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ABSTRACT
The Chelonid herpesvirus 5 (ChHV5) has been consistently associated with fibropapil-
lomatosis (FP), a transmissible neoplastic disease of marine turtles. Whether ChHV5
plays a causal role remains debated, partly because while FP tumours have been
clearly documented to contain high concentrations of ChHV5 DNA, recent PCR-
based studies have demonstrated that large proportions of asymptomatic marine turtles
are also carriers of ChHV5. We used a real-time PCR assay to quantify the levels
of ChHV5 Glycoprotein B (gB) DNA in both tumour and non-tumour skin tissues,
from clinically affected and healthy turtles drawn from distant ocean basins across
four species. In agreement with previous studies, higher ratios of viral to host DNA
were consistently observed in tumour versus non-tumour tissues in turtles with FP.
Unexpectedly however, the levels of ChHV5 gB DNA in clinically healthy turtles were
significantly higher than in non-tumour tissues from FP positive turtles. Thus, a large
proportion of clinically healthy sea turtle populations worldwide across species carry
ChHV5 gBDNA presumably through persistent latent infections. ChHV5 appears to be
ubiquitous regardless of the animals’ clinical conditions. Hence, these results support
the theory that ChHV5 is a near ubiquitous virus with latency characteristics requiring
co-factors, possibly environmental or immune related, to induce FP.
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INTRODUCTION
Historically, viral infections associated with abnormal cell growth have been reported and
studied directly from tumours (Work et al., 2001). Among others, several herpesviruses can
lead to tumour formation in humans (Hausen zur, 1991) and other vertebrates such as
reptiles (Ariel, 2011). The marine turtle disease fibropapillomatosis (FP), has been linked to
infection by the Chelonid herpesvirus 5 (ChHV5) also commonly known as the Chelonid
fibropapilloma-associated herpesvirus (CFPHV) (Herbst, 1994). Despite, all attempts at
culturing ChHV5 in vitro have been unsuccessful (Lu et al., 1999; Work et al., 2009). Thus,
confirmation of ChHV5 as the primary causal agent of FP tumours remains inconclusive as
defined by the four Koch’s postulates that establish relationships to identify the causative
agent of a disease.

Several studies have used quantitative real time PCR (qPCR) methods to assay the
levels of ChHV5 DNA in marine turtle tissues, in an attempt to shed further light into its
potential relevance for FP.Whilemost of such qPCRassays have exclusively targeted the skin
tumours (Work et al., 2009), conjunctival growths, and/or tumours from visceral organs
(Curry et al., 2000) sampled from FP affected turtles, non-tumour skin tissue samples of
infected animals have been used to demonstrate that ChHV5 is always found at higher
level in FP tumours than in healthy tissue samples from affected animals (Quackenbush et
al., 2001). Although this has been interpreted as further evidence for ChHV5s role in FP,
little attention has been given to the levels of ChHV5 in clinically healthy turtles, whether
from feeding grounds shared with FP affected individuals or from species’ populations in
which FP has never been observed. Only a handful of research studies, exclusively focused
on populations historically documented with individuals infected by the FP disease,
have described the detection of herpes viral DNA from clinically healthy marine turtles
(Herbst et al., 2008).

