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Abstract  13	

Food availability and diet selection are important factors influencing the abundance and 14	

distribution of wild waterbirds. In order to better understand changes in waterbird populations, it 15	

is essential to figure out what they feed on. However, analyzing diet could be difficult and 16	

inefficient using traditional methods, such as microhistologic observation. Here, we addressed 17	

this gap of knowledge by investigating diet of greater white-fronted goose Anser albifrons and 18	

bean goose Anser fabalis, which are obligate herbivores wintering, in China, mostly in Middle 19	

and Lower Yangtze River Floodplain. We firstly prepared a local plant reference library by 20	

selecting an optimal marker gene (P6 loop of chloroplast trnL intron) and amplifying the most 21	

common plants that these geese would consume. Then, utilizing DNA metabarcoding, we 22	

discovered 15 food items in total from feces of these birds. Of the 15 unique dietary sequences, 23	

10 could be identified at species-level. As for greater white-fronted goose, 73% of sequences 24	

belonged to Poaceae spp., and 26% belonged to Carex spp. In contrast, almost all sequences of 25	

bean goose belonged to Carex spp. (99%). Using the same samples, microhistology provided 26	

consistent food composition with metabarcoding results for greater white-fronted goose, while 13% 27	

of Poaceae was recovered for bean goose. In addition, two other taxa were discovered only 28	

through microhistologic analysis. Although most of the identified taxa matched relatively well 29	

between the two methods, DNA metabarcoding gave taxonomically more detailed information. 30	

Discrepancies were likely due to biased PCR amplification in metabarcoding, low discriminating 31	

power of current marker genes for monocots, and biases in microhistologic analysis. The diet 32	

differences between two geese species might indicate deeper ecological significance beyond the 33	
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scope of this study. We concluded that DNA metabarcoding provided new perspectives for 43	

studies of herbivorous waterbird diets and inter-specific interactions, as well as new possibilities 44	

to investigate interactions between herbivores and plants. In addition, microhistologic analysis 45	

should be used together with metabarcoding methods to integrate these information.  46	
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Introduction  50	

Wetlands are one of the most important ecosystems in nature, and they harbor a variety of 51	

ecosystem services such as protection against floods, water purification, climate regulation and 52	

recreational opportunities (Brander, Flora & Vermaat, 2006). Waterbirds are typically 53	

wetland-dependent animals upon which they could get abundant food and suitable habitats (Ma et 54	

al., 2010). Waterbird abundance and distribution could reflect the status of wetland structure and 55	

functions, making them important bio-indicators for wetland health (Fox et al., 2011). Among all 56	

factors affecting waterbird community dynamics, food availability is frequently considered to 57	

play one of the most important roles (Wang et al., 2013). However, recently suitable food 58	

resources have tended to decrease or even disappear due to deterioration and loss of natural 59	

wetlands (Fox et al., 2011). As a result, waterbirds are forced to discard previous habitats and 60	

sometimes even feed in agricultural lands (Zhang et al., 2011). In addition, migratory waterbirds 61	

may aid the dispersal of aquatic plants or invertebrates by carrying and transporting them 62	

between water bodies at various spatial scales (Reynolds, Miranda & Cumming, 2015). 63	

Consequently, long-time monitoring and systematic studies of waterbird diets are essential to 64	

understand population dynamics of waterbirds, as well as to establish effective management 65	

programs for them (Wang et al., 2012).  66	

Traditional methods for waterbird diet analysis, were direct observation in the field 67	

(Swennen & Yu, 2005) or microhistologic analysis of remnants in feces and/or gut contents 68	

(James & Burney, 1997; Fox et al., 2007). While these approaches have been proved useful in 69	

some cases, they are relatively labor-intensive and greatly skill-dependent (Fox et al., 2007; 70	
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Samelius & Alisauskas, 1999; Symondson, 2002). Applications of other methods for analyzing 74	

gut contents or feces were also restricted due to inherent limitations, as reviewed by Pompanon et 75	

al. (Pompanon et al., 2012). Recently, metabarcoding methods, based on high-throughput 76	

sequencing, have provided new perspectives for diet analysis and biodiversity assessment 77	

