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ABSTRACT
Background: Recently, emotion recognition has become a hot topic in human-

computer interaction. If computers could understand human emotions, they could

interact better with their users. This paper proposes a novel method to recognize

human emotions (neutral, happy, and angry) using a smart bracelet with built-in

accelerometer.

Methods: In this study, a total of 123 participants were instructed to wear a

customized smart bracelet with built-in accelerometer that can track and record

their movements. Firstly, participants walked two minutes as normal, which served

as walking behaviors in a neutral emotion condition. Participants then watched

emotional film clips to elicit emotions (happy and angry). The time interval between

watching two clips was more than four hours. After watching film clips, they walked

for one minute, which served as walking behaviors in a happy or angry emotion

condition. We collected raw data from the bracelet and extracted a few features from

raw data. Based on these features, we built classification models for classifying three

types of emotions (neutral, happy, and angry).

Results and Discussion: For two-category classification, the classification accuracy

can reach 91.3% (neutral vs. angry), 88.5% (neutral vs. happy), and 88.5% (happy

vs. angry), respectively; while, for the differentiation among three types of emotions

(neutral, happy, and angry), the accuracy can reach 81.2%.

Conclusions: Using wearable devices, we found it is possible to recognize human

emotions (neutral, happy, and angry) with fair accuracy. Results of this study may be

useful to improve the performance of human-computer interaction.

Subjects Kinesiology, Psychiatry and Psychology, Computational Science

Keywords Emotion recognition, Wearable smart device, Smart bracelet, Accelerometer

INTRODUCTION
The recognition of emotions plays an important role in human-computer interaction

(Chen et al., 2015). If a computer could recognize emotions, it would be able to interact

better with human being (Beale & Peter, 2008; Brave & Nass, 2003; Peter, Crane &

Beale, 2006). In psychology, emotion is defined as a complex state that consists of a

subjective experience (how we experience emotion), a physiological response (how our

bodies react to emotion), and an expressive response (how we behave in response to

emotion) (James, 1884; Smith & Lazarus, 1990). It suggests that the observable aspects of
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emotion (physiological and expressive components) could be used as indicators of

emotional state, such as facial expressions, speech, physiological parameters, gestures, and

body movements (Peter & Beale, 2008; Zhang et al., 2013).

Evidence exists that human emotions are expressed in walking (Karg, Kühnlenz & Buss,

2010; Montepare et al., 1999) to some extent. Michalak et al. (2009) found that both

sadness and depression can be recognized through walking styles. Crane & Gross (2007)

found that emotion is associated with body movements, including velocity, cadence, head

orientation, and shoulder and elbow range of motion. Montepare et al. (1999) reported

that human emotions can be identified through gait information. They found that among

emotions (neutral, happy, sad, and angry), sad and angry can be identified more easily

from gait information. Recently, a few studies have attempted to build computational

models for human identification using gait (Han & Bhanu, 2006; Kale et al., 2004).

However, computational methods of gait-based emotion detection have not yet been fully

established. More importantly, human emotions change over time, only if we can access

gait information ubiquitously, otherwise we are not able to implement real-time

recognition of emotions. Traditional methods (e.g. self-report, interviewing, and

observation) may lead to delayed reporting, which fail to meet the requirement.

The emergence of wearable smart devices shed light on this direction. Wearable smart

devices are accessories incorporating computer and advanced electronic technologies,

incorporated with various types of sensors. Taking the accelerometer sensor as an

example, it can serve as a tool for tracking and recording a user’s daily movements. Lee &

Mase (2002) found that it is possible to recognize human activities through the use of

wearable sensors. Bao & Intille (2004) placed wearable biaxial accelerometers at different

body positions to collect acceleration data for recognizing human activities. He & Jin

(2008) recognized human activities through the use of triaxial accelerometers. Sun et al.

(2010) and Kwapisz, Weiss & Moore (2011) recognized physical activities with the help of a

smartphone with built-in sensors. These studies motivate us to collect acceleration data as

a good representation of human activities, which may be beneficial to identify human

emotions in real-time.

In this paper, we propose to recognize human emotions (neutral, happy, and angry)

using wearable smart devices. We aim to build classification models for differentiating

different emotions, using human gait data collected from a smart device with built-in

accelerometer.

