- On the diversity of the SE Indo-Pacific species of *Terebellides* (Annelida;
- 2 Trichobranchidae), with the description of a new species

4 JULIO PARAPAR¹, JUAN MOREIRA² & DANIEL MARTIN^{3,4}

56

- 7 1,4 Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña,
- 8 15008 A Coruña, Spain. E-mail: jparapar@udc.es
- 9 ² Departamento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de
- 10 Madrid, Cantoblanco, E-28049 Madrid, Spain. E-mail: juan.moreira@uam.es
- 11 ³ Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Blanes, Catalonia, Spain. E-mail:
- 12 dani@ceab.csic.es
- 13 ⁴ Corresponding author

14

- 15 Abstract
- 16 The study of material collected during routine monitoring surveys dealing with oil extraction
- and aquaculture in waters off Myanmar (North Andaman Sea) and Indonesia (Macasar Strait),
- 18 respectively, allowed us to analyse the taxonomy and diversity of the polychaete genus
- 19 Terebellides (Annelida)-. Three species were found, namely Terebellides af. woodlawa,
- 20 Terebellides hutchingsae spec. nov. (a new species fully described and illustrated), and
- 21 | Terebellides sp. (likely a new species, but with only one available specimen)-. The new
- 22 species is characterised by the combination of some branchial (number, fusion and relative
- 23 length of lobes and papillation of lamellae), and thoracic (lateral lobes and relative length of
- 24 notopodia) characters and is compared with all species described or reported in the SW Indo-
- 25 Pacific area. The taxonomic relevance of the relative length of branchial lobes and different

[AG1] Comentário: "aff."? See comment about this species below

types of ciliature in branchial lamellae for species discrimination in the genus is discussed. A
key to all *Terebellides* species described in SE Indo-Pacific waters is presented.
Key words
Polychaeta, Myanmar, Indonesia, *Terebellides*, New Species, Branchial morphology, SEM.
Introduction
The genus *Terebellides* is characterised by combination of several characters including

[AG2] Comentário: Both words are in the title

The genus *Terebellides* is characterised by combination of several characters including the compact appearance of the prostomium, a peristomium forming two lips (upper and lower), a thorax composed by 18 chaetigers, capillary notochaetae, denticulate thoracic neurochaetal hooks and abdominal avicular uncini. Nevertheless, the two most distinctive characters are the single mid-dorsal branchiae composed by 2–5 lamellate lobes, and the geniculate chaetae present in the first 1–2 thoracic neuropodia.

The peculiar shape of the branchiae of the type species (i.e. *T. stroemii* Sars, 1835) led to attribute most subsequent records to this taxon. Therefore, the number of fully described species was relatively low and *T. stroemii* was thought as being cosmopolitan. Prior to the 1980's this species was reported from a wide variety of world areas and depths. In addition to this, the 'Catalogue of World Polychaetes' by Hartman (1959) contributed to this consideration by synonymizing several species with *T. stroemii* (e.g. *T. ypsilon*). However, since Williams (1984), this idea has gradually been changing. Imajima and Williams (1985) and Solís-Weiss *et al.* (1991) further supported to this trend and, thus, a progressively high number of new species have been (and are being) described (e.g. Hutchings *et al.*, 2015; Parapar & Moreira, 2008; Parapar *et al.*, 2011; 2013; 2016; Schüller & Hutchings, 2010; 2012; 2013). At the same time new characters for the species discrimination have been

[H3] Comentário: The authors could cite references of papers that redefined the genus base on phylogenetic analysis or Schüller & Hutchings, 2013 who emended the diagnoses for the last time.

[AG4] Comentário: In the last years, many new species have been described, thus I would like to suggest to include more systematic information of the genus.

[H5] Comentário: I partially agree with this statement. I believe that one of the main reason for the cosmopolitism of T. stroemii is directly related with the original description. In the 19 century only few characters were enough to discriminate the different species, but in the middle of 20 century this set of characters was not enough to distinguish among the new species. The study done by Williams (1984) clearly showed that a new set of characters was needed to help to distinguished the new species from the previously ones.

[H6] Comentário: If this a kind of revision regarding the description of new terebellids, the authors need to cite other papers (e.g. Bremec & Elias 1999; Hilbig, 2000; Hutchings & Peart 2000; Garraffoni & Lana, 2003)