(Taberlet et al., 2007; Creer et al., 2010). These methods provide higher taxonomic resolution 78	

and enormous sequence output simultaneously from large-scale environmental samples, such as 79	

soil, water and feces (Shokralla, Spall & Gibson, 2012; Bohmann et al., 2014). Owing to these 80	

advantages, metabarcoding has been widely employed in diet analysis of herbivores (Taberlet et 81	

al., 2012; Ando et al., 2013; Hibert et al., 2013), carnivores (Deagle, Kirkwood & Jarman, 2009; 82	

Shehzad et al., 2012) and omnivores (De Barba et al., 2014). But pitfalls of metabarcoding 83	

should not be ignored when choosing suitable techniques for new studies. For instance, many 84	

researches have shown that it is difficult to obtain quantitative data using metabarcoding (Sun et 85	

al., 2015). This drawback might result from both technical issues of this method and relevant 86	

biological features of samples (Pompanon et al., 2012).  87	

One paramount prerequisite of metabarcoding methods is to select robust genetic markers 88	

and corresponding primers (Zhan et al., 2014; Zhan & MacIsaac, 2015). For diet study of 89	

herbivores, at least eight chloroplast genes and two nuclear genes are used as potential markers 90	

for land plants (Hollingsworth, Graham & Little, 2001). Although mitochondrial cytochrome c 91	

oxidase I (COI) is extensively recommended as a standard barcode for animals, its relatively low 92	

rate of evolution in botanical genomes precludes it being an optimum for plants (Wolfe, Li & 93	

Sharp, 1987; Fazekas et al., 2008). The internal transcribed spacer (ITS) is excluded due to 94	
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divergence discrepancies of individuals and low reproducibility (Álvarez & Wendel, 2003). A 98	

variety of combinations and comparisons have been performed for the eight candidate genes, 99	

however, none proved equally powerful for all cases (Fazekas et al., 2008). Consequently, it is 100	

more effective to choose barcodes for a circumscribed set of species occurring in a regional 101	

community (Kress et al., 2009). Another equally important aspect of metabarcoding applications 102	

is the construction of reference libraries which assist taxonomic assignment (Rayé et al., 2011; 103	

Xu et al., 2015). It is difficult to accurately interpret sequence reads without a reliable reference 104	

library (Elliott & Jonathan Davies, 2014).  105	

Diet analysis is a central issue in waterbird research, both for deciphering waterfowl 106	

population dynamics and interpreting inter- or intra-specific interactions of cohabitating species 107	

(Zhao et al., 2015). For instance, more than 60% of bean goose Anser fabalis and almost 40% of 108	

greater white-fronted goose Anser albifrons populations along the East Asian – Australian 109	

Flyway Route winter at the Shengjin Lake National Nature Reserve (Zhao et al., 2015). Previous 110	

studies based on microhistologic observation illustrated that the dominant composition of their 111	

diets were monocotyledons, such as Carex spp. (Zhao et al., 2012), Poaceae (Zhang et al., 2011), 112	

and a relatively small proportion of non-monocots (referred to as dicotyledons in study of “Zhao, 113	

Cao & Fox, 2013”). However, few food items could be identified to species-level, mainly owing 114	

to variable tissue structures within plants, similar morphology between relative species, and a 115	

high level of degradation after digestion (Zhang et al., 2011; Zhao et al., 2012; Zhao, Cao & Fox, 116	

2013). Ambiguous identification has hindered understanding of waterbird population dynamics 117	

and potential to establish effective conservation plans for them.  118	
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In this study, we aimed to improve this situation using a metabarcoding method to analyze 130	

diets of these species (see flowchart in Fig. 1). By examining the efficiency of eight candidate 131	

genes (rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), atpF-atpH, and psbK-psbI), we 132	

selected robust genes and corresponding primers for reference library construction and 133	

high-throughput sequencing. Subsequently, we used the metabarcoding method to investigate diet 134	

composition of these two species based on feces collected from Shengjin Lake. Finally, we 135	

discussed and compared results from microhistology and DNA metabarcoding using the same 136	

samples to assess the utility and efficiency of these two methods.  137	

Materials and Methods  138	

Ethics Statement  139	

Our research work did not involve capture or any direct manipulation or disturbances of animals. 140	

We collected samples of plants and feces for molecular analyses. We got access to the reserve 141	

under the permission of Shengjin Lake National Nature Reserve Administration (Chizhou, Anhui, 142	

