High-throughput sequencing-based waterbird diet analysis: application to wintering

Deleted: s'

2 herbivorous geese

1

- 3 Yuzhan Yang¹, Aibin Zhan², Lei Cao², Fanjuan Meng², Wenbin Xu³
- ⁴ School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- ²Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- ⁶ Anhui Shengjin Lake National Nature Reserve Administration, Chizhou, Anhui, China
- 7 Corresponding Author:
- 8 Lei Cao²
- 9 18 Shuangqing Road, Haidian District, Beijing, China, 100085
- 10 Email address: <u>caolei@ustc.edu.cn</u>

Abstract

13

Food availability and diet selection are important factors influencing the abundance and 14 15 distribution of wild waterbirds. In order to better understand changes in waterbird populations, it is essential to figure out what they feed on. However, analyzing diet could be difficult and 16 inefficient using traditional methods, such as microhistologic observation. Here, we addressed 17 this gap of knowledge by investigating diet of greater white-fronted goose Anser albifrons and 18 19 bean goose Anser fabalis, which are obligate herbivores wintering, in China, mostly in Middle and Lower Yangtze River Floodplain. We firstly prepared a local plant reference library by 20 selecting an optimal marker gene (P6 loop of chloroplast trnL intron) and amplifying the most 21 common plants that these geese would consume. Then, utilizing DNA metabarcoding, we 22 discovered 15 food items in total from feces of these birds. Of the 15 unique dietary sequences, 23 10 could be identified at species-level. As for greater white-fronted goose, 73% of sequences 24 belonged to *Poaceae* spp., and 26% belonged to *Carex* spp. In contrast, almost all sequences of 25 bean goose belonged to Carex spp. (99%). Using the same samples, microhistology provided 26 27 consistent food composition with metabarcoding results for greater white-fronted goose, while 13% of Poaceae was recovered for bean goose. In addition, two other taxa were discovered only 28 through microhistologic analysis. Although most of the identified taxa matched relatively well 29 between the two methods, DNA metabarcoding gave taxonomically more detailed information. 30 Discrepancies were likely due to biased PCR amplification in metabarcoding, low discriminating 31 power of current marker genes for monocots, and biases in microhistologic analysis. The diet 32 differences between two geese species might indicate deeper ecological significance beyond the 33

Deleted: better about

Deleted: of

 $\textbf{Deleted:}\ .10$

Deleted: .52

Comment [1]: Spurious precision given the fecal pellets sampled (although a far greater number of sequences were generated). The reduced precision is easier to interpret and does not detract from presentation.

Deleted: .72

Deleted: Besides

Deleted: The discrepancy were was

Deleted: discrepancy

Deleted: ecology

- scope of this study. We concluded that DNA metabarcoding provided new perspectives for

 studies of herbivorous waterbird, diets and inter-specific interactions, as well as new possibilities
- to investigate interactions between herbivores and plants. In addition, microhistologic analysis

should be used together with metabarcoding methods to <u>integrate these</u> information.

Introduction

50

67

68

69

70

Wetlands are one of the most important ecosystems in nature, and they harbor a variety of 51 52 ecosystem services such as protection against floods, water purification, climate regulation and recreational opportunities (Brander, Flora & Vermaat, 2006). Waterbirds are typically 53 wetland-dependent animals upon which they could get abundant food and suitable habitats (Ma et 54 al., 2010). Waterbird abundance and distribution could reflect the status of wetland structure and 55 56 functions, making them important bio-indicators for wetland health (Fox et al., 2011). Among all factors affecting waterbird community dynamics, food availability is frequently considered to 57 play one of the most important roles (Wang et al., 2013). However, recently suitable food 58 resources have tended to decrease or even disappear due to deterioration and loss of natural 59 wetlands (Fox et al., 2011). As a result, waterbirds are forced to discard previous habitats and 60 sometimes even feed in agricultural lands (Zhang et al., 2011). In addition, migratory waterbirds 61 may aid the dispersal of aquatic plants or invertebrates by carrying and transporting them 62 between water bodies at various spatial scales (Reynolds, Miranda & Cumming, 2015). 63 64 Consequently, long-time monitoring and systematic studies of waterbird diets are essential to understand population dynamics of waterbirds, as well as to establish effective management 65 programs for them (Wang et al., 2012). 66

Deleted: s'

 $\textbf{Deleted:} \ As$

Deleted: traditional method was

.

<u>Traditional methods</u> for waterbird diet analysis, <u>were</u> direct observation in the field

(Swennen & Yu, 2005) or microhistologic analysis of remnants in feces and/or gut contents

(James & Burney, 1997; Fox et al., 2007). While these approaches have been proved useful in

some cases, they are relatively labor-intensive and greatly skill-dependent (Fox et al., 2007;

74 Samelius & Alisauskas, 1999; Symondson, 2002). Applications of other methods for analyzing gut contents or feces were also restricted due to inherent limitations, as reviewed by Pompanon et 75 al. (Pompanon et al., 2012). Recently, metabarcoding methods, based on high-throughput 76 77 sequencing, have provided new perspectives for diet analysis and biodiversity assessment (Taberlet et al., 2007; Creer et al., 2010). These methods provide higher taxonomic resolution 78 and enormous sequence output simultaneously from large-scale environmental samples, such as 79 soil, water and feces (Shokralla, Spall & Gibson, 2012; Bohmann et al., 2014). Owing to these 80 advantages, metabarcoding has been widely employed in diet analysis of herbivores (Taberlet et 81 al., 2012; Ando et al., 2013; Hibert et al., 2013), carnivores (Deagle, Kirkwood & Jarman, 2009; 82 Shehzad et al., 2012) and omnivores (De Barba et al., 2014). But pitfalls of metabarcoding 83 should not be ignored when choosing suitable techniques for new studies. For instance, many 84 researches have shown that it is difficult to obtain quantitative data using metabarcoding (Sun et 85 86 al., 2015). This drawback might result from both technical issues of this method and relevant biological features of samples (Pompanon et al., 2012). 87 One paramount prerequisite of metabarcoding methods is to select robust genetic markers 88 and corresponding primers (Zhan et al., 2014; Zhan & MacIsaac, 2015). For diet study of 89 herbivores, at least eight chloroplast genes and two nuclear genes are used as potential markers 90 for land plants (Hollingsworth, Graham & Little, 2001). Although mitochondrial cytochrome c 91 oxidase I (COI) is extensively recommended as a standard barcode for animals, its relatively low 92 rate of evolution in botanical genomes precludes it being an optimum for plants (Wolfe, Li &

