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ABSTRACT
A variety of methods are available to collapse 16S rRNA gene sequencing reads to
the operational taxonomic units (OTUs) used in microbiome analyses. A number of
studies have aimed to compare the quality of the resulting OTUs. However, in the
absence of a standard method to define and enumerate the different taxa within a
microbial community, existing comparisons have been unable to compare the ability
of clustering methods to generate units that accurately represent functional taxonomic
segregation. We have previously demonstrated heritability of the microbiome and we
propose this as a measure of each methods’ ability to generate OTUs representing
biologically relevant units. Our approach assumes that OTUs that best represent
the functional units interacting with the hosts’ properties will produce the highest
heritability estimates. Using 1,750 unselected individuals from the TwinsUK cohort,
we compared 11 approaches to OTU clustering in heritability analyses. We find
that de novo clustering methods produce more heritable OTUs than reference based
approaches, with VSEARCH and SUMACLUST performing well. We also show that
differences resulting from each clustering method are minimal once reads are collapsed
by taxonomic assignment, although sample diversity estimates are clearly influenced
by OTU clustering approach. These results should help the selection of sequence
clustering methods in future microbiome studies, particularly for studies of human
host-microbiome interactions.

Subjects Bioinformatics, Ecology, Microbiology
Keywords Ecology, Microbiology, Computational biology

INTRODUCTION
The field of microbiome research has seen rapid expansion this last decade (Jones, 2013).
One of the techniques most frequently used to profile microbial communities is 16S
rRNA gene sequencing, where PCR amplification of variable marker regions is used to
determine a sample’s microbial composition (Pace, 1997). The taxonomic resolution of
sequence variation across a marker region is limited both biologically and technically,
because sequence divergence may not represent wider biological divergence between
taxa (Stackebrandt & Goebel, 1994; Mignard & Flandrois, 2006), and sequencing errors
introduce artificial divergence (Huse et al., 2010; Schloss, Gevers & Westcott, 2011). As a
result, it is not necessarily useful to enumerate every unique sequence observed particularly
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given that samples may contain hundreds of thousands of unique reads. To simplify
analyses, reads within a 16S rRNA gene dataset are typically collapsed into operational
taxonomic units (OTUs). This is carried out based on sequence similarity between reads.
Convention is typically to group reads that share at least 97% identity, which is considered
‘‘species’’ level. Although collapsing can be carried out to any threshold and there is no
clear definition of what constitutes a bacterial species.

A variety of methods are available to collapse 16S data to OTUs (Edgar, 2010; Edgar,
2013; Rognes et al., 2016; Mercier et al., 2013; Mahé et al., 2014; Schloss & Handelsman,
2005; Eren et al., 2014), often implemented within software wrappers such as QIIME and
Mothur (Caporaso et al., 2010; Schloss et al., 2009). One of the main divides in approaches
is whether experimental sequences are clustered against a reference database of sequences
(Liu et al., 2008), termed closed reference clustering (Navas-Molina et al., 2013), or solely
clustered within the experimental data itself, generating what are termed de novo OTUs
(Schloss & Handelsman, 2005; Navas-Molina et al., 2013). Closed reference clustering is
computationally more efficient given that each sequence should maximally only be
compared against each reference sequence, whereas de novo clustering could require
pair-wise comparisons between all experimental reads. Closed reference approaches also
facilitate comparisons between datasets as OTUs can be defined and matched based on
their reference sequences; however, reads which do not match any reference sequences will
be discarded. De novo clustering does not have this limitation and includes all experimental
reads in resultant OTUs, which may better represent rare and novel taxa (Navas-Molina
et al., 2013). A third approach, termed open-reference clustering, aims to capitalise on the
benefits of both approaches by first clustering experimental sequences against a reference
followed by de novo clustering of discarded sequences (Navas-Molina et al., 2013).