50	reported, and those traditionally used (e.g. branchial shape) have increasingly been described	
51	in greater detail. As a result, the true diversity of the genus <i>Terebellides</i> begins to be revealed.	
52	In the SW Indo-Pacific, ten species of <i>Terebellides</i> have been described: four from the	
53	Philippine and China Seas (Salazar-Vallejo et al., 2014), namely T. intoshi Caullery, 1915, T.	
54	jorgeni Hutchings, 2007, T. sieboldi Kinberg, 1867 and T. ypsilon Grube, 1878, and six from	
55	the Australian coasts: <i>T. akares</i> Hutchings, Nogueira & Carrerette, 2015, <i>T. jitu</i> Schüller &	
56	Hutchings, 2010, <i>T. kowinka</i> Hutchings & Peart, 2000, <i>T. mundora</i> Hutchings & Peart, 2000,	
57	T. narribri Hutchings & Peart, 2000 and T. woodlawa Hutchings & Peart, 2000. Additional	
58	references to the presence of <i>T. stroemii</i> in these waters are found in Caullery (1944), Rullier	
59	(1965), Gallardo (1967), Stephenson et al. (1970, 1974), Gibbs (1971), Knox & Cameron	
50	(1971), Hutchings (1977), Shin (1982), Amoureux (1984), Hutchings & Murray (1984),	
51	Hutchings et al. (1993) and Tan & Chou (1993). Further papers by Hutchings (2007), Schüller	
52	& Hutchings (2010) and Hutchings et al. (2015) continued with the reassessment of the	
53	diversity of Terebellides in Australian-Indonesian coasts.	
54	Many reports of T. stroemii from Australian and New Zealand waters were summarized	
55	by Day & Hutchings (1979) while Hutchings & Peart (2000), by reviewing a high number of	
56	references and material of the Australian Terebellides (as well as from near the type locality in	
57	the SW coast of Norway), described four new species and conclude that <i>T. stroemii</i> is not	
58	present in southern latitudes. Further papers by Hutchings (2007), Schüller & Hutchings	[H7] Comentário: This sentence coul be rephrased
59	(2010) and Hutchings et al. (2015) continued with the reassessment of the diversity of	
70	Terebellides in Australian Indonesian coasts.	
71	Our paper addresses the study of the genus in waters off Myanmar and Indonesia,	Formatado: Recuo: Primeira linha:
72	allowing us to describe a new species. We are also reviewing and updating the previous works	<u></u>
73	reporting this genus in the area, and we present a key to all species recorded in the SE Indo-	
74	Pacific. Our study, which is by far not definitive, represents one more contribution for	

unveiling the hidden diversity of the genus *Terebellides* in world oceans and confirms that the type species is probably absent in the Indo-Pacific area. Furthermore, we provide evidences supporting that the diversity of *Terebellides* is still far to be well known.

[H8] Comentário: This sentence could be rephrased

Material and Methods

This study is based on 82 specimens of the genus *Terebellides* from 25 samples collected during routine monitoring surveys dealing with oil extraction and aquaculture in waters off Myanmar (North Andaman Sea, 2003) and Indonesia (East of the Borneo Island, North of Macasar Strait, 2004), respectively (Table 1).

The samples were collected by means of a van Veen grab covering about 0.3 m². The grab contents were mixed in a sufficiently large container, and then sieved out on board by pouring the contents through a 1 mm mesh sieve. The retained sediment was then transferred into a plastic bag, fixed with a 10% formaldehyde/seawater solution, stained with "Rose of Bengal" and stored until sorted. An initial sorting was performed under a dissecting stereomicroscope (Zeiss Stemi 2000-C) and the specimens of *Terebellides* were counted and preserved in 70% ethanol.

In Myanmar, a one-liter volume of sediment from one grab was used for physicochemical analyses (viz. granulometry, organic carbon content). The sediment was taken at each station and transferred into a wide-mouthed double-closing 500 ml polyethylene flasks, which were stored in the dark until transferred to the laboratory. Laser granulometry (% volume) was performed on dry sediment after sifting through a 0.8 mm mesh sieve using a Malvern Mastersizer S laser granulometer. Sediments were characterized by the percentage of silt and clay (diameter < 63 μ m) Estimates of organic carbon have been made according to the European experimental standard NF ISO 14235 (oxidation method, 0.1 % m/m).

99	Light microscope images were obtained by means of a Olympus SZX12
100	stereomicroscope equipped with a Olympus C-5050 digital camera. Line drawings were made
101	by means of an Olympus BX40 stereomicroscope equipped with camera lucida. Specimens
102	used for examination with Scanning Electron Microscope (SEM) were prepared by critical
103	point drying, covered with gold and examined and photographed under a JEOL JSM-6400
104	electron microscope at the Servizos de Apoio á Investigación-SAI (Universidade da Coruña-
105	UDC, Spain).
106	Most of the obtained material was deposited in the Museo Nacional de Ciencias
107	Naturales (Madrid, Spain; MNCN). Additional paratypes of <i>T. hutchingsae</i> spec. nov. were
108	deposited in the collections of the Australian Museum (Sydney, Australia; AM) and Göteborgs
109	Naturhistoriska Museum (Göteborg, Sweden; GNM). Type material of Terebellides gracilis
110	Malm, 1874 was loaned for study by the Göteborgs Naturhistoriska Museum (Holotype,
111	GNM Polych 641). Type material of <i>Terebellides sieboldi</i> Kinberg, 1866 was requested to the
112	Swedish Museum of Natural History for comparison but only one specimen, and badly
113	preserved, could be located (L. Gustavsson, in litt.).
114	The electronic version of this article in Portable Document Format (PDF) will represent
115	a published work according to the International Commission on Zoological Nomenclature
116	(ICZN), and hence the new names contained in the electronic version are effectively
117	published under that Code from the electronic edition alone. This published work and the
118	nomenclatural acts it contains have been registered in ZooBank, the online registration system
119	for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the
120	associated information viewed through any standard web browser by appending the LSID to
121	the prefix http://zoobank.org/ . The LSID for this publication is: 39745D2F-9163-48B2-9FAB-
122	FBF66D3AEFB5. The online version of this work is archived and available from the
123	following digital repositories: PeerJ, PubMed Central and CLOCKSS.

