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ABSTRACT
1,2-dihydro-1,2-azaborine is a structural and electronic analogue of benzene which
is able to occupy benzene-binding pockets in T4 lysozyme and has been proposed
as suitable arene-mimicking group for biological and pharmaceutical applications.
Its applicability in a biological context requires it to be able to resist modification
by xenobiotic-degrading enzymes like the P450 cytochromes. Quantum chemical
computations described in this work show that 1,2-dihydro-1,2-azaborine is much
more prone to modification by these enzymes than benzene, unless steric crowding of
the ring prevents it from reaching the active site, or otherwise only allows reaction at
the less reactive C4-position. This novel heterocyclic compound is therefore expected
to be of limited usefulness as an aryl bioisostere.

Subjects Biochemistry, Biophysics, Drugs and Devices, Pharmacology
Keywords Quantum computations, Density-functional theory, Reactivity, Azaborine,
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INTRODUCTION
1,2-dihydro-1,2-azaborine (abbreviated in this paper as ‘‘azaborine’’) is a structural and
electronic analogue of benzene which, like benzene, undergoes classical electrophilic
aromatic substitution (Pan, Kampf & Ashe, 2007) but, in contrast to benzene, also readily
undergoes nucleophilic aromatic substitution under mild reaction conditions (Lamm et al.,
2011). Computational studies have shown azaborines to be generally much more reactive
towards one-electron oxidation and electrophilic substitution than their corresponding
benzene analogues (Silva & Ramos, 2009). Azaborines are generally stable in water and react
sluggishly with oxygen when substituted on their boron atoms with electron-withdrawing
substituents (Lamm & Liu, 2009). These benzene isosteres are able to occupy benzene-
binding pockets in T4 lysozyme (Liu et al., 2009) and have been proposed as suitable
arene-mimicking groups for biological and pharmaceutical applications (Marwitz et al.,
2007). Their deployment as useful components of drug scaffolds requires, however, that
they are stable in the presence of drug-metabolizing enzymes such as the P450 cytochromes
which hydroxylate the related benzene ring (Guengerich, 2003; Guengerich, 2008).

The active oxidant species of cytochrome P450 (Compound I) is a thiolate-bound heme
compound which possesses two unpaired electrons in its Fe= Omoiety and one unpaired
electron delocalized throughout the porphyrin ring and the thiolate ligand (Schöneboom et
al., 2002 and references therein). Depending on the orientation of this lone spin relative
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to the Fe = O-localized spins, compound I may exist in a doublet (S= 1/2) or a quartet
(S= 3/2) state, which have very similar energies (Rydberg, Sigfridsson & Ryde, 2004 and ref-
erences therein). Extensive experimental and computational investigations on the reaction
of compound I towards benzene and other aromatic compounds (Guroff et al., 1967;
Jerina et al., 1968; Burka, Plucinski & Macdonald, 1983; Koop, Laethem & Schnier, 1989;
Korzekwa, Swinney & Trager, 1989; Koerts et al., 1998; De Visser & Shaik, 2003; Bathelt et
al., 2003; Bathelt, Mulholland & Harvey, 2008) have shown that the initial formation of a
σ -adduct between compound I and the aromatic compound is endergonic and that the
subsequent formation of different products (arene oxides, phenols, or ketones) is ruled by
a complex potential energy surface, which is sensitive to the reaction environment and to the
mode of attack of the benzene (either perpendicular or parallel to the plane of the porphyrin
ring). In this paper, we analyze the metabolic stability of 1,2-azaborines towards P450
enzymes through the computational investigation of their reactions with ‘‘compound I.’’

