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ABSTRACT

Phytosaurs are a clade of large, carnivorous pseudosuchian archosaurs from the
Late Triassic with a near cosmopolitan distribution. Their superficial resemblance to
longirostrine (long-snouted) crocodylians, such as gharials, has often been used in
the past to infer ecological and behavioural convergence between the two groups.
Although more than thirty species of phytosaur are currently recognised, little is
known about the endocranial anatomy of this clade. Here, we describe the endocranial
anatomy (including the brain, inner ear, neurovascular structures and sinus systems)
of the two non-mystriosuchine phytosaurs Parasuchus angustifrons (=“Paleorhinus
angustifrons”) and Ebrachosuchus neukami from the Late Triassic of Germany based
on digital reconstructions. Results show that the endocasts of both taxa are very similar
to each other in their rostrocaudally elongate morphology, with long olfactory tracts,
weakly demarcated cerebral regions and dorsoventrally short endosseous labyrinths. In
addition, several sinuses, including large antorbital sinuses and prominent dural venous
sinuses, were reconstructed. Comparisons with the endocranial anatomy of derived
phytosaurs indicate that Phytosauria is united by the presence of elongate olfactory
tracts and longitudinally arranged brain architecture—characters which are also shared
with Crocodyliformes. However, a substantial morphological variability is observed in
the cephalic and pontine flexure and the presence of a pineal organ across the different
phytosaur species. These results suggest that the endocranial anatomy in Phytosauria
generally follows a plesiomorphic pattern, with moderate variation within the clade
likely resulting from divergent sensory and behavioural adaptations.

Subjects Evolutionary Studies, Paleontology

Keywords Parasuchus angustifrons, Ebrachosuchus neukami, 3D visualisation, Digital endocast,
Archosauria, Pseudosuchia

INTRODUCTION

Phytosaurs are a group of fossil archosauriform reptiles commonly found in Upper
Triassic (c. 235-202 Ma) sediments in North America and Europe, and less commonly in
other regions such as India, Africa, East Asia, Madagascar and South America (Stocker ¢
Butler, 2013). Phytosaurs have usually been regarded as the earliest diverging group within
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the crocodylian stem-lineage Pseudosuchia (Sereno, 1991; Parrish, 1993; Brusatte et al.,
20105 Ezcurra, 2016), which together with Avemetatarsalia (pterosaurs, dinosaurs, birds)
form the clade Archosauria. One recent phylogenetic dataset has recovered Phytosauria

as a monophyletic clade just outside of and as a sister taxon to Archosauria (Nesbitt,
2011), although this result has not been supported by a recent comprehensive revision

of the phylogeny of early archosauriforms (Ezcurra, 2016). Morphologically, phytosaurs
resemble extant crocodylians, particularly longirostrine morphotypes such as gharials.
Members of both groups possess large elongate skulls equipped with conical teeth, rows of
sculptured osteoderms covering the axial and appendicular skeleton, and are characterised
by a quadrupedal, sprawling gate (Westphal, 1976). Evidence from taphonomy and
ichnofossils suggests that, similar to crocodylians, phytosaurs were generally aquatic

or semi-aquatic (Buffetaut, 1993; Renesto ¢» Lombardo, 1999), but were also capable

of terrestrial locomotion (Parrish, 1986). Although phytosaurs and the earliest fossil
crocodylians are significantly separated temporally (by about 100 million years) and
phylogenetically, gross morphological similarities between the two groups have often
been cited as evidence for ecological and behavioural convergence (Carmp, 1930; Anderson,
1936; Hunt, 1989; Hungerbiihler, 2002; Witzimann et al., 2014). However, phytosaurs are
defined by a number of osteological characters that differentiate them from crocodylians,
such as an elongate premaxilla, the caudal position of the external nares (which is

placed close to the orbit in phytosaurs, rather than at the tip of the rostrum), and the
absence of a secondary palate. Convergence in the form of a longirostrine skull shape

has occurred numerous times throughout the evolution of pseudosuchian archosaurs
(Brochu, 2001); presumably as an adaptation to a specific habitat and diet (e.g., piscivory)
(Pierce, Angielczyk ¢ Rayfield, 2008). However, the extent to which this osteological
convergence is also reflected in soft-tissue structures, such as the endocranial anatomy,
remains unclear. Neuroanatomical adaptations to a specific ecology or behaviour in
phylogenetically divergent groups as drivers for morphological similarities have been
suggested in avemetatarsalian (“bird-line”) archosaurs (Witmier et al., 2003).

