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ABSTRACT
Objective. Bladder cancer is a cause of considerable morbidity worldwide. Electro-
motive Drug Administration is a method that combines intravesical chemotherapy
with local electric field application. Electroporation has been suggested among other
mechanisms as having a possible role in the therapy, so the goal of the present study
was to investigate the electric fields present in the bladder wall during the treatment to
determine which mechanisms might be involved.
Material andMethods. Electromotive Drug Administration involves applying intrav-
esical mitomycin C with direct current of 20 mA delivered through a catheter electrode
for 30 min. For numerical electric field computation we built a 3-D nonhomogeneous
patient specific model based on CT images and used finite element method simulations
to determine the electric fields in the whole body.
Results. Results indicate that highest electric field in the bladder wall was 37.7 V/m. The
mean electric field magnitude in the bladder wall was 3.03 V/m. The mean magnitude
of the current density in the bladder wall was 0.61 A/m2.
Conclusions. The present study shows that electroporation is not the mechanism of
action in EMDA. Amore likely explanation of themechanism of action is iontophoretic
forces increasing the mitomycin C concentration in the bladder wall.

Subjects Biophysics, Drugs and Devices, Oncology, Radiology and Medical Imaging, Urology
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INTRODUCTION
Bladder cancer is a cause of considerable morbidity and mortality worldwide. The intensive
care and treatment of bladder cancer represents a considerable burden to patients and
society (Botteman et al., 2003). Intravesical therapy has been used tomaximize the exposure
of bladder tumors to the drug, while limiting systemic effects and toxicity. Mitomycin C
(MMC) is the most widely used drug for intravesical irrigation in low and intermediate
risk tumors (Bouffioux et al., 1995; Sylvester, Oosterlinck & Van der Meijden, 2004), while
Bacillus Calmette-Guérin (BCG) is recommended for high-risk tumors (Sylvester, Van der
Meijden & Lamm, 2002; Shelley et al., 2004;Böhle & Bock, 2004). Intravesical chemotherapy
with MMC is used immediately after transurethral resection of tumor (TURBT) to treat
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circulating tumor cells that can reimplant at other sites of the bladder, or as an ablative
effect on residual tumour cells at the resection site (Pan et al., 1989; Brocks, Büttner &
Böhle, 2005). MMC is also used in series of 8-weekly intravesical irrigations for patients
with high risk of recurrence (Tolley et al., 1996; Sylvester, Oosterlinck & Witjes, 2008).

MMC migrates poorly deeper into the lamina propria, which may explain MMC’s poor
efficacy treating T1 tumors invading this layer of the mucosa. Electrokinetic forces may
accelerate and increase drug delivery across the urothelium. Electromotive Drug Adminis-
tration (EMDA) is a method that combines intravesical chemotherapy with local electric
field application. Di Stasi et al. (1999) suggested in an ex vivomodel that concentrations of
MMCmay be increased in all the layers of the bladderwall, when the drugwas deliveredwith
EMDA. Clinical studies where EMDA/MMC was applied showed lower recurrence rates
than MMC alone, and equivalent efficacy for the treatment of high-risk bladder tumors
when compared to BCG (Di Stasi et al., 2003; Di Stasi et al., 2006) with few side effects
noted. Thus EMDA method seems safe and effective.

It has been proposed that EMDA leads to the combination of several electro-molecular
interactions; iontophoresis, electroosmosis/electrophoresis, and electroporation (Di Stasi et
al., 1997). All these phenomena may potentially be responsible for electromotive transport
of drug molecules through biological membranes and into the underlying tissue when the
electric field is applied. EMDAmethod is being used experimentally in relatively few centers,
possibly due to the fact that the mechanisms of action are poorly understood. However, the
actual worldwide shortage of BCG has led to the use of alternative methods and increased
use of EMDA/MMC. Consequently there is a need to further elucidate the mechanisms of
action of this treatment, which led to the present study.

The objective of this study is to perform calculations of the electric field present in
the bladder wall during EMDA treatments, and in that way estimate what biological
mechanisms may be at play when the tissue is exposed to this particular electric field.

MATERIALS AND METHODS
The main goal of the following steps was to build an in-silico representation of a human
body during the delivery of an EMDA treatment. This was done by reconstructing the
anatomical shape of the body and the relevant tissues from CT images and then using a
computational approach to determine the relevant electric quantities in the tissues: electric
field and current density. These quantities were then analyzed to get an insight into the
possible mechanisms of EMDA.

Delivery setup
EMDA is administered by a battery powered current generator (Physionizer R©) that delivers
a controlled electric current of 0–30mA/0–55 VDC, which is passed between electrodes: (1)
the active intravesical electrode is a silver spiral integrated to the tip of a specifically designed
transurethral catheter, (2) two dispersive ground electrodes, placed in the lower abdominal
skin. The operator sets the active electrode’s polarity and current intensity on the generator.