In a recent series of studies we documented the presence of ChHV5 DNA sequences
in a global sample set of five species of clinically healthy marine turtles, using sequenced
PCR amplicons (Alfaro-Núñez & Gilbert, 2014; Alfaro-Núñez et al., 2014). In the same
studies, we also investigated the possibility that these viral amplicons have been integrated
in the turtle genome (Wang et al., 2013), and finding no evidence for this hypothesis, we
confirmed the presence of ChHV5 DNA in healthy individuals. We did emphasise the
presence of Glycoprotein B (gB) amplicons, a well-characterized protein involved in the
viral cell entry, in clinically healthy turtles. This immediately begs questions as: (i) if ChHV5
is the etiological agent for FP, how can it be found in asymptomatic animals; and (ii) how
do levels of ChHV5 in healthy animals compare to those originating from FP samples? To
investigate this, we aimed to determine the relative concentration of ChHV5 Glycoprotein
B (gB) to host nuclear DNA ratio in a sub-sample set from a recently published work
(Alfaro-Núñez & Gilbert, 2014) including FP positive and negative sea turtle tissue samples
using a real-time polymerase chain reaction (qPCR) assay in order to provide further
evidence of the ChHV5 latency distinctive feature.
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MATERIALS AND METHODS
Data collection
Our dataset consisted of: ten paired tumour and non-tumour tissue samples from cases of
FP in green turtles (Chelonia mydas) obtained fromwarmer climates in three geographically
distant populations; Hawaii in the Pacific, Turks & Caicos in the Caribbean, and Príncipe
Island off the Western coast of Africa. Five additional FP tumour and one non-tumour
samples from the same populations were also included. Moreover, 16 DNA samples from
four clinically healthy turtle species from other oceanic areas and several distant turtle
populations were analysed: six hawksbills (Eretmochelys imbricata) from Principe Island
and Qaru Island Kuwait; three loggerheads (Caretta caretta), two from Cyprus and one
rehabilitated in a Danish aquarium; two leatherbacks (Dermochelys coriacea) from Ghana;
and five DNA extracts from two green turtle individuals, one from Tortuguero (Costa Rica)
and one from Denmark (four DNA extracts). This last green turtle that originated from the
same previously mentioned Danish aquarium, was the only turtle that was sampled post
mortem, and as such multiple skin and internal organs samples were available for analysis.
In this study, a clinically healthy turtle is defined as an animal that exhibited no visual FP
tumours or any other clinical signs of illness.

Combined dermis and epidermis cross sections of the surface tissue samples (5–10 mm
depth) were taken from the trailing edge of the front flippers and neck of the turtles using
a scalpel. A standard protocol for tissue collection was generally followed in this study
(Dutton, 1996).

DNA was extracted from approximately 25 mg tissue samples using the DNeasy Tissue
Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s instructions. Samples were
incubated with agitation for 24 h at 56 ◦C. The samples were then centrifuged for 5 min
at 10,000 g to pellet any remaining cellular material and the supernatant was transferred
into a 2 ml DNeasy Mini spin column placed in a 2 ml collection tube and centrifuged
for 1 min at 8,000 g. Finally purified genomic DNA was eluted in 50 µl of Qiagen EB
buffer. Extraction blanks were included to monitor for contamination. All DNA extracts
and blanks were assessed and tested by singleplex PCR (Alfaro-Núñez & Gilbert, 2014) in
order to check for amplification of the correct target size, and thus to ensure presence of
ChHV5 and turtle DNA for quality control purposes.

All tissue skin samples were collected in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health
(Eighth Edition, 2011); and exported under relevant CITES permits (host institute permit
DK03). Collection of samples from Hawaii was approved by permit No: SWP I2010-03
issued by the IACUC at National Oceanic and Atmospheric Administration (NOAA). All
FP tumour samples were originated from turtles that stranded with terminal FP and tissues
were collected during post-mortem examination.

Approvals for the work in Turks and Caicos Islands were obtained through the
Department of Environment and Maritime Affairs (DEMA). Nesting beaches (some
within protected areas) were accessed with permission from landowners and DEMA. All
harvested turtles were sampled as part of the legal turtle fishery with permission from
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Table 1 List of primers used in this study. List of primer sets designed and tested for ChHV5 and endogenous turtle (nuDNA) DNA.

Primer set Targeted gene Primer sequence (5′to ’3) Length (bases)

UL27a Viral ChHV5 (Glycoprotein B gene UL27) F: CTCCGGATGGTCGCTGGC 143
R: CTAGATACATACTGGCCRTGCTCGTC

nuDNAa Turtle genomic (nuclear DNA clone CM12) F: ACATTGTGCTAAAAAGCAATTGTGCCT 127
R: ACACCAGTCATGTGGAGTGGCA

Notes.
aFinal primer sets used in the qPCR assay performed accordingly to the highest quality control checks and provided the most consistent standards curves.

fishermen, processing plants and DEMA. Samples were exported using multiple CITES
permits and UK Animal Health and Veterinary Laboratories Agency permits. Permits and
sample collection from Principe Island were carried out in cooperation between Zoomarine
and the Faculty of Science and Technology at University of Algarve, Portugal.