In the past, research on phytosaurs has largely focussed on comparative osteology,
taxonomy and phylogenetic relationships. Due to their near-global geographic distribu-
tion but restricted temporal distribution phytosaurs have been used as index fossils in
biostratigraphy. In comparison, the reconstruction and study of the endocranial anatomy
of phytosaurs has received little attention (e. g., Cope, 1888; Case, 1928; Mehl, 1928; Camp,
19305 Chatterjee, 1978). Most recently, Holloway, Claeson ¢ O’Keefe (2013) described a
digital endocast of the derived mystriosuchine phytosaur Machaeroprosopus mccauleyi
(=“Pseudopalatus mccauleyi”) in order to evaluate the evolution of sensory systems in
archosaurs.

Here, we describe the endocranial anatomy (including the brain, inner ear, neurovas-
cular structures and sinus systems) of the two non-mystriosuchine phytosaurs Parasuchus
angustifrons (=““Paleorhinus angustifrons”) and Ebrachosuchus neukami (Butler et al.,
2014) (see Kammerer et al., 2016, for recent taxonomic revisions) (Fig. 1) based on digital
reconstructions. Further comparisons are made with existing reconstructions for other
phytosaurian and crocodylian taxa.

Lautenschlager and Butler (2016), PeerJ, DOI 10.7717/peerj.2251 2/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.2251

Peer

100 mm tq | l

Figure 1 Studied phytosaurian taxa. Physical specimen (A, C) and digital representation (B, D) of (A, B)
Parasuchus angustifrons (BSPG 1931 X 502) and (C, D) Ebrachosuchus neukami (BSPG 1931 X 501).

MATERIALS AND METHODS
Specimens

The studied specimens consist of the holotypes of Ebrachosuchus neukami (BSPG 1931
X 501; Bayerische Staatssammlung fiir Paldontologie und Geologie, Munich, Germany)
and Parasuchus angustifrons (BSPG 1931 X 502) (Kuhn, 1936; Butler et al., 2014). The
skull of Ebrachosuchus neukami is fully articulated and complete and preparation work
has removed most of the sandstone matrix, with the exception of most internal cavities,
which remain filled with matrix. The skull of Parasuchus angustifrons is articulated and
mostly complete apart from the premaxilla, of which only a small portion immediately
rostral to the external nares is preserved. Sandstone matrix remains within most of the
internal cavities. Both of the skulls have undergone some plastic deformation, primarily in
the form of dorsoventral compression, but are otherwise remarkably well preserved, with
minimum transverse distortion. Brittle deformation and fracturing are largely absent.

CT scanning and digital reconstruction

The holotypes of Ebrachosuchus neukami (BSPG 1931 X 501) and Parasuchus angustifrons
(BSPG 1931 X 502) were scanned at the Klinikum rechts der Isar (Munich) using a Siemens
SOMATOM Sensation 64 CT scanner. Datasets consisted of 1,634 slices (512 x 512 x 1,634
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pixels, 0.6 mm voxel size) for Ebrachosuchus neukami and 809 slices (512 x 512 x 1,634
pixels, 0.6 mm voxel size) for Parasuchus angustifrons. CT data sets are deposited with
the specimens in the BSPG collections and on Figshare (10.6084/m9.figshare.3443963;
10.6084/m9.figshare.3443960).

The respective CT data files were imported into Avizo 7.0 (Visualisation Science Group)
for image segmentation and digital reconstruction. Anatomical structures of interest
(endocasts, endosseous labyrinths, neurovascular and sinus structures) were labelled using
Avizo’s segmentation editor. The magic wand tool was used where possible to perform the
segmentation semi-automatically. In regions with poor contrast between matrix, bone and
structures of interest the paintbrush tool was used for manual segmentation. 3D surface
models and volumes were created to visualize the segmented structures and to illustrate
this article with traditional figures. In addition, surface models of the individual structures
were downsampled to a degree that allowed for small file sizes but preserved all details,
and were exported as separate OB]J files for the creation of the interactive 3D figures in
the supplementary material as outlined in Lautenschlager (2014) using Adobe 3D reviewer
(Adobe Systems Inc.).