Once a reference or de novo based approach has been selected, a number of different
algorithms can be used to cluster sequences by similarity (Schloss & Handelsman,
2005; Caporaso et al., 2010; Edgar, 2010; Edgar, 2013; Rognes et al., 2016; Mercier et al.,
2013; Mahé et al., 2014; Eren et al., 2014). Linkage based methods calculate pairwise
distances between all sequences allowing hierarchical clustering to OTUs (Schloss &
Handelsman, 2005). There are also multiple greedy algorithms available, which aim
to reduce computation time using heuristic approaches to finding optimal groups
without calculating all possible distances (Edgar, 2010; Edgar, 2013; Rognes et al., 2016).
Furthermore, there have been a number of methods proposed to summarise 16S data
without using a predetermined global similarity threshold. These include simply using
de-replicated sequences (reads collapsed by 100% similarity), defining OTUs by inherent
separation within the dataset using local rather than global cut-offs (Mahé et al., 2014),
and splitting reads into groups based on sequence entropy at each position in aligned reads
(Eren et al., 2014).

With the range of available approaches to OTU picking some comparative metric
is required to assess their performance. Previously, clustering algorithms have been
compared based on a number of metrics including: their computational efficiency (Edgar,
2010; Kopylova et al., 2016; Chen et al., 2013); the number of OTUs they produce (Schmidt,
Rodrigues & Von Mering, 2015; Kopylova et al., 2016; Chen et al., 2013); the accuracy of the
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similarity between sequences within their OTUs (Westcott & Schloss, 2015; Schloss, Gevers
& Westcott, 2011; Schloss, 2016); their ability to handle sequencing artefacts (Edgar, 2013);
their reconstruction of simulated data sets (Kopylova et al., 2016; Chen et al., 2013); the
similarity between method outputs (Schmidt, Rodrigues & Von Mering, 2015; Kopylova et
al., 2016); and the reproducibility of their clustering within subsets of the same data (He et
al., 2015). However, the optimal approach between de novo and reference clustering, and
the different clustering algorithms is dependent on which measure of quality is considered.

As there is no accepted standard for definition and enumeration of microbial taxa in
a community, existing comparison metrics have exclusively dealt with technical aspects
of clustering. It is not clear which of these metrics is most important in determining a
methods ability to generate OTUs most representative of the biological units underlying
microbial community structure. Here we suggest heritability as a measure of the biological
relevance of OTUs.

Heritability quantifies the percentage of phenotypic variation that is attributable to
genetic variability. Twin studies are a well-established method for estimating heritability.
These compare the correlation of phenotypes within monozygotic (MZ) twin pairs whom
share identical nuclear DNA, to the correlations within dizygotic (DZ) pairs whom on
average share half their genetic material. Variation in a phenotype can then be apportioned
into variation due to genetic factors, which are shared by twins to a varying degree, based
on zygosity and to environmental factors, which are not shared by twins (Franic et al.,
2012; Boomsma, Busjahn & Peltonen, 2002).

TwinsUK is a long established cohort of unselected British twins (Moayyeri et al., 2013).
16S rRNA gene sequencing of faecal samples from the cohort has been used to demonstrate
heritability of themicrobiome (Goodrich et al., 2014;Goodrich et al., 2016), and to identify a
number of phenotype-microbiome associations (Jackson et al., 2016a; Jackson et al., 2016b;
Barrios et al., 2015). Under the assumption that some heritability within the microbiome
is acting at the level of individual taxa-host interactions, we propose that the heritability of
OTUs is representative of their ability to summarise the underlying biological units within
a microbial community.

Here we compare heritability estimates of 11 different methods of summarising 16S
reads from 1,750 faecal samples of 473 MZ and 402 DZ twin pairs. Overall, we find that
de novo clustering, regardless of algorithm, consistently produces more heritable OTUs
than reference based approaches, with VSEARCH and SUMACLUST producing the highest
heritability estimates from those considered. No difference in heritability was observed once
OTUs had been collapsed by taxonomic assignment. We also find that clustering method
can influence relative sample diversity, dependant on the diversity metric used. These
results should provide guidance to researchers in selecting the appropriate approach to
OTU picking, in particular in studies investigating human host-microbiome interactions.