[AG9] Comentário: The last papers about terebellides (e.g. Schüller and Hutchings 2010; Parapar et al. 2013) showed that staining pattern of the anterior region can provide interesting patterns and a new set of characters. Why not use it in the description of the new species?

124		
125	Abbreviations used in text and figures: BL—branchial lobes; BT—buccal tentacles; CP =	[H10] Comentário: Why not use branchial projection rather than the
126	ciliated papillae; CHG = chaetiger with geniculate chaetae; dl—dorsal lobes; gc—geniculate	presence or fifth branchial lobe as stated by Garraffoni & Lana (2004)
127	chaeta; go—genital opening; GP = genital papillae; LL—lateral lappets; NACH = number of	
128	abdominal chaetigers; npa—nephridial papillae; NRTU = number of rows of frontal rostral	
129	teeth in thoracic uncini; PPP = posterior pointed projection; r—rostrum; TC—thoracic	
130	chaetiger; TN—thoracic notopodia; tp—terminal projection; TU—thoracic uncini.	[AG11] Comentário: The authors could standardize the use of
131		abbreviation (only uppercase or only lowercase)
132	Results	
133	Systematics	
134	Family Trichobranchidae Malmgren, 1866	
135	Genus Terebellides Sars, 1835, emended by Schüller & Hutchings, 2013	
136		
137	Type species	
138	Terebellides stroemii Sars, 1835, redescribed by Parapar & Hutchings, 2015	[AG12] Comentário: I think that this information can be deleted
139		
140	Terebellides hutchingsae spec. nov.	
141	LSID: 78E96984-41E7-43E6-8E5D-03E9421BE306	
142	(Figs 1–8, Tables 2–3)	
143		
144	Material examined	
145	INDONESIA (Macasar Strait): Holotype: MNCN 16.01/0000 (St. 6). Paratypes: MNCN	[AG13] Comentário: I prefer that the specimens deposited in the museum are
146	16.01/0000 (St. 2, 4 specs); MNCN 16.01/0000 (St. 3, 3 specs); MNCN 16.01/0000 (St. 5,	listed separated from those specimens used from the SEM.
147	2+1 specs); MNCN 16.01/0000 (St. 5, 1 spec. on SEM stub); MNCN 16.01/0000 (St. 6, 5	
148	specs); MNCN 16.01/0000 (St. 7, 5 specs); MNCN 16.01/0000 (St. 8, 7 specs); MNCN	

149 16.01/0000 (St. 8, 1 spec. on SEM stub); MNCN 16.01/0000 (St. 15, 2 specs); MNCN 150 16.01/0000 (St. 16, 6 specs); MNCN 16.01/0000 (St. 23, 1 spec. on SEM stub. MYANMAR 151 (North Andaman Sea): Paratypes: MNCN 16.01/0000 (St. E7(2), 1 spec.); MNCN 152 16.01/0000 (St. E8(3), 1 spec.); MNCN 16.01/0000 (St. E11B(2), 4 specs); MNCN 153 16.01/00000 (St. E11B(3), 2 specs); MNCN 16.01/0000 (St. E14(2), 4 specs); MNCN 154 16.01/0000 (St. E15(2), 10 spec.); MNCN 16.01/0000 (St. E16(1), 2 specs); MNCN 155 16.01/0000 (St. E16(3), 1 spec.); MNCN 16.01/0000 (St. 17(3), 1 spec.); MNCN 16.01/0000 156 (St. S2(2), 1 spec.); MNCN 16.01/0000 (St. S3(2), 4 specs); MNCN 16.01/0000 (St. S3(2), 1 157 spec. on SEM stub); MNCN 16.01/0000 (St. S3(3), 4 specs); MNCN 16.01/0000 (St. S4(2), 2 158 specs); MNCN 16.01/0000 (St. S4(3), 1 spec.); MNCN 16.01/0000 (St. WP2(2), 2 specs); 159 MNCN 16.01/0000 (St. WP2(3), 2 specs); MNCN 16.01/0000 (St. WP2(3), 2 specs on SEM 160 stub); MNCN 16.01/0000 (St. WP3(3), 1 spec.). 161 162 Description (based on holotype and paratypes) 163 Complete individuals ranging from 9.0 to 14.0 mm in length (14 mm in holotype; Fig. 2A-164 B) and 0.7 to 1.5 mm in maximum width at thoracic region (1.3 mm in holotype, excluding 165 parapodia). Body tapering posteriorly with segments increasingly shorter and crowded 166 towards pygidium. Prostomium compact; peristomium forming a tentacular membrane with 167 large upper and lower lips surrounding mouth, sometimes almost devoid of buccal tentacles 168 (Fig. 3A). Buccal tentacles of two types, short ventral tentacles uniformly cylindrical or 169 slightly expanded at tips, and long dorsal tentacles more expanded at tips (Figs 2B, 4A–B). 170 Lateral lappets on TC1–5 (SGIII–VII), being larger in TC1–3 (Figs 2B, 3A, 4C, 6A). No 171 conspicuous dorsal rounded projection on anterior chaetigers or oval-shaped glandular region 172 in TC3. Both notopodia and notochaetae in TC1 less developed than in following chaetigers

173

(Figs 3A, 4C).