Most healthy tissue samples were collected from necrotic stranded turtles. Samples from
Kuwait and Costa Rica were originated from live animals following protocols approved by
Kuwaiti Coast Guard and Universidad de Costa Rica (UCR) in cooperation with the Costa
RicanMinistry of Environment andEnergy (MINAE), respectively. Tissue sample collection
followed different protocols from our various collaborators, however the majority were
obtained from either skin of front flipper or neck of the turtles following the standard
procedure for collection of turtle tissue samples (Dutton, 1996).

Real-time qPCR assay
The DNA quantification assay was developed and tested on a Roche LightCycler 480
Real-time PCR System using SYBR Green chemistry. Although SYBR Green chemistry is
less target specific than motif-specific probes such as TaqMan, we selected the former due
to its greater flexibility (Wales et al., 2012), thus increasing our chances of amplifying DNA
sequences of targets that could contain unknown variation (which given the paucity of
comparative ChHV5 sequence available, is a distinct possibility).

Two sets of oligonucleotide primers designed to target highly conserved markers in
ChHV5 Glycoprotein B (gB) gene UL27 and endogenous turtle (nuDNA) nuclear clone
CM12 DNA were used for the qPCR assay (see Table 1).

These two set of primers provided the most consistent standards curves (empirically
3.32 cycles in a perfectly efficient reaction by checking if each 10% dilution crosses
the fluorescence threshold after the higher concentration (Wales et al., 2012). We used gB
primer set as it has been provenmore sensitive than other oligonucleotide primers available
(Alfaro-Núñez & Gilbert, 2014). Each 25 µL qPCR reaction contained 1 U AmpliTaq Gold
polymerase (Applied Biosystems, Foster City, CA, USA), 1X AmpliTaq Gold buffer, 2.5
mMMgCl2, 0.2 mM dNTPs, 0.4 mM primers, 1 µL 1X SYBR Green/ROXmix (Invitrogen,
Carlsbad, CA, USA), and 1 µL of template DNA. Cycling conditions for the qPCR assay
were as follows: 95.0 ◦C for 10 min enzyme activation, 50 cycles of 95.0 ◦C for 30 s,
60.0 ◦C for 1 min, and 72.0 ◦C for 1 min, followed by a melting (disassociation) curve. In
order to monitor amplification dynamics and identify amplification inhibition and other
experimental errors that may not be observed when only testing undiluted samples, each
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sample was tested in two dilution series, with a template DNA at concentrations of: 100%,
10%, and 1%; and 100%, 50% and 25%, respectively. A negative blank control was also
included for all qPCR runs. Moreover, a series of dilutions of a standard tumour sample,
obtained from our collaborators in Hawaii (Work et al., 2009) was included for every qPCR
run, which served as positive quality control and optimized the obtained cycle threshold
(Ct ) values (Wales et al., 2012).

In order to estimate the absolute concentration of viral gB and endogenous turtle nuDNA
markers perµL ofDNA extract in each individual specimen, a comparisonwasmade against
a well-characterized sample, Cm-TCFP-14 (standard sample). PCR amplicons of viral gB
and nuDNA markers were measured on a Qubit 2.0 fluorometer (Life Technologies,
Carlsbad, CA) and after accounting for the specific mass of each amplicon, diluted to
make standard series from 108 to 101 markers per µL. These standards were then used
in the qPCR analyses as calibration for the viral gB and nuDNA concentrations in the
different extracts. In order to assess nucleic acids loads relationship between viral gB and
turtle nuclear DNA, the ratio of viral gB to turtle nuclear DNA was calculated. To test for
significant differences in media levels of DNA concentrations, we used the non-parametric
method Mann–Whitney–Wilcoxon test (W-t), and for the means, parametric method
t -test (t-t) were applied to evaluate ratios dataset using r v 3.1.0 (Team, 2008). Although
the starting tissue mass was only estimated to be similar between all samples, the estimated
nuDNA levels were overall consistent (Fig. 2A), with the exception of exceedingly high
values of clinically healthy tissue from one of the green turtles taken post mortem from
an individual held in a Danish aquarium. The tissue samples were directly frozen in the
absence of preservative (−18 ◦C) andDNAwas extracted only 12 h later, whichmay explain
the particularly high quality. However, no significant difference was seen in the nuDNA
concentration between the three groups (W-t, p= 0.53; and t-t, p= 0.69). When adjusting
for estimated original tissue mass and DNA extraction elute volume (50 µL DNA extract
to 25 µL PCR reaction product), these figures represent 9.9E+04 (FP tumour), 3.7E+01 (FP
non-tumour) and 1.0E+04 (clinically healthy animal tissue) copies per mg tissue analysed.
Detailed list of samples analysed in this qPCR assay listed by species and population; and
value results obtained are listed in Table 2 and Data S1 —Copy number loads of gB and
nuDNA per turtle sample grouped by health status tissue.