METHODS
Faecal sampling and 16S rRNA gene sequencing
Analyses were carried out using 16S rRNA gene sequencing reads from a subset of published
data from the TwinsUK cohort. Sample collection, DNA extraction and sequencing have
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previously been reported (Goodrich et al., 2014). In brief, twins produced the sample at
home, which was then kept refrigerated and/or on ice before freezing at −80 ◦C in the
TwinsUK laboratory at King’s College London. Frozen samples were then shipped to
Cornell University where extracted DNA from samples was PCR amplified over the V4
variable region of the 16S gene. The resulting amplicons were multiplexed and sequenced
using the Illumina MiSeq platform to generate 250 bp paired-end reads. Ethical approval
for microbiota studies within TwinsUK were provided by the NRES Committee London—
Westminster (REC Reference No.: EC04/015). All participants provided written consent.

Pre-processing of sequencing reads
Paired reads were joined using fastqjoin, within QIIME (Caporaso et al., 2010), discarding
reads without a minimum overlap of 200 nt and those containing ambiguous bases. Joined
reads were de-multiplexed also removing barcodes. The data were filtered to only include
the subset of 1,750 samples from the 473 MZ and 402 DZ complete twin pairs used in these
analyses. Within this set, there were 158,635,772 reads with an average of 91,170 reads per
sample. These were split per sample and de novo chimera checking carried out on each
individually using USEARCH de novo chimera detection in QIIME with a no vote weight
of 7 (Edgar et al., 2011; He et al., 2015). This identified an average of 8,471 chimeric reads
per sample all of which were removed. Sample reads were then concatenated to one file and
all sequences <252 nt or >253 nt in length discarded (<1% of reads) (Kozich et al., 2013).
After chimera removal and length filtering, the final data set contained 142,307,280 reads
across all samples. This fasta file was used as the input for all 16S collapsing approaches.

These reads and associated metadata, covering a larger selection of samples and twins
than the subset described here, are available from the European Nucleotide Archive (ENA)
from the study with accession number ERP015317 (Goodrich et al., 2016).

Clustering of 16S rRNA gene sequencing reads
All threshold based OTU clustering approaches and Swarm were implemented using
QIIME 1.9.0 (Caporaso et al., 2010; Mahé et al., 2014). VSEARCH de novo clustering was
implemented within the QIIME wrappers using an alias to run VSERARCH in place
of USEARCH (Rognes et al., 2016; Edgar, 2010). VSEARCH is not restricted to the same
memory limitations as the free version of USEARCH, enabling its use across our whole data
set. It also accepts the same commands for de novo clustering so required no alterations
to the QIIME wrapper. Where a reference was required, the Greengenes reference and
taxonomy version 13_8 was used (DeSantis et al., 2006). De-replicated sequences were
generated using VSEARCH (Caporaso, 2015). Minimum entropy decomposition (MED)
was run from scripts within the oligotyping pipeline using default parameters (Eren et al.,
2014; Eren et al., 2013). An overview of how each clustering method works, the clustering
pipeline, and complete commands used for each clustering procedure can be found in
Supplemental Information 1.

Heritability analyses
Heritability of microbiome traits was calculated in a manner similar to as previously
reported (Goodrich et al., 2014). Estimates were calculated for OTUs found in at least 50%
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of samples as OTU absence, which skews the distribution of abundances, would be less
influential on model fitting. A pseudo count of 1 was added to all OTUs to remove absent
data in the resultant OTU tables of each clustering approach. Counts were converted to
within sample relative abundances and tables subset to only include OTUs found in at least
50% of samples (prior to the addition of pseudo counts). The powerTransform package in
R was used to estimate a Box–Cox transform lambda producing approximately normally
distributed residuals from a linear model with OTU abundance as a response and gender,
age, sequencing run, sequencing depth, how the sample was collected, and the technician
who loaded and extracted the DNA as predictors. This was carried out for each OTU and
the transformed residuals used in heritability estimation.

