Enzymatic activity
The grassland soil had higher specific phosphatase activity than the other two managed
plots (P < 0.0001; Table 1). The DOC correlated positively with DOP, ammonium,
nutrients within microbial biomass and phosphanatase activity, while nitrate correlated
negatively with available P and phosphanatase activity (Table 2). The first two principal
components explained 74% of the total variance, in which 54% was explained by the first
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Table 1 Means (standard error) of available, dissolved, microbial forms of C, N and P and Specific
phophonatase activity (SPA) of soil from an agricultural gradient at Cuatro Ciénegas Basin.Values im-
mediately followed by a different letter indicate that the means are significantly different (P ≤ 0.05) among
agricultural gradient plots.

Grassland Cultivated plot Abandoned plot

pH 8.5 (0.03)B 7.9 (0.04)C 8.8 (0.04)A

EC (mS m−1) 8.7 (0.6)B 3.4 (0.1)C 15.6 (3.0)A

TOC (mg g−1) 5.97 (0.71)B 21.50 (1.17)A 9.54 (1.49)B

TN (mg g−1) 0.63 (0.06)C 2.61 (0.07)A 1.13 (0.05)B

TP (mg g−1) 0.094 (0.01)C 0.768 (0.04)A 0.53 (0.02)B

C:N 9.3 (0.3) 8.3 (0.6) 8.3 (1.2)
C:P 64 (5)A 29 (2)B 18 (3)C

N:P 6.9 (0.5)A 3.5 (0.2)B 2.1 (0.1)C

DOC (µg g−1) 9 (2)C 116 (9)A 39 (7)B

DON (µg g−1) 7.7(0.8) 6.6 (0.2) 13.6 (3.5)
DOP (µg g−1) 1.1 (0.3)B 14.6 (0.2)A 2.1 (0.8)B

NH+4 (µg g−1) 1.64 (0.08)B 3.51 (0.40)A 1.55 (0.13)B

NO−3 (µg g−1) 0C 4.91 (0.41)B 18.16 (1.30)A

HPO−4 (µg g−1) 0.096 (0.015)A 0.010 (0.002)B 0.004 (0.001)B

Cmic (µg g−1) 108 (12)B 451 (68)A 145 (29)B

Nmic (µg g−1) 14 (1.3)B 95 (23.6)A 4 (1.0)C

Pmic (µg g−1) 1.95 (0.41)B 5.88 (1.21)A 3.20 (0.48)AB

Cmic:Nmic 8.1 (0.9) 9.00 (2.3) 23 (6.9)
Cmic:Pmic 42 (9) 99 (17) 56 (13)
Nmic:Pmic 5.3 (1.1)A 33.2 (16.4)B 1.7 (0.3)A

SPA (µmmgC−1mic h
−1) 1.50 (0.44)A 0.57 (0.08)B 0.46 (0.27)B

Notes.
EC, Electrical conductivity; TOC, totalorganic Carbon; TN, total Nitrogen; TP, total Phophorus; DOC, dissolved organic
Carbon; DON, dissolved organic nitrogen; DOP, dissolved organic phosphorus; NH+4 , ammonium; NO−3 , nitrate; HPO−4 ,
orthophosphate; Cmic, microbial carbon; Nmic, microbial nitrogen; Pmic, microbialphosphorus; SPA, specific phosphatase
activity.

component. In the first component, the cultivated plot differed statistically to the other
two non-cultivated plots, while all three plots were significantly different in the second
component (Fig. 1). These results suggest that the difference between the cultivated plot
and the other two plots explained 54% of the total variance in the soil nutrient dynamic.
The dynamic forms of soil nutrients strongly correlated with nutrients within microbial
biomass and phosphatase activity as determined by canonical analysis (Canonical R= 0.98,
P < 0.0001). The eigenvalue of root 1 was 0.95 and pH and POD had the highest canonical
weight in root 1.