RESULTS
Consistent with previous observations (Quackenbush et al., 2001; Work et al., 2009), we
observed that the highest viral loads (average ratio of 15.61, s ± 12.5) were in FP tumour
samples, while the ratio of viral to nuclear DNA in FP non-tumour samples from FP
infected animals were low to undetectable (average ratio of 0.02, s ± 0.00). However,
tissue samples from clinically healthy animals were found to contain significantly higher
viral loads of gB (average ratio of 6.03, W-t, p= 0.008, t-t, p= 0.002) than non-tumour
samples from FP exhibiting turtles (Fig. 1).

Although the starting tissue mass was only estimated to be similar between all samples,
the estimated nuDNA levels were overall consistent (Fig. 2A). Based on standard curve,
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Table 2 Detailed list of samples analysed in the qPCR assay listed by type of tissue, and providing Ct value results from the DNA quantification. List of DNA extract
samples analysed for quantification of Glycoprotein B (gB) to endogenous nuclear host (nuDNA), including; sample ID, species, type of tissue, population origin, cycle
threshold values per marker, estimated copy number and calculated ration gB/nuDNA.

Health status Sample ID Species Population
(sample origin)

Ct turtle
nuDNA

Ct ChHV5
gB

nuDNA
copy
number

ChHV5
gB copy
number

Ratio copy
number
gB/nuDNA

Cm-HaFP-11neck Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

23.06 22.70 2,630 414 0.16

Cm-HaFP-14RHF Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

20.93 18.25 23,400 155,000 6.62

Cm-HaFP-2LHF Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

24.12 17.14 2,130 118,778 55.76

Cm-HaFP-3LHF Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

24.12 20.93 925 10,450 11.29

Cm-HaFP-4neck Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

23.89 20.98 1,073 10,120 9.44

Cm-HaFP-8maxilla Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

20.45 16.81 22,420 214,279 9.56

Cm-PiFP-04 Chelonia mydas
(green)

Principe Island, Western
Africa

16.90 18.51 94,911 49,335 0.52

Cm-PiFP-20 Chelonia mydas
(green)

Principe Island, Western
Africa

25.95 20.71 659 17,568 26.67

Cm-PiFP-80 Chelonia mydas
(green)

Principe Island, Western
Africa

20.01 16.79 12,915 148,669 11.51

Cm-PiFP-82 Chelonia mydas
(green)

Principe Island, Western
Africa

24.10 24.96 937 5,398 5.76

Cm-TCFP-14 Chelonia mydas
(green)

Turks & Caicos Islands,
Caribbean Sea

20.80 18.88 8,244 56,811 6.89

Cm-TCFP-2 Chelonia mydas
(green)

Turks & Caicos Islands,
Caribbean Sea

22.63 20.62 2,753 87,306 31.71

Cm-TCFP-3 Chelonia mydas
(green)

Turks & Caicos Islands,
Caribbean Sea

22.57 21.80 1,144 40,962 35.82

Cm-TCFP-5 Chelonia mydas
(green)