Estimates were found by fitting OTU abundances to a twin-based ACE model. This
estimates narrow-sense heritability (the heritability due to additive genetic effects—A) on
the assumption that variance resulting from shared environment (common environment—
C) is equal in MZ and DZ twins, with remaining variance attributed to environmental
influences unique to individuals (E) (Franic et al., 2012). Maximum likelihood estimates
were found by structural equation modelling using OpenMX in R (R Development Core
Team, 2009; Boker et al., 2011). Heritability estimates for collapsed taxonomic traits were
calculated in the same manner as for OTUs.

Between method comparisons of OTU heritability and other distributions were carried
out in R using pairwiseMann–WhitneyU tests using Benjamini–Hochberg FDR correction
to account for multiple testing.

Alpha diversity calculation and taxonomic assignment
Each complete OTU table was rarefied to 10,000 sequences 25 times. Alpha diversity
calculation was carried out on each rarefied table for eachmethod using Simpson, Shannon,
Chao1 and raw OTU count metrics, with final diversity values taken as the mean across
all rarefactions. Alpha diversity estimates were compared using Mann–Whitney U tests
to contrast absolute values between methods and Kendall rank correlations to compare
sample rankings between methods.

For each clustering method, except closed reference, representative sequences were
selected as the most abundant read within each OTU. These were then used to assign
taxonomy against the Greengenes 13_8 database with a 97% similarity threshold using the
UCLUSTmethod in the assign taxonomy script of QIIME. OTU tables were collapsed based
on taxonomic assignment at all levels from genus to phylum. Differences in heritability of
taxa between methods were compared using a generalised linear model in R, to determine
the ability of taxonomic assignment and clustering method to predict heritability estimates
as the response variable. This was carried out across all taxonomic levels considering all
taxa that were found across all 11 clustering approaches.

RESULTS
De novo clustering produces more heritable OTUs than closed
reference clustering
16S microbiome profiles were available for 473 MZ and 402 DZ pairs within previously
reported data. Joined paired end read data were revisited and chimeric sequences removed

Jackson et al. (2016), PeerJ, DOI 10.7717/peerj.2341 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.2341


Figure 1 Twin based A, C, and E estimate comparisons between closed and open reference, and de
novo clustering using UCLUST with a similarity threshold of 97%. (A) Boxplots representing the A, C
and E estimates for all OTUs found in at least 50% of samples in each method. De novo clustering A esti-
mates significantly higher than those of closed reference clustering (q= 0.017). (B) The same estimates as
in A but displayed as a density function showing the distribution of estimates amongst OTUs.

on a per sample basis. Total read data across all 1,750 samples was then clustered using
de novo, closed reference, and open reference approaches using the UCLUST algorithm
(Edgar, 2010), the current default in QIIME, to form OTUs with a threshold similarity of
97%. The resultant OTU tables are summarised in Table S1. De novo clustering produced
more OTUs than closed reference and as a result, a more sparsely distributed OTU table.
Open reference picking was an intermediate of the two approaches as might be expected.

Across all three methods the A, C, and E estimates were within the range expected from
previous reports within the cohort (Goodrich et al., 2014; Goodrich et al., 2016). De novo
clustering produced OTUs with significantly higher (q= 0.017) heritability (A) estimates
than closed reference clustering (Fig. 1A). De novo heritability estimates were also higher
than those of open reference OTUs although the difference was non-significant. There
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were no significant differences in the distributions of C estimates between any methods.
De novo clustering produced OTUs with significantly lower E estimates than both closed
(q= 0.02) and open reference (q= 0.003) approaches.

Whilst significant, the difference in OTU heritability estimates was only moderate. The
mean of the de novo A estimates was 1% higher than that of the closed reference clustered
OTUs. However, the distribution of A, C, and E estimates were also divergent, as shown
in Fig. 1B. Closed reference A estimates displayed a bimodal distribution with OTUs
either having no or little heritability with fewer highly heritable units. De novo clustering
produced units of higher heritability whose estimates were more evenly distributed. Open
reference clustering displayed features of both distributions resulting in higher levels of
moderately heritable OTUs.

