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Abstract  11 

Food availability and diet selection are important factors influencing the abundance and 12 

distribution of wild waterbirds. In order to better understand changes in waterbird population, it is 13 

essential to figure out what they feed on. However, analyzing diet could be difficult and 14 

inefficient using traditional methods, such as microhistologic observation. Here, we addressed 15 

this gap of knowledge by investigating diet of greater white-fronted goose Anser albifrons and 16 

bean goose Anser fabalis, which are obligate herbivores wintering in China, mostly in Middle 17 

and Lower Yangtze River Floodplain. First, we selected suitable and high-resolution marker gene 18 

for wetland plants that these geese would consume during the wintering period. Eight candidate 19 

genes were included, rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and 20 

psbK-psbI. The selection was performed via analysis of representative sequences from NCBI and 21 

comparison of amplification efficiency and resolution power of plant samples collected from the 22 

wintering area. The trnL gene was chosen at last with c/h primers and a local plant reference 23 

library was constructed with this gene. Then, utilizing DNA metabarcoding, we discovered 15 24 

food items in total from feces of these birds. Of the 15 unique dietary sequences, 10 could be 25 

identified at specie-level. As for greater white-fronted goose, 73% of sequences belonged to 26 

Poaceae spp., and 26% belonged to Carex spp. In contrast, almost all sequences of bean goose 27 

belonged to Carex spp. (99%). Using the same samples, microhistology provided consistent food 28 

composition with metabarcoding results for greater white-fronted goose, while 13% of Poaceae 29 

was recovered for bean goose. In addition, two other taxa were discovered only through 30 

microhistologic analysis. Although most of the identified taxa matched relatively well between 31 
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the two methods, DNA metabarcoding gave taxonomically more detailed information. 32 

Discrepancies were likely due to biased PCR amplification in metabarcoding, low discriminating 33 

power of current marker genes for monocots, and biases in microhistologic analysis. The diet 34 

differences between two geese species might indicate deeper ecological significance beyond the 35 

scope of this study. We concluded that DNA metabarcoding providsprovides new perspectives for 36 

studies of herbivorous waterbird diets and inter-specific interactions, as well as new possibilities 37 

to investigate interactions between herbivores and plants. In addition, microhistologic analysis 38 

should be used together with metabarcoding methods to integrate thisese information. 39 
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Introduction  40 

Wetlands are one of the most important ecosystems in nature, and they harbor a variety of 41 

ecosystem services such as protection against floods, water purification, climate regulation and 42 

recreational opportunities (Brander, Flora & Vermaat, 2006). Waterbirds are typically 43 

wetland-dependent animals upon which they could get abundant food and suitable habitats (Ma et 44 

al., 2010). Waterbird abundance and distribution could reflect the status of wetland structure and 45 

functions, making them important bio-indicators for wetland health (Fox et al., 2011). Among all 46 

factors affecting waterbird community dynamics, food availability is frequently considered to 47 

play one of the most important roles (Wang et al., 2013). However, recently suitable food 48 

resources have tended to decrease or even disappear due to deterioration and loss of natural 49 

wetlands (Fox et al., 2011). As a result, waterbirds are forced to discard previous habitats and 50 

sometimes even feed in agricultural lands (Zhang et al., 2011). In addition, migratory waterbirds 51 

may aid the dispersal of aquatic plants or invertebrates by carrying and transporting them 52 

between water bodies at various spatial scales (Reynolds, Miranda & Cumming, 2015). 53 

Consequently, long-time monitoring and systematic studies of waterbird diets are essential to 54 

understand population dynamics of waterbirds, as well as to establish effective management 55 

programs for them (Wang et al., 2012).  56 

Traditional methods for waterbird diet analysis were direct observation in the field 57 

(Swennen & Yu, 2005) or microhistologic analysis of remnants in feces and/or gut contents 58 

(James & Burney, 1997; Fox et al., 2007). While these approaches have been proved useful in 59 

some cases, they are relatively labor-intensive and greatly skill-dependent (Fox et al., 2007; 60 
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Samelius & Alisauskas, 1999; Symondson, 2002). Applications of other methods for analyzing 61 

gut contents or feces were also restricted due to inherent limitations, as reviewed by Pompanon et 62 

al. (Pompanon et al., 2012). Recently, metabarcoding methods, based on high-throughput 63 

sequencing, have provided new perspectives for diet analysis and biodiversity assessment 64 

