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ABSTRACT
Parallelism is important because it reveals how inherently stochastic adaptation is.
Even as we come to better understand evolutionary forces, stochasticity limits how
well we can predict evolutionary outcomes. Here we sought to quantify parallelism
and some of its underlying causes by adapting a bacteriophage (ID11) with nine
different first-step mutations, each with eight-fold replication, for 100 passages. This
was followed by whole-genome sequencing five isolates from each endpoint. A large
amount of variation arose—281 mutational events occurred representing 112 unique
mutations. At least 41% of the mutations and 77% of the events were adaptive. Within
wells, populations generally experienced complex interference dynamics. The genome
locations and counts of mutations were highly uneven: mutations were concentrated
in two regulatory elements and three genes and, while 103 of the 112 (92%) of the
mutations were observed in ≤4 wells, a few mutations arose many times. 91% of
the wells and 81% of the isolates had a mutation in the D-promoter. Parallelism was
moderate compared to previous experiments with this system. On average, wells shared
27% of their mutations at the DNA level and 38% when the definition of parallel
change is expanded to include the same regulatory feature or residue. About half of the
parallelism came from D-promoter mutations. Background had a small but significant
effect on parallelism. Similarly, an analyses of epistasis between mutations and their
ancestral backgroundwas significant, but the result wasmostly driven by four individual
mutations. A second analysis of epistasis focused on de novo mutations revealed that
no isolate ever had more than one D-promoter mutation and that 56 of the 65 isolates
lacking aD-promotermutation had amutation in genes D and/or E.We assayed time to
lysis in four of these mutually exclusive mutations (the two most frequent D-promoter
and two in gene D) across four genetic backgrounds. In all cases lysis was delayed. We
postulate that because host cells were generally rare (i.e., high multiplicity of infection
conditions developed), selection favored phage that delayed lysis to better exploit their
current host (i.e., ‘love the one you’re with’). Thus, the vast majority of wells (at least 64
of 68, or 94%) arrived at the same phenotypic solution, but through a variety of genetic
changes. We conclude that answering questions about the range of possible adaptive
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trajectories, parallelism, and the predictability of evolution requires attention to the
many biological levels where the process of adaptation plays out.

Subjects Evolutionary Studies, Genetics, Virology
Keywords Parallelism, Experimental evolution, Epistasis, Bacteriophage, φX174

INTRODUCTION
An important question in evolutionary biology is how deterministic and thus potentially
predictable, vs. stochastic, and thus less predictable, is the process of adaptation. The answer
to this depends onmany things that we understand poorly. For example, when a population
is not optimally adapted to its environment, how many different phenotypic solutions are
available to it? How different are they and how do their fitness peaks compare? For each of
these phenotypic solutions, howmanymutational pathways are available at the genetic level
and howprobable are each of these?Howdopopulation dynamics influencewhich solutions
win out? Each of these questions is complicated in itself and they become considerably
more complex when we consider other facets of reality such as changing environments,
frequency-dependent dynamics and interacting species that are also adapting.

Experimental evolution is a venue where we can make inroads into answering these
questions. Here we can control many of the confounding variables like the initial genetic
conditions, the population size and the biotic and abiotic environments. We can perform
experiments in replicate and therefore take a probabilistic view of things. We can archive
populations as they adapt so as to preserve a detailed record of the adaptive trajectories
each population took. We can also engineer in genetic changes that allow us to study
characteristics of routes not taken.

One observation from experimental evolution that relates directly to our opening
question about determinism and predictability is that parallel and convergent evolution can
be quite common. Wichman et al. (1999) allowed two initially identical populations of
bacteriophage φX174 to evolve in chemostats under high temperatures for 10 days. Whole
genome sequences of clones from the endpoint populations contained 14 and 15mutations,
seven of which were shared between them. Similarly, Bull et al. (1997) propagated a total
of nine φX174 lineages under a more complex experimental design and found that of 119
observed substitutions, over half were found in at least two different lineages.