VSEARCH and SUMACLUST produce more heritable de novo OTUs
than UCLUST
As de novo clustering produced the most heritable OTUs using UCLUST, we aimed to
determine the influence of using alternative threshold based algorithms for clustering.
Linkage based clustering approaches were not considered as it was unfeasible to generate
distance matrices between the large number of unique reads within the data set. OTUs
were clustered at 97% similarity using two alternate greedy algorithms within QIIME—
VSEARCH and SUMACLUST (Rognes et al., 2016; Mercier et al., 2013). The open-source
algorithm VSEARCH was used in place of the QIIME default USEARCH to overcome the
memory limitations of its free version. VSEARCH has previously been shown to match
or outperform USEARCH in terms of accuracy (Westcott & Schloss, 2015). Clustering
with VSEARCH was carried out using both distance and abundance options as tiebreak
assignments. The resultant OTU tables are summarised in Table S1.

There were no significant differences in the mean magnitudes of the A, C, or E estimates
between all four methods tested (Fig. 2A). The distributions of estimates were very similar
in the SUMACLUST, and both VSEARCH approaches (Fig. 2B). UCLUSTOTUs contained
a higher proportion of A estimates falling between 0.05 and 0.15, with the other methods
containing higher proportions of more heritable OTUs. The VSEARCHmethods had more
OTUswith high heritability estimates (0.35–0.4), with the distance tiebreaker basedmethod
producing slightly fewer. SUMACLUST produced the most heritable OTU. Overall, all de
novo algorithms produced estimates higher than the UCLUST reference based approaches
at a threshold of 97% similarity, with SUMACLUST and VSEARCH approaches producing
more heritable OTUs than UCLUST.

Clustering at higher thresholds and other alternatives to clustering
We aimed to investigate the use of more stringent thresholds repeating VSEARCH
abundance based clustering with identity thresholds of 98 and 99%, and simply de-
replicating the sequences, the equivalent of a 100% threshold. We also clustered sequences
using two approaches that do not rely on a sequence identity threshold—MED and Swarm
(described in Supplemental Information 1) (Eren et al., 2014; Mahé et al., 2014). Of the
thresholds, 97% produced the most heritable OTUs (Fig. 3A), whose distribution of A
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Figure 2 Twin based A, C, and E estimate comparisons between different greedy algorithms for de
novo clustering at a 97% similarity threshold. (A) Boxplots representing the A, C and E estimates for all
OTUs found in at least 50% of samples in each method. There was no significant difference in A estimates
between methods. (B) The same estimates as in A but displayed as a density function showing the distribu-
tion of estimates amongst OTUs.

estimates was significantly different to those of the 99 (q= 0.02) and 100% (q= 0.0001)
cut-off OTUs (Fig. 3B). As the percentage identity increased from 97% through to 100%
the distribution of A estimates became less continuous, with small groups of units with
high heritability and much larger numbers with low heritability. This suggests that in some
instances, the heritability estimate of an OTU clustered at 97% identity may be driven
by an individual, highly heritable sequence; as opposed to the accumulative effects of the
variance across all its reads.

MED produced very few units in total (Table S1). However given this broad level of
summary, which is comparable to that of closed reference clustering, the resultant units A
estimates were not significantly different to VSEARCH OTUs clustered at the 97% level.
Similarly, the heritability of OTUs resulting from clustering by Swarm had heritability’s
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Figure 3 Twin based A, C, and E estimate comparisons between three different thresholds of de novo
clustering using VSEARCH, VSEARCH de-replicated sequences, and two non-threshold based tech-
niques. (A) Boxplots representing the A, C and E estimates for all OTUs found in at least 50% of sam-
ples in each method. The 97% threshold produced significantly more higher A estimates than the 99 and
100% thresholds (q= 0.02, q= 0.0001). (B) The same estimates as in A but displayed as a density function
showing the distribution of estimates amongst OTUs.

within the range of the VSEARCH methods, however the distribution of A estimates more
closely resembled OTU clustering at a threshold of 99%.