(Taberlet et al., 2007; Creer et al., 2010). These methods provide higher taxonomic resolution 65 

and higher detectability with enormous sequence output from large-scale environmental samples, 66 

such as soil, water and feces (Shokralla, Spall & Gibson, 2012; Bohmann et al., 2014). Owing to 67 

these advantages, metabarcoding has been widely employed in diet analysis of herbivores 68 

(Taberlet et al., 2012; Ando et al., 2013; Hibert et al., 2013), carnivores (Deagle, Kirkwood & 69 

Jarman, 2009; Shehzad et al., 2012) and omnivores (De Barba et al., 2014). But pitfalls of 70 

metabarcoding should not be ignored when choosing suitable techniques for new studies. For 71 

instance, many researches have shown that it is difficult to obtain quantitative data using 72 

metabarcoding (Sun et al., 2015). This drawback might result from both technical issues of this 73 

method and relevant biological features of samples (Pompanon et al., 2012).  74 

One paramount prerequisite of metabarcoding methods is to select robust genetic markers 75 

and corresponding primers (Zhan et al., 2014; Zhan & MacIsaac, 2015). For diet studiesy of 76 

herbivores, at least eight chloroplast genes and two nuclear genes are used as potential markers 77 

for land plants (Hollingsworth, Graham & Little, 2001). Although mitochondrial cytochrome c 78 

oxidase I (COI) is extensively recommended as a standard barcode for animals, its relatively low 79 

rate of evolution in botanical genomes precludes it being an optimum for plants (Wolfe, Li & 80 

Sharp, 1987; Fazekas et al., 2008). The internal transcribed spacer (ITS) is excluded due to 81 
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divergence discrepancies of individuals and low reproducibility (Álvarez & Wendel, 2003). A 82 

variety of combinations and comparisons have been performed for the eight candidate genes, 83 

however, none proved equally powerful for all cases (Fazekas et al., 2008). Consequently, it is 84 

more effective to choose barcodes for a circumscribed set of species occurring in a regional 85 

community (Kress et al., 2009). Another equally important aspect of metabarcoding applications 86 

is the construction of reference libraries which assist taxonomic assignment (Rayé et al., 2011; 87 

Xu et al., 2015). It is difficult to accurately interpret sequence reads without a reliable reference 88 

library (Elliott & Jonathan Davies, 2014).  89 

Diet analysis is one of the central issues in waterbird research, both for deciphering 90 

waterfowl population dynamics and interpreting inter- or intra-specific interactions of 91 

cohabitating species (Zhao et al., 2015). For instance, more than 60% of bean goose Anser 92 

fabalis and almost 40% of greater white-fronted goose Anser albifrons populations along the East 93 

Asian – Australian Flyway Route winter at the Shengjin Lake National Nature Reserve (Zhao et 94 

al., 2015). Previous studies based on microhistologic observation illustrated that the dominant 95 

composition of their diets wasere monocotyledons, such as Carex spp. (Zhao et al., 2012), 96 

Poaceae (Zhang et al., 2011), and a relatively small proportion of non-monocots (referred to as 97 

dicotyledons in study of “Zhao, Cao & Fox, 2013”). However, few food items could be identified 98 

to species-level, mainly owing to variable tissue structures within plants, similar morphology 99 

between relative species, and a high level of degradation after digestion (Zhang et al., 2011; Zhao 100 

et al., 2012; Zhao, Cao & Fox, 2013). Ambiguous identification has hindered understanding of 101 

waterbird population dynamics and potential to establish effective conservation plans for them. 102 
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In this study, we aimed to improve this situation using the metabarcoding method to analyze 103 

diets of these species (see flowchart in Fig. 1). By examining the efficiency of eight candidate 104 

genes (rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and psbK-psbI), we 105 

selected robust genes and corresponding primers for reference library construction and 106 

high-throughput sequencing. Subsequently, we used the metabarcoding method to investigate diet 107 

composition of these two species based on feces collected from Shengjin Lake. Finally, we 108 

discussed and compared results from microhistology and DNA metabarcoding using the same 109 

samples to assess the utility and efficiency of these two methods.  110 

Materials and Methods  111 

Ethics Statement  112 

Our research work did not involve capture or any direct manipulation or disturbances of animals. 113 