Sharp, 1987; Fazekas et al., 2008). The internal transcribed spacer (ITS) is excluded due to

93

94

Deleted: metabarcoding methods

Deleted: taxonomy

Comment [2]: higher detectability? higher resolution of diverse items

Deleted: (s)

divergence discrepancies of individuals and low reproducibility (Álvarez & Wendel, 2003). A variety of combinations and comparisons have been performed for the eight candidate genes, however, none proved equally powerful for all cases (Fazekas *et al.*, 2008). Consequently, it is more effective to choose barcodes for a circumscribed set of species occurring in a regional community (Kress *et al.*, 2009). Another equally important aspect of metabarcoding applications is the construction of reference libraries which assist taxonomic assignment (Rayé *et al.*, 2011; Xu *et al.*, 2015). It is difficult to accurately interpret sequence reads without a reliable reference library (Elliott & Jonathan Davies, 2014).

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Diet analysis is a central issue in waterbird research, both for deciphering waterfowl population dynamics and interpreting inter- or intra-specific interactions of cohabitating species (Zhao *et al.*, 2015). For instance, more than 60% of bean goose *Anser fabalis* and almost 40% of greater white-fronted goose *Anser albifrons* populations along the East Asian – Australian Flyway Route winter, at the Shengjin Lake National Nature Reserve (Zhao *et al.*, 2015). Previous studies based on microhistologic observation illustrated that the dominant composition of their diets were monocotyledons, such as *Carex* spp. (Zhao *et al.*, 2012), *Poaceae* (Zhang *et al.*, 2011), and a relatively small proportion of non-monocots (referred to as dicotyledons in study of "Zhao, Cao & Fox, 2013"). However, few food items could be identified to species-level, mainly owing to variable tissue structures within plants, similar morphology between relative species, and a high level of degradation after digestion (Zhang *et al.*, 2011; Zhao *et al.*, 2012; Zhao, Cao & Fox, 2013). Ambiguous identification has hindered understanding of waterbird, population dynamics and potential to establish effective conservation plans for them.

Comment [3]: the hyperbole does not add meaning to the statement

Deleted: ing

Deleted: can dramatically

Deleted:

Deleted: well-recovered

Comment [4]: This seems a dubious statement – I suggest that rather than "the" central issue, diet may be "a" central issue, along with others such as habitat modification and disturbance

Deleted: the

Deleted: there are

Deleted: population

Deleted: ing

Deleted: s

Deleted: abilities

Deleted: in the future

Deleted: tried 130 In this study, we aimed to improve this situation using a metabarcoding method to analyze 131 diets of these species (see flowchart in Fig. 1). By examining the efficiency of eight candidate genes (rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and psbK-psbI), we 132 Deleted: constructing selected robust genes and corresponding primers for reference library construction and 133 high-throughput sequencing. Subsequently, we used the metabarcoding method to investigate diet 134 Comment [5]: American spelling used above composition of these two species based on feces collected from Shengjin Lake. Finally, we 135 Deleted: a 136 discussed and compared results from microhistology and DNA metabarcoding using the same Deleted: the 137 samples to assess the utility and efficiency of these two methods. **Materials and Methods** 138 **Ethics Statement** 139 Deleted: There is no need for an ethics Our research work did not involve capture or any direct manipulation or disturbances of animals. 140 statement, because o Deleted: only We collected samples of plants and feces for molecular analyses. We got access to the reserve 141 142 under the permission of Shengjin Lake National Nature Reserve Administration (Chizhou, Anhui, China), which is responsible for the management of the protected area and wildlife. We were 143 forbidden to capture or disturb geese in the field. 144 Study Area 145 Shengjin Lake (116°55′ - 117°15′ E, 30°15′ -30°30′ N) was established as National Nature 146 Reserve in 1997, aiming to protect diverse waterbirds including geese, cranes and storks. The 147 148 water level fluctuates greatly in this lake, with maximal water level of 17 m during summer (flood season) but only 10 m during winter (dry season). Due to this fluctuation, receding waters 149

expose two large *Carex* spp. meadows and provide suitable habitats for waterbirds. This makes

Shengjin Lake one of the most important wintering sites for migratory waterbirds (Zhao *et al.*, 2015). Greater white-fronted goose and bean goose are the dominant herbivores wintering (from October to April) in this area, accounting for 40% and 60% of populations along the East Asian – Australian Flyway Route, respectively (Zhao *et al.*, 2015).

Field Sampling

The most common plant species that these two geese <u>may</u> consume were collected in May 2014 and January 2015, especially species belonging to *Carex* and *Poaceae*. Fresh and intact leaves were carefully picked, tin-packaged in the field and stored at -80 °C in the laboratory before further treatment. Morphological identification was carried out with the assistance of two botanists (Profs Zhenyu Li and Shuren Zhang from Institute of Botany, Chinese Academy of Sciences). In total, 87 specimens were collected, belonging to 25 families, 53 genera and 70 species (Table S1).

All feces were collected at the reserve (Fig. 2) in January 2015. Based on previous studies and the latest waterbird survey, sites with big flocks of geese (i.e. more than 200 individuals) were chosen (Zhang *et al.*, 2011). As soon as geese finished feeding and feces were defecated, fresh droppings were picked and stored in dry ice. Droppings of bean geese were generally thicker than those of smaller greater white-fronted goose, to the degree that these could be reliably distinguished in the field (Zhao *et al.*, 2015). Disposal gloves were changed for each sample to avoid cross contamination. To avoid repeated sampling and make sure samples were from different individuals, each sample was collected with a separation of more than two meters. In total, 21 feces were collected, including 11 for greater white-fronted goose and 10 for bean