Turks & Caicos Islands,
Caribbean Sea

21.18 21.15 2,789 62,148 22.28

FP tumour

Cm-TCFP-8 Chelonia mydas
(green)

Turks & Caicos Islands,
Caribbean Sea

27.75 26.14 21 4 0.19

Cm-HaT-8 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

21.73 24.01 10,300 72 0.01

Cm-HaT-11 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

20.04 26.80 3,900 416 0.11

(continued on next page)
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Table 2 (continued)

Health status Sample ID Species Population
(sample origin)

Ct turtle
nuDNA

Ct ChHV5
gB

nuDNA
copy
number

ChHV5
gB copy
number

Ratio copy
number
gB/nuDNA

Cm-HaT-14 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

20.36 28.96 10,319 61 0.01

Cm-HaT-2 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

25.16 31.39 1,093 0 0.00

Cm-HaT-3 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

23.83 30.82 1,115 18 0.02

Cm-HaT-4 Chelonia mydas
(green)

Hawaii, USA, Northern
Pacific

26.54 31.13 196 15 0.08

Cm-PiT-04 Chelonia mydas
(green)

Principe Island, Western
Africa

21.71 27.63 4,341 142 0.03

Cm-PiT-20 Chelonia mydas
(green)

Principe Island, Western
Africa

21.04 27.26 15,357 0 0.00

Cm-PiT-51 Chelonia mydas
(green)

Principe Island, Western
Africa

21.53 29.20 11,216 0 0.00

Cm-PiT-80 Chelonia mydas
(green)

Principe Island, Western
Africa

20.64 26.75 7,910 0 0.00

FP non-tumoured

Cm-PiT-82 Chelonia mydas
(green)

Principe Island, Western
Africa

20.03 29.54 12,751 42 0.00

Cc-CyT-275 Caretta caretta
(loggerhead)

Northen Cyprus,
Mediterranean

23.51 23.18 1,566 16,905 10.80

Cc-CyT-346 Caretta caretta
(loggerhead)

Northen Cyprus,
Mediterranean

23.06 26.84 2,090 116 0.06

Cc-DkT-01 Caretta caretta
(loggerhead)

Denmark, Danmarks
Aquarium (not naturally)

23.32 23.43 1,769 14,401 8.14

Cm-DkT-01liver Chelonia mydas
(green)

Denmark, Danmarks
Aquarium (not naturally)

17.18 29.83 182,563 0 0.00

Cm-DkT-01mouth Chelonia mydas
(green)

Denmark, Danmarks
Aquarium (not naturally)

18.53 29.41 33,367 45 0.00

Cm-DkT-01neck Chelonia mydas
(green)

Denmark, Danmarks
Aquarium (not naturally)

20.34 26.93 11,959 66 0.01

Cm-DkT-01rearLF Chelonia mydas
(green)

Denmark, Danmarks
Aquarium (not naturally)

22.48 26.25 3,031 379 0.13

Cm-ToT-37 Chelonia mydas
(green)

Costa Rica, Tortuguero,
Caribbean coast

24.85 25.08 663 4,998 7.54

Dc-GhT-22 Dermochelys coriacea
(leatherback)

Ghana, Western Africa 21.89 28.02 4,426 95 0.02

(continued on next page)
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Table 2 (continued)

Health status Sample ID Species Population
(sample origin)

Ct turtle
nuDNA

Ct ChHV5
gB

nuDNA
copy
number

ChHV5
gB copy
number

Ratio copy
number
gB/nuDNA

Dc-GhT-23 Dermochelys coriacea
(leatherback)

Ghana, Western Africa 22.63 21.95 2,753 37,205 13.51

Ei-KuT-kw5 Eretmochelys
imbricata (hawksbill)

Qaru Island, Kuwait,
Persian Gulf

20.10 27.12 13,949 192 0.01

Ei-KuT-kw7 Eretmochelys
imbricata (hawksbill)

Qaru Island, Kuwait,
Persian Gulf

21.29 26.30 6,503 230 0.04

Ei-PiT-25 Eretmochelys
imbricata (hawksbill)