De novo clustering at 97% generates more heritable OTUs than
reference-based approaches when considering only heritable units
The power of a twin study to detect and accurately estimate the additive genetic variance of
a trait is limited by the total number of pairs and the proportion of MZ twins considered
(Visscher, 2004). As noise in the A estimates for non and low heritability traits may influence
the overall distribution,we comparedA estimate distributions across all previously clustered
techniques considering only heritable OTUs—those with A estimates greater than themean
of all OTUs (8%) andwith a lower 95%confidence interval of at least 1% (Fig. 4).When only
considering the most heritable OTUs, the majority of de novo based approaches produced
units with higher heritability estimates than the reference-based approaches. VSEARCH
AGC clustering at 97 and 98%, and DGC clustering at 97% produced significantly higher
estimates than closed reference UCLUST. As did SUMACLUST de novo clustering (97%
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Figure 4 Comparison of A heritability estimates between all clustering approaches. Only consider-
ing OTUs who’s A estimate was greater than the mean (∼8%) and had a lower 95% CI greater than 1%.
SUMACLUST and VSEARCH clustering produced OTUs with significantly higher heritability estimates
than OTUs produced using reference-based clustering. Significant differences are shown where * indicates
q< 0.05 and ** indicates q< 0.01.

identity), which also produced units with significantly higher heritability than those
produced by open reference based clustering. De novo clustering at higher sequence
identity thresholds (99 and 100%) produced OTUs with significantly lower estimates than
SUMACLUST at 97%.

Differences resulting from clustering approach are not apparent after
collapsing by taxonomic assignment
The ability of a technique to generate OTUs representing fine scale biological units
may be less important for studies aiming to identify effects at higher taxonomic levels.
To determine if choice of OTU clustering approach significantly effected the ability to
generate representative taxa we collapsed each OTU table at all taxonomic levels from
genus to phylum, and estimated the heritability of taxa at each level (Table S2). We then
investigated the ability of taxonomic assignments and clustering methods to predict taxa
heritability estimates. We found that assignments to 150 of the 168 taxa found across all 11
methods were significant predictors of heritability, however none of the clustering methods
had a significant effect. This suggests that from genus through to higher-level taxonomic
summaries there is sufficient collapsing of reads that the previously observed differences
in OTU clustering are not apparent.

Alpha diversity measures are influenced by clustering approach
As the largest difference observed betweenmethods was the number of OTUs generated, we
aimed to determine the influence of clustering approach on alpha diversity estimates. The
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Figure 5 Comparison of absolute alpha diversity values for Shannon, Simpson, Chao1, and OTU
count indices across all samples.OTU tables for each method were rarefied to 10,000 sequences 25 times
and the mean diversity calculated across all tables. There was a significant difference in the distribution
of diversity values between all methods for all four metrics. De-replicated sequences in particular inflate
richness-based measures.

absolute values of sample diversity estimates were significantly different between almost
all methods of clustering for all four diversity estimates considered (Fig. 5). In particular,
the values of OTU count and Chao1 (richness measures influenced by rarer OTUs) were
much higher in the de-replicated (or 100% identity) sequences. These results show that
absolute diversity levels are not comparable between methods over the same rarefied data.

To determine if these differences would influence comparative diversity analyses, we
measured the rank based correlation between methods for each diversity metric (Fig. 6).
For both the Shannon and Simpson metrics the diversity rankings were highly correlated
(τ > 0.6, mean = 0.83) between all methods. However, when using the Chao1 and OTU
count metrics there was a reduced correlation between diversity rankings. In particular,
the closed reference and MED approaches were poorly correlated with de novo based
approaches. This is likely due to under representation of rare sequences as both of these
methods discard reads. Our results show that clustering approach can influence the relative
diversities between samples in a study dependant on the diversity measure used. This may
be particularly important in the interpretation of diversity association analyses, where use of
a closed reference approach could produce different results to the use of de novo clustering.