We collected samples of plants and feces for molecular analyses. We got access to the reserve 114 

under the permission of Shengjin Lake National Nature Reserve Administration (Chizhou, Anhui, 115 

China), which is responsible for the management of the protected area and wildlife. We were 116 

forbidden to capture or disturb geese in the field.  117 

Study Area  118 

Shengjin Lake (116º55  ́- 117º15  ́E, 30º15  ́-30º30´ N) was established as a National Nature 119 

Reserve in 1997, aiming to protect diverse waterbirds including geese, cranes and storks. The 120 

water level fluctuates greatly in this lake, with maximal water level of 17 m during summer 121 

(flood season) but only 10 m during winter (dry season). Due to this fluctuation, receding waters 122 

expose two large Carex spp. meadows and provide suitable habitats for waterbirds. This makes 123 
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Shengjin Lake one of the most important wintering sites for migratory waterbirds (Zhao et al., 124 

2015). Greater white-fronted goose and bean goose are the dominant herbivores wintering (from 125 

October to April) in this area, accounting for 40% and 60% of populations along the East Asian – 126 

Australian Flyway Route, respectively (Zhao et al., 2015).  127 

Field Sampling  128 

The most common plant species that these two geese may consume were collected in May 2014 129 

and January 2015, especially species belonging to Carex and Poaceae. Fresh and intact leaves 130 

were carefully picked, tin-packaged in the field and stored at -80 °C in the laboratory before 131 

further treatment. Morphological identification was carried out with the assistance of two 132 

botanists (Profs. Zhenyu Li and Shuren Zhang from Institute of Botany, Chinese Academy of 133 

Sciences).  134 

All feces were collected at the reserve (Fig. 2) in January 2015. Based on previous studies 135 

and the latest waterbird survey, sites with biglarge flocks of geese (i.e. more than 200 individuals) 136 

were chosen (Zhang et al., 2011). As soon as geese finished feeding and feces were defecated, 137 

fresh droppings were picked and stored onin dry ice. Droppings of bean geese were generally 138 

thicker than those of smaller greater white-fronted goose, to the degree that these could be 139 

reliably distinguished in the field (Zhao et al., 2015). Disposal gloves were changed for each 140 

sample to avoid cross contamination. To avoid repeated sampling and make sure samples were 141 

from different individuals, each sample was collected with a separation of more than 2 mtwo 142 

meters. In total, 21 feces were collected, including 11 for greater white-fronted goose and 10 for 143 

bean goose. All samples were transported to laboratory onin dry ice and then stored at -80 °C 144 
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until further analysis.  145 

Selection of Molecular Markers and Corresponding Primers  146 

HereIn this part, we aimed to select gene markers with adequate discriminating power for our 147 

study. We included eight chloroplast genes - rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), 148 

atpF-atpH, and psbK-psbI for estimation. Although Shengjin Lake included an array of plant 149 

species, we focused mainly on the most likely food resources (Xue et al., 2008; Zhao et al., 2015) 150 

that geese would consume for candidate gene tests. These covered eleven 11 genera and the 151 

family Poaceae (Table S1). For tests of all candidate genes, we recovered sequences of 152 

representative species in the selected groups from GenBank 153 

(http://www.ncbi.nlm.nih.gov/nuccore). We calculated inter-specific divergence within every 154 

genus or family based on the Kiruma 2-parameter model (K2P) using MEGA version 6 (Tamura 155 

et al., 2013). We also constructed molecular trees based on UPGMA using MEGA and 156 

characterized the resolution of species by calculating the percentage of species recovered as 157 

monophyletic based on phylogenetic trees (Rf). Secondly, primers selected out of eight candidate 158 

genes were used to amplify all specimens collected in Shengjin Lake and to check their 159 

amplification efficiency and universality. Thirdly, we calculated inter-specific divergence based 160 

on sequences that we obtained from last step. Generally, a robust barcode gene is obtained when 161 

the minimal inter-specific distance exceeds the maximal intra-specific distance (e.g. existence of 162 

barcoding gaps). Finally, to allow the recognition of sequences after high-throughput sequencing, 163 

both of the forward and reverse primers of the selected marker gene were tagged specifically for 164 

each sample with 8nt nucleotide codes at the 5’ end (Parameswaran et al., 2007). 165 

http://www.ncbi.nlm.nih.gov/nuccore
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DNA Extraction, Amplification and Sequencing  166 