[AG14] Comentário: I could not find this abbreviation in the "*Abbreviations list*"

Branchiae arising as single structure from SGII-III, with a single, mid-dorsal, stalk and two pairs of unfused lobes; lower (=ventral) (BL3-4) pair smaller and much shorter than upper (=dorsal) (BL1-2) pair of lobes (Figs 3A-B, 6B-C). Upper and lower lobes with a short terminal pointed projection (although deciduous and sometimes damaged) (Fig. 3C). Dorsal pair of branchial lobes with short anterior projection (fifth lobe; BL5) (Fig. 3D), sometimes hidden behind buccal tentacles (Fig. 2A-B). Loss of any of branchial lobes not observed. One side of branchial lamellae with parallel bent rows of cilia and well-developed ciliated papillae on edge of one side of each branchial lamella (Fig. 3D–F). Eighteen thoracic chaetigers (SGIII–XX), all with notopodia; neuropodia from SGVIII. Notopodia of TC1 smaller than following ones (Fig. 4C, E); all remaining notopodia similar in size. Thoracic neuropodia as sessile pinnules, from TC6 (SGVIII) to TC18, with uncini in single rows from TC7 (SGIX) throughout. Thoracic notochaetae similar in length, with textured surface (Fig. 4F). Ciliated papilla dorsal to each thoracic notopodia not observed. First thoracic neuropodia (TC6) with 4-7 geniculate acicular chaetae with minute teeth in their upper part forming a *capitium* easily overlooked without SEM (Fig. 6E–F); sharply bend. Subsequent thoracic neuropodia with one row of about 8–10 uncini per torus (Fig. 5A); uncini as shafted denticulate hooks with long, pointed rostrum surmounted by 4-5 teeth and an upper crest of several smaller denticles of different sizes (Fig. 5A-C). One finger-shaped nephridial papilla basal to branchial stem (Fig. 4E); genital openings, dorsal to notopodia in TC4 and TC5 (Figs 4D, 6D). Twenty seven to 30 abdominal chaetigers (30 in holotype). Abdominal neuropodia as erect pinnules, with about 30 uncini per torus (Fig. 5D). Uncini with 3-4 teeth above main fang (Fig. 5D-E), surmounted by a row of an irregular number of shorter teeth and an upper crest of minute teeth. Pygidium blunt, funnel-like depression. No eggs were observed in body

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

198	cavity of holotype, but mature females of smaller size were observed (9.0 mm length, 1.0 mm
199	width). Colour in alcohol pale brown.
200	
201	Type locality
202	Macasar Strait (Indonesia), muddy bottom with shell fragments at 72 m depth.
203	
204	Distribution and habitat
205	Specimens of <i>T. hutchingsae</i> spec. nov. were found in shallow water bottoms (45.5–51.0 m
206	depth) about 80 Km off the coast of Myanmar (North Andaman Sea) and in slight deeper
207	bottoms (58.0-84.0 m depth) about 16 Km off the mouth of the Mahakam delta in the East
208	coast of the Borneo Island (Indonesia) (North Makassar basin) (Table 1, Fig. 7).
209	
210	Etymology
211	The species is named after Dr. Pat Hutchings, for her many contributions to the taxonomy of
212	Terebelliform polychaetes in Australia and SW Pacific waters, and particularly to the genus
213	Terebellides, and also for her key role in the study of Australian polychaetes.
214	
215	Remarks
216	Several species of <i>Terebellides</i> were previously described in the Myanmar-Indonesia-
217	Philippines-North Australia area (Fig 7): <i>T. intoshi</i> Caullery, 1915, <i>T. sieboldi</i> Kinberg, 1867,
218	T. ypsilon Grube, 1878, T. jorgeni Hutchings, 2007 and T. jitu Schüller & Hutchings, 2010.
219	Terebellides intoshi is characterised by the large size of the notopodia and notochaetae from
220	TC6 onwards (Fig. 8A) and probably by the presence of two chaetigers with geniculate
221	chaetae as well (see Remarks of <i>Terebellides</i> sp.): <i>T. sieboldi</i> has geniculate chaetae in TC7

instead of TC6 and T. ypsilon is considered undeterminable by Hutchings & Peart (2000)