METHODS
The procedure of our work consists of four steps: (1) Data collection, (2) Data

preprocessing, (3) Feature extraction and selection, and (4) Model training. Methods and

procedures of this study have been approved by the Institutional Review Board of the

Institute of Psychology, Chinese Academy of Sciences, H15010.

Data collection
In this study, a total of 123 healthy postgraduate students (45 women and 78 men) were

recruited from the University of Chinese Academy of Sciences (UCAS). All participants
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were required to wear a customized smart bracelet with built-in accelerometer that can

track their movements. Specifically, the bracelet records movement behavior from

3-dimentional acceleration data (X axis: longitude; Y axis: latitude; Z axis: elevation).

Before the experiment, we tested the sensitivity of smart bracelet in different walking

style. The absolute value of smooth walking data (X axis) (see Fig. 1 red lines) were less

than 6 (m/s2), and many absolute value of race walking data (X axis) (see Fig. 2 red lines)

were greater than 6 (m/s2). Results indicated that the bracelet is effective for differentiating

smooth walking from race.

After validation, we run the experiment as follows. To avoid any environmental noise,

we selected a quiet room to conduct the experiment. In the room, the floor was covered by

a rectangular red carpet (length: 5 meters; width: 1 meter). All 123 participants were

required to wear the smart bracelet on their right wrist and ankle, then walked back and

forth on the carpet. In this study, the bracelet tracked a participant’s movements

continuously (five times per second), which generated time series data for further analysis.

Specifically, the experiment consists of three parts.

Firstly, participants were instructed to walk for two minutes, which served as walk in

neutral emotion.

Secondly, all participants were required to rate their angry emotion by a 10-point

Likert Scale (1 = Not angry to 10 = Extremely angry). They then watched a 2-min film clip

to elicit angry (Yan et al., 2014). This clip tells a short story about a girl who was run

over by a vehicle. As she lay bleeding on the road, at least two persons skirted around her

boy and just ignored. Eventually, the girl died. After watching the clip, participants

were required to walk for one minute, i.e., walk in angry as expected. After walking, they

were asked to rate their emotion (angry) for the second time.

Thirdly, to minimize the effects of angry emotion, we conducted third part more than

four hours after the second part. Participants were instructed to walk for two minutes, as

neutral walking behaviors. They were required to rate their happy emotion by a 10-point

Likert Scale (1 = A little happy to 10 = Extremely happy), and then watched a 1.5-min

film clip to elicit the emotion of happy (Yan et al., 2014). This film clip is a funny cartoon.

After watching the clip, participants were required to walk for another one minute,

i.e., walk in happy, and they rated their happy emotion after then.

The mean of self-reported angry and happy emotions was shown in Fig. 3. Results

indicated that the angry and happy videos had evoked the desired emotional response.

To avoid cold-start effect of walk in neutral, we only examined a participant’s

movements within the last minute. Therefore, for each one emotion condition, the time

series has the same length (one minute).

Data preprocessing
The data preprocessing is done as follows.

Firstly, as unexpected walking vibrations might cause noise in data collection, we used

Moving Average Filter to address this issue.

Filters are functions that convert one time series into another. By choosing appropriate

filter, certain patterns in the original time series can be eliminated in the new one.
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Moving Average Filter is a kind of low-pass filter, which removes high frequency

components and yields an estimate of the slow-moving trend. It operates by averaging a

number of points from the input signal to generate a new point in the output signal. The

convert process is defined as:

Output ½i� ¼ 1

w

Xw�1

j¼0

Input ½i þ j� (1)

Input refers to the input signal (original time series data recorded by the bracelet),

Output refers to the output signal (new time series data), and w refers to the number of

points used to generate a new point. In this study, we set w ∈ {3, 5} (Cui, Li & Zhu, 2015;

Ma, 2013).

Figure 1 Data record produced by smooth walking (X axis).

Figure 2 Data record produced by race walking (X axis).
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Secondly, we reduced data redundancy. Since walking can be considered as a set of

repetitive behaviors, a long-term data collection may lead to data redundancy, which can

cause inefficiency in computation.