Principe Island, Western
Africa

23.84 23.02 1,267 18,732 14.78

Ei-PiT-46 Eretmochelys
imbricata (hawksbill)

Principe Island, Western
Africa

23.68 22.89 1,404 20,361 14.50

Ei-PiT-71 Eretmochelys
imbricata (hawksbill)

Principe Island, Western
Africa

22.49 22.11 3,012 33,577 11.15

Clinically healthy

Ei-PiT-85 Eretmochelys
imbricata (hawksbill)

Principe Island, Western
Africa

24.21 23.29 1,000 15,754 15.76
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Figure 1 Boxplot showing viral g B[i] load ratios by main three different health status categories.
Proportional ratio between Glycoprotein B (gB) to endogenous nuclear (nuDNA) for the main three dif-
ferent health status categories of sea turtle tissue samples analysed. This ratio standardises values into a
range from ≤1 indicating higher nuDNA than viral gB; to any value ≥1 which indicates higher viral gB
loads than endogenous nuDNA.

we estimate that the median of gB is approximately 4.9E+04 copies/µL DNA extract in FP
tumours, 1.8E+01 copies/µL in non-tumour tissue from FP animals and 5.8E+04 copies/µL
in clinically healthy turtles (Fig. 2B).

DISCUSSION
ChHV5 has been associated as primary etiological agent of FP by three lines of evidence.
First, every tumour analysed by polymerase chain reaction (PCR) has yielded ChHV5
sequences (Herbst et al., 2004;Alfaro-Núñez & Gilbert, 2014), second, tumours occasionally
show epidermal viral inclusions with ultrastructural similar to herpesvirus-like particles
(Jacobson et al., 1991); and third, experimental transmission of the disease using cell-free
tumour extracts inoculated into healthy turtles resulted in the development of FP disease
(Herbst et al., 1995). Nevertheless, the role of ChHV5 as causal agent for FP remains
inconclusive as; (i) in vitro culturing has been repetitively unsuccessful and (ii) ChHV5
DNA can be also found in asymptomatic turtles (Alfaro-Núñez & Gilbert, 2014).

The observation of higher levels of ChHV5 DNA in tumour versus non-tumour samples
from FP exhibiting turtles was expected, as ChHV5 DNA burdens are increased within
tumour tissues (see Table 2 and Data S1—copy number loads of gB and nuDNA per turtle
sample grouped by health status tissue). What is remarkable though, is that on average,
clinically healthy turtle samples exhibited viral to host DNA ratios that were significantly
higher than those within non-tumour affected tissues of FP exhibiting turtles (Fig. 2B). A
key fact in this regard is that no visually observable FPs were reported for any of the ‘healthy’
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Figure 2 Boxplot showing g B[i] and nuDNA copy numbers by main three different health status cate-
gories. (A) Estimated copy number of endogenous nuclear DNA for the main three different health status
categories of sea turtle tissue samples analysed; (B) Estimated copy number of viral Glycoprotein B[i] ac-
cording to the main three different health status categories of sea turtle tissue samples analysed.

turtles sampled during the tissue collection. Although ChHV5 DNA has previously been
detected in skin samples from clinically healthy green, loggerhead and olive ridley turtles
(Herbst et al., 2008), these animals were from populations historically well documented
containing FP infected turtles.

