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ABSTRACT
Perennials and annuals apply different strategies to adapt to the adverse environment,
based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and
its impact on plant adaptability, we carried out a comparative study of perennials and
annuals in the genus Veronica from a phylogenetic perspective. The results showed that
ancestors of the genus Veronica were likely to be perennial plants. Annual life history
of Veronica has evolved multiple times and subtrees with more annual species have a
higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This
indicates that annuals are more drought-resistant than their perennial relatives. Due
to adaptation to similar selective pressures, parallel evolution occurs in morphological
characters among annual species of Veronica.

Subjects Ecology, Evolutionary Studies, Plant Science
Keywords Ancestral state reconstruction, Adaptability, Phylogenetic signal, Veronica

INTRODUCTION
Floweringplantshave repeatedly evolveda shorter lifehistoryof less thanayear,witha record
of less than three weeks from germination to seed set (Cloudsley-Thompson & Chadwick,
1964). The evolution of annual life cycles is combined with a monocarpic habit (i.e., death
of the plant after first and only reproduction). Such plants are called annuals irrespective
of considerable differences in their life histories (Mortimer, Hance & Holly, 1990) related
to different ecology and habitats. The independent evolution of annuality in more than
100 different families from more than 30 orders of angiosperms (sensu The Angiosperm
Phylogeny Group, 2016) and often evenmultiple times independently among closely related
species (e.g., Albach, Martinez-Ortega & Chase, 2004; Andreasen & Baldwin, 2001;Hellwig,
2004; Jakob, Meister & Blattner, 2004; Kadereit, 1984) has made characterization of the
annual habit difficult. Furthermore, the necessity to complete the life cycle within one
season puts enormous constraints on plants that evolutionarily resulted in reduction in size
to reach reproductive age faster and more reliably. Such a scenario has led to convergent
evolution in several traits in annuals, especially a selfing breeding system but also a variety
of other morphological, physiological, karyological and genomic traits (Silvertown & Dodd,
1996). This widespread convergence has given rise to misconceptions about the evolution
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of annuals, particularly in cases when a rigorous phylogenetic hypothesis is lacking and
comparative methods are not employed (Albach, Martinez-Ortega & Chase, 2004).

Several environmental factors that are not mutually exclusive can cause circumstances
under which annuals have advantages over perennials, and most of these are related to
the ability of annuals to survive unfavorable periods as seeds. Proposed factors include
seasonal stress such as drought (Macnair, 2007;Whyte, 1977), heat (Evans et al., 2005), frost
(Tofts, 2004; Whyte, 1977), unpredictable environment (Stearns, 1976), grazing/seed
predation (Klinkhamer, Kubo & Iwasa, 1997; Vesk, Leishman &Westoby, 2004), flooding
(Kadereit, Mucina & Freitag, 2006), limited maternal resources (Hensel et al., 1994), low
competition (Lacey, 1988) and escape from pathogens over time (Clay & Van der Putten,
1999; Thrall, Antonovics & Hall, 1993). Even anthropogenic selection factors such as
regular mowing and cultivation techniques may induce annual life history (Baker, 1974;
Hautekèete, Piquot & Van Dijk, 2002). Therefore, it is often unclear whether evolutionary
change is associated with annual life history per se or whether it is a reaction to a specific
environmental condition. Advances in phylogeny reconstruction and comparative analyses
allow investigation of the processes and the pattern of life history variation in more detail.
Whereasanumberof taxahavebeenanalyzed indetail to infer thenumberoforiginsofannual
life history and infer climatic circumstances of the shifts (e.g., Datson, Murray & Steiner,
2008; Turini, Bräuchler & Heubl, 2010) few employed rigorous comparative methods to
analyze these shifts in life history. For example, Drummond et al. (2012) demonstrated
increased speciation rates in derived montane perennial clades of Lupinus compared to
lowland annuals. Ogburn & Edwards (2015) found perennials occupying cooler climatic
niches than related annuals.