COMPUTATIONAL METHODS
The geometries of everymolecule describedwere optimized using B3LYP (Lee, Yang & Parr,
1988; Becke, 1993; Hertwig & Koch, 1995). Autogenerated delocalized coordinates (Baker,
Kessi & Delley, 1996) were used in geometry optimizations performed with 6-31G(d)
(Ditchfield, Hehre & Pople, 1971;Hehre, Ditchfield & Pople, 1972) for all elements except for
Fe, which used the SBKJ VDZ (Stevens et al., 1992) basis set in combination with the SBKJ
pseudo-potential (Stevens et al., 1992) for the inner shells corresponding to the (1s2s2p)
core of Fe. Single-point energies of the DFT-optimized geometries were then calculated
using the same functional using the 6-311 + G(2d,p) (Hariharan & Pople, 1973; Krishnan
et al., 1980; Clark et al., 1983; Frisch, Pople & Binkley, 1984) basis set for all elements except
Fe, which used the s6-31G* basis set, specifically developed by Swart et al. (2010) to afford
more reliable spin-state splittings. Zero-point vibrational effects (ZPVE) were computed
using a scaling factor of 0.9804 for the computed frequencies. Atomic charge and spin
density distributions were calculated with a Mulliken population analysis (Mulliken, 1955)
based on symmetrically orthogonalized orbitals (Löwdin, 1970). Geometries of products
were obtained from those of the corresponding transition states upon slight deformation
of the coordinate corresponding to the imaginary frequency, followed by unconstrained
reoptimization. In the few instances where no transition state could be found, product
geometries were obtained from extensive exploration of the potential energy surface using
two-dimensional scans. All energy values described in the text include solvation effects
(ε = 10) computed using the Polarizable Continuum Model (Tomasi & Persico, 1994;
Mennucci & Tomasi, 1997; Cossi et al., 1998) implemented in Firefly. All computations
were performed with the Firefly (Granovsky, 2013) quantum chemistry package, which
is partially based on the GAMESS (US) (Schmidt et al., 1993) source code. Intra- and
inter-molecular dispersion effects on the energies of the gas-phase B3LYP-optimized
species were computed with the DFT-D3 formalism developed by Grimme et al. (2010).
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Table 1 Energies (in kcal mol−1, vs. the reactant state) of the transition states (2TS and 4TS) and products (2product and 4product) of direct at-
tack benzene by compound I. Species preceded by 2 are in the doublet (S = 1/2) state, whereas those preceded by 4 are in the quartet state (S =
3/2). These values cannot be directly compared to the experimental barriers due to the neglect of vibrational/rotational/translational contributions
to entropy. Inclusion of entropic effects increases barriers by 4–6.5 kcal mol−1 due to the loss of vibrational entropy in the transition state (see Sup-
plemental Information).

Level of theory 2TS 2Product 4TS 4Product Reference

B3LYP (ε= 5.7) 17.5–18.1 12.3–13.5 20.6 14.0 De Visser & Shaik (2003)
B3LYP (ε= 4.0) 15.6–17.9 6.1–6.9 n.d n.d Bathelt et al. (2004)
B3LYP (gas phase only, including ZPVE) 20.7 n.d. 21.1 n.d. Rydberg, Ryde & Olsen (2008)
QM/MM B3LYP/CHARMM27 20.4 n.d. 20.4 n.d. Lonsdale, Harvey & Mulholland (2012)
QM/MM B3LYP-D2/CHARMM27 13.5 n.d. 11.9 n.d. Lonsdale, Harvey & Mulholland (2012)
PBE0 (gas phase only, no ZPVE) 18.8 8.8 24.4 n.d. Tomberg et al. (2015)
B3LYP-D3//B3LYP (ε = 10.0)
(including ZPVE) parallel attack

16.1 7.6 21.6 7.9 This work

B3LYP-D3//B3LYP (ε = 10.0)
(including ZPVE) perpendicular attack

16.9 9.4 16.9 5.9 This work

RESULTS
The experimental rates of benzene hydroxylation by the thiolate-bound compound I
present in cytochrome P450 and haloperoxydases range from 4.6 min−1 (Koop, Laethem
& Schnier, 1989) to 8 s−1 (Karich et al., 2013), which translate to activation free energies
from 16.9 kcal mol−1 to 19.8 kcal mol−1. The computationally-derived activation energies
vary from 12 kcal mol−1 to 21 kcal mol−1, depending on the theory level, model size,
and inclusion (or not) of ZPVE, dispersion effects, or solvation (Table 1). Analysis of the
susceptibility of 1,2-dihydro-1,2-azaborine to attack by compound I therefore required us
to start our investigation by determining the influence of our theory level on the energetic
barrier of the analogous reaction of benzene.

In the doublet potential energy surface (Fig. 1), we observed that the electronic structure
of the reaction product depends on the aryl mode of attack: when benzene approaches
the doublet state of compound I perpendicularly to the porphyrin ring (‘‘side-on’’ in the
nomenclature of Bathelt et al., 2004), half an electron is transferred from the benzene to
the Fe ligands (porphyrin and thiolate) with concomitant spin rearrangements, which lead
to the loss of one spin from the Fe–O moiety , mostly to the thiolate ligand (0.52 spin) and
substrate (0.32 spin). In contrast, a parallel mode of attack (‘‘face-on’’ in the nomenclature
of Bathelt et al., 2004) yields the transfer of almost a full spin (0.86) (but no charge) from
the thiolate and porphyrin to the benzene. These results are similar to the observation of
a cation-like and a radical-like adduct by Bathelt et al. (2004), though these workers were
able (unlike us) to find both adducts with either attack mode.