Two hundred milligrams of leaf was used to extract the total DNA from each plant sample using a 167 

modified CTAB protocol (Cota-Sanchez, Remarchuk & Ubayasena, 2006). DNA extraction of 168 

feces was carried out using the same protocol with minor modification in incubation time 169 

(elongate to 12 h). Each fecal sample was crushed thoroughly and divided into four quarters. All 170 

quarters of DNA extracts were then pooled together. DNA extraction was carried out in a clean 171 

room used particularly for this study. For each batch of DNA extraction, negative controls (i.e. 172 

extraction without feces) were included to monitor possible contamination.  173 

For plant DNA extracts, PCR amplifications were carried out in a volume of 25μl with ~100 174 

ng total DNA as template, 1U of Taq Polymerase (Takara, Dalian, Liaoning Prov., China), 1× 175 

PCR buffer, 2 mM of Mg
2+

, 0.25 mM of dNTPs, 0.1 μM of forward primer and 0.1 μM of reverse 176 

primer. After 4 min at 94 °C, the PCR cycles were as follows: 35 cycles of 30 s at 94 °C, 30 s at 177 

56 °C and 45 s at 72 °C, and the final extension was 10 min at 72 °C. We applied the same PCR 178 

conditions for all primers. All the successful PCR products were sequenced with Genewiz 179 

(Suzhou, Jiangsu Prov., China).  180 

For fecal DNA extracts, PCR mixtures (25μl) were prepared in six replicates for each 181 

sample to reduce biased amplification. Each replicate was subjected to the same amplification 182 

procedure used for plant extracts. The six replicates of each sample were pooled and purified 183 

using the Sangon PCR product purification kit (Sangon Biotech, Shanghai, China). 184 

Quantification was carried out to ensure equilibrium of contribution of each sample using the 185 

NanoDrop ND-2000 UV-Vis Spectrophotometer (NanoDrop Technologies, Delaware, United 186 
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States of America). High-throughput sequencing was performed using Illumina MiSeq platform 187 

following manufacturer’s instructions by BGI (Shenzhen, Guangdong Prov., China). Reads of 188 

high-throughput sequencing could be found at NCBI’s Sequence Read Archive (Accession 189 

number: SRP070470).  190 

Data Analysis for Estimating Diet Composition  191 

After high-throughput sequencing, pair-ended reads were merged with the fastq_mergepairs 192 

command using usearch (http://drive5.com/usearch, Edgar, 2010). Reads were then split into 193 

independent files according to unique tags using the initial process of RDP pipeline 194 

(https://pyro.cme.msu.edu/init/form.spr). We removed sequences i) that didn’t perfectly match 195 

tags and primer sequences; ii) that contained ambiguous nucleotide (N’s). Tags and primers were 196 

then trimmed using the initial process of RDP pipeline. Further quality filtering using usearch 197 

discarded sequences with i) quality score less than 30 (<Q30) and ii) length shorter than 100 bp. 198 

Unique sequences were clustered to operational taxonomy units (OTUs) at the similarity 199 

threshold of 98% (Edgar, 2013). All OTUs were assigned to unique taxonomy with local blast 200 

2.2.30+ (Altschul et al., 1990). We detected a plant within the reference library for each sequence 201 

with the threshold of length coverage > 98%, identity > 98% and e-value < 1.0 e
-50

. If a query 202 

sequence matched two or more taxa, it was assigned to a higher taxonomic level which included 203 

all taxa.  204 

Microhistology analysis  205 

We used the method described by Zhang et al. (2011) to perform microhistologic examination of 206 

fecal samples. Each sample was first washed with pure water and filtered with a 25-μm filter. 207 

http://drive5.com/usearch
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Subsequently, the suspension was examined under a light microscope at 10× magnification for 208 

quantification statistics and at 40× magnification for species identification. We compared photos 209 

of visible fragments with an epidermis database of plants from Shengjin Lake to identify food 210 

items (Zhang et al., 2011).  211 

Results  212 

Selection of Genes and Corresponding Primers and Reference Library Construction  213 