Veronica is a goodmodel system to investigate this issue since annual life history has been
shown to have evolved with convergent morphological characteristics multiple times in the
same geographical region (Albach, Martinez-Ortega & Chase, 2004). Veronica comprises
about 450 species and is the largest genus in the flowering plant family Plantaginaceae
(Albach & Meudt, 2010). Most species—including all annuals—are distributed in the
NorthernHemisphere but there is also an additional prominent radiation in theAustralasian
region (but without annuals). Life forms include herbaceous annuals or perennials, and
also shrubs or small trees. About 10% of Veronica species are annuals, a life history which
has originated at least six times independently in the genus (Albach, Martinez-Ortega &
Chase, 2004). Chromosome numbers, phytochemistry and DNA sequence data support
the polyphyly of annuals in the genus (Albach & Chase, 2001; Müller & Albach, 2010)
However, despite the fact that many species ofVeronica are widespread in accessible regions
of the world, climate data has thus far not been included in any analysis of the genus.
Also, morphological characters were mostly mapped on phylogenetic trees (e.g., Albach,
Martinez-Ortega & Chase, 2004) but not included in a comparative analysis. Thus, crucial
information to understand the evolution of the genus has, thus far, been excluded
from analyses. In this study, we implemented a comparative analysis of morphological
and climate data using phylogenetic methods to address the following two questions:
(1) What convergent morphological trends are displayed in annuals? (2) Are there climatic
factors that may favor annual life history? By answering these questions, we aim to expand
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our understanding of the evolution of life history and its impact on the adaptability of plants.
More specifically, we address the hypothesis that annual life history and selfing evolved in
parallel in adaptation to drought. Therefore, we tested a correlation of life history with
a number of characters, such as corolla diameter, known to be correlated with selfing in
Veronica (Scalone, Kolf & Albach, 2013) and contrasted these with characters considered
unrelated tomatingsystem, suchas leaf length.Forenvironmentalparameters,wespecifically
tested a number of bioclimatic parameters associated with precipitation and temperature
to test the alternative hypothesis that annual life history is related to hot temperature. By
including a range of morphological and climatological data, we want to infer more exactly,
which characters are associated with the annual-selfing-syndrome.

MATERIAL AND METHODS
A total of 81 individuals representing 81 species and all 12 subgenera of Veronica, were
used to establish the phylogenetic tree in this study. Of these, sequences from 67 species
were downloaded from GenBank from previous studies (Albach & Meudt, 2010), whereas
sequences from 14 species, which were collected in Xinjiang Province of China, were newly
generated for this study (see Table S1). Six individuals of five other genera of Veroniceae
(Lagotis, Picrorhiza, Wulfeniopsis, Wulfenia, and Veronicastrum) were designated as
outgroups.GenomicDNAextraction andpurificationwas carried out using commercial kits
according tomanufacturer’s instructions (D2485-02, OMEGA bio-tek). In accordance with
the methods of Albach & Meudt (2010), we carried out PCR, sequencing and phylogenetic
tree reconstruction. DNA sequences of four regions were PCR-amplified, including nuclear
ribosomal internal transcribed spacer region (ITS) with primers ITSA (Blattner, 1999)
and ITS4 (White et al., 1990), plastid DNA (cpDNA) trnL-trnL-trnF with primers c and
f (Taberlet et al., 1991), rps16 with primers rpsF and rpsR2 (Oxelman, Lidén & Berglund,
1997), psbA-trnH with primers psbA (Sang, Crawford & Stuessy, 1997) and trnH (Tate
& Simpson, 2003). A PCR program of 95 ◦C for 2 min, 36 cycles of: 95 ◦C for 1 min,
50–55 ◦C for 1 min, and 72 ◦C for 1.5–2 min, and finally 72 ◦C for 5 min and 10 ◦C hold,
was used for all markers. DNA sequencing was performed by Sangon Biotech Co., Ltd
(Shanghai, PR China). Bayesian inference methods were used to analyze the combined data
set. Best fitting substitution models for the datasets were inferred using jModelTest 2.1.7
(Darriba et al., 2012). The Bayesian inference tree was built using MrBayes 3.2.5 (Ronquist
et al., 2012) with the GTR+0 model using the Markov chain Monte Carlo (MCMC) for
1,000,000 generations with a burn-in of 250,000. The posterior probability (PP) was used
to estimate nodal robustness. The stationarity of the runs was assessed using Tracer version
1.6 (Rambaut et al., 2014). We approximated divergence times using the function chronopl
in the R package ‘‘ape’’ (Paradis et al., 2015).

We obtained morphological traits from field measurements and referenced from
various flora, such as Flora of China (Hong & Fischer, 1998), Flora d’Italia (Pignatti,
1982), Flora of New Zealand (Allan, 1961), New Zealand Plant Conservation Network
(http://nzpcn.org.nz/default.aspx). Plant traits were coded for each species according to
characters and character states used by Saeidi-Mehrvarz & Zarre (2004). In total 9 binary
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characters about resource acquisition and reproductive characteristics were taken into
consideration (character states and scoring matrix were shown in Tables S2 and S3).