China), which is responsible for the management of the protected area and wildlife. We were 143	

forbidden to capture or disturb geese in the field.  144	

Study Area  145	

Shengjin Lake (116º55´ - 117º15´ E, 30º15´ -30º30´ N) was established as National Nature 146	

Reserve in 1997, aiming to protect diverse waterbirds including geese, cranes and storks. The 147	

water level fluctuates greatly in this lake, with maximal water level of 17 m during summer 148	

(flood season) but only 10 m during winter (dry season). Due to this fluctuation, receding waters 149	

expose two large Carex spp. meadows and provide suitable habitats for waterbirds. This makes 150	
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Shengjin Lake one of the most important wintering sites for migratory waterbirds (Zhao et al., 158	

2015). Greater white-fronted goose and bean goose are the dominant herbivores wintering (from 159	

October to  April) in this area, accounting for 40% and 60% of populations along the East Asian 160	

– Australian Flyway Route, respectively (Zhao et al., 2015).  161	

Field Sampling  162	

The most common plant species that these two geese may consume were collected in May 2014 163	

and January 2015, especially species belonging to Carex and Poaceae. Fresh and intact leaves 164	

were carefully picked, tin-packaged in the field and stored at -80 °C in the laboratory before 165	

further treatment. Morphological identification was carried out with the assistance of two 166	

botanists (Profs Zhenyu Li and Shuren Zhang from Institute of Botany, Chinese Academy of 167	

Sciences). In total, 87 specimens were collected, belonging to 25 families, 53 genera and 70 168	

species (Table S1).  169	

All feces were collected at the reserve (Fig. 2) in January 2015. Based on previous studies 170	

and the latest waterbird survey, sites with big flocks of geese (i.e. more than 200 individuals) 171	

were chosen (Zhang et al., 2011). As soon as geese finished feeding and feces were defecated, 172	

fresh droppings were picked and stored in dry ice. Droppings of bean geese were generally 173	

thicker than those of smaller greater white-fronted goose, to the degree that these could be 174	

reliably distinguished in the field (Zhao et al., 2015). Disposal gloves were changed for each 175	

sample to avoid cross contamination. To avoid repeated sampling and make sure samples were 176	

from different individuals, each sample was collected with a separation of more than two meters. 177	

In total, 21 feces were collected, including 11 for greater white-fronted goose and 10 for bean 178	
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goose. All samples were transported to laboratory in dry ice and then stored at -80 °C until 181	

further analysis.  182	

Selection of Molecular Markers and Corresponding Primers  183	

In this part, we aimed to select gene markers with adequate discriminating power for our study. 184	

We included eight chloroplast genes - rbcL, rpoC1, rpoB, matK, trnH-psbA, trnL (UAA), 185	

atpF-atpH, and psbK-psbI for estimation. Although Shengjin Lake included an array of plant 186	

species, we focused mainly on the most likely food resources (Xue et al., 2008; Zhao et al., 2015) 187	

that geese would consume for candidate gene tests. These covered eleven genera and the family 188	

Poaceae (Table S2; Table 2). For tests of all candidate genes, we recovered sequences of 189	

representative species in the selected groups from GenBank 190	

(http://www.ncbi.nlm.nih.gov/nuccore). We calculated inter-specific divergence within every 191	

genus or family based on the Kimura 2-parameter model (K2P) using MEGA version 6 (Tamura 192	

et al., 2013). We also constructed molecular trees based on UPGMA using MEGA and 193	

characterized the resolution of species by calculating the percentage of species recovered as 194	

monophyletic based on phylogenetic trees (Rf?). Secondly, primers selected out of eight of 195	

candidate genes were used to amplify all 87 specimens and to check their amplification efficiency 196	

and universality. Thirdly, we calculated inter-specific divergence based on sequences that we 197	

obtained from last step. Generally, a robust barcode gene is obtained when the minimal 198	

inter-specific distance exceeds the maximal intra-specific distance (e.g. existence of barcoding 199	

gaps). For reference database building, we calculated the rate of discrimination for the species in 200	

each family (Rf) by dividing the number of unique sequences per family by the number of 201	

Deleted:	consisted 202	

Deleted:	potential 203	

Deleted:	one family204	

Comment	[7]:	Needs	clarification:	were	all	

sequences	for	a	gene	from	different	species,	

or	were	some	distinct	alleles	within	species?	