Soil resistance and resilience
In general, the soil variables analyzed showed low resistance to agricultural management,
since the majority of the resistance values were negative or close to zero, with the exception
of pH and DON (Table 3). Similarly, the soil variables also had low resilience, because none
of the values was close to 1 (Table 3), which means that these soil variables were dissimilar
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Table 2 Pearson correlation coefficients for available nutrients and nutrients within microbial biomass in soil from agricultural gradient at Cuatro Cienegas Basin.

pH DOC DON DOP NH∗
4 NO−

3 HPO−
4 Cmic Nmic Pmic SPA

pH 1
DOC −0.70* 1
DON 0.46* −0.12 1
DOP −0.85* 0.88* −0.37* 1
NH+4 −0.68* 0.65* −0.23 0.72* 1
NO−3 0.59* −0.01 0.46* −0.19 −0.21 1
HPO−4 0.09 −0.51* −0.17 −0.44 −0.27 −0.61* 1
Cmic −0.68* 0.79* −0.24 0.74* 0.70* −0.09 −0.32 1
Nmic −0.70* 0.52* −0.22 0.66* 0.67* −0.18 −0.20 0.44* 1
Pmic −0.41* 0.68* −0.21 0.57* 0.39* −0.01 −0.30 0.62* 0.15 1
SPA −0.88* 0.65* −0.40* 0.84* −0.76* −0.52* −0.11 0.64* 0.62* 0.30 1

Notes.
*Means significant correlation at P ≤ 0.05.
DOC, dissolved organic Carbon; DON, dissolved organic nitrogen; DOP, dissolved organic phosphorus; NH4+, ammonium; NO−3 , nitrate; HPO−4 , orthophosphate; Cmic, microbial carbon; Nmic,
microbial nitrogen; Pmic, microbial phosphorus; SPA, specific phosphatase activity.
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Figure 1 Principal component analysis of dynamic nutrient forms from an agricultural gradient at
Cuatro Cienegas Basin.

to the grassland soil. However, the C and N concentrations within the microbial biomass,
DOC and DOP were closer in value to 1 (above 0.5), suggesting that these soil variables
were more resilient than the other soil variables analyzed (Table 3), although these values
were insufficient to achieve recovery of these soil variables after 30 years.

Soil bacteria composition
Composition of bacterial communities
A total of 111 sequences were obtained for the grassland, 107 sequences for the cultivated
plot and 93 sequences for the abandoned site. In the grassland, we obtained a clone library
with 111 sequences, while the cultivated plot had 107 sequences and the abandoned plot had
93. In the grassland, the sequences were distributed among 12 phyla and 19 classes, while
the cultivated plot sequences comprised 9 phyla and 14 classes, and those of the abandoned
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Table 3 Mean values (±standard error) of the resistance and resilience values of nutrient parameters
from an agricultural gradient at Cuatro Cienegas Basin.

Variable Resistance Resilience

pH 0.88 (±0.01) 0.20 (±0.12)
DOC −0.81 (±0.06) 0.61 (±0.06)
DON 0.54 (±0.08) −0.28 (±0.18)
DOP −0.84 (±0.04) 0.81 (±0.06)
NH+4 0.04 (±0.15) 0.42 (±0.16)
NO−3 −1.00 (±0.00) −0.57 (±0.03)
HPO+4 0.08 (±0.02) −0.04 (±0.02)
Cmic −0.43 (±0.09) 0.56 (±0.13)
Nmic −0.45 (±0.16) 0.56 (±0.15)
Pmic −0.28 (±0.17) 0.37 (±0.13)
SPA −0.06 (0.10) 0.25 (±0.12)

Notes.
DOC, dissolved organic Carbon; DON, dissolved organic nitrogen; DOP, dissolved organic phosphorus; NH4+, ammo-
nium; NO3−, nitrate; HPO4−, orthophosphate; Cmic, microbial carbon; Nmic, microbial nitrogen; Pmic, microbial phosphorus;
SPA, specific phosphatase activity.

plot comprised 9 phyla and 12 classes. These results suggest that the bacterial community
of the grassland soil was distributed in higher phyla than was the case in the other two
managed plots. For example, Protobacteria was the more abundant bacteria phylum in the
three plots, accounting for 50% of the results in the grassland and the abandoned plot,
but representing only 35% in the cultivated plot (Fig. 2). Similarly, Actinobacteria was the
second most dominant phylumin both the grassland and abandoned plot (20% and 21%,
respectively), but only represented 15% in the cultivated plot. The two most important
phototrophic phyla (Chloroflexi and Cyanobacteria) were not found in the cultivated plot,
but Cyanobacteria was found in both the grassland soil and abandoned plot (Fig. 2).