A total of 3,296 representative sequences were recovered from GenBank, ranging from 0 to 345 214 

sequences per gene per taxon (Table S1). For Eleocharis and Trapa, only sequences of rbcL gene 215 

and trnL gene were retained, which makes it unfair to compare the efficiency and suitability of 216 

eight candidate genes. For the other ten taxa, trnL, trnH-psbA, rbcL and psbK-psbI showed the 217 

largest inter-specific divergence in five, three, one, and one taxonomic groups, respectively. In 218 

addition, trnH-psbA, atpF-atpH, trnL and psbK-psbI showed the highest mean divergence in four, 219 

four, one and one taxonomic groups, respectively. However, given the small number of sequences 220 

and coverage of species, the suitability and efficiency of atpF-atpH and psbK-psbI seem to be 221 

less reliable than others. This comparison makes trnH-psbA, trnL and rbcL to be selected out of 222 

the eight candidate genes. As matK used to be recommended as the standard barcode gene for 223 

Carex species (Starr, Naczi & Chouinard, 2009), which happened to be the dominant food for 224 

herbivorous geese in our study (Zhao et al., 2015), we included matK as a supplement at last.  225 

Primers for these four genes (Table 1) were used to amplify the plants that we collected in 226 

the field. In total, we collected 88 specimens in the field, belonging to 25 families, 53 genera and 227 

70 species (Table 2). The selected primers for trnL and rbcL successfully amplified 100% and 91% 228 
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of all species, respectively, while primers for trnH-psbA and matK amplified only 71% and 43%, 229 

respectively. Therefore, we chose trnL and rbcL to test their discriminating power in our target 230 

plants.  231 

We calculated the inter-specific divergence within genera and families with at least two 232 

species to compare their discriminating power. Maximal, minimal and mean inter-specific 233 

distances were calculated for seven dominant genera and six dominant families (Table 3). Neither 234 

gene could differentiate species of Vallisneria (mean = 0.000±0.000%) or Artemisia (mean = 235 

0.000±0.000%). But trnL showed a larger divergence range for the other six genera and five 236 

families. Hence, we chose trnL as the barcoding gene for reference library constructing and 237 

high-throughput sequencing for our study. The discriminating power of trnL was strong for most 238 

species (Table 4). However, some species could only be identified at genus-level or family-level 239 

with trnL. For instance, five species of Potamogetonaceae shared the same sequences and this 240 

made them to be identified at genus-level. Species could be identified easily to genus and family, 241 

except for three grasses (Poaceae) Beckmannia syzigachne, Phalaris arundinacea, and 242 

Polypogon fugax which shared identical sequences.  243 

Data Processing for Estimating Diet Composition  244 

In total, 0.21 and 0.18 million reads were generated for greater white-fronted goose (GWFG) and 245 

bean goose (BG), respectively (Table 5). The number of recovered OTUs ranged from 8 to 123 246 

for GWFG and BG samples. We used local BLAST to compare these sequences with the 247 

Shengjin Lake reference database. Finally, with DNA metabarocoding, 12 items were discovered 248 

in the feces of GWFG, including one at family-level, three at genus-level and eight at 249 
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species-level (Table 6). Four items were discovered in the feces of BG, including one at 250 

genus-level and three at species-level. In total, this method identified 15 taxa in feces of these 251 

geese.  252 

However, the sequence percentage of each food item varied greatly (Table 6). For GWFG, 253 

the majority of sequences (96.36%) were composed of only five items - Poaceae spp. (47.98%, 254 

except Poa annua), Poa annua (21.86%), Carex heterolepis (17.51%), Carex spp. (9.01%, except 255 

Carex heterolepis), and Alopecurus aequalis (3.21%). For BG, almost all the sequences belonged 256 

to Carex heterolepis (99.49%). Other items only occupied a relatively small proportion of 257 

sequences. In addition, the presence of each item per sample was also unequal (Table S2). For 258 

example in GWFG, Carex heterolepis, Carex spp., Poa annua and Potentilla supina were present 259 

in almost all the samples, while Stellaria media, Asteraceae sp. and Lapsana apogonoldes 260 

occurred in only about one third of samples.  261 

When microhistologic examination were performed using the same samples, eight items 262 

were found in the feces of greater white-fronted goose, including one at family-level, four at 263 

genus-level and three at species-level (Table 6). Dominant items were Poaceae spp. (45.68%), 264 