We obtained GPS latitude/longitude data from the GBIF website (http://www.gbif.org/)
for up to 500 occurrence records for each species using the function occ in the R package
‘‘spocc’’ (Chamberlain, Ram & Hart, 2016). Invalid, low accuracy or duplicate data were
removed. GPS data of species collected by us were also added to the analysis. Bioclimatic
variables were obtained for each of the geographical coordinates from WorldClim
(www.worldclim.org) and processed using ArcGIS version 10.0. Climate data from each
locality was acquired using the toolbox function ‘‘Extract Values to Points’’ and average
values for each bioclimatic variable was calculated for each species. Drought and heat
can affect annual and perennial relative fitness (Macnair, 2007;Whyte, 1977; Evans et al.,
2005; Pérez-Camacho et al., 2012), and 7 related bioclimatic variables were selected for
analysis (GBIF localities and corresponding climate data, average data were shown in
Tables S4 and S5).

Weused the functionace in theRpackage ‘‘ape’’ (Paradis et al., 2015) to estimate ancestral
character states andtheassociateduncertainty for lifehistory.Additionally,wealsocalculated
phylogenetic signal using the function phylo.d in the package ‘‘caper’’ (Orme et al., 2012).
The R package ‘‘iteRates’’ was used to implement the parametric rate comparison test and
visualize areas on a tree undergoing differential substitution (Fordyce, Shah & Fitzpatrick,
2014).We have conducted phylogenetic comparative analysis. The function binaryPGLMM
in the R package ‘‘ape’’ was used to perform comparative tests of morphological traits
between annual and perennial plants. We tested climate data differences between annual
and perennial plants using the function aov.phylo in the package ‘‘geiger’’ (Harmon et al.,
2008).

RESULTS
The phylogenetic relationships of Veronica from Bayesian inference of the four-marker
dataset are shown in Fig. S1. The result of Bayesian phylogenetic analyses was assessed
using Tracer with all ESSs >200 (after discarding a burn-in of 25%). The main clades of the
phylogenetic treewere consistentwith previous studies. The evolution and inferred ancestral
life history in Veronica are shown in Fig. 1. Scaled likelihood of perennial life history at the
root was 0.99. The D value as calculated in caper is a measure of phylogenetic signal in a
binary trait, for which a value smaller than 0 indicates high correlation of the trait with
phylogenetic differentiation and greater than 1 corresponds to a random or convergent
pattern of evolution. The value ofD for life history was−0.55, thus demonstrating relatively
strong phylogenetic conservatism. This implies that lifespan is a relatively conservative trait
and the change fromperennial to annual, despite seven origins in the genus, is not a frequent
occurrence.

Substitution rates (as measured by branch lengths) differ among clades within
Veronica (Fig. 2). In general, clades with more annual species have faster substitution
rates. The only significant increase in substitution rates subtends the clade of annual
subgenera Cochlidiosperma and Pellidosperma, whereas most of the significant decreases in
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Figure 1 Ancestral state reconstruction of life history in Veronica. Proportional likelihoods for charac-
ter states of ancestral life history are shown for nodes. Phylogenetic relationship of Veronica was built by
Bayesian inference based on four-marker dataset. For Bayesian posterior probabilities, see Fig. S1.
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Table 1 Comparison of morphological traits between annual and perennial plants.

Mean rank Annual Perennial Z given phy P value given phy

Leaf length 52.25 37.79 −2.0971 0.03599
Leaf width 42.00 40.71 −5e–04 0.9996
Bract shape 53.25 37.50 −2.8681 0.004129
Bract length 31.50 43.71 2.2606 0.02378
Corolla shape 58.00 36.14 −2.0321 0.04214
Corolla diameter 57.50 36.29 −2.6443 0.008185
Capsule apex 60.50 35.43 −2.7878 0.005307
Stamen length 51.75 37.93 −2.1757 0.029581
Style length 42.50 40.57 −0.0032 0.9975

Table 2 Comparison of habitats between annual and perennial plants. Temperature unit: (◦C * 10);
Precipitation unit:(mm).

Variables Annual Perennial P value given phy

Max temperature of warmest month 249.38± 8.22 199.59± 4.22 0.008
Mean temperature of warmest quarter 179.42± 6.78 138.05± 4.14 0.017
Mean temperature of driest quarter 90.90± 22.80 76.33± 9.19 0.741
Annual precipitation 695.94± 89.94 1539.67± 109.65 0.050
Precipitation of driest month 25.85± 4.26 80.24± 6.99 0.047
Precipitation of driest quarter 89.14± 13.49 287.47± 24.94 0.042
Precipitation of warmest quarter 168.35± 43.28 364.30± 27.03 0.092

substitution rates are associated with the evolution of the perennial, Australasian subgenus
Pseudoveronica.