Without taking into account zero-point vibrational effects, the quartet state of compound
I lies only 0.4 kcal mol−1 above the doublet state, and the quartet portential energy surface
is therefore very accessible. In this spin state, no dramatic differences in electronic structure
were found between both attack modes, which always yield a radical-like adduct on the
benzene. In the perpendicular attack mode, the quartet state has the same energetic barrier
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Figure 1 Transition states (A and B) and products (C and D) arising from perpendicular (A and C) or
parallel (B and D) attack of benzene by compound I in the doublet (S= 1/2) state. Charges (and spins)
on the substrate moiety and on the porphyrin ring are highlighted.

as the doublet state, but produces a more stable product. Such a competitive benzene
hydroxylation in the quartet state has not been found by earlier workers, whose studies on
the subsequent rearrangement of the compound I/benzene adduct to yield phenol, ketone
or epoxide (Bathelt, Mulholland & Harvey, 2008) focused only on the doublet surface due
to the higher activation energies they observed for the formation of the compound I/benzene
adduct in the quartet state.

The energy of the reactant state of compound I towards benzene is mostly independent
of the spin state of compound I and of the parallel/perpendicular orientation of benzene.
In contrast, the perpendicular orientation of 1,2-dihydro-1,2-azaborine is almost 8 kcal
mol−1 more favorable than the parallel orientation, due to the stabilization provided by
hydrogen binding between the nitrogen-bound hydrogen and the compound I oxygen in
the perpendicular orientation. This difference is not, by any means, the most dramatic
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Figure 2 Transition states (A–C) and products (D–F) arising from attack of the nitrogen atom in aza-
borine by compound I. (A and D) S= 1/2, perpendicular attack; (B and E) S= 1/2, parallel attack; (C and
F) S= 3/2.

Table 2 Energies (in kcal mol−1, vs. the most stable reactant state) of the transition states (2TS and
4TS) and products (2product and 4product) for the direct attack of the heteroatoms in 1,2-dihydro-1,2-
azaborine by compound I. Species preceded by 2 are in the doublet (S = 1/2) state, whereas those pre-
ceded by 4 are in the quartet state (S = 3/2). All energy values include solvation effects (ε = 10.0), zero-
point vibrational energy and dispersion effects. Transition states with activation energies above the acti-
vation energy of the reaction of compound I towards benzene are highlighted in bold. Unless otherwise
noted, all products are σ -adducts of the substrate.

2TS 2Product 4TS 4Product

N (parallel orientation) 33.4 20.0 Absent Absent
N (perpendicular orientation) 9.0 5.0a 18.6 11.0a

B (parallel orientation) 5.9 −6.2 5.5 −1.8
B (perpendicular orientation) 7.6 −3.8 6.9 −16.2

Notes.
aPeroxide product.

when comparing the reactivity of benzene towards that of azaborine, as a large variety of
products, transition states and activation energies is observed when compound I is made
to react with azaborine, as described in the next paragraphs.

Attack on the azaborine nitrogen atom (Fig. 2) is kinetically viable only in the doublet
state and with a perpendicular orientation, yielding an azaborine peroxide product (acti-
vation energy = 9 kcal mol−1; reaction energy 5 kcal mol−1). With a parallel orientation,
reaction is expected to be extremely slow (activation energy = 33.4 kcal mol−1) and yields
a high energy intermediate bearing an unusual interaction between the boron moiety of
the substrate and one of the porphyrin nitrogens. Surprisingly, reaction in the quartet
state yields (like that in the doublet state) an azaborine peroxide product, though with a
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Figure 3 Products arising from perpendicular (A and C) or parallel (B and D) attack of positions C3 (A
and B) and C5 (C and D) in 1,2-dihydro-1,2-azaborine by compound I in the doublet (S= 1/2) state.

higher barrier activation energy (18.6 kcal mol−1). In contrast, attack on the boron atom
is extremely fast (with activation energies between 5.5 and 7.7 kcal mol−1), regardless of
the spin state and initial orientation of the substrate (Table 2).

Previous computational (Silva & Ramos, 2009) and experimental studies (Pan, Kampf
& Ashe, 2007) ascertained that the most reactive carbon positions in azaborine towards
classical electrophilic agents are its C3 and C5 atoms. Our computations show that the
same is true regarding its reaction with the doublet state of compound I: the reaction is
spontaneous by at least 47.8 kcal mol−1 at C3, and by 19 kcal mol−1 at C5. The reaction
products are, however, quite different in both instances: attack on C3, yields a novel
heptagonal ring (3H -1,3,2-Oxazaborepine) containing a N–B–O–C moiety, whereas
reaction in C5 must overcome a 13–15 kcal mol−1 barrier and yields epoxides over the
C5–C6 bond. Both these products assume very similar conformations relative to the heme
regardless of the initial orientation of the substrate (parallel or perpendicular) relative to
the porphyrin plane (Fig. 3).
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Figure 4 Potential energy surface obtained as B2 and C3 approach the reactive oxygen in compound
I, computed using B3LYP with the 6-31G(d) basis set for all elements except for Fe, which used the
SBKJ VDZ basis set in combination with the SBKJ pseudo-potential for the inner shells correspond-
ing to the (1s2s2p) core of Fe. No solvation or dispersion effects are included. Isoenergetic lines are de-
picted at 1 kcal mol−1 intervals. Separated reactants with a perpendicular arrangement (corresponding to
0 kcal mol−1) would lie far to the upper left corner of this depiction of the potential energy surface. Grey
arrows show the sequence of transformations allowed as B2/C3 atoms approach compound I. 3H -1,3,2-
oxazaborepine is only accessible after the boron-bound adduct has been formed; the C3-bound compound
I intermediate is shown to be kinetically inaccessible.