As both taxa have been compressed dorsoventrally to a moderate amount, the resulting
endocasts were retrodeformed. For the retrodeformation process, the digital skull and
endocast models were scaled in dorsoventral direction using the “transform editor”
in Avizo. BSPG 1931 X 502 was scaled to the same dorsoventral dimensions as a less
compressed skull of Parasuchus hislopi (ISI R42, Indian Statistical Institute, Kolkata,
India), corresponding to a scaling factor of approximately 40%. The same scaling factor
was assumed for BSPG 1931 X 501 based on the fact that both specimens were found in
close proximity to one another on a single bedding plane and likely had a similar diagenetic
history (Butler et al., 2014).

RESULTS

Endocranial anatomy

The endocasts of Ebrachosuchus neukami and Parasuchus angustifrons are very similar in
their morphology. Both endocasts are elongate, straight (i.e. arranged horizontally) and
mediolaterally narrow (Figs. 2 and 3). Long olfactory tracts extend rostrally and are as long
as the main portion of the endocasts in each taxon. Fossae for olfactory bulbs are preserved
in both taxa, but only in Parasuchus angustifrons is a rostral separation into two olfactory
bulbs visible (Fig. 2B). The ventral extent could not be reconstructed as no bony structures
cover this region. The cerebrum and the cerebral hemispheres are only weakly demarcated
and form the widest part of the endocast in each taxon. Again, in Parasuchus angustifrons
the cerebral hemispheres are slightly more prominent than in Ebrachosuchus neukami.
The mid- and hindbrain region, including the cerebellum, is mediolaterally compressed
between the endosseous labyrinths in both taxa. Caudally, the endocasts increase in width
towards the foramen magnum. The floccular lobes, extending from the cerebellum, are
prominent but short. In comparison to the more oval-shaped morphology in Parasuchus
angustifrons, the floccular lobes are slightly dorsoventrally flattened in Ebrachosuchus
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Figure 2 Endocranial anatomy of Parasuchus angustifrons (BSPG 1931 X 502). Endocast of brain and
endosseous labyrinth in (A) left lateral and (B) dorsal view. Endocast in situ in (C) left lateral and (D) dor-
sal view with bone rendered semi-transparent.
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Figure 3 Endocranial anatomy of Ebrachosuchus neukami (BSPG 1931 X 501). Endocast of brain and
endosseous labyrinth in (A) left lateral and (B) dorsal view. Endocast in situ in (C) left lateral and (D) dor-
sal view with bone rendered semi-transparent.

neukami (Fig. 3A). In both taxa, the floccular lobes enter the vestibular apparatus of the
endosseous labyrinth, but do not extend beyond the rostral semicircular canal. Despite
the elongate morphology of the endocasts, the cephalic flexure (between the fore- and
mid-brain) and the pontine flexure (between the mid- and hindbrain) are pronounced in
the endocasts. The cast of the pituitary fossa is prominent and extends ventrally from the
ventral surface of the cerebrum. The pituitary fossae have equal dimensions and positions

in both taxa.
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The canals of the neurovascular structures were reconstructed for as far as indicated by
osteological correlates. Their arrangement and dimensions are similar in Ebrachosuchus
neukami and Parasuchus angustifrons. The optic nerve (CN II) and the oculomotor nerve
(CN III) canals could not be traced due to the lack of preserved bony structures on
the rostroventral part of the endocasts. The trochlear nerve canal (CN IV) is small and
originates from the ventral surface of the cerebrum, rostral to the trigeminal nerve (CN
V). The latter is prominent in both taxa and originates from the ventrolateral surface of
the midbrain region. A split into a rostrally directed ophthalmic branch (CN V;) and a
laterally projecting combined canal for the maxillary (CN V;) and mandibular (CN V3)
branches is evident in both endocasts. A subdivision of the latter two is not visible in
the CT scans, but most likely occurred further outside of the endocranial cavity as is the
plesiomorphic archosaurian condition (Witmer et al., 2008). The canal for the abducens
nerve (CN VI) originated from the ventral surface of the endocast below the trigeminal
nerve canal. The canal for the facial nerve (CN VII) is situated caudal to that of the abducens
nerve. The vestibulocochlear nerve canal (CN VIII) could not be reconstructed in either
taxon as the resolution of the CT scans is not clear enough in this region to identify the
nerve canal confidently. A large metotic fissure is present in both taxa, transmitting the
glossopharyngeal (CN IX), the vagus (CN X) and the spinal accessory nerves (CN XI). The
hypoglossal nerve (CN XII) exits the braincase via a single nerve canal. A further foramen
located dorsal to the hypoglossal nerve foramen has a blind ending and likely represents a
diverticulum of the longitudinal sinus (Witmer ¢ Ridgely, 2008; Witmer & Ridgely, 2009).