222

[H15] Comentário: Why the authors only compared the morphological variation of the new species with the morphotypes found close to the type locality? I think that the morphological features of the new species need be compared with those species that have a close set of features independently of the distance

because type material no longer exists. The two most recently described species, *Terebellides jorgeni* and *T. jitu*, are the most similar to *T. hutchingsae* **spec. nov.** *Terebellides jorgeni* differs from the new species in: 1) the presence of glandular and whitish ventral part of anterior segments, SG5 to SG9 (CH3 to CH7) but specially on SG5 to SG7 (absent in *T. hutchingsae* **sp. nov.**), and bearing pronounced thickening and elevation of dorsal anterior margins forming dorsal crests; 2) genital pores are present in SG4 and SG5, instead of SG6 and SG7 (TC4 and TC5) as in *T. hutchingsae* **spec. nov.**; 3) the branchiae are formed by four lobes instead of five. On the other hand, the overall shape of branchiae is quite similar in both species, being lobes 1–4 unequal sized and entirely free (not fused), with upper (dorsal) ones larger than lower (ventral) ones, and with "surface of branchial lamellae weakly papillate" (cfr. p. 78 in Hutchings, 2007); the latter probably refers to the presence of ciliated papillae, which is a feature difficult to confirm in the original figures.

[AG16] Comentário: As you start the sentence pointing out that *Terebellides jorgeni* and *T. jitu*, are similar to *T. hutchingsae*, report the features that are similar and then report those used to distinguished.

Terebellides jitu is also similar to *T. hutchingsae* **spec. nov.** but all branchial lobes are of similar length and fused half of their length instead of the lower ones being much shorter and fused basally as in *T. hutchingsae* **spec. nov.**

Terebellides narribri Hutchings & Peart, 2000 and T. woolawa Hutchings & Peart, 2000 were described from the NE Australian coast. Both species share with T. hutchingsae spec. nov. branchiae with similar shape and composed by five lobes; Terebellides narribri differs from the new species by having first thoracic notopodia (TN1) of same size as the following, and TC3 bearing large, white, oval pair of glandular patches. Terebellides woodlawa is characterised by the great development of BL5 (see Remarks on T. af. woodlawa) and by having anterior thoracic segments with dorsal projections on lateral lappets, which are absent in T. hutchingsae spec. nov.

The North Atlantic species and type species of the genus *Terebellides*, i. e. *T. stroemii* Sars, 1835, was also widely reported in the area (e. g. Indonesia: Caullery (1944); South Korea:

Gallardo (1967); Hong Kong: Shin (1982); Singapore: Tan & Chou (1993); Australian coast:
Stephenson et al. (1970; 1974), Knox & Cameron (1971), Hutchings (1977), Amoureux
(1984), Hutchings & Murray (1984), Hutchings et al. (1993); Fig. 7). This species was
recently redescribed by Parapar & Hutchings (2015) from Norwegian specimens collected by
Michael Sars near the type locality. In the Southern Pacific Ocean, its presence had already
been denied by Hutchings & Peart (2000) after examining Norwegian material; indeed, part of
this material was already reassigned to other species (see Hutchings & Peart, 2000) while
others specimens were not. Among the latter, the material reported by Caullery (1944) and
collected during the Siboga expedition might well correspond to more than one species
according to the description and illustrations. The shape of the branchiae in specimen from
station 271 (fig. 147 in Caullery, 1944; redrawn here in Fig. 8B) and station 311 (fig. 148 in
Caullery, 1944; redrawn here in Fig. 8C) sharply differs in BL5 size; the specimen of station
311 is more similar in branchial shape to <i>T. hutchingsae</i> spec. nov. but differs in the high
degree of fusion of dorsal and ventral lobes in Caullery's material (see Fig. 8C). The specimen
reported by Gallardo (1967) cannot be properly identified because the description is quite
brief (e.g. "The branchia has the typical shape") and only a lateral view of a thoracic
uncinus is illustrated and this is not relevant in species discrimination.
One of the most relevant diagnostic characters of <i>T. hutchingsae</i> spec. nov. is the presence
of ciliated papillae in branchial lamellae. This character was long ignored in <i>Terebellides</i>
descriptions and was discussed by Parapar et al. (2016). In fact, several recently described
species from across the world oceans show this feature, namely <i>T. gracilis</i> Malm, 1874 <i>sensu</i>
Parapar et al. (2011), off Iceland; T. jorgeni Hutchings, 2007, from Indonesia; T. gracilis
Malm, 1874 sensu Parapar et al. (2013) and T. mediterranea Parapar et al., 2013, from the
Adriatic Sea; <i>T. akares</i> Hutchings <i>et al.</i> , 2015, from the Great Barrier Reef (NE Australia); a
new species described by Parapar et al. (in press), from the Persian Gulf; and T. af. woodlawa

[AG17] Comentário: This reference is not cited in the reference list. As the paper is in press, it could be interesting to insert the DOI.