Deleted:	Kiruma 205	

Comment	[8]:	In	Table	S2,	give	the	number	of	

species	compared	along	with	the	number	of	

sequences	(so	that	the	reader	has	some	idea	

of	variation	in	resolution	of	your	resolvability	

measure)	

Deleted:	selected out of eight 206	

Deleted:	recommended 207	



	

10	
	

species resolved as monophyletic clades in each family. Finally, to allow the recognition of 208	

sequences after high-throughput sequencing, both of the forward and reverse primers of the 209	

selected marker gene were tagged specifically for each sample with 8nt nucleotide codes at the 5’ 210	

end (Parameswaran et al., 2007).  211	

DNA Extraction, Amplification and Sequencing  212	

Two hundred milligrams of leaf was used to extract the total DNA from each plant sample using 213	

a modified CTAB protocol (Cota-Sanchez, Remarchuk & Ubayasena, 2006). DNA extraction of 214	

feces was carried out using the same protocol with minor modification in incubation time 215	

(elongate to 12 h). Each fecal sample was crushed thoroughly and divided into four quarters. All 216	

quarters of DNA extracts were then pooled together. DNA extraction was carried out in a clean 217	

room used particularly for this study. For each batch of DNA extraction, negative controls (i.e. 218	

extraction without feces) were included to monitor possible contamination.  219	

For plant DNA extracts, PCR amplifications were carried out in a volume of 25µl with ~100 220	

ng total DNA as template, 1U of Taq Polymerase (Takara, Dalian, Liaoning Prov., China), 1× 221	

PCR buffer, 2 mM of Mg2+, 0.25 mM of dNTPs, 0.1 µM of forward primer and 0.1 µM of reverse 222	

primer. After 4 min at 94 °C, the PCR cycles were as follows: 35 cycles of 30 s at 94 °C, 30 s at 223	

56 °C and 45 s at 72 °C, and the final extension was 10 min at 72 °C. We applied the same PCR 224	

conditions for all primers. All the successful PCR products were sequenced with Genewiz 225	

(Suzhou, Jiangsu Prov., China).  226	

For fecal DNA extracts, PCR mixtures (25µl) were prepared in six replicates for each 227	

sample to reduce biased amplification. Each replicate was subjected to the same amplification 228	
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procedure used for plant extracts. Each set of six replicates was pooled and purified using the 241	

Sangon PCR product purification kit (Sangon Biotech, Shanghai, China). Quantification was 242	

carried out to ensure equilibrium of contribution of each sample using the NanoDrop ND-2000 243	

UV-Vis Spectrophotometer (NanoDrop Technologies, Delaware, United States of America). 244	

High-throughput sequencing was performed using Illumina MiSeq platform following 245	

manufacturer’s instructions by BGI (Shenzhen, Guangdong Prov., China). Reads of 246	

high-throughput sequencing could be found at NCBI’s Sequence Read Archive (Accession 247	

number: SRP070470).  248	

Data Analysis for Estimating Diet Composition  249	

After high-throughput sequencing, pair-ended reads were merged with using the UPARSE 250	

pipeline (http://drive5.com/usearch, Edgar, 2010). Reads were then split into independent files 251	

according to unique tags using RDP pipeline (http://rdp.cme.msu.edu/). We removed sequences i) 252	

that didn’t perfectly match tags and primer sequences; ii) that contained ambiguous nucleotide 253	

(N’s). Tags and primers were then trimmed using the RDP pipeline. Further quality filtering 254	

based on the UPARSE pipeline discarded sequences with i) quality score less than 30 (<Q30) and 255	

ii) shorter than 100 bp and longer than 200 bp. Unique sequences were clustered to operational 256	

taxonomy units (OTUs) at the similarity threshold of 98% (Edgar, 2013). All OTUs were 257	

assigned to unique taxonomy with local blast 2.2.30+ (Altschul et al., 1990). We detected a plant 258	

within the reference library for each sequence with the threshold of length coverage > 98%, 259	

identity > 98% and e-value < 1.0 e-50. If a query sequence matched two or more taxa, it was 260	

assigned to a higher taxonomic level which included all taxa.  261	
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Microhistology analysis  263	

We used the method described by Zhang et al. (2011) to perform microhistologic examination of 264	

fecal samples. Each sample was first washed with pure water and filtered with a 25-µm filter. 265	