Deleted: next

Deleted: possibly

Comment [6]: The redundancy in this table serves little purpose as it is not linked to voucher or sample numbers. A simple species list with number of samples analysed would suffice (should be in the paper rather than a supplement)

further analysis. 182 **Selection of Molecular Markers and Corresponding Primers** 183 184 In this part, we aimed to select gene markers with adequate discriminating power for our study. 185 We included eight chloroplast genes - rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and psbK-psbI for estimation. Although Shengjin Lake included an array of plant 186 187 species, we focused mainly on the most likely food resources (Xue et al., 2008; Zhao et al., 2015) that geese would consume for candidate gene tests. These covered eleven genera and the family 188 Poaceae (Table S2; Table 2). For tests of all candidate genes, we recovered sequences of 189 representative species in the selected groups from GenBank 190 (http://www.ncbi.nlm.nih.gov/nuccore). We calculated inter-specific divergence within every 191 genus or family based on the Kimura 2-parameter model (K2P) using MEGA version 6 (Tamura 192 193 et al., 2013). We also constructed molecular trees based on UPGMA using MEGA and characterized the resolution of species by calculating the percentage of species recovered as 194 monophyletic based on phylogenetic trees (Rf?). Secondly, primers selected out of eight of 195 candidate genes were used to amplify all 87 specimens and to check their amplification efficiency 196 197 and universality. Thirdly, we calculated inter-specific divergence based on sequences that we obtained from last step. Generally, a robust barcode gene is obtained when the minimal 198 inter-specific distance exceeds the maximal intra-specific distance (e.g. existence of barcoding 199 200 gaps). For reference database building, we calculated the rate of discrimination for the species in each family (Rf) by dividing the number of unique sequences per family by the number of 201

goose. All samples were transported to laboratory in dry ice and then stored at -80 °C until

181

Deleted: consisted

Deleted: potential

Deleted: one family

Comment [7]: Needs clarification: were all sequences for a gene from different species, or were some distinct alleles within species?

Deleted: Kiruma

Comment [8]: In Table S2, give the number of species compared along with the number of sequences (so that the reader has some idea of variation in resolution of your resolvability measure)

Deleted: selected out of eight

Deleted: recommended

208	species resolved as monophyletic clades in each family. Finally, to allow the recognition of
209	sequences after high-throughput sequencing, both of the forward and reverse primers of the
210	selected marker gene were tagged specifically for each sample with 8nt nucleotide codes at the 5'
211	end (Parameswaran et al., 2007).
212	DNA Extraction, Amplification and Sequencing
213	Two hundred milligrams of leaf was used to extract the total DNA from each plant sample using
214	a modified CTAB protocol (Cota-Sanchez, Remarchuk & Ubayasena, 2006). DNA extraction of
215	feces was carried out using the same protocol with minor modification in incubation time
216	(elongate to 12 h). Each fecal sample was crushed thoroughly and divided into four quarters. All
217	quarters of DNA extracts were then pooled together. DNA extraction was carried out in a clean
218	room used particularly for this study. For each batch of DNA extraction, negative controls (i.e.
219	extraction without feces) were included to monitor possible contamination.
220	For plant DNA extracts, PCR amplifications were carried out in a volume of 25 μl with ${\sim}100$
221	ng total DNA as template, 1U of Taq Polymerase (Takara, Dalian, Liaoning Prov., China), $1 \times$
222	PCR buffer, 2 mM of Mg $^{2+}$, 0.25 mM of dNTPs, 0.1 μM of forward primer and 0.1 μM of reverse
223	primer. After 4 min at 94 °C, the PCR cycles were as follows: 35 cycles of 30 s at 94 °C, 30 s at
224	56 °C and 45 s at 72 °C, and the final extension was 10 min at 72 °C. We applied the same PCR
225	conditions for all primers. All the successful PCR products were sequenced with Genewiz
226	(Suzhou, Jiangsu Prov., China).

Comment [9]: This is a very poor measure of discrimination and not comparable across groups because it depends on unspecified sampling details (how many sampled species per group, how many individuals sampled, phylogenetic diversity among sampled species) which vary across groups. Part of the issue is that it is reported as a percentage (ratio, where both numerator and denominator vary informatively)

Deleted: At last

$\textbf{Deleted:} \ in$

Comment [10]: duplication

Deleted: . Each replicate consisted of ~100 ng total DNA of DNA extract as template, 1U of Taq Polymerase (Takara, Dalian, Liaoning Prov., China), 1× buffer, 2 mM of MgCl₂, 0.25 mM of each dNTPs, 0.1 μM of foward primer and 0.1 μM of reverse primer. After 4 min of denaturation at 94 °C, the PCR cycles were as follows: 35 cycles of 30 s at 94 °C, 30 s at 56 °C, 45 s at 72 °C, and the final elongation was 10 min at 72 °C

For fecal DNA extracts, PCR mixtures (25µl) were prepared in six replicates for each

227

241	procedure used for plant extracts. Each set of six replicates was pooled and purified using the		
242	Sangon PCR product purification kit (Sangon Biotech, Shanghai, China). Quantification was		
243	carried out to ensure equilibrium of contribution of each sample using the NanoDrop ND-2000		
244	UV-Vis Spectrophotometer (NanoDrop Technologies, Delaware, United States of America).		
245	High-throughput sequencing was performed using Illumina MiSeq platform following		
246	manufacturer's instructions by BGI (Shenzhen, Guangdong Prov., China). Reads of		
247	high-throughput sequencing could be found at NCBI's Sequence Read Archive (Accession		
248	number: SRP070470).		
249	Data Analysis for Estimating Diet Composition		
250	After high-throughput sequencing, pair-ended reads were merged with using the UPARSE		
251	pipeline (http://drive5.com/usearch , Edgar, 2010). Reads were then split into independent files		
252	according to unique tags using RDP pipeline (http://rdp.cme.msu.edu/). We removed sequences i)		
253	that didn't perfectly match tags and primer sequences; ii) that contained ambiguous nucleotide		
254	(N's). Tags and primers were then trimmed using the RDP pipeline. Further quality filtering		
255	based on the UPARSE pipeline discarded sequences with i) quality score less than 30 (<q30) and<="" td=""></q30)>		
256	ii) shorter than 100 bp and longer than 200 bp. Unique sequences were clustered to operational		
257	taxonomy units (OTUs) at the similarity threshold of 98% (Edgar, 2013). All OTUs were		
258	assigned to unique taxonomy with local blast 2.2.30+ (Altschul et al., 1990). We detected a plant		
259	within the reference library for each sequence with the threshold of length coverage > 98%,		
260	identity $>$ 98% and e-value $<$ 1.0 e ⁻⁵⁰ . If a query sequence matched two or more taxa, it was		

Deleted: with

Comment [11]: The RDP pipeline (correct URL https://pyro.cme.msu.edu/) is a set of tools and workflows mainly for rDNA libraries (particularly 16S, not the genes used here – although for trimiming ends and compiling sequences this is not a problem); UPARSE is an algorithm for identification of OTUs (correct web site http://drive5.com/uparse). Specific details of workflows and filters need to be stated for reproducibility)

assigned to a higher taxonomic level which included all taxa.