273 Hutchings & Peart, 2000 sensu Parapar et al. (this work) from South Myanmar. This character 274 is probably much more widespread that was thought previously, and shows at least two 275 different morphotypes: 1) low papillae as it was found in T. gracilis from Iceland and the 276 Mediterranean, and 2) well developed papillae in the rest of species. The presence of these 277 low ciliated papillae (Parapar et al., 2011; 2013) in Icelandic and Adriatic specimens of T. 278 gracilis could not be confirmed yet in the holotype of (see M&M above). 279 Terebellides af. woodlawa Hutchings & Peart, 2000 280 281 (Figs 2C-D) 282 283 Material examined 284 Two specimens. MNCN 16.01/0000 (St. S4(3), 1 spec.); MNCN 16.01/0000 (St. WP3(3), 1 285 spec.). 286 287 Distribution and habitat 288 Both specimens of T. af. woodlawa were found in two near shallow water stations (51.0 m 289 depth) about 80 Km off the mouth of the Irawadi river in the coast of Myanmar (North 290 Andaman Sea) (Table 1). 291 292 Remarks 293 Terebellides woolawa is characterised by the well-developed fifth branchial lobe (BL5) and 294 the presence of dorsal rounded projections on lateral lappets of SG 3-6 (TC1-4). This large 295 species was described from intertidal to shallow water habitats in eastern Australia (Fig. 7) 296 and was found across most of Australian coasts (Hutchings & Peart, 2000). Specimens found 297 in this study are large-sized, and agree fairly well with the original description; in particular,

[AG18] Comentário: "aff."?

298 specimen MNCN 16.01/0000 shows the typical shape of the branchiae, which have five lobes, 299 BL1-4 are fused up to half of their length, filamentous tips are short, and BL5 is well 300 developed (Fig. 2C–D). Nevertheless, our specimens lack the characteristic dorsal lobes of 301 anterior thoracic lateral lappets: this prevented to fully confirm the identity of our material. 302 303 *Terebellides* sp. 304 (Fig 2E-F, 7, 9) 305 306 Material examined 307 One specimen. MNCN 16.01/0000 (St. S4(3), 1 spec.). 308 309 Distribution and habitat 310 The specimen was found in shallow water bottom (51.0 m depth) about 16 Km off the coast 311 of Myanmar (North Andaman Sea) (Table 1). 312 313 Remarks 314 The specimen differs from T. hutchingsae spec. nov. and Terebellides af. woolawa in two 315 features: 1) BL5 is large-sized, about half the length of posterior lobes (BL1-4); and 2) TC5 316 and TC6 are both provided with acicular geniculate chaetae. Thus, BL5 is longer than in any 317 other described species including T. woodlawa; however, this might be due to the preservation 318 state of the specimen, which is slightly deteriorated. Anyway, the combination of the two 319 aforementioned characters may justify the erection of a new species but we prefer to wait for 320 eventual finding of additional specimens to confirm its status. 321 Four species of the genus *Terebellides* were previously described as having geniculate 322 chaetae in two thoracic chaetigers: T. akares Hutchings, Nogueira & Carrerette, 2015 (North-

[AG19] Comentário: Following the recommendation of Bengtson (1988 - Palaeontology 31:223–227) the use of "aff." Between genus and species name is ntended to indicate a new undescribed species and to relate it to a known and named species. In the other hand, "cf." between genus and species names when the identification is provisional and may require further data. For me, in this case, the authors could use "cf" instead "aff"

323	East Autralia), T. biaciculata Hartmann-Schröder, 1992 (French Polynesia), T. bigeniculatus
324	Parapar, Moreira & Helgason, 2011 (Iceland) and <i>T. intoshi</i> Caullery, 1945 sensu Imajima &
325	Williams (1985) (Japan).
326	We follow Parapar et al. (2011) in considering that type material of T. intoshi from South
327	China Sea (see Figure 8) probably does not have two chaetigers with geniculate chaetae and
328	thus Japanese material would belong to a different species. Anyway, the latter also differs
329	from Terebellides sp. in the branchial shape and the greater development of thoracic
330	notopodia from TC6 (Fig. 8A). In Terebellides akares, the branchiae bears a much shorter
331	BL5 and posterior ventral lobes (BL3-4) are completely free from each other; in <i>Terebellides</i>
332	sp., these lobes are fused in most of their length (Fig. 2F).
333	
334	Key of SE Indo-Pacific species of Terebellides
335	The key here presented has been modified from the previous key of Australian
336	Trichobranchidae (Hutchings & Peart 2000), which was based on a limited number of easy-to-
337	detect characters: 1) number of chaetigers with geniculate chaetae, 2) degree of development
338	of thoracic notopodia, and 3) shape of branchiae, giving special emphasis to the relative size
339	of branchial lobes. Terebellides ypsilon Grube, 1878, from the Philippines, was not included
340	because the description is very brief and following Hutchings & Peart (2000), who revised the
341	type material, the taxon should be considered as undeterminable.
342	
343	1. GC in two
344	TC
345	- GC in one
346	TC4

Formatado: Recuo: Primeira linha: 0,75 cm

[H20] Comentário: Although the authors provided the abbreviation list I believe that could be better (and easy) to use here the non-abbreviated name of the structure

347	2. All TN of similar
348	length
349	- TN from TC6 onwards much bigger in size and with more numerous and longer
350	notochaetae
351	T. intoshi Caullery, 1944
352	3. TU with GC similar in shape and position
353	2015
354	- TU with GC different in shape and position
355	Terebellides sp.
356	4. GC in TC7 ¹
357	1867
358	- GC in
359	TC6
360	5. Branchial lobes 1-4 loosely fused
361	Peart, 2000
362	- Branchial lobes 1-4 more or less
363	fused
364	6. Four branchial
365	lobes
366	- Five branchial
367	lobes
368	7. All TN similar in size and well developed
369	2000
370	- TN1 and TN2 much smaller than subsequent ones
371	2007