Subsequently, the suspension was examined under a light microscope at 10× magnification for 266	

quantification statistics and at 40× magnification for species identification. We compared photos 267	

of visible fragments with an epidermis database of plants from Shengjin Lake to identify food 268	

items (Source?...Zhang? Fox?).  269	

Results  270	

Selection of Genes and Corresponding Primers and Reference Library Constructing  271	

A total of 3,296 representative sequences were recovered from GenBank, ranging from 0 to 345 272	

sequences per gene, per genus (Table S2). Among the eight candidate genes, trnL, trnH-psbA, 273	

matK and rbcL showed largest inter-specific divergence in seven, three, one and one taxonomic 274	

groups, respectively. These four genes also displayed relatively high resolution of species (Table 275	

S2). For example, with matK gene, 77% of Carex could be identified to species-level. However, 276	

our results indicated that none of these eight genes could simultaneously differentiate all 12 277	

genera or families to species-level (Table S2). Considering the inter-specific divergence and 278	

resolution of species, we chose the most commonly used chloroplast genes rbcL, matK, 279	

trnH-psbA and trnL for further tests.  280	

Primers for these four genes (Table 1) were used to amplify the plants that we collected in 281	

the field. The selected primers for trnL and rbcL successfully amplified 100% and 91% of all 282	

species, respectively, while primers for trnH-psbA and matK amplified only 71% and 43%, 283	
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respectively. Therefore, we chose trnL and rbcL to test their discriminating power in our target 290	

plants.  291	

We calculated the inter-specific divergence within genera and families with at least two 292	

species to compare their discriminating power. Maximal, minimal and mean inter-specific 293	

distances were calculated for seven dominant genera and six dominant families (Table 2). Neither 294	

gene could differentiate species of Vallisneria Linn. (mean=0.000±0.000%) or Artemisia Linn. 295	

(mean=0.000±0.000%). But trnL showed a larger divergence range for the other six genera and 296	

five families. Hence, we chose trnL as the barcoding gene for reference library constructing and 297	

high-throughput sequencing for our study. The discriminating power of trnL was strong for most 298	

species (Table 3). However, some species could only be identified at genus-level or family-level 299	

with trnL. For instance, five species of Potamogeton shared the same sequences and this made 300	

them to be identified at genus-level. Species could be identified easily to genus and family, 301	

except for three grasses (Poaceae) Beckmannia syzigachne, Phalaris arundinacea, and 302	

Polypogon fugax, which shared identical sequences.  303	

Data Processing for Estimating Diet Composition  304	

In total, 0.21 and 0.18 million reads were generated for greater white-fronted goose (GWFG) and 305	

bean goose (BG), respectively (Table 4). The number of recovered OTUs ranged from 8 to 123 306	

for GWFG and BG samples. We used local BLAST to compare these sequences with the 307	

Shengjin Lake reference database. Finally, with DNA metabarocoding, 12 items were discovered 308	

in the feces of GWFG, including one at family-level, three at genus-level and eight at 309	

species-level (Table 5). Four items were discovered in the feces of BG, including one at 310	
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genus-level and three at species-level. In total, this method identified 15 taxa in feces of these 323	

geese.  324	

However, the sequence percentage of each food item varied greatly (Table 5). For GWFG, 325	

the majority of sequences (96.36%) were composed of only five items - Poaceae spp. (47.98%), 326	

Poa annua (21.86%), Carex heterolepis (17.51%), Carex spp. (9.01%), and Alopecurus aequalis 327	

(3.21%). For BG, almost all the sequences belonged to Carex heterolepis (99.49%). Other items 328	

only occupied a relatively small proportion of sequences. In addition, the presence of each item 329	

per sample was also unequal (Table S3). For example in GWFG, Carex heterolepis, Carex spp., 330	

Poa annua and Potentilla supina were present in almost all the samples, while Stellaria media, 331	

Asteraceae sp. and Lapsana apogonoldes occurred in only about one third of samples.  332	

When microhistologic examination were performed using the same samples, eight items 333	

were found in the feces of greater white-fronted goose, including one at family-level, four at 334	

genus-level and three at species-level (Table 5). Dominant items were Poaceae spp. (45.68%), 335	