Micro	histolo	σva	nalx	eie,
MILLIO	шэтого	gy a	nary	212

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

We used the method described by Zhang *et al.* (2011) to perform microhistologic examination of fecal samples. Each sample was first washed with pure water and filtered with a 25-µm filter. Subsequently, the suspension was examined under a light microscope at 10× magnification for quantification statistics and at 40× magnification for species identification. We compared photos of visible fragments with <u>an</u> epidermis database <u>of plants from</u> Shengjin Lake to identify food items (Source?...Zhang? Fox?).

Results

Selection of Genes and Corresponding Primers and Reference Library Constructing

A total of 3,296 representative sequences were recovered from GenBank, ranging, from 0 to 345 sequences per gene, per genus (Table S2). Among the eight candidate genes, trnL, trnH-psbA, matK and rbcL showed largest inter-specific divergence in seven, three, one and one taxonomic groups, respectively. These four genes also displayed relatively high resolution of species (Table S2). For example, with matK gene, 77% of Carex could be identified to species-level. However, our results indicated that none of these eight genes could simultaneously differentiate all 12 genera or families to species-level (Table S2). Considering the inter-specific divergence and resolution of species, we chose the most commonly used chloroplast genes rbcL, matK, trnH-psbA and trnL for further tests.

Primers <u>for</u> these four genes (Table 1) were used to amplify the plants that we collected in the field. The selected primers for *trn*L and *rbc*L successfully amplified 100% and 91% of all species, respectively, while primers for *trn*H-*psb*A and *mat*K amplified only 71% and 43%,

Deleted: of the

Deleted: and the sequence numbers per gene ranged

Deleted: family

Deleted: re

Comment [12]: There seems to be a discrepancy here – the data in S2 do not support this statement (please clarify if I am misinterpreting this).

Highest mean divergence in S2: trnH-psbA = 4 (Artemisia, Elymus, Juncus,

*trn*H-*psb*A = 4 (Artemisia, Elymus, Juncus, Polygonum);

atpF-atpH = 4 (Carex, Potamogeton, Ranunculus, Rumex);

trnL = 3 (Echinochloa, Eleocharis, Trapa);
psbK-psbI = 1 (Poaceae).

Based on maximum divergence in S2: trnL = 6 (Elymus, Carex, Potamogeton, Rumex, Eleocharis, Trapa); trnH-psbA = 4 (Artemisia, Juncus, Polygonum,

psbK-psbI 1 (Poaceae); rbcL =1 (Echinochloa)

Ranunculus):

Additionally there is wide variation in the number of species compared for each gene, and many cases where no comparison was possible (Eleocharis and Trapa are not fair tests of resolvability among genes). I suggest that these data are retained as is in S2 but that the mean divergence among species within groups is combined across taxa for comparing genes. Other important considerations are the abundance of database sequences for comparison and consistent amplification – an argument that supports the chosen used genes. On any other argument rbcL and matK would be a poor choice.

Deleted: of

291 plants. We calculated the inter-specific divergence within genera and families with at least two 292 species to compare their discriminating power. Maximal, minimal and mean inter-specific 293 Deleted: Both 294 distances were calculated for seven dominant genera and six dominant families (Table 2). Neither $\textbf{Deleted:}\ s$ gene could differentiate species of Vallisneria Linn. (mean=0.000±0.000%) or Artemisia Linn. 295 Deleted: not 296 (mean= $0.000\pm0.000\%$). But trnL showed a larger divergence range for the other six genera and Deleted: and 297 five families. Hence, we chose trnL as the barcoding gene for reference library constructing and high-throughput sequencing for our study. The discriminating power of trnL was strong for most 298 species (Table 3). However, some species could only be identified at genus-level or family-level 299 Deleted: aceae with trnL. For instance, five species of Potamogeton shared the same sequences and this made 300 Comment [13]: These are all species of them to be identified at genus-level. Species could be identified easily to genus and family, 301 Potamogeton and therefore identified to genus level 302 except for three grasses (Poaceae) Beckmannia syzigachne, Phalaris arundinacea, and Deleted: family Polypogon fugax, which shared identical sequences. 303 Deleted: for genera Deleted: or **Data Processing for Estimating Diet Composition** 304 Deleted: containing one species, In total, 0.21 and 0.18 million reads were generated for greater white-fronted goose (GWFG) and 305 Deleted: L. Deleted:

Deleted: a

Shengjin Lake reference database. Finally, with DNA metabarocoding, 12 items were discovered

bean goose (BG), respectively (Table 4). The number of recovered OTUs ranged from 8 to 123

for GWFG and BG samples. We used local BLAST to compare these sequences with the

in the feces of GWFG, including one at family-level, three at genus-level and eight at

species-level (Table 5). Four items were discovered in the feces of BG, including one at

respectively. Therefore, we chose trnL and rbcL to test their discriminating power in our target