The search for a transition state for the attack on C3 showed that the formation of
3H–1,3,2-oxazaborepine cannot occur directly from the isolated reactants, as no transition
state connects this product to the reactant state: instead, 3H–1,3,2-oxazaborepine is formed
from the boron-bound azaborine-compound I adduct, after surmounting a small barrier
(Fig. 4). A second intermediate bearing a C3-compound I bond was found to be a local
minimum in the potential-energy surface (Fig. 4, C3-bound compound I intermediate),
though kinetically inaccessible due to the absence of any transition state linking it to the
isolated reactants: it can only be formed (upon crossing an activation barrier above 40 kcal
mol−1) through rearrangement of the extraordinarily stable oxazaborepine.

In the quartet state, attack on C5 proceeds with a barrier of 17.1 (parallel) or 18.4 kcal
mol−1 (perpendicular) and yields epoxides (like the doublet state). In contrast to the
doublet state, a parallel attack of the quartet state on C3 yields a σ -complex similar to that
found with benzene. In the perpendicular orientation, the reactivity of the quartet state
towards C3 is, however, identical to that found for the doublet state.
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Table 3 Energies (in kcal mol−1, vs. the most stable reactant state) of the transition states (2TS and
4TS) and products (2product and 4product) for the direct attack of carbon atoms in 1,2-dihydro-1,2-
azaborine by compound I. Species preceded by 2 are in the doublet (S = 1/2) state, whereas those pre-
ceded by 4 are in the quartet state (S = 3/2). All energy values include solvation effects (ε = 10.0), zero-
point vibrational energy and dispersion effects. Transition states with activation energies above the acti-
vation energy of the reaction of compound I towards benzene are highlighted in bold. Unless otherwise
noted, all products are σ -adducts of the substrate.

2TS 2Product 4TS 4Product

C3 (parallel orientation) n.a. −49.2a/1.2 14.5 2.2
C3 (perpendicular orientation) n.a. −47.8a/1.3 n.a. −40.2a/1.8
C4 (parallel orientation) 21.3 23.0 21.8 11.1
C4 (perpendicular orientation) 19.5 10.8 20.5 9.6
C5 (parallel orientation) 14.8 −19.1b 18.4 −15.6b

C5 (perpendicular orientation) 13.2 −18.9b 17.1 −15.4b

C6 (parallel orientation) 13.4 1.5 21.6 −0.6
C6 (perpendicular orientation) 13.1 −2.0 15.2 7.5

Notes.
aFormation of 3H -1,3,2-oxazaborepine.
bFormation of a peroxide product.

The activation energies for the reactions taking place at the C4-position are consistently
>3 kcal mol−1 higher than the attacks on benzene, regardless of orientation and spin state.
In contrast, attacks on C5 by the doublet state of compound I must surmount a lower
barrier than observed for benzene, and yield very stable epoxides over the C5–C6 bond. The
same products are observed upon attack at C5 by the quartet state of compound I, though
in this instance the activation barriers are 4 kcal mol−1 above those computed for the
doublet state. In spite of its negligible reactivity towards classical electrophiles (Pan, Kampf
& Ashe, 2007; Silva & Ramos, 2009), the C6-position in azaborine is more susceptible than
benzene to attack by the doublet state of compound I in either a parallel or a perpendicular
orientation. In the quartet state, the parallel orientation is noticeably less prone to react
than the perpendicular orientation, in spite of yielding amore stable intermediate (Table 3).

DISCUSSION
The computations described in this paper show thatmost ring positions in 1,2-dihydro-1,2-
azaborine are much more reactive towards compound I than the benzene ring (for which
they have been proposed as biosteres). It is therefore extremely likely that the proposed
inclusion of 1,2-dihydro-1,2-azaborine in drug scaffolds will have a very detrimental effect
on their ability to remain unscathed in the organism unless measures are taken to ensure
that the reactive azaborine portion is sterically unable to reach the active site of P450
enzymes, or that only the very unreactive C4-position is able to approach compound I.
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