DISCUSSION
Here we propose and demonstrate the use of heritability estimates as a novel approach
to methodological comparisons. There is an established taxa dependent variability in
the heritability of the gut microbiome (Goodrich et al., 2014). Heritability estimates aim
to quantify the percentage of a trait’s variation that is due to the influence of host
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Figure 6 Kendall’s Tau rank based correlations between samples across methods for each of Shannon,
Simpson, Chao1 and OTU count metrics. Rank correlation represents the concordance between relative
diversity assignments between the same samples in each clustering method. There is generally high cor-
relation between all methods when using the Shannon and Simpson indices, which measure evenness of
species distribution. However, the de-replicated, closed reference, and MED clustered OTUs show poor
correlation in the richness measures (Chao1 and OTU count). Clustering method may therefore influence
diversity association analyses.

genetics. Given that bacteria within the microbiome contain a range of functional
properties, determined by their own genetics, we assume that the heritability of an
OTU is driven by a specific bacteria-host interaction. By this logic, we would expect
the OTU clustering approach that best groups reads sourced from bacterial units with
similar functional properties to produce OTUs with the highest heritability estimates.
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Using the distribution of heritability estimates as a measure of biological representation,
we have demonstrated that de novo clustering produces OTUs that are more representative
of functional microbial units than reference based approaches. We have also shown that
within the various algorithms considered VSEARCH and SUMACLUST produced themost
representative OTUs. Within our comparison of clustering thresholds, we found that 97%
sequence identity produced the most heritable units when compared to more stringent
cut-offs. We have shown that these effects are only applicable at the OTU level, as clustering
approach does not significantly influence the heritability estimates of collapsed taxonomies.
Finally, we have demonstrated that choice of clustering approach can effect both absolute
and relative diversity measures with implications for comparisons across microbial studies.

The aim of OTU clustering is to group sequences based on sequence similarity. Our
comparisons are based on the assumption that the genetic relatedness between 16S
reads is related to the functional similarity between their bacterial sources. In this way,
a clustering method that best groups reads with similar sequence will also groups reads
from bacteria with similar functional relationships to the host. These methods should
therefore produce the highest heritability estimates, as they will produce less noise in the
variance of OTU abundances due to incorrectly grouped read counts. Whilst this may not
provide an accurate quantification of the quality of sequence identity within OTUs (as
provided by existing methods discussed below), it does provide a measure of the functional
representation of the units. For example, in our data the OTUs clustered with 99 and
100% identity thresholds produced lower heritability estimates. Suggesting that 97% is the
best threshold to generate units that represent functional units within the microbiome.
A methods ability to represent functional units is arguably of more importance than
genetic accuracy, particularly for studies in areas such as human microbiome research
where the goal is often to identify the functional roles of microbes in human health.

Recently, four studies were published that each compared multiple OTU clustering
approaches (He et al., 2015; Kopylova et al., 2016; Westcott & Schloss, 2015; Schloss, 2016).
The first used the stability of sequence assignments within subsets of the same data sets
as a measure of quality, finding that reference based approaches outperformed de novo
clustering (He et al., 2015). The heritability comparisons presented here do not reflect these
findings, suggesting that stability does not relate to functional representation. However,
stability may be an important consideration for studies comparing across data sets. Our
findings also suggest that reference based approaches would be sufficient when analyses
are only concerned with collapsed taxonomies.