As the smart bracelet can track a participant’s movements continuously, we are able to

get a time series composed of 300 (5 � 60 = 300) sets of 3-dimentional acceleration

data (x, y, z) within one minute. To cope with such data effectively, we used sliding

window (windowsize = 128) to divide the original time series into segments with equal

length. Each segment can be regarded as a new time series (a data sample). In order to

ensure an overlap ratio of 50% (Cui, Li & Zhu, 2015; Xue & Jin, 2011), the sliding

step was set as 64. For example, for each user, the original time series {(x1, y1, z1), : : : ,

(x300, y300, z300)} can be divided into three segments, such as {(x1, y1, z1), : : : , (x128,

y128, z128)}, {(x65, y65, z65), : : : , (x192, y192, z192)}, and {(x129, y129, z129), : : : , (x256, y256,

z256)}. Each segment consists of 128 sets of 3-dimensional acceleration data. Because

of the limited size (less than 128), the rest of data {(x193, y193, z193), : : : , (x300, y300, z300)}

would be removed.

After preprocessing, we can reduce data redundancy and increase our sample size by

three times, which is beneficial to build classification models.

Feature extraction and selection
In this paper, three kinds of features are extracted: temporal domain, frequency domain

and temporal-frequency domain features.

Temporal domain features

For any participant’s data on each one of three axes, we calculated skewness (St), kurtosis

(Kt), and standard deviation (�t), in which, t denotes the axis label (t ∈ {x, y, z}).

In addition, we also estimated correlations between every two axes.

Figure 3 The mean of self-reported emotions (angry and happy).
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Specifically, skewness refers to the asymmetry of the probability distribution of data,

which is defined as:

St ¼
1
n

Pn�1

i¼0

ðxti � �xtÞ3

1
n

Pn�1

i¼0

ðxti � �xtÞ2
� �3

2

(2)

where xti refers to acceleration data on the t axis, n refers to the width of a segment, and �xt

refers to a mean value of all data on t axis.

Kurtosis measures the flatness of the probability distribution, which is defined as:

Kt ¼
1
n

Pn�1

i¼0

ðxti � �xtÞ4

1
n

Pn�1

i¼0

ðxti � �xtÞ2
� �2

(3)

Standard deviation measures how spread out a distribution is, which is defined as:

�t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn�1

i¼0

xti � �xt
� �2

vuut (4)

Correlation defines the degree to which two variables vary together, or a measure of the

intensity of the association between two variables, which is defined as:

Pt1;t2 ¼
Covðt1; t2Þ
�t1�t2

Covðt1; t2Þ ¼ E½t1 � Eðt1Þ�½t2 � Eðt2Þ�
(5)

where Pt1,t2 refers to the correlation coefficient between every two axes (t1 axis and

t2 axis), Cov(t1, t2) refers to the covariance between every two axes, and E(t1) refers to

a mean value of all data on the t1 axis.

Frequency domain features

In addition to temporal domain features, we also converted the acceleration data from its

original domain (temporal domain) to the frequency domain. For any participant’s data

on each axis, we calculated the mean value and the standard deviation of Power Spectral

Density (PSD), which are frequency domain features. Specifically, PSD measures one

signal’s power intensity in the frequency domain. The mean value of PSD represents

the average power per unit of bandwidth, and the standard deviation of PSD represents

the degree of dispersion in terms of power.

Temporal-frequency domain features
After extracting temporal and frequency domain features, we combine these two kinds of

features as a third kind of features, using Fast Fourier Transform (FFT) which converts

the sampled function from its original domain (time domain) to the frequency domain.
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The conversion is defined as:

Xt
k ¼

Xn�1

j¼0

xtj e
�i2�k

j
n k ¼ 0; � � � ; 31 (6)

For any user’s data on each one axis, we run FFT analysis. In this study, we selected the

first 32 amplitude coefficients as temporal-frequency domain features.

Feature selection
For each time series (i.e., each segment), we extract 38 features on each axis, to acquire a

total of 114 features (38 � 3 = 114) (See Table 1). To improve the performance of model

training, we run Principle Component Analysis (PCA) for feature selection, and we

selected the features with accumulative contribution rate over 95%.

We calculated the Load Matrix, acquiring the factor loading between the new features

and the original features. We chose the factor loading which is equal or greater than

0.71 to determine the original features mainly contributing to the new features. We found

the temporal domain features (standard deviation) and temporal-frequency domain

features (coefficient of FFT) are highest contribution to the new features.

Model training
For differentiating three emotions (neutral, happy, and angry), we trained classification

models using WEKA, and four different algorithms (decision tree, support vector

machine, random forest, and random tree) were used to build classification models,

respectively.