290

306

307

308

309

Deleted: T 323 genus-level and three at species-level. In total, this method identified 15 taxa in feces of these geese. 324 However, the sequence percentage of each food item varied greatly (Table 5). For GWFG, 325 the majority of sequences (96.36%) were composed of only five items - *Poaceae* spp. (47.98%), 326 Comment [14]: Which of the sampled species Poa annua (21.86%), Carex heterolepis (17.51%), Carex spp. (9.01%), and Alopecurus aequalis 327 from Shengjin could not be distinguished. Does Poaceae spp. Mean NOT Poa annua, (3.21%). For BG, almost all the sequences belonged to Carex heterolepis (99.49%). Other items 328 Carex spp. = NOT c. heterolepsis? In which case, what other species could be excluded 329 only occupied a relatively small proportion of sequences. In addition, the presence of each item (or could it rather be stated as a group of Carex). 330 per sample was also unequal (Table S3). For example in GWFG, Carex heterolepis, Carex spp., Comment [15]: The attribution of authors to Poa annua and Potentilla supina were present in almost all the samples, while Stellaria media, 331 species is inconsistent and unnecessary Deleted: (L.) Cvr. Asteraceae sp. and Lapsana apogonoldes occurred in only about one third of samples. 332 Deleted: of greater white-fronted goose 333 When microhistologic examination were performed using the same samples, eight items were found in the feces of greater white-fronted goose, including one at family-level, four at 334 Deleted: 335 genus-level and three at species-level (Table 5). Dominant items were *Poaceae* spp. (45.68%), Alopecurus Linn. (30.93%) and Carex heterolepis (16.39%). Seven items were found in the feces 336 of bean goose, including four at genus-level and three at species-level (Table 5). Dominant items 337 were Carex heterolepis (62.85%), Asteraceae sp. (14.55%), and Alopecurus Linn. (13.18%). 338 Discussion 339 Marker Selection and Reference Library Constructing for Diet Analysis 340 Deleted: explosive 341 With greatly reduced cost, extremely high throughput and information content, metabarcoding Deleted: with has revolutionized the exploration and quantification of dietary analysis from noninvasive 342

samples containing degraded DNA (Fonseca et al., 2010; Shokralla et al., 2014). Despite

enormous potential to boost data acquisition, successful application of this technology relies greatly on the power and efficiency of genetic markers and corresponding primers (Bik et al., 2012; Zhan et al., 2014). In order to select the most appropriate marker gene for our study, we compared the performance of eight commonly used chloroplast genes, rbcL, rpoB, rpoC1, matK, trnL, trnH-psbA, atpF-atpH, and psbK-psbI and their corresponding primers. Although a higher level of discriminating power was shown in several studies, atpF-atpH, psbK-psbI, rpoB and rpoC1 were not as commonly used as other barcoding genes (Hollingsworth, Graham & Little, 2001). As one of the most rapidly evolving coding genes of plastid genomes, matK was considered as the closest plant analogue to the animal barcode *COI* (Hilu & Liang, 1997). However, matK was difficult to amplify using available primer sets, with only 43% of successful amplification in this study. In spite of the higher species discrimination success of trnH-psbA than rbcL+matK in some groups, the presence of duplicated loci, microinversions and premature termination of reads by mononucleotide repeats lead to considerable proportion (30% in this study) of low-quality sequences and over-estimation of genetic difference when using trnH-psbA (Graham et al., 2000; Whitlock Hale & Groff, 2010). In contrast, the barcode region of rbcL is easy to amplify, sequence, and align in most plants and was recommended as the standard barcode for land plants (Chase et al., 2007). The relatively modest discriminating power (compared to trnL) precludes its application for our study aiming to recover high resolution of food items. Consequently, trnL was selected out of eight candidate markers, with 100% amplification success, more than 90% of high quality sequences, and relatively large inter-specific divergence.

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

One of the biggest obstacles in biodiversity assessment and dietary analysis is the lack of a comprehensive reference library, without which it is impossible to accurately interpret and assign sequences generated from high-throughput sequencing (Valentini, Pompanon & Taberlet 2009; Barco et al., 2015). In this study, we constructed a local reference library by amplifying the most common species (70 morpho-species in total) during the wintering period with the trnL gene. Although not all of them could be identified at species-level with trnL due to relatively low inter-specific divergence, many species could be separated with distinctive sequences. Previous studies have recommended group-specific barcodes to differentiate closely related plants at the species level (Li et al., 2015). For instance, matK has been proved to be more efficient for the discrimination of Carex spp. (Starr, Naczi & Chouinard, 2009). However, the primer set of matK failed to amplify species of Carex spp. in our study, suggesting the universality of selected primer pairs should be tested in each study (Zhan et al., 2014). **Applications of Metabarcoding for Geese Diet Analysis** A variety of recent studies have demonstrated the great potential of metabarcoding for dietary analysis, mainly owing to the high throughput, high discriminating power, and the ability to process large-scale samples simultaneously (Creer et al., 2010; Taberlet et al., 2012; Shehzad et al., 2012). In this study, we applied this method to recover diets of herbivorous geese and provided standard protocols for dietary analysis of these two ecologically important waterbirds. Our results further proved the more objective, less experience-dependent and more time-efficient character of DNA metabarcoding. However, not all the species in the reference library could be

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Deleted: the enormous

Deleted: ed

identified at species-level, owing to low inter-specific divergence. We suggest that multiple

group-specific markers to be incorporated in the future, as in De Barba et al. (2014). Two species, 395 Carex thunbergii and Fabaceae sp., were only discovered via microhistologic analysis rather than metabarcoding. This failure might reflect the biased fragment amplification of current 396 technology, of which dominant templates could act as inhibitors of less dominant species (Piñol 397 et al., 2015). However, three species of *Poaceae* were only discovered using metabarcoding. In 398 total, more taxa and higher resolution were attained using metabarcoding. But microhistology 399 400 still proved a powerful supplementary. Previous studies using metabarcoding usually detected dozens of food items, even as many as more than one hundred species. For instance, 18 taxa prey 401 were identified for leopard cat (Shehzad et al., 2012); 44 plant taxa were recovered in feces of 402 red-headed wood pigeon (Ando et al., 2013); while more than 100 taxa were found in diet studies 403 of brown bear (De Barba et al., 2014). The relatively narrow diet spectrum of herbivorous geese 404 may lead to misunderstanding that this result of our study is merely an artefact due to small 405 406 sampling effort. However, this result is credible since these two geese species only feed on *Carex* meadow, where the dominant vegetation is Carex spp., with other species such as Poaceae and dicots (Zhao et al., 2015). Even though other wetland plants exist, they usually composed only a 408 small proportion of the geese diets. 409 Quantification of food composition is another key concern in dietary analysis. Although the 410 relative percentage of sequences were not truly a quantitative estimate of diet, taxa of the 411 majority sequences in this study were in accord with microhistologic observations, which was 412 413 considered an efficient way to provide quantitative results (Wang et al., 2013, Discrepancies might come from the semi-quantitative nature of metabarcoding methods (Sun et al., 2015). This 414