Due to the resolution of the CT data set only the larger vascular structures could be
reconstructed. The roots of the caudal middle cerebral vein are prominent and originate
from the cerebellum rostrodorsally to the floccular lobes in Ebrachosuchus neukami and
Parasuchus angustifrons. They can be traced caudally through the bone for a short extent
exiting the braincase near the supraoccipital-parietal suture. Ventrally, the canals for the
carotid artery originate from the pituitary fossa and exit the basisphenoid ventrolaterally.

In comparison to the other endocranial components, the endosseous labyrinths of
Ebrachosuchus neukami and Parasuchus angustifrons show more prominent differences
(Fig. 6). In general, the labyrinths are dorsoventrally short and compact. The vestibular
apparatus approaches a rectangular outline and is rostrocaudally elongate in both taxa, but
more pronounced in Ebrachosuchus neukami. This may partly due to the preservation of
Parasuchus angustifrons, which seems to have been dorsoventrally compacted to a moderate
extent (Figs. 6A and 6B). In Ebrachosuchus neukami, the rostral semicircular canal is the
longest and describes a somewhat quadrangular shape, whereas the caudal semicircular
canal is more oval-shaped (Figs. 6C and 6D). The lateral semicircular canal is short and
compact. The semicircular canals in Parasuchus angustifrons appear, as far as preserved,
dorsoventrally compressed and with more uniform dimension than in Ebrachosuchus
neukami, although this is partly a preservational artefact. The cochlear ducts are short in
Ebrachosuchus neukami and Parasuchus angustifrons and extend largely ventrally, with only
a slight medial component. The fenestra vestibuli were reconstructed in Ebrachosuchus
neukami and Parasuchus angustifrons.
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Figure 4 Paranasal sinuses of Parasuchus angustifrons (BSPG 1931 X 502). Sinuses in (A) and (B) in
rostrolateral view and (C) and (D) dorsal view. Sinuses in (B) and (D) in situ with bone rendered semi-
transparent.
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Figure 5 Paranasal sinuses of Ebrachosuchus neukami (BSPG 1931 X 501). Sinuses in (A) and (B) in
rostrolateral view and (C) and (D) dorsal view. Sinuses in (B) and (D) in situ with bone rendered semi-
transparent.

As with the endocranial cavities, the arrangement and extent of the various sinuses
is similar in Ebrachosuchus neukami and Parasuchus angustifrons (Figs. 4 and 5). The
antorbital sinus is large and fills the antorbital fenestra, as well as the space between the
palate and the palatal shelf of the maxilla. A small diverticulum also appears to enter the
jugal via a foramen near the ectopterygoid-jugal contact (Butler et al., 2014) in both taxa.
Rostrally, a large canal is present, which opens into the antorbital cavity. The canal likely
transmitted neurovascular structures, including the maxillary branch of the trigeminal
nerve. The region rostral to the external nares comprises a large air-filled space for the
entire length of the premaxilla medial to the neurovascular canal supplying the alveolar
cavities. This region may have housed a premaxillary sinus (most likely as extension of the
antorbital sinus) and/or neurovascular bundles (Butler et al., 2014) as in extant crocodiles
(Leitch & Catania, 2012). The airway is simple and unbranched in Ebrachosuchus neukami
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Figure 6 Endosseous labyrinths. Parasuchus angustifrons (BSPG 1931 X 502) (A) left labyrinth, (B) right labyrinth. Ebrachosuchus neukami (BSPG
1931 X 501) (C) left labyrinth, (D) right labyrinth. Parts reconstructed and reflected from the opposite side (where preserved) shown in different
colour.
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and Parasuchus angustifrons and connects the external nares with the choanae and the
olfactory region.