Decision Tree is a method commonly used in classification learning. In this study,

parameters of the Decision Tree model were defined as: J48 -C 0.25 -M 2. The parameter

C serves to set confidence threshold for pruning, and the parameter M serves to set

minimum number of instances per leaf.

Support Vector Machine (SVM) is an algorithm, which constructs hyperplanes in a

high-dimensional space for classification. In this study, parameters of the SVM model

were defined as: LibSVM -S 0 -K 2. The value of parameter S (S = 0) indicates that

C - SVC type of SVM is used, and the value of parameter K (K = 2) indicates that the

Radial Basis Function (RBF) is selected as the kernel of SVM.

Random Forest is a meta-estimator that fits a number of decision tree classifiers on

various sub-samples of the dataset. In this study, the parameter of the Random Forest

model was defined as: RandomForest -I 10. The value of parameter I indicates that how

many decision trees are constructed.

Random Tree is a method for constructing a tree or tree-map. In this approach, a

tree or tree-map is formed by a stochastic process. In this study, the parameter of the

Random Tree model was defined as: RandomTree -M 1.0. The parameter M serves to set

minimum number of instances per leaf.

In this study, we applied 10-fold cross validation on training models. The performance

of classification models were evaluated by examining the emotion recognition rate (Q),

which is defined as:

Zhang et al. (2016), PeerJ, DOI 10.7717/peerj.2258 7/14

http://dx.doi.org/10.7717/peerj.2258
https://peerj.com/


Q ¼ The number of samples which are classified correctly

The total number of samples
(7)

RESULTS
Two-category classification
For two-category classification, we examined the performance of models in differentiating

every two emotions. We eliminated the noise from dataset using a Moving Average Filter,

and selected features using PCA. During the noise removal process, w is set as 3 or 5,

which allows us to examine the classification performance according to w.

Differentiation between neutral and angry
For the differentiation between neutral and angry, the number of features after PCA was

shown in Table 2. The classification performance is shown in Table 3.

Results showed that, for differentiating neutral from angry, the overall classification

accuracy was over 61.5%. The performance of models using data collected fromwrist were

better than those using data collected from ankle. When we examined data collected from

wrist-worn accelerometers with w = 5, we got the best classification accuracy (Q = 91.3%)

using the LibSVM algorithm.

Differentiation between neutral and happy

For the differentiation between neutral and happy, the number of features after PCA was

shown in Table 4. The classification performance can be shown in Table 5.

For differentiating neutral from happy, the overall classification accuracy was over

61.0%. When we examined data collected from wrist-worn accelerometers with w = 3, the

best classification accuracy is (Q = 88.5%) using LibSVM.

Differentiation between happy and angry
For the differentiation between happy and angry, the number of features

after PCA was shown in Table 6. The classification performance can be shown

in Table 7.

Table 1 All features extracted.

Features X Y Z

Temporal Skewness 1 1 1

Kurtosis 1 1 1

Standard deviation 1 1 1

Correlation coefficient 1 1 1

Frequency Mean of PSD 1 1 1

Standard deviation of PSD 1 1 1

Temporal-frequency FFT 32 32 32

Total 38 38 38
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Table 2 Number of features after PCA for differentiating neutral and angry.

w = 3 w = 5

Wrist 56 49

Ankle 59 53

Table 3 Classification performance for differentiating neutral and angry.

LibSVM DecisionTree RandomForest RandomTree

w = 3 Wrist 86.0% 76.2% 71.1% 65.7%

Ankle 72.5% 64.2% 63.8% 64.3%

w = 5 Wrist 91.3% 83.8% 82.8% 69.8%

Ankle 71.3% 61.5% 62.3% 61.9%

Table 4 Number of features after PCA for differentiating neutral and happy.

w = 3 w = 5

Wrist 61 55

Ankle 61 54

Table 5 Classification performance for differentiating neutral and happy.

LibSVM DecisionTree RandomForest RandomTree

w = 3 Arist 88.5% 77.8% 64.9% 61.0%

Ankle 80.9% 73.1% 65.7% 63.0%

w = 5 Wrist 78.2% 67.7% 63.1% 62.3%

Ankle 71.7% 62.4% 61.5% 62.6%

Table 6 Number of feature after PCA for differentiating neutral and happy.

w = 3 w = 5

Wrist 56 49

Ankle 59 53

Table 7 The classification accuracy for differentiating happy and angry.