394

407

Deleted: such as Deleted: studies of

Deleted: proliferation

Deleted: Besides

Deleted: a

Deleted: granted as

Deleted:), while discrepancy also existed

Deleted: This

423	is likely derived from PCR amplification, which always entails biases caused by universal	
424	primer-template mismatches, annealing temperature or number of PCR cycles (Zhan et al., 2014;	
425	Piñol et al., 2015). Other methods such as shot-gun sequencing or metagenomic sequencing	
426	could be incorporated in the future to give information on abundance of food items (Srivathsan et	Deleted: bring
427	al., 2015).	Deleted: integrative
428	Implications for Waterbird Conservation and Wetland Management	
429	For long-distance migratory waterbirds, such as the wild geese in this study, their abundance and	
430	distribution are greatly influenced by diet availability and habitat use (Wang et al., 2013). For	Deleted: were
431	example, waterbirds may be restricted at (forced to leave) certain areas due to favoring (loss) of	Deleted: s
432	particular food (Wang et al., 2013), while the recovery of such food may contribute to return of	
433	bird populations (Noordhuis et al., 2002). Results of both metabarcoding and microhistologic	
434	analysis in this study revealed that <i>Carex</i> and <i>Poaceae</i> were dominant food components which is	
435	in <u>accordance</u> with previous studies. The increasing number of these two geese wintering at the	Deleted: accordant
436	Shengjin Lake may be attributed to the expansion of <i>Carex</i> meadow, which offers access to	
437	abundant food resources (Zhao et al., 2015). Considering the long-distance migratory character of	Deleted: Besides, considering
438	these birds, it is important to maintain energy balances and good body conditions in wintering	
439	areas because this might further influence their departure dates and reproductive success after	
440	arriving at breeding areas (Prop, Black & Shimmings, 2003). Based on this, it is important for	
441	wetland managers to maintain suitable habitats and food resources for sustainable conservation of	Deleted: the
		Deleted: to perform
442	waterbirds, which highlights the significance of diet information. Our study also indicated that	Deleted: and all of
443	overlap and dissimilarity existed between the diets of these two geese. As we all know, animals 18	Deleted: highlighted

454 foraging in the same habitats may compete for limited food resources (Madsen & Mortensen, 1987). This discrepancy of food composition may arise from the avoidance of inter-specific 455 competition (Zhao et al., 2015). However, with the increase of these two species in Shengjin 456 Lake, further research is needed to investigate the mechanisms of food resource partitioning and 457 spatial distribution. 458 Shengjin Lake is one of the most important wintering sites for tens of thousands of 459 migratory watebirds, while annual life cycles of these birds depend on the whole migratory route, 460 including breeding sites, stop-over sites and wintering sites (Kear, 2006). Thus, a molecular 461

migratory watebirds, while annual life cycles of these birds depend on the whole migratory route including breeding sites, stop-over sites and wintering sites (Kear, 2006). Thus, a molecular reference library covering all the potential food items along the whole migratory route will be useful both for understanding of wetland connections and waterbird conservation. Besides, the ability of DNA metabarcoding to process lots of samples simultaneously enables rapid analyses and makes this method helpful for waterbird studies.

Acknowledgements

462

463

464

465

466

467

468

469

470

471

472

473

We are very grateful to the stuff of the Shengjin Lake National Nature Reserve for their excellent assistance during the field work. Great thanks to Zhujun Wang and An An for feces collection in the field. We thank Song Yang for collecting plants in the Shengjin Lake Reserve. We also thank Profs. Zhenyu Li and Shuren Zhang for plant identification. Special thanks to Drs. Meijuan Zhao, Xin Wang, Fanjuan Meng and Peihao Cong for preparing the epidermis database and guiding microhistologic analysis.

Deleted: a

Deleted: the quick

Deleted: treatment

Deleted: es are

Deleted: s

- 479 References
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* 215:403-410 DOI 10.1006/jmbi.1990.9999.
- Álvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. *Molecular Phylogenetics and Evolution* 29:417-434 DOI 10.1016/S1055-7903(03)00208-2.
- Ando H, Setsuko S, Horikoshi K, Suzuki H, Umehara S, Inoue-Murayama M, Isagi Y. 2013. Diet analysis
 by next generation sequencing indicates the frequent consumption of introduced plants by the critically
 endangered red headed wood pigeon (*Columba janthina nitens*) in oceanic island habitats. *Ecology and* evolution 3:4057-4069 DOI 10.1002/ece3.773.
- Barco A, Raupach MJ, Laakmann S, Neumann H, Knebelsberger T. 2015. Identification of North Sea
 molluscs with DNA barcoding. *Molecular Ecology Resources* 16:288-297 DOI
 10.1111/1755-0998.12440.
- Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. 2012. Sequencing our way
 towards understanding global eukaryotic biodiversity. *Trends in Ecology and Evolution* 27:233-243 DOI
 10.1016/j.tree.2011.11.010.
- Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu WD, de Bruyn M. 2014.
 Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in Ecology and Evolution* 29:358-367 DOI 10.1016/j.tree.2014.04.003.
- Brander LM, Florax, RJ, Vermaat JE. 2006. The empirics of wetland valuation: a comprehensive summary
 and a meta-analysis of the literature. *Environmental and Resource Economics* 33:223-250. DOI
 10.1007/s10640-005-3104-4.
- Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñán S, Petersen G, Seberg O,
 Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA,
 Richardson JE, Hollingsworth M, Barraclough TG, Kelly L, Wilkinson M. 2007. A proposal for a
 standardised protocol to barcode all land plants. *Taxon* 56:295-299.
- Cota-Sanchez JH, Remarchuk K, Ubayasena K. 2006. Ready-to-use DNA extracted with a CTAB method
 adapted for herbarium specimens and mucilaginous plant tissue. Plant *Molecular Biology Reporter* 24:161-167 DOI 10.1007/BF02914055.
- Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W, Power DM, Packer M, Carvalho GR,
 Blaxter ML, Lambshead PJD, Thomas WK. 2010. Ultrasequencing of the meiofaunal biosphere:
 practice, pitfalls and promises. *Molecular Ecology* 19:4-20 DOI 10.1111/j.1365-294X.2009.04473.x.
- De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P. 2014. DNA metabarcoding
 multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet.
 Molecular Ecology Resources 14:306-323 DOI 10.1111/1755-0998.12188.
- Deagle BE, Kirkwood R, Jarman SN. 2009. Analysis of Australian fur seal diet by pyrosequencing prey
 DNA in faeces. *Molecular Ecology* 18:2022-2038 DOI 10.1111/j.1365-294X.2009.04158.x.
- Dunning LT, Savolainen V. 2010. Broad-scale amplification of matK for DNA barcoding plants, a technical
 note. Botanical Journal of the Linnean Society, 164:1-9.
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26:2460-2461
 DOI 10.1093/bioinformatics/btq461.
- 519 Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods

- 520 **10:**996-998 DOI 10.1038/NMETH.2604.
- Elliott TL, Jonathan Davies T. 2014. Challenges to barcoding an entire flora. *Molecular Ecology Resources* 14:883-891 DOI 10.1111/1755-0998.12277.
- 523 Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM,
- Hajibabaei M, Barrett SC. 2008. Multiple multilocus DNA barcodes from the plastid genome
 discriminate plant species equally well. *PLoS One* 3:e2802 DOI 10.1371/journal.pone.0002802.
- 526 Fonseca VG, Carvalho GR, Sung W, Johnson HF, Power DM, Neill SP, Packer M, Blaxter ML,
- Labmshead PJD, Thomas WK, Creer S. 2010. Second-generation environmental sequencing unmasks
 marine metazoan biodiversity. *Nature communications* 1:98 DOI 10.1038/ncomms1095.
- Ford CS, Ayres KL, Haider N, Toomey N, van-Alpen-Stohl J. 2009. Selection of candidate DNA barcoding
 regions for use on land plants. *Botanical Journal of the Linnean Society* 159:1-11 DOI
 10.1111/j.1095-8339.2008.00938.x.
- Fox AD, Bergersen E, Tombre IM, Madsen J. 2007. Minimal intra-seasonal dietary overlap of barnacle and
 pink-footed geese on their breeding grounds in Svalbard. *Polar Biology* 30:759-768 DOI
 10.1007/s00300-006-0235-1.
- Fox AD, Cao L, Zhang Y, Barter M, Zhao M, Meng F, Wang S. 2011. Declines in the tuber–feeding
 waterbird guild at Shengjin Lake National Nature Reserve, China–a barometer of submerged macrophyte
 collapse. Aquatic Conservation: Marine and Freshwater Ecosystems 21:82-91 DOI 10.1002/aqc.1154.
- Graham SW, Reeves PA, Burns AC, Olmstead RG. 2000. Microstructural changes in noncoding chloroplast
 DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic
 inference. *International Journal of Plant Sciences* 161:S83-S96 DOI 10.1086/317583.
- Hibert F, Taberlet P, Chave J, Scotti-Saintagne C, Sabatier D, Richard-Hansen C. 2013. Unveiling the
 diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. *PloS* One 8:e60799 DOI 10.1371/journal.pone.0060799.
- Hilu KW, Liang H. 1997. The *mat*K gene: sequence variation and application in plant systematics. *American Journal of Botany* 84:830-839 DOI 10.2307/2445819.
- Hollingsworth PM, Graham SW, Little DP. 2011. Choosing and using a plant DNA barcode. *PloS One* 6:e19254 DOI 10.1371/journal.pone.0019254.
- James HF, Burney DA. 1997. The diet and ecology of Hawaii's extinct flightless waterfowl: evidence from coprolites. *Biological Journal of the Linnean Society* 62:279-297 DOI
 10.1111/j.1095-8312.1997.tb01627.x.
- Kear J. 2005. Ducks, geese and swans. Oxford: Oxford University Press.
- Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E. 2009. Plant DNA
 barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proceedings of the National Academy of Sciences of the United States of America* 106:18621-18626 DOI
 10.1073/pnas.0909820106.
- Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to genome.
 Biological Reviews 90:157-166 DOI 10.1111/brv.12104.
- Ma Z, Cai Y, Li B, Chen J. 2010. Managing wetland habitats for waterbirds: an international perspective.
 Wetlands 30:15-27 DOI 10.1007/s13157-009-0001-6.
- 560 Madsen J, Mortensen CE. 1987. Habitat exploitation and interspecific competition of moulting geese in East

- Greenland. *Ibis* **129:**25-44 DOI 10.1111/j.1474-919X.1987.tb03157.x.
- Noordhuis R, van der Molen DT, van den Berg MS. 2002. Response of herbivorous water-birds to the return
 of *Chara* in Lake Veluwemeer, The Netherlands. *Aquatic Botany* 72:349-367 DOI
 10.1016/S0304-3770(01)00210-8.
- Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ. 2007. A
 pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample
 multiplexing. *Nucleic Acids Research* 35:e130 DOI 10.1093/nar/gkm760.
- Piñol J, Mir G, Gomez-Polo P, Agustí N. 2015. Universal and blocking primer mismatches limit the use of
 high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. *Molecular Ecology Resources* 15:819-830 DOI 10.1111/1755-0998.12355.
- Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P. 2012. Who is eating what:
 diet assessment using next generation sequencing. *Molecular Ecology* 21:1931-1950 DOI
 10.1111/j.1365-294X.2011.05403.x.
- Prop J, Black JM, Shimmings P. 2003. Travel schedules to the high arctic: barnacle geese trade off the
 timing of migration with accumulation of fat deposits. *Oikos* 103:403-414 DOI
 10.1034/j.1600-0706.2003.12042.x.
- Rayé G, Miquel C, Coissac E, Redjadj C, Loison A, Taberlet P. 2011. New insights on diet variability
 revealed by DNA barcoding and high-throughput sequencing: chamois diet in autumn as a case study.
 Ecological Research 26:265-276 DOI 10.1007/s11284-010-0780-5.
- Reynolds C, Miranda NA, Cumming GS. 2015. The role of waterbirds in the dispersal of aquatic alien and
 invasive species. *Diversity and Distribution* 21:744-754 DOI 10.1111/ddi.12334.
- Samelius G, Alisauskas RT. 1999. Diet and growth of glaucous gulls at a large Arctic goose colony.
 Canadian Journal of Zoology 77:1327-1331 DOI 10.1139/z99-091.
- Sang T, Crawford DJ, Stuessy TF. 1997. Chloroplast DNA phylogeny, reticulate evolution, and
 biogeography of *Paeonia (Paeoniaceae)*. *American Journal of Botany* 84:1120-1136.