Alopecurus Linn. (30.93%) and Carex heterolepis (16.39%). Seven items were found in the feces 336	

of bean goose, including four at genus-level and three at species-level (Table 5). Dominant items 337	

were Carex heterolepis (62.85%), Asteraceae sp. (14.55%), and Alopecurus Linn. (13.18%).  338	

Discussion  339	

Marker Selection and Reference Library Constructing for Diet Analysis  340	

With greatly reduced cost, extremely high throughput and information content, metabarcoding 341	

has revolutionized the exploration and quantification of dietary analysis from noninvasive 342	

samples containing degraded DNA (Fonseca et al., 2010; Shokralla et al., 2014). Despite 343	
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enormous potential to boost data acquisition, successful application of this technology relies 350	

greatly on the power and efficiency of genetic markers and corresponding primers (Bik et al., 351	

2012; Zhan et al., 2014). In order to select the most appropriate marker gene for our study, we 352	

compared the performance of eight commonly used chloroplast genes, rbcL, rpoB, rpoC1, matK, 353	

trnL, trnH-psbA, atpF-atpH, and psbK-psbI and their corresponding primers. Although a higher 354	

level of discriminating power was shown in several studies, atpF-atpH, psbK-psbI, rpoB and 355	

rpoC1 were not as commonly used as other barcoding genes (Hollingsworth, Graham & Little, 356	

2001). As one of the most rapidly evolving coding genes of plastid genomes, matK was 357	

considered as the closest plant analogue to the animal barcode COI (Hilu & Liang, 1997). 358	

However, matK was difficult to amplify using available primer sets, with only 43% of successful 359	

amplification in this study. In spite of the higher species discrimination success of trnH-psbA 360	

than rbcL+matK in some groups, the presence of duplicated loci, microinversions and premature 361	

termination of reads by mononucleotide repeats lead to considerable proportion (30% in this 362	

study) of low-quality sequences and over-estimation of genetic difference when using trnH-psbA 363	

(Graham et al., 2000; Whitlock Hale & Groff, 2010). In contrast, the barcode region of rbcL is 364	

easy to amplify, sequence, and align in most plants and was recommended as the standard 365	

barcode for land plants (Chase et al., 2007). The relatively modest discriminating power 366	

(compared to trnL) precludes its application for our study aiming to recover high resolution of 367	

food items. Consequently, trnL was selected out of eight candidate markers, with 100% 368	

amplification success, more than 90% of high quality sequences, and relatively large 369	

inter-specific divergence.  370	
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One of the biggest obstacles in biodiversity assessment and dietary analysis is the lack of a 371	

comprehensive reference library, without which it is impossible to accurately interpret and assign 372	

sequences generated from high-throughput sequencing (Valentini, Pompanon & Taberlet 2009; 373	

Barco et al., 2015). In this study, we constructed a local reference library by amplifying the most 374	

common species (70 morpho-species in total) during the wintering period with the trnL gene. 375	

Although not all of them could be identified at species-level with trnL due to relatively low 376	

inter-specific divergence, many species could be separated with distinctive sequences. Previous 377	

studies have recommended group-specific barcodes to differentiate closely related plants at the 378	

species level (Li et al., 2015). For instance, matK has been proved to be more efficient for the 379	

discrimination of Carex spp. (Starr, Naczi & Chouinard, 2009). However, the primer set of matK 380	

failed to amplify species of Carex spp. in our study, suggesting the universality of selected 381	

primer pairs should be tested in each study (Zhan et al., 2014).  382	

Applications of Metabarcoding for Geese Diet Analysis  383	

A variety of recent studies have demonstrated the great potential of metabarcoding for dietary 384	

analysis, mainly owing to the high throughput, high discriminating power, and the ability to 385	

process large-scale samples simultaneously (Creer et al., 2010; Taberlet et al., 2012; Shehzad et 386	

al., 2012). In this study, we applied this method to recover diets of herbivorous geese and 387	

provided standard protocols for dietary analysis of these two ecologically important waterbirds. 388	

Our results further proved the more objective, less experience-dependent and more time-efficient 389	

character of DNA metabarcoding. However, not all the species in the reference library could be 390	

identified at species-level, owing to low inter-specific divergence. We suggest that multiple 391	
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group-specific markers to be incorporated in the future, as in De Barba et al.(2014). Two species, 394	