Diversity of bacterial communities
Rarefaction curve analysis showed that the cultivated plot had the richest bacterial
community, followed by the abandoned plot and finally the grassland soil (Fig. 3). In
addition, the cultivated plot had the highest expected OTUs by the Chao analyses (659),
while the abandoned plot had the lowest expected value of OTUs (179). The latter plot
also had the lowest values of Simpson and Shannon indices (D= 0.025 and H = 3.8,
respectively), suggesting that the bacterial community of the abandoned plotwas dominated
by fewer OTUs in comparison with the bacterial communities in the cultivated plot and
the grassland soil (D= 0.04, H = 4.4 and D= 0.013, H = 4.2; respectively).

From the total of 307 sequences obtained for all sites, 223 OTUs were recognized at 97%
of similitude. The cultivated plot again had the highest number of OTUs (92), followed
by grassland (84 OTUs) and finally the abandoned plot with the lowest number of OTUs
(59). The three sites shared four OTUs corresponding to the Proteobacteria (Rhizobiales,
Pseudomonadales, Burkholderiales and Xanthomonadales). The abandoned plot shared
two OTUs with the other sites, but there were no OTUs shared between the grassland
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Figure 2 Taxonomic distribution of the 16 rRNA gene sequences obtained from clone libraries of an
agricultural gradient at Cuatro Cienegas Basin.

Figure 3 Rarefaction curves of an agricultural gradient at Cuatro Cienegas Basin. OTUs were deter-
mined at 97% sequence identity.
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and the cultivated plot. Finally, the grassland soil and abandoned plot presented higher
similitude between them relative to the cultivated plot, using the 16S rRNA community
composition at 97% similarity based on the Bray-Curtis algorithm.

DISCUSSION
Soil nutrient dynamics
In the Cuatro Cienegas basin (CCB), alfalfa production by flooding the fields threatens the
wetlands sustainability and contributes to the degradation of soil and vegetation system.
The results showed that the cultivated plot presented a lower soil pH than the other two
sites, which could be associated with the fertilization and continuous irrigation, it has
been reported in other agriculture sites (Moore, Klose & Tabatabai, 2000; Raiesi, 2004).
Soil N fertilization mainly with ammonium, as it is applied to the site of the present
study, promotes nitrification by releasing H+ ions into the soil solution (Moore, Klose &
Tabatabai, 2000), while continuous irrigation increases the leaching of salt through the soil
profile (Raiesi, 2004). However, the cultivated plot presented higher concentrations of total
C, N and P than the other two plots. These increases are caused by fertilization and by the
particular crop under cultivation, with the latter mainly affecting the SOC concentration.
Perennial legumes, such as alfalfa, promote higher SOC accumulation in comparison
with the annual crops since they feature high root biomass production and require low
soil tillage (Franzluebbers, 2009; Sainju & Lenssen, 2011; Bell et al., 2012; Yang et al., 2013).
Furthermore, the alfalfa plot had a greater availability of dissolved organic carbon (DOC),
which could be explained by higher organic matter input and soil water availability. These
conditions promoted depolymerization of organic molecules andmineralization of organic
nutrients mediated by the activity of heterotrophic microorganisms (Wardle, 1992; Vineela
et al., 2008). Associated with this higher activity of heterotrophic microorganisms, organic
N is mainly released as NH+4 and then immobilized within microbial biomass, as suggested
by the NH+4 and Nmic values of the cultivated plot. All of these results suggest that the
cultivated plot presented higher soil nutrient transformations, mainly of N, promoted by
the availability of water and nutrient fertilization, and thus the soil nutrient dynamics of
this plot differ from the plots without management, as suggested by the results of the PCA.
In contrast, the low amount of soil organic matter in the native grassland is consequence
of low availability of soil water in the east-side of CCB (Tapia-Torres et al., 2015a). The
low water availability reduces plant productivity and in consequence there is a lower input
of organic matter input to the soil, as Tapia-Torres et al. (2015b) reported for soils under
desert scrub within CCB. Consequently, the activity of microbial populations is constrained
by low availability of organic carbon (Wardle, 1992).