We reiterate that the small number of samples analysed in this study represent a sub-
sample set from a larger number of turtle populations recently published work (Alfaro-
Núñez & Gilbert, 2014). Thus, all samples analysed here have been already detected viral
DNA positive by PCR providing further evidence of actual presence of the herpesvirus.
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Our results however provide first evidence of viral loads in multiple sub-samples of
clinically affected and healthy turtles from distant ocean basins across four species. In fact,
the ratios of gB to turtle nuDNA were actually very high (>10) in six of the clinically
healthy turtles (Fig. 1). These samples correspond to four hawksbill turtles from Principe
Island, Western Africa, which are known to share feeding grounds with green turtle
FP exhibiting populations (Duarte et al., 2012); one leatherback from Ghana and one
loggerhead in the Mediterranean (Table 2). FP has rarely been documented in hawksbill
(Herbst, 1994;D’Amato & Moraes-Neto, 2000) and leatherback (Huerta et al., 2000) species,
so the detection of ChHV5 gB DNA in these two species represent a quandary. Nuclear
DNA levels were consistent among samples and routine use of negative and positive
controls performed as expected, therefore, it is not suspected that these results are artefact
of procedure. Furthermore, as with most alphaherpesviruses ChHV5 primarily appears
to target skin tissue (Kang et al., 2008). Thus, the presence of ChHV5 gB DNA in skin
from clinically healthy animals may represent an early stage of infection which remains
in latency, and detection of viral concentrations in tumour-free animals may be a means
of identifying animals that will eventually develop FP tumours (Quackenbush et al., 2001)
subjected to the appropriate co-factors triggering the infection. The mechanism underlying
this phenomenon remains unclear and was not addressed in this study. There is no evidence
that immunosuppression is needed for FP development, but there is evidence that FP does
lead to immunosuppression in Hawaiian green turtles (Work et al., 2001).

The gB gene selected for this study is an envelope protein that is only found in large
amounts in intact virions undergoing lytic replication (Zhu et al., 2004). As in FP in turtles,
skin tumours are the only tissues where lytic replication with intact virions has been
consistently documented (Work et al., 2009), one would expect gB levels to be relatively
high in these tissues. Thus, we were anticipating and expecting high levels of ChHV5 gB
DNA in FP tumours, followed by relatively low in FP non-tumours and extremely low to
absent in healthy tissue samples. However, high levels of herpesviral DNA in skin from
clinically healthy animals suggest another not described process in regards to development
of ChHV5 latency.

Many herpesviruses are maintained in sensory neurons in a latent state in which no
clinical disease is produced and characterised by the repression of most viral lytic cycle
genes and the abundant expression of certain types of viral RNA (Kramer et al., 1998). Such
repression of viral protein synthesis during latency has led to the general view of latency
as being a quiescent and antigenically silent infection that is ignored by host immunity
(Ramachandran et al., 2010). However, very low levels of gene transcripts and proteins
from all kinetic classes of herpes simplex virus have been detected in latently laboratory
infected rodents (Feldman et al., 2002). Previous studies have detected nucleosomes on the
herpes simplex virus (HSV) genome during a lytic infection (Deshmane & Fraser, 1989)
that are not arranged in an equally spaced array like in cellular DNA. However, as in cellular
DNA, the promoter regions of several viral genes have been shown to be associated with
nucleosomes containing modified histone proteins that are generally found associated with
actively transcribed genes (Oh & Fraser, 2008). Because no histones were detected inside
HSV type 1 capsids, the viral genome probably starts to associate with histones after being
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transported from infecting virions into the host nucleus. This represents evidence that
a herpesvirus genome can remain intact in the host nucleus disassociated from the viral
envelope protection. Thus, we propose that a similar situation exists in turtles latently
infected with ChHV5, where our data provides evidence of gB DNA being consistently
present in clinically healthy marine turtles across four different species. We caution here
that our methods detect only a portion of the gB DNA and does not imply production of
lytic virus in normal skin from FP free animals.

While Koch’s postulates are still regarded as the most compelling proof of causation,
there are documented instances where disease agents cannot be cultured, yet are now known
to be causative (Lipkin, 2009), such as the herpes simplex and polio viruses. Although a 21st
century adaptation of Koch’s postulates (Fredericks & Relman, 1995) have been proposed
to reflect the introduction of culture-independent molecular methods, these updated
criteria are also not yet fulfilled by ChHV5. Thus, ChHV5’s association with FP remains
tantalising, yet unsolved.

In summary, our findings offer evidence that clinically healthy marine turtles from
distant sites worldwide where FP has not been reported yet across species carry ChHV5
DNA through persistent latent infections, often at very high levels. This in turn provides
additional evidence for hypotheses (Herbst & Klein, 1995; Van Houtan, Hargrove & Balazs,
2010) that ChHV5 is a near ubiquitous virus and alone does not cause infection, but
requires one or more possibly environmental or immune related co-factors or triggers to
induce FP.
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