LibSVM DecisionTree RandomForest RandomTree

w = 3 wrist 88.5% 83.3% 73.8% 68.1%

Ankle 79.1% 70.1% 65.3% 60.6%

w = 5 Wrist 82.5% 72.9% 66.3% 63.1%

Ankle 71.1% 60.4% 62.0% 60.9%
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For differentiating happy from angry, the overall classification accuracy was over

60.4%. When we examined data collected from wrist-worn accelerometers with w = 3, the

best classification accuracy is (Q = 88.5%) on LibSVM.

Three-category classification
Besides conducting two-category classification, we also examined the classification

performance for differentiating three emotions (neutral, happy, and angry). For the

three-category classification, the number of feature after PCA was shown in Table 8.

The classification performance can be shown in Table 9.

Results showed that, the overall performance of three-category classification is worse

than two-category classification. When we examined data collected from wrist-worn

accelerometers with w = 5, the best classification accuracy is (Q = 81.2%) using LibSVM.

DISCUSSION
In this paper, we used wearable devices (smart bracelets) to conduct a gait analysis on

123 participants to recognize their emotions. This study demonstrates that human

emotions (neutral, happy, and angry) are expressed in walking to some degree, and more

importantly, a real-time recognition of human emotions (neutral, happy, and angry)

can be realized by using wearable smart devices.

We found that human gait can be used to differentiate different emotions, which is

consistent with previous research (Montepare, Goldstein & Clausen, 1987;Michalak et al.,

2009). Results indicated that, for both two-category and three-category classification, the

highest classification accuracy can reach over 88%. As humans can recognize emotions from

signals (e.g. face and voice) with an accuracy of 70% - 98% (Takahashi, 2005; Bos, 2006), it

suggests that classification models on gait work fairly well. In addition, SVM classifiers

outperform other classifiers (e.g. Decision Tree, Random Forest, and Random Tree).

The models perform differently across different emotions. For neutral vs. non-neutral

classification, it was easier to identify neutral from angry than from happy, which is consistent

with other research on emotion recognition (Montepare, Goldstein & Clausen, 1987). We also

found that, when the number of categories (i.e. number of emotion types) increases, the

Table 8 Number of features after PCA for differentiating neutral, happy, and angry.

w = 3 w = 5

Wrist 56 49

Ankle 59 53

Table 9 Classification performance for differentiating neutral, happy, and angry.

LibSVM DecisionTree RandomForest RandomTree

w = 3 Wrist 79.6% 65.8% 59.0% 52.4%

Ankle 68.6% 60.1% 53.2% 49.3%

w = 5 Wrist 81.2% 70.6% 66.2% 56.6%

Ankle 62.3% 49.6% 52.4% 47.8%
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classification accuracy decreases. Probably it is partly due to an increasing complexity of the

classification task. More specifically, it might be challenging to recognize various types of

emotions within only one minute. If we can extend the period of observation, the

classification accuracy would be increased.

The placement of wearable smart devices at different body positions may influence the

performance as well. Results indicated that, in general, data collected from wrist might

be much more useful to recognize human emotions.

Our method is based on cut-edge technology (Montepare, Goldstein & Clausen, 1987;

Michalak et al., 2009; Sun et al., 2010). The customized smart bracelet is convenient to

wear for a long time, and the procedure of acceleration data collection is non-intrusive

and ecological. If we embed bluetooth in the bracelet to upload real-time walking

behavioral data, we are able to monitor emotion timely, which could be used on different

circumstances, such as monitoring emotion of mental disorders, children’s

psychological research, etc.

It is important to note the limitations of this study. In this study, we conducted the gait

analysis on a total of 123 participants, and the sample size is a bit limited. Collecting

data from a larger number of participants might further validate the modeling performance.

As all participants are Chinese, we do not know whether this method still works in other

countries. In addition, we are not sure whether there exist cultural differences in the

relationship between emotion and walking patterns. Because of the limited length of

observation (1 min), we cannot compare the classification accuracy among observation

periods with different lengths. Therefore, we cannot figure out the optimal observation time

window for recognizing human emotions. As we took each segment as one sample, and the

samples were classified independently from each other. We just looked into the classification

result of each sample. In the future work, for each participant, we may use the voting

method based on classification result of the segments to predict his/her emotion.