In Parasuchus angustifrons, the ectopterygoid is pierced medially by a single oval
foramen opening into a large cavity within the bone (Fig. 4). No further foramina
are identifiable, suggesting the foramen connected to a pneumatic recess rather than
transmitting neurovascular structures. The pneumatic recess is either part of the antorbital
sinus or a separate ectopterygoid sinus of unknown source (Witmer, 1997). The respective
region is only partly preserved and damaged, but a similarly large cavity appears to be
absent in Ebrachosuchus neukami. A further sinus located dorsal to the brain endocast is
present in Ebrachosuchus neukami and Parasuchus angustifrons. While this structure could
be interpreted as part of the paratympanic sinus, there is no clear connection to the middle
ear visible in the datasets. In both taxa, it covers the cerebellum dorsally. In Ebrachosuchus
neukami two small diverticula extend rostrally covering the cerebrum dorsolaterally. These
diverticula are not visible in Parasuchus angustifrons. Laterally, subsidiary canals of the
tympanic sinus are present in both taxa, but more pronounced in Parasuchus angustifrons,
in which they exit the braincase via a foramen between the parietal and the prootic and
connect to the caudal tympanic recess. This sinus possibly had a further connection to the
quadrate foramen, but the pathway for this canal is not indicated by osteological correlates.
The sinus is therefore most likely a combination of the endocranium and the dural venous
sinuses.

Comparison with other phytosaurs

A comparison with other phytosaurs shows that, while similar to each other, the endocranial
anatomy of Ebrachosuchus neukami and Parasuchus angustifrons differs in several aspects
from that of more derived taxa (Fig. 7). However, it should be noted that accurate
comparisons are exacerbated by the scarcity of detailed reconstructions of endocasts.
Existing reconstructions are mostly based on physical casts (natural and artificial) or
interpretive drawings (Cope, 1888; Case, 1928; Mehl, 1928; Camp, 1930; Chatterjee, 1978).
All phytosaur endocasts appear to share a basic bauplan with the individual brain regions
arranged longitudinally (in contrast to a more vertical arrangement such as seen in
birds) and a mediolaterally narrow morphology. The olfactory tracts are significantly
elongate in all taxa (as far as preserved/reconstructed), making up approximately half
the length of the entire endocasts. Caudal to the olfactory tracts, the various taxa show
large differences in the orientation of the individual brain portions. Cephalic and pontine
flexure is very variable. While Ebrachosuchus neukami and Parasuchus angustifrons share
very large flexure angles (following Lautenschlager ¢ Hiibner, 2013) with derived taxa, such
as Machaeroprosopus pristinus and Machaeroprosopus buceros, the fore- and mid-brain and
the mid- and hind-brain appear to be almost perpendicular to each other in Smilosuchus
gregori and Parasuchus hislopi. However, although the studied specimens of Parasuchus
angustifrons (BSPG 1931 X 502) and Ebrachosuchus neukami (BSPG 1931 X 501) are well
preserved and mostly complete, they show signs of moderate dorsoventral compaction.
Retrodeformed endocast reconstructions exhibit cephalic and pontine flexures more similar
to Machaeroprosopus mccauleyi and Parasuchus hislopi (Fig. 8). A significant difference is
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Figure 7 Endocranial anatomy of different phytosaurian taxa. Comparisons based on existing endo-
casts and endocast reconstruction redrawn from Cope (1888), Case (1928), Mehl (1928), Camp (1930),
Chatterjee (1978) and Holloway, Claeson ¢ O’Keefe (2013). Time-calibrated phylogeny based on Stocker ¢
Butler (2013), Kammerer et al. (2016) and Ezcurra (2016). Endocasts of Parasuchus angustifrons and Ebra-
chosuchus neukami shown after retrodeformation.

found in the presence of a pineal organ or epiphysis dorsal to the cerebrum. A pineal organ
has been suggested to be present (Jaekel, 1910; Langston, 1949) and been reconstructed
for the majority of phytosaurs, but is absent in Ebrachosuchus neukami and Parasuchus
angustifrons. The dorsal expansion in the respective region in these taxa is interpreted in
this study to represent parts of the dural venous sinus or alternatively the paratympanic
sinus, due to the rostral and lateral expansion of this structure into parts of the braincase.
Hopson (1979) similarly considered a pineal organ in phytosaurs unlikely and suggested
that the respective region in the endocranial cavity housed a cartilaginous portion of the
supraoccipital. Although reconstructed by Meh! (1928), an enlarged epiphysis was reported
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Figure 8 Retrodeformation of studied taxa. (A) Complete and undistorted skull of Parasuchus hislopi
(ISI R42) used as a guide for retrodeformation of (B) Parasuchus angustifrons (BSPG 1931 X 502) and (C)
Ebrachosuchus neukami (BSPG 1931 X 501).