Alopecurus Linn. (30.93%) and Carex heterolepis (16.39%). Seven items were found in the feces 265 

of bean goose, including four at genus-level and three at species-level (Table 6). Dominant items 266 

were Carex heterolepis (62.85%), Asteraceae sp. (14.55%), and Alopecurus Linn. (13.18%).  267 

Discussion  268 

Marker Selection and Reference Library Constructing for Diet Analysis  269 

With greatly reduced cost, extremely high throughput and information content, metabarcoding 270 
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has revolutionized the exploration and quantification of dietary analysis with noninvasive 271 

samples containing degraded DNA (Fonseca et al., 2010; Shokralla et al., 2014). Despite 272 

enormous potential to boost data acquisition, successful application of this technology relies 273 

greatly on the power and efficiency of genetic markers and corresponding primers (Bik et al., 274 

2012; Zhan et al., 2014). In order to select the most appropriate marker gene for our study, we 275 

compared the performance of eight commonly used chloroplast genes, rbcL, rpoB, rpoC1, matK, 276 

trnL, trnH-psbA, atpF-atpH, and psbK-psbI and their corresponding primers. Although a higher 277 

level of discriminating power was shown in several studies, atpF-atpH and psbK-psbI were not 278 

as commonly used as other barcoding genes (Hollingsworth, Graham & Little, 2001). As one of 279 

the most rapidly evolving coding genes of plastid genomes, matK was considered as the closest 280 

plant analogue to the animal barcode COI (Hilu & Liang, 1997). However, matK was difficult to 281 

amplify using available primer sets, with only 43% of successful amplification in this study. In 282 

spite of the higher species discrimination success of trnH-psbA than rbcL+matK in some groups, 283 

the presence of duplicated loci, microinversions and premature termination of reads by 284 

mononucleotide repeats lead to considerable proportion of low-quality sequences and 285 

over-estimation of genetic difference when using trnH-psbA (Graham et al., 2000; Whitlock Hale 286 

& Groff, 2010). In contrast, the barcode region of rbcL is easy to amplify, sequence, and align in 287 

most plants and was recommended as the standard barcode for land plants (Chase et al., 2007). 288 

The relatively modest discriminating power (compared to trnL) precludes its application for our 289 

study aiming to recover high resolution of food items. Consequently, trnL was selected out of 290 

eight candidate markers, with 100% amplification success, more than 90% of high quality 291 
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sequences, and relatively large inter-specific divergence.  292 

One of the biggest obstacles in biodiversity assessment and dietary analysis is the lack of a 293 

comprehensive reference library, without which it is impossible to accurately interpret and assign 294 

sequences generated from high-throughput sequencing (Valentini, Pompanon & Taberlet 2009; 295 

Barco et al., 2015). In this study, we constructed a local reference library by amplifying the most 296 

common species (70 morpho-species in total) during the wintering period with the trnL gene. 297 

Although not all of them could be identified at species-level with trnL due to relatively low 298 

inter-specific divergence, many species could be separated with distinctive sequences. Previous 299 

studies have recommended group-specific barcodes to differentiate closely related plants at the 300 

species level (Li et al., 2015). For instance, matK has been proved to be more efficient for the 301 

discrimination of Carex spp. (Starr, Naczi & Chouinard, 2009). However, the primer set of matK 302 

failed to amplify species of Carex spp. in our study, suggesting the universality of selected primer 303 

pairs should be tested in each study (Zhan et al., 2014).  304 

Applications of Metabarcoding for Geese Diet Analysis  305 

A variety of recent studies have demonstrated the great potential of metabarcoding for dietary 306 

analysis, mainly owing to the high throughput, high discriminating power, and the ability to 307 

process large-scale samples simultaneously (Creer et al., 2010; Taberlet et al., 2012; Shehzad et 308 

al., 2012). In this study, we applied this method to recover diets of herbivorous geese and 309 

provided standard protocols for dietary analysis of these two ecologically important waterbirds. 310 

Our results further proved the more objective, less experience-dependent and more time-efficient 311 

character of DNA metabarcoding. However, not all the species in the reference library could be 312 
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identified at species-level, owing to low inter-specific divergence. We suggest that multiple 313 

group-specific markers to be incorporated in the future, as in De Barba et al. (2014). Two species, 314 