Carex thunbergii and Fabaceae sp., were only discovered via microhistologic analysis rather 395	

than metabarcoding. This failure might reflect the biased fragment amplification of current 396	

technology, of which dominant templates could act as inhibitors of less dominant species (Piñol 397	

et al., 2015). However, three species of Poaceae were only discovered using metabarcoding. In 398	

total, more taxa and higher resolution were attained using metabarcoding. But microhistology 399	

still proved a powerful supplementary. Previous studies using metabarcoding usually detected 400	

dozens of food items, even as many as more than one hundred species. For instance, 18 taxa prey 401	

were identified for leopard cat (Shehzad et al., 2012); 44 plant taxa were recovered in feces of 402	

red-headed wood pigeon (Ando et al., 2013); while more than 100 taxa were found in diet studies 403	

of brown bear (De Barba et al., 2014). The relatively narrow diet spectrum of herbivorous geese 404	

may lead to misunderstanding that this result of our study is merely an artefact due to small 405	

sampling effort. However, this result is credible since these two geese species only feed on Carex 406	

meadow, where the dominant vegetation is Carex spp., with other species such as Poaceae and 407	

dicots (Zhao et al., 2015). Even though other wetland plants exist, they usually composed only a 408	

small proportion of the geese diets.  409	

Quantification of food composition is another key concern in dietary analysis. Although the 410	

relative percentage of sequences were not truly a quantitative estimate of diet, taxa of the 411	

majority sequences in this study were in accord with microhistologic observations, which was 412	

considered an efficient way to provide quantitative results (Wang et al., 2013. Discrepancies 413	

might come from the semi-quantitative nature of metabarcoding methods (Sun et al., 2015). This 414	
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is likely derived from PCR amplification, which always entails biases caused by universal 423	

primer-template mismatches, annealing temperature or number of PCR cycles (Zhan et al., 2014; 424	

Piñol et al., 2015). Other methods such as shot-gun sequencing or metagenomic sequencing 425	

could be incorporated in the future to give information on abundance of food items (Srivathsan et 426	

al., 2015).  427	

Implications for Waterbird Conservation and Wetland Management  428	

For long-distance migratory waterbirds, such as the wild geese in this study, their abundance and 429	

distribution are greatly influenced by diet availability and habitat use (Wang et al., 2013). For 430	

example, waterbirds may be restricted at (forced to leave) certain areas due to favoring (loss) of 431	

particular food (Wang et al., 2013), while the recovery of such food may contribute to return of 432	

bird populations (Noordhuis et al., 2002). Results of both metabarcoding and microhistologic 433	

analysis in this study revealed that Carex and Poaceae were dominant food components which is 434	

in accordance with previous studies. The increasing number of these two geese wintering at the 435	

Shengjin Lake may be attributed to the expansion of Carex meadow, which offers access to 436	

abundant food resources (Zhao et al., 2015). Considering the long-distance migratory character of 437	

these birds, it is important to maintain energy balances and good body conditions in wintering 438	

areas because this might further influence their departure dates and reproductive success after 439	

arriving at breeding areas (Prop, Black & Shimmings, 2003). Based on this, it is important for 440	

wetland managers to maintain suitable habitats and food resources for sustainable conservation of 441	

waterbirds, which highlights the significance of diet information. Our study also indicated that 442	

overlap and dissimilarity existed between the diets of these two geese. As we all know, animals 443	
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foraging in the same habitats may compete for limited food resources (Madsen & Mortensen, 454	

1987). This discrepancy of food composition may arise from the avoidance of inter-specific 455	

competition (Zhao et al., 2015). However, with the increase of these two species in Shengjin 456	

Lake, further research is needed to investigate the mechanisms of food resource partitioning and 457	

spatial distribution.  458	

Shengjin Lake is one of the most important wintering sites for tens of thousands of 459	

migratory watebirds, while annual life cycles of these birds depend on the whole migratory route, 460	

including breeding sites, stop-over sites and wintering sites (Kear, 2006). Thus, a molecular 461	

reference library covering all the potential food items along the whole migratory route will be 462	

useful both for understanding of wetland connections and waterbird conservation. Besides, the 463	

ability of DNA metabarcoding to process lots of samples simultaneously enables rapid analyses 464	

and makes this method helpful for waterbird studies.  465	
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