This study provides an innovative method for recognizing human emotions (neutral,

happy, and angry) in an efficient manner. Through the use of wearable smart devices, we

can recognize human emotions (neutral, happy, and angry) in real-time, which could be

beneficial to other research including human-computer interaction.

CONCLUSION
This paper built classification models for differentiating various emotions (happy, neutral,

and angry), using human gait data collected fromwearable smart devices. Results indicate

that it is efficient to recognize human emotions (happy, neutral and angry) by using a

wearable smart bracelet. This method can be helpful to realize an automatic recognition of

human emotions (neutral, happy, and angry) in human-computer interaction.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received support from National High-tech R&D Program of China

(2013AA01A606), National Basic Research Program of China (2014CB744600),

Zhang et al. (2016), PeerJ, DOI 10.7717/peerj.2258 11/14

http://dx.doi.org/10.7717/peerj.2258
https://peerj.com/


Key Research Program of Chinese Academy of Sciences (CAS) (KJZD-EWL04), and CAS

Strategic Priority Research Program (XDA06030800). The funders had no role in study

design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

National High-tech R&D Program of China: 2013AA01A606.

National Basic Research Program of China: 2014CB744600.

Key Research Program of Chinese Academy of Sciences (CAS): KJZD-EWL04.

CAS Strategic Priority Research Program: XDA06030800.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Zhan Zhang conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

� Yufei Y. Song conceived and designed the experiments, performed the experiments.

� Liqing Cui conceived and designed the experiments, performed the experiments.

� Xiaoqian Liu conceived and designed the experiments, performed the experiments,

reviewed drafts of the paper.

� Tingshao Zhu conceived and designed the experiments.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

Institute of Psychology, Chinese Academy of Sciences H15010.

Data Deposition
The following information was supplied regarding data availability:

The raw data has been supplied as Supplemental Dataset Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.2258#supplemental-information.

REFERENCES
Bao L, Intille SS. 2004. Activity recognition from user-annotated acceleration data. In: Pervasive

Computing. Berlin Heidelberg: Springer, 1–17.

Beale R, Peter C. 2008. The role of affect and emotion in HCI. In: Affect and Emotion in Human-

Computer Interaction. Berlin Heidelberg: Springer, 1–11.

Bos DO. 2006. EEG-based emotion recognition, the influence of visual and auditory stimuli.

Internal report. Enschede: Department of Computer Science, University of Twente, 1–17.

Zhang et al. (2016), PeerJ, DOI 10.7717/peerj.2258 12/14

http://dx.doi.org/10.7717/peerj.2258/supplemental-information
http://dx.doi.org/10.7717/peerj.2258#supplemental-information
http://dx.doi.org/10.7717/peerj.2258#supplemental-information
http://dx.doi.org/10.7717/peerj.2258
https://peerj.com/


Brave S, Nass C. 2003. Emotion in human–computer interaction. The Human-Computer

Interaction Handbook. Hillsdale: L. Erlbaum Associates Inc., 81–96.

Chen J, Hu B, Moore P, Zhang X, Ma X. 2015. Electroencephalogram-based emotion assessment

system using ontology and data mining techniques. Applied Soft Computing 30:663–674

DOI 10.1016/j.asoc.2015.01.007.

Crane E, Gross M. 2007.Motion capture and emotion: affect detection in whole body movement.

In: Affective Computing and Intelligent Interaction. Berlin Heidelberg: Springer, 95–101.

Cui L, Li S, Zhu T. 2015. Emotion detection from natural walking. PeerJ PrePrints 3:e1794

DOI 10.7287/peerj.preprints.1384v3.

Han J, Bhanu B. 2006. Individual recognition using gait energy image. IEEE Transactions on

Pattern Analysis and Machine Intelligence 28(2):316–322 DOI 10.1109/TPAMI.2006.38.

He Z-Y, Jin L-W. 2008. Activity recognition from acceleration data using AR model representation

and SVM. In: Proceedings of the 7th International Conference on Machine Learning and

Cybernetics. Vol. 4. Piscataway: IEEE, 2245–2250.

James W. 1884. II—What is an emotion? Mind os-IX(34):188–205

DOI 10.1093/mind/os-IX.34.188.

Kale A, Sundaresan A, Rajagopalan A, Cuntoor NP, Roy-Chowdhury AK, Krüger V,
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