372	8. BL5 about 1/5 length of posterior lobes; thoracic LL without dorsal projections, GC of TC6
373	sharply
374	bent9
375	- BL5 almost 1/2 length of posterior lobes; LL of TC1-4 with dorsal projections, GC of TC6
376	gently curved
377	Peart, 2000
378	9. TN1 not reduced; large, white, oval glandular patches in
379	TC3
380	
381	- TN1 strongly reduced; no glandular patches in
382	TC3 10
383	10. All branchial lobes of similar length and fused half of their length; BL with transverse
384	ridges of ciliature
385	Hutchings, 2010
386	- Ventral (posterior) branchial lobes much sorter than dorsal (anterior) ones and fused basally;
387	BL with ciliated papillae on border
388	spec. nov.
389	
390	(1) The position of GC in TC7 is very rare in the genus <i>Terebellides</i> ; this feature is apparently
391	only shared with <i>T. pacifica</i> Kinberg, 1866, a species which has been removed from
392	synonymy with T. stroemii by Garraffoni et al. (2005).
393	

[AG21] Comentário: Not in the reference list

395 Acknowledgements

396	We are indebted to the staff members of Créocéan, who recovered the material during the	
397	processing of benthic macrofaunal samples and explicitly accepted to allow publishing the	
398	information contained in this study, and to Andrea Feijoo (UDC) for the initial study of the	
399	material. Special thanks are also due to Ada Castro and Cati Sueiro (SAI, UDC) for assisting	
400	with the preparation of the specimens and use of the SEM, and to Xela Cunha (Marine Station	
401	of A Graña-Ferrol, University of Santiago de Compostela-USC, Spain) for her assistance with	
402	the stereomicroscope images. Authors also wish to thank Kennet Lundin (GNM) for sending	
403	T. gracilis holotype, and Lena Gustavsson (NRM) for her help in trying to locate T. sieboldi	
404	holotype.	
405		
406	References	
407	Amoureux, L. (1984) Brief notes on two small collections of Polychaetes from Queensland,	
408	with two new records from Australia. <i>Proceedings of Royal Society of Queensland</i> , 95,	
406	with two new records from Austrana. Froceedings of Royal Society of Queensiana, 93,	
409	7–9.	
410	Bremec, C.S. & Elías, R. (1999) Species of <i>Terebellides</i> from South Atlantic Waters off	
411	Argentina and Brazil (Polychaeta: Trichobranchidae). Ophelia, 5, 177–186.	
412	Day, J.H. & Hutchings, P.A. (1979) An annotated check-list of Australian and New Zealand	
413	Polychaeta, Archiannelida and Myzostomida. Records of the Australian Museum,	
414	32(3), 80–161.	
415	Caullery, M. (1944) Polychètes Sédentaires de l'Expédition du Siboga: Ariciidae, Spionidae,	
416	Chaetopteridae, Chlorhaemidae, Opheliidae, Oweniidae, Sabellariidae, Sternaspidae,	
417	Amphictenidae, Ampharetidae, Terebellidae. Siboga Expeditie, 24(2 bis), 1–204.	
418	Gallardo, V.A. (1967) Polychaeta from the Bay of Nha Trang, South Viet Nam. Naga Reports,	
419	4(3), 35–279.	
420	Gibbs, P.E. (1971) The polychaete fauna of the Solomon Islands. Bulletin of the British	
421	Museum (Natural History), Ser. Zoology, 21, 101–211.	
422	Garraffoni, A.R.S. & Lana, P.C. (2003) Species of Terebellides (Polychaeta, Terebellidae,	
423	Trichobranchinae) from the Brazilian coast. <i>Iheringia, Série Zoologica</i> , 93, 355–363.	

425 Hancock Foundation, Occasional Papers, 23, 1–628. 426 Hartman, O. (1974) Polychaetous annelids of the Indian Ocean including an account of 427 species collected by members of the International Indian Ocean Expeditions, 1963-'64, 428 and a catalogue and bibliography of the species from India. Part II. Journal of the Marine 429 Biological Association of India, 16 (2), 609–644. 430 Hutchings, P.A. (1977) Terebelliform Polychaeta of the families Ampharetidae, Terebellidae 431 and Trichobranchidae from Australia, chiefly from Moreton Bay, Queensland. Records of 432 the Australian Museum, 31, 1–38. 433 Hutchings, P.A. & Murray, A. (1984) Taxonomy of polychaetes from the Hawkesbury River 434 and the southern estuaries of New South Wales, Australia. Records of the Australian 435 Museum, 36, 1-119. 436 Hutchings, P.A., Ward, T.J., Waterhouse, J.H. & Walker, L. (1993) Infauna of marine 437 sediments and seagrass beds of Upper Spencer Gulf near Port Pirie, South Australia. 438 *Transactions of the Royal Society of South Australia*, 117, 1–15. 439 Hutchings, P. & Peart, R. (2000) A revision of the Australian Trichobranchidae (Polychaeta). 440 Invertebrate Taxonomy, 14, 225–272. 441 Hutchings, P., Nogueira, J.M.M. & Carrerette, O. (2015) Telothelepodidae, Thelepodidae and

Hartman, O. (1959) Catalogue of the Polychaetous Annelids of the World. Parts I & II. Allan

Knox, G. A. & Cameron, D. B. (1971) Port Phillip survey 1057–1963, Victoria, Australia.