The nutrients within microbial biomass and phosphatase activity are strongly affected
by the dynamics of soil nutrients as Canonical Analysis confirmed. While the cultivated
plot presented higher nutrient concentrations within microbial biomass than the other
two plots, microbial C:N and C:P did not differ among plots. These results suggest that
the soil microbial community had different strategies for nutrient acquisition in order to
equilibrate nutrient stoichiometry (Sterner & Elser, 2002). The soil microbial communities
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of the plots showed elemental homeostasis, with the exception of the cultivated soil, in
which N acquisition showed weak homeostasis, probably in response to the constant
fertilization with ammonium. Tapia-Torres et al. (2015a) also reported a strong N and
P homeostasis for two native grasslands within the CCB. These results suggest that soil
microbial communities adopt different strategies for nutrient acquisition, including the
production of eco-enzymes which clave the organic molecules for microbial assimilation
(Waring, Weintraub & Sinsabaugh, 2014). Phosphatase is the main eco-enzyme that
mineralizes organic P molecules (Tabatabai & Bremner, 1969). In our study site, the
native grassland had higher specific phosphatase activity, indicating that members of the
soil microbial community in this plot invest more in production of this enzyme than in
growth, which suggests that this microbial community is co-limited by C and P as reported
before for the same study site by Tapia-Torres et al. (2015a). Moreover, themicrobial C:N:P
ratio of the cultivated plot (99:33:1) is wider than that proposed by Cleveland & Liptzin
(2007) for different terrestrial ecosystems (60:7:1), while the non-managed plots are closer
to this ratio (42:5:1 and 56:2:1 for the natural grassland and abandoned plot, respectively).
These results suggest that the agricultural management strongly disrupts soil microbial
activity and its homeostasis.

As expected, the sites under no current management were limited by water and DOC. At
the abandoned site, these conditions promoted the nitrification process, which is mediated
by autotrophic microorganisms that can use NH+4 as their energy source (Hart et al.,
1994; Chen & Stark, 2000). The microbial N immobilization process was favored in the
native grassland; this process promotes N conservation within the ecosystem, as previously
reported for native grassland in the CCB (Tapia-Torres et al., 2015b).

Soil bacteria composition
The agricultural land-use change affected the soil bacteria composition. Agricultural
management increased the numbers of OTUs and diversity indices associated with higher
availability of soil water and energy for microbial activity. Such increases due to agriculture
activity have been reported for other desert sites (Köberl et al., 2011; Wang et al., 2012).
However, the abandoned plot had lower OTUs and diversity indexes in comparison with
the other two plots, probably associated with more stressful soil conditions (i.e., higher
salinity, lower water and nutrient availability) as reported by Keshri, Mody & Jha (2013)
for desert soils.