to be absent in Machaeroprosopus pristinus in an as-yet-unpublished recent study (Smith
et al., 2010). Existing endocast reconstructions provide ambiguous results regarding the
presence of the epiphysis, but suggest that it may have elaborated through phytosaur
evolution (Fig. 7). However, considering its absence in modern crocodilians, the epiphysis
must have been lost at some stage prior to the origin of the crocodilian crown group.

Similar to the actual brain endocast, the endosseous labyrinths show, as far as
reconstructed, subtle differences between different phytosaurian taxa. The vestibular part
of the labyrinth of Ebrachosuchus neukami and Parasuchus angustifrons is rostrocaudally
longer than dorsoventrally high, whereas it seems to have more uniform dimensions in
Machaeroprosopus mccauleyi and Leptosuchus sp. Again, this is to some extent a result of
dorsoventral compression. The retrodeformed endosseous labyrinths of Ebrachosuchus
neukami and Parasuchus angustifrons are more similar to the labyrinth of Leptosuchus
sp. It should be noted, though, that the retrodeformation is based on dorsoventral
scaling of the complete skull and endocast, respectively. However, the opisthotic and
the paroccipital, which house the endosseous labyrinth, might not have suffered the same
amount of compression as the complete skull. Furthermore, the scarcity of reconstructed
and preserved natural labyrinthine endocasts confounds wider comparisons.
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Comparison with Crocodyliformes

As in comparison with other phytosaurs, the endocranial anatomy of Ebrachosuchus
neukami and Parasuchus angustifrons shares a basic bauplan with most Crocodyliformes
in the form of a longitudinally arranged and elongate brain architecture thought to be
plesiomorphic for the whole lineage (Hopsorn, 1979). As in phytosaurs, the olfactory
tracts are elongate in extant crocodylians, including Alligator mississippiensis (Witmer

& Ridgely, 2008), Crocodylus johnstoni (Witmer et al., 2008) and Crocodylus moreleti
(Franzosa, 2004), as well as in several phylogenetically distinct Mesozoic longirostrine
crocodylomorphs, such as the neosuchian Pholidosaurus (Edinger, 1938; Hopson, 1979) and
the metriorhynchid Cricosaurus araucanensis (Herrera, Fernandez & Gasparini, 2013). In
contrast to phytosaurs, the cerebral hemispheres are prominent and mediolaterally enlarged
in most Crocodyliformes (Wharton, 2000; Franzosa, 2004; George ¢» Holliday, 2013). Extant
crocodylians possess an enlarged dural venous sinus covering the endocast dorsally (Witmer
et al., 2008), which has been interpreted to be present in fossil Mesoeucrocodylia (Hopsor,
1979; Wharton, 2000). Where preserved or reconstructed, the endosseous labyrinths show
a dorsoventrally compressed vestibular region and short cochlear ducts in Crocodyliformes
(Franzosa, 2004; Witmer et al., 2008), similar to Ebrachosuchus neukami and Parasuchus
angustifrons.

Paranasal sinuses have been reconstructed only for a handful of extant and extinct
Crocodyliformes (e.g., Alligator mississippiensis, Cricosaurus araucanensis), which limits
comparisons of these structures. A clear difference is found in the size of the antorbital sinus.
In Ebrachosuchus neukami and Parasuchus angustifrons the antorbital sinus is enlarged, but
it is considerably smaller in Crocodyliformes (Witmer ¢ Ridgely, 2008; Herrera, Fernandez
& Gasparini, 2013). Due to the position of the external nares, the airway is short in the
studied phytosaurs. In the longirostrine metriorhynchid Cricosaurus araucanensis, the
rostrum comprises the airway for its entire length (Herrera, Fernandez ¢» Gasparini, 2013),
whereas the comparable region was likely filled by a premaxillary sinus in phytosaurs.