Trichobranchidae (Annelida, Terebelliformia) from Lizard Island, Great Barrier Reef,

- Part 2, No. 4. Polychaeta. *Memoirs of the National Museum, Melbourne*, 32, 21–42.
- 446 Parapar, J. & Hutchings, P. (2015) Redescription of *Terebellides stroemii* (Polychaeta,
- 447 Trichobranchidae) and designation of a neotype. *Journal of the Marine Biological*
- 448 Association of the United Kingdom, 95, 323–337.

Australia. Zootaxa, 4019 (1), 240–274.

424

442

- 449 Parapar, J., Moreira, J. & O'Reilly, M. 2016. A new species of *Terebellides* (Polychaeta:
- Trichobranchidae) from Scottish waters with an insight into branchial morphology.
- 451 *Marine Biodiversity*, 46 (1), 211–225.
- 452 Parapar, J. & Moreira, J. (2008) Revision of three species of *Terebellides* (Polychaeta:
- Trichobranchidae) described by C. Hessle in 1917 from the Southern Ocean. *Journal of*
- 454 Natural History, 42 (17–20), 1261–1275.
- 455 Parapar, J., Moreira, J. & Helgason, G.V. (2011) Taxonomy and distribution of *Terebellides*
- 456 (Polychaeta, Trichobranchidae) in Icelandic waters, with the description of a new species.
- 457 Zootaxa, 2983, 1–20.
- 458 Parapar, J., Mikac, B. & Fiege, D. (2013) Diversity of the genus *Terebellides* (Polychaeta:
- Trichobranchidae) in the Adriatic Sea with the description of a new species. *Zootaxa*,
- 460 3691, 333–350.
- Rullier, F. (1965) Contribution à la faune des annélides polychètes de l'Australie. *University*
- of Queensland Papers, Department of Zoology, 2, 163–201.
- 463 Salazar-Vallejo, S.I., Carrera-Parra, L.F., Muir, A.I., De Leon González, J.A., Piotrowski, C.
- & Sato, M. 2014. Polychaete species (Annelida) described from the Philippine and China
- 465 Seas. Zootaxa, 3842, 1–68.
- 466 Schüller, M. & Hutchings, P.A. (2010) New insights in the taxonomy of Trichobranchidae
- 467 (Polychaeta) with the description of a new *Terebellides* from Australia. *Zootaxa*, 2395, 1–
- 468 16.
- Schüller, M. & Hutchings, P.A. (2012) New species of *Terebellides* (Polychaeta:
- 470 Trichobranchidae) indicate long-distance dispersal between western South Atlantic deep-
- 471 sea basins. *Zootaxa*, 3254, 1–31.
- 472 Schüller, M. & Hutchings, P.A. (2013) New species of *Terebellides* (Polychaeta:
- Trichobranchidae) from deep Southern Ocean. *Zootaxa*, 3619, 1–45.

174	Shin, K. S. P. (1982) Some polychaetous annelids from Hong Kong waters. In: Morten, B.S.
175	Morten and C.K. Tseng (eds.). Proceedings of the First International Marine
176	Biological Workshop: The Marine Flora and Fauna of Hong Kong and Southern
177	China, vol. 1, 18 April-10 May 1980: 161-172.
178	Solís-Weiss, V., Fauchald, K. & Blankestein, A. (1991) Trichobranchidae (Polychaeta) from
179	shallow warm water areas in the Western Atlantic Ocean. Proceedings of the Biological
180	Society of Washington, 104 (1), 147–158.
181	Stephenson, W., Williams, W.T. & Lance, G.N. (1970) The macrobentos of Moreton Bay.
182	Ecological Monographs, 40, 459–494.
183	Stephenson, W., Williams, W.T. & Cook, S.D. (1974) The benthic fauna of soft bottoms
184	Southern Moreton Bay. Memoirs of the Queensland Museum, 17 (1), 73-123.
185	Tan, L.T. & Chou, L.M. (1993) Checklist of polychaete species from Singapore waters
186	(Annelida). Raffles Bulletin of Zoology, 41 (2), 279–295.
187	Williams, S.J. (1984) The status of <i>Terebellides stroemi</i> (Polychaeta; Trichobranchidae) as a
188	cosmopolitan species, based on a worldwide morphological survey, including
189	description of new species. In: Hutchings, P.A. (Ed.), Proceedings of the First
190	International Polychaete Conference, Sydney, Australia, 1984. The Linnean Society of
191	New South Wales Sydney np. 118–142