When applying intravesical EMDA with MMC for non-muscle invasive bladder cancer,
the catheter is inserted into the bladder followed by instillation of 40 mg of MMC in 50 ml
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Figure 1 Schematic illustration of the EMDA application system. (A) Numbers indicate the electrodes:
1, helical bladder catheter electrode; 2, abdominal patch electrodes. (B) The catheter is inserted in the uri-
nary bladder and connected to the current generator.

0.9%NaCl solution. The catheter and the ground electrodes are connected to the generator,
and the active electrode is set to positive polarity. The generator gradually increases the
current to a predetermined level (20–25 mA) at a rise rate of 50 mA/s. The total treatment
time is 30 min. This setup is shown in Fig. 1.

Segmentation of medical images
Different tissues have different electrical properties. To be able to accurately compute the
electrical quantities in the body we need to differentiate between these tissues and assign
them their appropriate properties. Abdominal CT images of a patient treated with EMDA
were segmented into the following tissues (bladder wall, bladder lumen, small intestine,
prostate, muscle, bone, fat, and internal air) using ITK-Snap version 2.4 (Yushkevich et al.,
2006). The patient was a participant in a clinical trial where EMDA was tested, and the
Ethics Committee of the Capital Region of Denmark approved this trial (study number
H-1-2012-050). As the current study is not part of the clinical trial, permission for the use
of the CT images was obtained from the patient orally.

A radiologist verified the segmentation. The pixel size in the segmentation was 0.781
mm, while the slice separation was 3 mm. In total 72 slices were segmented, corresponding
to 14 slices below the bladder and 3 slices above the top edge of the external electrodes.

3-D model building
A 3-D model of the patient’s anatomy was constructed in COMSOL Multiphysics version
5.2 (Comsol AB, Stockholm, Sweden). The outside of the body was constructed using a
planar contour method using an algorithm written in Matlab (Mathworks, Natick, MA,
USA) (Sel, Lebar & Miklavcic, 2007). The tissues of the interior of the body were taken into
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Table 1 Electrical conductivity values used in the computational model.

Tissue Conductivity [S/m] Reference

Bladder wall 0.2 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)
Bladder lumen 1.5 Stogryn (1971)
Prostate 0.41 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)
Fat 0.012 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)
Muscle 0.2 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)
Intestines 0.4 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)
Bone 0.02 Gabriel, Lau & Gabriel (1996a), Gabriel, Lau & Gabriel (1996b)

account by building a spatial conductivitymatrix inMatlab by assigning conductivity values
based on the segmentation (Aström et al., 2009). The tissue properties were taken from
the literature (Gabriel, Lau & Gabriel, 1996a; Gabriel, Lau & Gabriel, 1996b) and the actual
values used are reported in Table 1. The conductivity of the saline used for bladder irrigation
was also taken from the literature (Stogryn, 1971). Electrodes were added by CADmodelling
directly in COMSOL based on the dimensions of the actual electrodes. The balloon of the
catheter (12 mm diameter) was placed right above the bladder neck. The catheter electrode
consists of a helical wire with a diameter of 0.4 mm and 20 turns. The major radius of the
helix was 1.25 mm, while the turn pitch was 1.6 mm; therefore, the total combined length
of the electrode is 32 mm. This electrode shape limits the intensity of the electric field
and current density around the electrode. The outer electrodes were modelled as a patch
with outer dimensions of 5 × 7 cm. The resulting model is shown in Fig. 2. The catheter
balloon was modelled as a perfect insulator, so it was excluded from the computation.

Computational setup
We used the stationary finite element method solvers in COMSOL Multiphysics to solve
the Laplace equation for electric potential in the 3-D model of the patient’s anatomy.
The model was discretized using a free tetrahedral mesh, which consisted of 2,779,405
elements. We used the conductive media DC interface in COMSOL Multiphysics to run
a static simulation of the applied current density and electric fields inside the body. The
electrodes were driven with a current-source terminal boundary condition, while the skin
was taken into account only at the skin-electrode interface, by using a built-in thin resistive
layer boundary condition in COMSOL. The results were extracted on a grid with data
points positioned at the centers of the image elements in the original anatomical CT scans.

RESULTS
Global quantities
Since the electrodes were driven by a current source (20 mA), it is possible to compute
the resulting electrode voltages with the data from the manufacturer’s specifications. The
voltage between the two electrodes was 13.1 V, which is within the generator specification
and corresponds well to the expected voltage. Unfortunately, the generator does not specify
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Figure 2 3-Dmodel with electrodes and different tissues. (A–C) sagittal, coronal and axial views. (D)
rotated 3D view. The abdominal and bladder electrodes are indicated. In all panels, the bladder, intestine,
prostate and internal air are shown, but clipped to only half of the model for clarity.
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the output voltage at the time of the treatment so the exact value used in the treatment is
not available for the validation of the model.