Two studies have compared clustering methods using Matthew’s correlation coefficient
(MCC) to quantify their accuracy in clustering sequences sharing 97% sequence identity
(Westcott & Schloss, 2015; Schloss, 2016). They found that de novo clustering produced
more accurate OTUs than reference based approaches (Westcott & Schloss, 2015), and that
VSEARCH and SUMACLUST out performed Swarm in terms of OTU accuracy (Schloss,
2016). The differences between reference and de novo OTUs in our heritability estimates,
whilst moderate, were significant and broadly agreed with these observations. This suggests
that accuracy is also representative of the biological representation of OTUs. This might be
expected under the assumption that sequence similarity, at least in part, reflects functional
similarity.
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Kopylova et al. (2016) compared a number of clustering methods using a variety of
measures from recapitulation of simulated data to inter-method correlations. Within the
methods considered here, they found that Swarm, SUMACLUST and UCLUST, performed
equally well at reconstructing expected taxonomies from simulated data but differed in
the number of OTUs produced and subsequently produced different absolute diversities, a
finding also described by Schmidt, Rodrigues & Von Mering (2015). Differences in absolute
measures would be expected given the variation in OTU numbers between methods. We
have also shown that these differences can influence the relative diversity rankings between
samples and suggest caution in the interpretation of comparative diversity analyses when
using closed reference clustering and community richness metrics.

Overall, across previous comparisons of greedy clustering algorithms in combination
with the heritability results we have presented here, VSEARCH and SUMACLUST
seem to produce the best combination of accuracy, stability and heritability. We would
therefore recommend either of these approaches for de novo clustering. SUMACLUST
and USEARCH are currently available within QIIME. VSEARCH has recently been
implemented within Mothur (Westcott, 2016), and QIIME 2 will integrate VSEARCH
for OTU clustering and de-replication (Greg Caporaso, personal communication, 15th
April 2016). Based on our threshold comparisons a similarity cut-off of 97% appears
optimal, however this threshold may be specific to VSEARCH application to faecal samples
as optimal thresholds can vary by the complexity of the microbial communities under
investigation and the method used (Chen et al., 2013).

Whilst we tried to include the most frequently used approaches, our study is not
comprehensive. We restricted the majority of our comparisons to clustering algorithms
thatwere availablewithin theQIIMEpipeline; however, even in this respect, our comparison
was not exhaustive. There are further reference based clustering algorithms such as BLAST
and SortMeRNA that were not considered (Camacho et al., 2009; Kopylova, Noe & Touzet,
2012), and de novo approaches such as USEARCH and CD-HIT (Edgar, 2010; Li & Godzik,
2006). We chose to implement clustering via QIIME as it is one of the most widely
used methods to generate OTUs and provided stability in other areas of the processing
pipeline, such as taxonomic assignment, which improved comparability. However, QIIME
does not implement all OTU clustering algorithms and all of those compared here can
also be run independently of QIIME, with a number of them having newer versions
available that could influence clustering. Our comparison is also limited by the exclusion
of linkage-based approaches, as typically implemented using the Mothur pipeline (Schloss
et al., 2009). These were not considered in our comparison due to the high computational
burden of generating the pair-wise sequence distance matrices that these methods require.
Computing time and memory limits were met even when applying additional sequence
filtering or restricting distance calculation by taxonomy (Kozich et al., 2013). Previous
MCC accuracy comparisons showed that average based linkage clustering were as or more
accurate than the best de novo approaches dependent on the dataset considered (Schloss,
2016). Given the reflection between the MCC and heritability results we might speculate
that average linkage based approaches could produce biologically relevant units equivalent
to the de novo algorithms we considered.
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Our comparisons are further limited as we have only considered sequencing from
human faecal samples of a single population. A sufficiently large sample is required
to determine heritability estimates for moderately heritable traits (Martin et al., 1978);
however, clustering and analysis of data on this scale is time consuming and computationally
intensive, making it non-trivial to incorporate additional data. There are also few twin
microbiome data sets available at the scale of TwinsUK. It is known that existing measures
of clustering quality can be data set dependent (Schloss, 2016; Chen et al., 2013; Kopylova
et al., 2016). Therefore, our results may not be applicable to non-faecal samples. However,
they should be of particular relevance when experiments aim to study the functional aspects
of the human gut microbiome.

In conclusion, heritability analyses can be used to provide a measure of the quality
of the functional representation of OTUs. This may be used for additional guidance in
selecting an appropriate clustering approach in combination with the other comparative
metrics available, although the optimum method will be largely dependent on each studies
experimental and analytical requirements.
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