Carex thunbergii and Fabaceae sp., were only discovered via microhistologic analysis rather than 315 

metabarcoding. This failure might reflect the biased fragment amplification of current technology, 316 

of which dominant templates could act as inhibitors of less dominant species (Piñol et al., 2015). 317 

However, three species of Poaceae were only discovered using metabarcoding. In total, more 318 

taxa and higher resolution were attained using metabarcoding. But microhistology still proved a 319 

powerful supplementary. Previous studies using metabarcoding usually detected dozens of food 320 

items, even as many as more than one hundred species. For instance, 18 taxa prey were identified 321 

for leopard cat (Prionailurus bengalensis) (Shehzad et al., 2012); 44 plant taxa were recovered in 322 

feces of red-headed wood pigeon (Columba janthina nitens)  (Ando et al., 2013); while more 323 

than 100 taxa were found in diet studies of brown bear (Ursus arctos) (De Barba et al., 2014). The 324 

relatively narrow diet spectrum of herbivorous geese may lead to misunderstanding that this 325 

result of our study is merely an artefact due to small sampling effort. However, this result is 326 

credible since these two geese species only feed on Carex meadow, where the dominant 327 

vegetation is Carex spp., with other species such as Poaceae and dicots (Zhao et al., 2015). Even 328 

though other wetland plants exist, they usually composed only a small proportion of the geese 329 

diets.  330 

Quantification of food composition is another key concern in dietary analysis. Although the 331 

relative percentage of sequences were not truly a quantitative estimate of diet, taxa of the 332 

majority sequences in this study were in accord with microhistologic observations, which was 333 
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considered an efficient way to provide quantitative results (Wang et al., 2013). Discrepancies 334 

might come from the semi-quantitative nature of metabarcoding methods (Sun et al., 2015). This 335 

is likely derived from PCR amplification, which always entails biases caused by universal 336 

primer-template mismatches, annealing temperature or number of PCR cycles (Zhan et al., 2014; 337 

Piñol et al., 2015). Other methods such as shot-gun sequencing or metagenomic sequencing 338 

could be incorporated in the future to give information on abundances of food items (Srivathsan 339 

et al., 2015).  340 

Implications for Waterbird Conservation and Wetland Management  341 

For long-distance migratory waterbirds, such as the wild geese in this study, their abundance and 342 

distribution are greatly influenced by diet availability and habitat use (Wang et al., 2013). For 343 

example, waterbirds may be restricted at (forced to leave) certain areas due to favoring (loss) of 344 

particular food (Wang et al., 2013), while the recovery of such food may contribute to return of 345 

bird populations (Noordhuis et al., 2002). Results of both metabarcoding and microhistologic 346 

analysis in this study revealed that Carex and Poaceae were dominant food components which is 347 

in accordance with previous studies. The increasing number of these two geese wintering at the 348 

Shengjin Lake may be attributed to the expansion of Carex meadow, which offers access to 349 

abundant food resources (Zhao et al., 2015). Considering the long-distance migratory character of 350 

these birds, it is important to maintain energy balances and good body conditions in wintering 351 

areas because this might further influence their departure dates and reproductive success after 352 

arriving at breeding areas (Prop, Black & Shimmings, 2003). Based on this, it is important for 353 

wetland managers to maintain the suitable habitats and food resources for sustainable 354 
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conservation of waterbirds, which highlights the significance of diet information. Our study also 355 

indicated that overlap and dissimilarity existed between the diets of these two geese. As we all 356 

know, Aanimals foraging in the same habitats may compete for limited food resources (Madsen 357 

& Mortensen, 1987). This discrepancy of food composition may arise from the avoidance of 358 

inter-specific competition (Zhao et al., 2015). However, with the increase of these two species in 359 

Shengjin Lake, further research is needed to investigate the mechanisms of food resource 360 

partitioning and spatial distribution.  361 

Shengjin Lake is one of the most important wintering sites for tens of thousands of 362 

migratory watebirds, while annual life cycles of these birds depend on the whole migratory route, 363 

including breeding sites, stop-over sites and wintering sites (Kear, 2006). Thus, a molecular 364 

reference library covering all the potential food items along the whole migratory route will be 365 

useful both for understanding of wetland connections and waterbird conservation. Besides, the 366 

ability of DNA metabarcoding to process lots of samples simultaneously enables rapid analyses 367 

and makes this method helpful for waterbird studies.  368 
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