There are obvious differences in somemorphological traits between annual and perennial
plants (Table 1). Analysis of the morphological traits measured here shows that perennials
have larger leaves, longer stamens and larger corollas, whereas annuals tend to have larger
bracts and capsules with deeply emarginated apices.

Differences in habitats between annual and perennial plants are summarized in Table 2.
The results demonstrated that annuals can withstand higher temperature (in warmest
month). In terms of precipitation, there are also significant differences in precipitation of
driest month. Perennials are found in areas of higher precipitation compared to annuals.

DISCUSSION
The evolution of annual life history is a common evolutionary transition in angiosperms
having occurred in more than 100 families. In angiosperms, the perennial habit is believed
to be the ancestral condition (Melzer et al., 2008). Nevertheless, secondary evolution of
perennial life history from annual herbaceous ancestors has been shown to occur in
certain environments, such as islands (Bohle, Hilger & Martin, 1996; Kim et al., 1996) and
mountains (Karl et al., 2012). Here, we analyzed a number of hypotheses regarding the
evolution of annual life history in more detail based on comprehensive information on
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Figure 2 Shifts in substitution rates in Veronica as assessed by the distribution of branch lengths
among clades. The blue nodes mean that substitution rates of that clade are faster than that of the
remainder tree, whereas red nodes express the opposite meaning. The sizes of the colored nodes indicate
the likelihood of rate-shifts. ∗ The asterisk means that a rate-shift is significant. The results are based on
limited sampling (<20%).
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morphology and ecological data based on an explicit phylogenetic hypothesis. While many
of these hypotheses were inferred in previous studies, modern comparative analytical tools
allow to check these hypotheses in more detail. In this study, the ancestral condition of
the genus Veronica has been inferred to have been perenniality and the annual life history
has evolved multiple times with a single reversal in V. filiformis of the Caucasus Mountains
consistent with previous conclusions (Albach, Martinez-Ortega & Chase, 2004). Overall, we
inferred seven origins of annuals. An additional three origins of annuality (in V. hispidula,
V. peregrina and V. anagalloides (all subgenus Beccabunga; Albach, Martinez-Ortega &
Chase, 2004;Müller & Albach, 2010) are not included in the analysis here.

The seven to ten independent shifts between life histories are associatedwith considerable
morphologicaldiversityamongannual species.However, certaincharactersarecharacteristic
for annuals (the annuality syndrome) associated with the rapid completion of the life cycle.
For example, the generation-time hypothesis, which assumes that mutations are mostly
accumulated during recombination, states that organisms that reproduce faster such as
annuals also have more DNA substitutions over time (Page & Holmes, 2009). Results of this
study demonstrate that clades including annuals have a higher substitution rate and are,
thus, consistentwith this theory andprevious analyses forVeronica (Müller & Albach, 2010),
although this is significant only for the oldest clade of annuals (V . subg. Cochlidiosperma
(Rchb.) M. M. Mart. Ort. & Albach). On the other side, the perennial clade with the lowest
substitution rate (V . subg. Pseudoveronica, see above) is also the one with the highest
diversification rate (Meudt et al., 2015). However, the impact of life history transformation
is not restricted to substitution rate.

Two of the correlations detected are most likely associated with the smaller stature of
annuals. These are the larger leaves of perennials and the larger bracts in annuals (especially
in subgenera Pocilla andCochlidiosperma) that compensate for the reduced number and size
of stem leaves in smaller plants. Also, reduction to a single, terminal inflorescence is likely
to be a consequence of small size but may also be related to differences in breeding system.
Other inflorescence characters are more clearly associated with differences in breeding
system between annuals and perennials.