591

592

- Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P. 2012.
 Carnivore diet analysis based on next–generation sequencing: application to the leopard cat (*Prionailurus bengalensis*) in Pakistan. *Molecular Ecology* 21:1951-1965 DOI 10.1111/j.1365-294X.2011.05424.x.
- Shokralla S, Spall JL, Gibson JF. 2012. Next-generation sequencing technologies for environmental DNA research. *Molecular Ecology* 21:1794-1805 DOI 10.1111/j.1365-294X.2012.05538.x.
 - Srivathsan A, Sha J, Vogler AP, Meier R. 2015. Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (*Pygathrix nemaeus*). *Molecular Ecology Resources* 15:250-261 DOI 10.1111/1755-0998.12302.
- Starr JR, Naczi RFC, Chouinard BN. 2009. Plant DNA barcodes and species resolution in sedge (Carex,
 Cyperaceae). Molecular Ecology Resources 9:151-163 DOI 10.1111/j.1755-0998.2009.02640.x.
- Sun C, Zhao Y, Li H, Dong Y, MacIsaac HJ, Zhan A. 2015. Unreliable quantification of species abundance
 based on high-throughput sequencing data of zooplankton communities. Aquatic Biology 24:9-15 DOI
 10.3354/ab00629.
- Swennen C, Yu YT. 2005. Food and feeding behavior of the Black-faced Spoonbill. Waterbirds 28:19-27
 DOI 10.1675/1524-4695(2005)028[0019:FAFBOT]2.0.CO;2.
- 601 Symondson WOC. 2002. Molecular identification of prey in predator diets. Molecular Ecology 11:627-641

- DOI 10.1046/j.1365-294X.2002.01471.x.
- Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. 2012. Towards next-generation
 biodiversity assessment using DNA metabarcoding. *Molecular Ecology* 21:2045-2050 DOI
 10.1111/j.1365-294X.2012.05470.x.
- Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brocmann
 C, Willerslev E. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA
 barcoding. Nucleic Acids Research 35:e14 DOI 10.1093/nar/gkl938.
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics
 analysis version 6.0. *Molecular Biology and Evolution* 30:2725-2729 DOI 10.1093/molbev/mst197.
- Tate JA, Simpson BB. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploidy species.
 Systematic Botany 28:723-737.
- Valentini A, Pompanon F, Taberlet P. 2009. DNA barcoding for ecologists. *Trends in Ecology and Evolution* 24:110-117 DOI 10.1016/j.tree.2008.09.011.
- Wang X, Fox AD, Cong P, Barter M, Cao L. 2012. Changes in the distribution and abundance of wintering
 Lesser White-fronted Geese *Anser erythropus* in eastern China. *Bird Conservation International* 22:128-134 DOI 10.1017/S095927091100030X.
- Wang X, Fox AD, Cong P, Cao L. 2013. Food constraints explain the restricted distribution of wintering
 Lesser White-fronted Geese *Anser erythropus* in China. *Ibis* 155:576-592 DOI 10.1111/ibi.12039.
- Whitlock BA, Hale AM, Groff PA. 2010. Intraspecific inversions pose a challenge for the *trn*H-*psb*A plant
 DNA barcode. *PLoS One* 5:e11533 DOI 10.1371/journal.pone.0011533.
- Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial,
 chloroplast, and nuclear DNAs. *Proceedings of the National Academy of Sciences of the United States of* America 84:9054-9058 DOI 10.1073/pnas.84.24.9054.
- Xu C, Dong W, Shi S, Cheng T, Li C, Liu Y, Wu P, Wu H, Gao P, Zhou S. 2015. Accelerating plant DNA
 barcode reference library construction using herbarium specimens: improved experimental techniques.
 Molecular Ecology Resources 15:1366-1374 DOI 10.1111/1755-0998.12413.
- Xu L, Xu W, Sun Q, Zhou Z, Shen J, Zhao X. 2008. Flora and vegetation in Shengjin Lake. *Journal of Wuhan Botanical Research* 27:264-270.
- Zhan A, Bailey SA, Heath DD, Macisaac HJ. 2014. Performance comparison of genetic markers for
 high-throughput sequencing-based biodiversity assessment in complex communities. *Molecular Ecology Resources* 14:1049-1059 DOI 10.1111/1755-0998.12254.
- Zhan A, MacIsaac HJ. 2015. Rare biosphere exploration using high-throughput sequencing: research progress
 and perspectives. *Conservation Genetics* 16:513-522 DOI 10.1007/s10592-014-0678-9.
- Zhang Y, Cao L, Barter M, Fox AD, Zhao M, Meng F, Shi H. 2011. Changing distribution and abundance
 of Swan Goose *Anser cygnoides* in the Yangtze River floodplain: the likely loss of a very important
 wintering site. *Bird Conservation International* 21:36-48 DOI 10.1017/S0959270910000201.
- Zhao M, Cao L, Fox AD. 2013. Distribution and diet of wintering Tundra Bean Geese Anser fabalis
 serrirostris at Shengjin Lake, Yangtze River floodplain, China. Wildfow 60:52-63.
- Zhao M, Cao L, Klaassen M, Zhang Y, Fox AD. 2015. Avoiding competition? Site use, diet and foraging
 behaviours in two similarly sized geese wintering in China. *Ardea* 103:27-38 DOI
 10.5253/arde.v103i1.a3.

Zhao M, Cong P, Barter M, Fox AD, Cao L. 2012. The changing abundance and distribution of Greater
 White-fronted Geese *Anser albifrons* in the Yangtze River floodplain: impacts of recent hydrological
 changes. *Bird Conservation International* 22:135-143 DOI 10.1017/S0959270911000542.