The two dominant phyla from the three plots analyzed were Proteobacteria and
Actinobacteria, which are both very common in agricultural (Buckle & Schmidt, 2003;
Chaudhry et al., 2012) and desert (Chanal et al., 2006; López-Lozano et al., 2012) soils.
However, their relative proportion differed among plots, especially in the case of the
cultivated plot. Moreover, the two most important phototrophic phyla (Chloroflexi and
Cyanobacteria) were not found in the cultivated plot, where N input and soil disruption
selected against their presence. As expected, Cyanobacteria were present in both the
grassland soil and the abandoned plot, forming a desert crust (Li et al., 2012). In contrast,
the Acidobacteria were more abundant in the cultivated plot (ca. 18%), while in the non-
cultivated plot had decreased to 2%. This phylum is associated with pH neutral or acid soils,
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such as the soils of the cultivated plot. The results suggest that agricultural management
has a strong effect on soil bacterial composition, because the agricultural plot shared
lower OTUs (only 4) with the plot under no management. Furthermore, according to the
Bray-Curtis algorithm, the grassland soil and the abandoned plot had a higher similitude
between them relative to the cultivated plot. For example, in both the native grassland
and the abandoned plots, some extremophile OTUs were present, e.g., that associated
with the phylum Deinococcus-Thermus, which is adapted to stressful soil conditions such
as salinity, high temperatures, aridity, etc., (Nienow, 2009); however, these OTUs were
not presented in the cultivated plot. These results suggest that some OTUs recover after
abandonment of agricultural management, although the soil bacteria community is not yet
similar to that in the native grassland even after more than 30 years since abandonment.
One study has reported similar soil bacteria in native vegetation and sites abandoned
for over 45 years in agro-ecosystems of Michigan State (Buckle & Schmidt, 2003).

In soil microbial communities, microfungi are an important and diverse component of
microbial diversity, representing a large proportion of microbial diversity in soils (Fierer,
Bradford & Jackson, 2007). These microorganisms play an immense role in regulating
energy and nutrient fluxes through natural ecosystems, via their involvement in soil
development, decomposition and uptake of nutrients by plants (Dighton, 1997) mainly
phosphate uptake. Future studies should be aimed at understanding the role of microfungi
in soil nutrient cycling in this ecosystem. However, tagging of ITS markers for soil fungi in
CCB have been challenging, so there is still further research needed in this field.

Soil resistance and resilience
All of the variables evaluated presented low resistance and resilience, suggesting that the
native grassland soil may be very vulnerable to agricultural transformation. The resilience of
soil is determined by its intrinsic characteristics, as well as by prevailing climatic conditions
(Blanco-Canqui & Lal, 2010). For instance, soil with high organic matter content is more
resilient, since organic compounds represent important reservoirs of energy and nutrients
for both the soil microbial community and plants (Bronick & Lal, 2005). In addition,
ecosystems in humid climates are also more resilient than arid ecosystems because they are
not constrained by water availability. For example, the wet tropical ecosystem requires less
than 10 years for recovery of its vegetal community following perturbation, while the desert
ecosystem requires at least 40 years (Lesschen et al., 2008; Wang et al., 2011). Our results
suggest that the native grassland presents slow recovery and this characteristic is critical for
the design of alternative agricultural management, as well as appropriate strategies for soil
reclamation. This is important because the rate of soil degradation is faster than that of soil
restoration, which acts to increase the area of degraded lands in these arid ecosystems.

The design of soil restoration practices is critical for CCB, because the ecosystems
within CCB are very vulnerable to the disruption of nutrient dynamics, and the native
species have low competition capacity against invasive species under higher availability of
resources (Souza et al., 2006). This situation is critical for the soils of CCB, because they
contain a high diversity of native species that can face up the scarcity of nutrients, mainly
P (Tapia-Torres et al., 2016). The organic agriculture with low pesticide inputs and the use
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of native microbial strains with different capabilities to use, transform and recycle the soil
nutrients (i.e., phosphorus solubilizing bacteria) could be the best solution for agriculture
in this particular and highly diverse important ecosystem. These agricultural practices not
only will allow the maintenance of soil microbial biodiversity but also will contribute to the
soil conservation. Therefore, ensuring long-term availability and accessibility to healthy
soil, mainly for food security is a global challenge.

CONCLUSIONS
Our results suggest that land-use change transforming native grassland into agricultural
land induces drastic modifications in the soil nutrient dynamics as well as in the
bacterial community. However, with the suspension of agricultural practices, some soil
characteristics tend to slowly recover their natural state.
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