Applied fields in the body
Electric fields in the whole body were extracted. The highest magnitude of electric field in
the simulations was 271 V/m, in the subcutaneous fat tissue near the surface electrodes.
The maximum values in the bladder wall were 71.9 V/m. The mean and SD of electric field
magnitude in the bladder wall were 6.0 V/m and 7.1 V/m, respectively.

The largest current density was found around the catheter electrode: 134 A/m2. The
largest current density in the bladder wall was 14.4 A/m2. Mean current density in the
bladder wall was 1.2 A/m2, with the standard deviation being 1.4 A/m2. The highest current
density in all other tissues was 35.6 A/m2, however this value was found in a single voxel and
may be due to numerical error. The current density is mostly perpendicular to the bladder,
although the current density is much higher at the anterior part than at the posterior as
would be expected based on electrode positioning Fig. 3.

DISCUSSION
Based on the values of electric fields, we can conclude that electroporation is
highly unlikely to be the predominant mechanism of action in EMDA. Typi-
cally, electroporation occurs at electric field strengths that are above 40,000 V/m
(Cemazar et al., 1998; Miklavcic et al., 1998; Gehl et al., 1999; Pucihar et al., 2011)
also on urothelial cells (JL Vásquez, 2013, unpublished data), while the electric
fields reached established by EMDA are well below even 100 V/m. Although
electroporation thresholds decrease with increasing duration of electric field application,
the lowest reported in the literature is above 10,000 V/m for 100ms pulse duration (Pucihar
et al., 2011). The highest amplitude of the induced transmembrane voltage (ITV) according
to Schwann’s equation (Schwan, 1957) is determined by the equation ITVMax = 1.5ER,
where E is the electric field strength to which the cell of radiusR is exposed. Based on the size
of the cells used by Pucihar et al. in their experiments, the highest transmembrane voltage
at 100 ms pulses was approximately 150 mV. The superficial layer of the bladder contains
polyhedral cells of up to 250 µm in diameter (Khandelwal, Abraham & Apodaca, 2009).
Given the value of the electric field in the bladder, the highest expected ITV during the
treatment is 14 mV or lower, which is well within physiological values of transmembrane
potential. The other layers of the bladder contain much smaller cells, which would result
in even lower ITV.

Typically, iontophoresis setups for trans-dermal drug delivery use current densities in
the range of 0.1–0.5 mA/cm2 (Kalia et al., 2004), which is equal to 1–5 A/m2 and therefore
very close to the values produced by our model. The values of current density in the
bladder wall support the hypothesis, that iontophoresis is involved in EMDA, and that is
likely to be the contributing factor for reducing recurrence, due to the increase of the drug
concentration near the point of excision.

Due to the placement of the abdominal electrodes on the front part of the abdominal
wall, the predominant direction of the current flow is towards the front, as can be seen
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Figure 3 Visualization of the current in the whole body and the current density in the bladder wall.
(A) Current lines from the bladder electrodes to the abdominal patch electrodes. (B) Surface plot of the
current density on the bladder wall in the sagittal view (from the left side). (C) Surface plot of the current
density in a coronal view (from the front). The current density is markedly higher in the upper anterior
bladder wall in comparison to the posterior and lower bladder walls.
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Figure 4 Electric field and current density in the bladder wall. The figure shows an axial slice at the ver-
tical center of the bladder wall. Both panels show the same slice. The panels show: (A) Electric field, (B)
Current density.
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in Figs. 3 and 4. This means that the current density of the posterior bladder wall could
be below the current density required for efficient iontophoretic flow, i.e., the treatment
would be more successful for tumors located on the front half of the bladder than for the
back half.

The present study is limited by the fact that it is based on a single patient, and that
the exact positioning of the intravesical electrode during the treatment is unknown.
Additionally, the variability between patients would affect the values of electrical quantities
in the tissue. However, even with these variations, the difference in the electric fields and
current density would not be so great to change our findings.

Our study shows that electroporation is not the mechanism of action in EMDA.
However, electroporation combined with chemotherapy (electrochemotherapy) is a novel
and interesting treatment modality in use for the treatment of cutaneous tumors and in
clinical trials for tumors in internal organs (Campana et al., 2009; Matthiessen et al., 2011;
Edhemovic et al., 2011;Miklavčič et al., 2014). Also for bladder cancer, there are interesting
perspectives for electrochemotherapy, both using MMC and cisplatin (Vásquez, Gehl &
Hermann, 2012; Vásquez et al., 2015). These data on cisplatin used in electrochemotherapy
experiments may give inspiration for new advances in iontophoretic drug delivery.

CONCLUSION
Based on numerical computational modelling based on realistically dimensionedmodels of
EMDA treatment, we suggest that iontophoretic forces are predominant in this treatment.
Electrode placements could mean that the anterior wall of the bladder receives a higher
treatment field than other parts of the bladder. Also, due to the presence of a small air pocket
in the bladder, the location directly above the air pocket receives a reduced treatment. Based
on the numerical results alternate electrode positions should be considered if the original
location of the excised tumor is not on the anterior bladder wall.
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