Estimates for selfing among angiosperms as a whole are 25–30% (Barrett & Eckert, 1990)
with estimates for annuals alone going up to 50% (Hamrick & Godt, 1996). The association
between annual life history and selfing has been known for some time (Henslow, 1879)
and has also been thoroughly discussed in the literature (e.g., Barrett, Harder & Worley,
1996; Stebbins, 1957). Annual species invest fewer resources into their sexual organs (e.g.,
number of lateral inflorescences; density of inflorescence, corolla size) than perennials
(although not necessarily relative to overall size of the plants). Such changes are likely to
be associated with parallel changes in life history and breeding system. A larger corolla and
longer stamens have previously been demonstrated to be correlated with an outcrossing
breeding system in the genus (Scalone, Kolf & Albach, 2013). Surprisingly, a longer style
is here not associated with perenniality as inferred by Scalone, Kolf & Albach (2013). In
contrast, we infer that selfing is facilitated by lowering the stigma below the anthers through
emargination of the capsule. By that means, the stigma is removed from the anthers without
shortening the style. Other characters that may have an influence on breeding system in
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perennials is the trend towards tubular corollas, which may contain more nectar, and the
longer pedicels in perennials that allows better presentation of the flower. Thus, our analysis
supports the notion that outcrossing is associated with perennial life history in Veronica
(Albach & Greilhuber, 2004). Such a correlation in the evolution of annual life history is
often argued to be due to reproductive assurance in annuals, depending on reproduction in
their single season of flowering (Busch & Delph, 2012). However, to understand the basis for
this association, one needs to move beyond such correlation and understand the ecological
circumstances of transitions in life history.

Several suchcircumstanceshavebeen inferred toberesponsible for theevolutionofannual
life history (see ‘Introduction’). Here, we inferred higher temperature, higher temperature
variation and lower precipitation to be the characteristic environmental conditions for
annuals in comparison with perennials. This is consistent with previous suggestions that
inferred drought, heat or unpredictable environment are responsible for the evolution of
annual life history (Evans et al., 2005; Stearns, 1976;Whyte, 1977). Thus, despite themultiple
origins of annuals in the genus, annual clades in Veronica may have reacted to the same
climatic circumstances favoring a change in life history. Althoughwe did not specifically test
for differences among clades of annuals, markedly different climatic circumstances in one
clade of annuals should have led to differences between inferences based on phylogenetically
informed and non-phylogenetic analyses.

Consequently, it is likely that parallel evolution in different groups of Veronica led to
the evolution of annual life history and a characteristic set of related characters. Parallel
evolution is more likely if occurring in the same region at the same time because of the
same selection pressure. Based on the molecular dating of Veronica inMeudt et al. (2015),
however, annual lineages originated over a range of dates starting in theMiocene, similar to
other Mediterranean annuals inferred to have originated in response to the evolution of the
Mediterranean climate evolution and the Messinian salinity crisis (Fiz, Valcárcel & Vargas,
2002). With the exception of V. peregrina, not included here, all groups of annual Veronica
originated from ancestors in the Mediterranean and southwest Asia. Thus, progressing
aridification may have spurred evolution of annual life history at different times in the
same region in different groups of Veronica. During aridification, competition from related
species decreased, and environmental filtering became a major limiting effect on species.
Under such circumstances, the avoidance strategy of annuals by drought-tolerant seeds is
favored by natural selection (De Bello, LepŠ & Sebastia, 2005). However, this hypothesis will
be investigated in more detail in the different clades of annual Veronica by more detailed
investigation of character evolution and ancestral habitat estimation.
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AY540866 AY486447 FJ848216 FJ848100
AF037386 FJ848049 FJ848248 FJ848142
AF069465 AY540879,AY540893 FJ848246 FJ848140
FJ848074 n.a. FJ848237 FJ848131
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AF509805 AF486393 AY218823 FJ848097
FJ848082 FJ848060 FJ848262 FJ848157
AF313017 AF486400 AY218821 FJ848101
AY850099 AY540876 FJ848221 FJ848110
KU047985 KU048026 KU048012 KU047999
AF229051 FJ848061 FJ848263 FJ848158
AF229044 FJ848062 FJ848264 FJ848159
AF313022 AF486405 FJ848218 FJ848104
KU047988 KU048029 KU048015 KU048002
AY034866,AY034867 FJ848051 FJ848252 FJ848146
KU047986 KU048027 KU048013 KU048000
FJ848073 FJ848047 FJ848236 FJ848130
FJ848083 FJ848063 FJ848265 FJ848160
AF509804 AF513333 AY218815 FJ848111
FJ848065 FJ848039 AY218817 FJ848107
AY540870 AY540874 n.a. n.a.
KU047994 KU048035 KU048021 KU048008
FJ848084 AF486381 AY21813 FJ848161
KU047991 KU048032 KU048018 KU048005.

Data Availability
The following information was supplied regarding data availability:

All the data acquired from the GPIF website (http://www.gbif.org/) and the GPS data
collected by the authors is contained in Table S4. Table S5 is a summary table with the
average data used for each of the 81 species.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2333#supplemental-information.
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