DISCUSSION

The reconstruction of the endocranial anatomy of Ebrachosuchus neukami and Parasuchus
angustifrons suggests that the general bauplan of pseudosuchian brain architecture was
already established in Phytosauria. Plesiomorphic characters, such as elongate olfactory
tracts, a mediolaterally narrow and serially aligned brain and a comparably small cerebral
region, are largely retained in other phytosaurs, but also in most Crocodyliformes. In
contrast, features that occur in the evolution of avemetatarsalian archosaurs such as a
rearrangement of the brain architecture, a hyperinflated cerebrum and a reduction of
the olfactory apparatus (Zelenitsky et al., 2011; Balanoff et al., 2013) are absent in the
pseudosuchian lineage.

However, in spite of these overall similarities there are a number of differences present
in the endocranial anatomy when comparisons are made between various phytosaurian
taxa, but also in comparison to the (admittedly small number of) available endocranial
reconstructions of Crocodyliformes. Whether these reflect subtle ecological or behavioural
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adaptations, intraspecific variation or interpretive artefacts is difficult to discern. The small
sample size and lack of detailed, three-dimensional reconstructions currently prevents
rigorous tests of the latter two possibilities. It is generally assumed that the osteological
similarities between phytosaurs and longirostrine Crocodyliformes are the result of
convergent evolution and the adaptation to the same habitat and/or diet (e.g., Camp, 1930;
Humnt, 1989). Similarities or differences in the endocranial anatomy could therefore indicate
adaptive changes of key structures. Apart from the plesiomorphic morphology of the brain
inherent to both phytosaurs and Crocodyliformes, both groups share a dorsoventrally
flattened and rostrocaudally expanded morphology of the vestibular apparatus of the
inner ear. Such an increase in the aspect ratio of the vertical semicircular canals has been
associated with an adaptation to an aquatic environment (Georgi ¢ Sipla, 2008) and is
found also in other marine reptiles (Neenan ¢ Scheyer, 2012). It is therefore possible that
the endocranial anatomy in phytosaurs and longirostrine Crocodyliformes follows a shared
plesiomorphic pattern that has been convergently modified in response to similar sensory
adaptations. Additional sampling of phytosaur and fossil crocodyliform endocasts and
more refined palaecobehavioural and palaeoecological data will be required to provide a
more definitive assessment of this hypothesis.

CONCLUSIONS

The digital reconstruction of the brain, inner ear, neurovascular and sinus morphology
of the two non-mystriosuchine phytosaurs Parasuchus angustifrons and Ebrachosuchus
neukami offers new insights into the endocranial anatomy and evolution of Phytosauria.
The endocasts of both taxa are very similar to each other in their rostrocaudally
elongate morphology, with long olfactory tracts, weakly demarcated cerebral regions
and dorsoventrally short endosseous labyrinths. Several sinuses, including large antorbital
sinuses and prominent dural venous sinuses, were reconstructed. Comparisons with
published endocranial reconstructions of other, more derived, phytosaurian taxa
demonstrate a substantial morphological variability, most pronounced in the cephalic
and pontine flexure and the presence of a pineal organ. Endocranial characters that are
found across all phytosaurs, as far as preserved, include the elongate olfactory tract and a
serially arranged brain architecture. As far as allowed by the limited available comparative
data, these features appear to be shared with members of the clade Crocodyliformes.
However, the scarcity of reconstructed endocasts for phytosaurs and crocodyliforms, as
well as preservational artefacts, confound large-scale comparisons and provide an impetus
for further future work on the endocranial anatomy and evolution of these clades.

Anatomical abbreviations

airw airway

antorb antorbital sinus

c cochlear duct

car carotid artery

cer cerebral hemisphere
crc crus communis
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csc caudal semicircular canal

cvem caudal middle cerebral vein

dsl diverticulum of longitudinal sinus

dur dural venous sinus

ecto ectotympanic sinus

fl floccular lobe

fv fenestra vestibuli

lab endosseous labyrinth

Isc lateral semicircular canal

nvc neurovascular canal

ob olfactory bulbs

ot olfactory tracts

pit pituitary fossa

pmx premaxillary sinus

rsc rostral semicircular canal

v trochlear nerve canal

Vi ophthalmic branch of the trigeminal nerve canal
vV, maxillary branch of the trigeminal nerve canal
V3 mandibular branch of the trigeminal nerve canal
VI abducens nerve canal

VII facial nerve canal

IX-XI shared canal for the glossopharyngeal, vagus and spinal accessory nerve
XII hypoglossal nerve canal
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