Bacteriophage have very compact genomes and few genes (φX174 has 11 genes packed
in a genome of just over 5 KB) and it is possible that this is a driving force behind the
high levels of observed parallelism. Experimental evolution with bacterial systems indicates
that while parallelism at the nucleotide level may be rare in more complex organisms,
parallel changes are not uncommon at higher levels of biological organization. Woods et
al. (2006) assessed patterns of parallelism among 12 Escherichia coli lineages evolving for
20,000 generations on glucose-limited media (Lenski et al., 1991) and found that while the
pairwise incidence of shared changes at the nucleotide level is quite low (around 2%), it
is much higher when we consider mutations in the same gene or operons to be parallel
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events. Similarly, Tenaillon et al. (2012) adapted E. coli to high temperature in replicate and
found that while just 2.6% of non-synonymous mutations were shared between lineages,
20% of modified genes and 25% of affected operons were shared. Chou & Marx (2012)
studied replicate adaptation in an engineered Methylobacterium extorquens where the
native pathway for metabolizing methanol was replaced by a foreign pathway. Starting
from overexpression, they found that all lineages evolved to reduce gene expression, but
this was done via three very different mutational pathways (reducing gene copy number,
reducing transcript stability and integration of pathway from plasmid to genome). These
studies suggest that similar changes at the phenotypic level are sometimes underwritten by
changes at the same nucleotide or codon position, sometimes owed to changes in the same
gene or operon and sometimes can have very distinct genetic bases.

In this study we assessed how similar the adaptive trajectories are among a set of replicate
lineages that begin either as genetically identical or that differ by having different first-step
mutations. By performing replicate flask-passage adaptations of the G4-like bacteiophage
ID11, Rokyta et al. (2005) identified nine first-step beneficial mutations. Here we adapted
each of these nine first-step backgrounds under eight-fold replication for 100 passages on
the same host, media and temperature, but in microtiter plates rather than in flasks. We
then sequenced five clones from each of the 72 lineages and compared genomes to assess
patterns of parallel evolution. Similar to the bacterial studies cited above, we found that
parallelism is dramatically higher at the phenotypic level than the genetic one.

MATERIALS AND METHODS
Here we provide summaries of the materials and methods. Substantially greater detail is
provided in the Supplemental Information that accompanies this paper.

Adaptation experiment
ID11 (GenBank accession number AY751298; Rokyta et al., 2005) is a single-stranded DNA
bacteriophage of the family Microviridae. It has a genome of 5,577 bases encoding 11 genes
arranged in the same way as G4 (from which it differs by∼3%). We used the nine first-step
beneficial mutations obtained by Rokyta et al. (2005) via flask-passaging and adapted each
of these genetic backgrounds in eight-fold replicate for 72 total lineages in multiwell plates
for 100 passages. Passaging began by adding 104 phage into 500 µL of E. coli C host cells at
a density of 108/mL. Passaging was done by allowing phage/cell growth for 25 min in flat-
bottomed 48-well plates at 37 ◦C in an incubator shaking at 200 rpm. Plates were then put
on ice and 5 µL of each well’s volume was transferred to the wells of a fresh plate containing
naive hosts in the same volume and density. During growth, wells were sealedwith a double-
layer of gas permeable membrane to reduce the likelihood of contamination between wells.
Five transfers occurred each day and plate were stored overnight in the refrigerator.

Sampling and sequencing
After 100 transfers we plated and picked five isolates from each lineage. Whole genomes
were then sequenced using the Fluidigm Access Array Platform (South San Francisco,
CA) and Roche 454 Genome Sequencing FLX (454 Life Sciences, Branford, CT) using
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a novel tagging method so that many small genomes could be sequenced at once while
retaining linkage information. RawRoche 454 unclippedDNA sequence readswere cleaned,
assigned to barcode and amplicon, andmapped to the ancestral genome using the R package
rSFFreader (R Core Team, 2014; Settles et al., 2011) and a customR script (See Supplemental
Information for more detail). Mutations were accepted as real only when coverage at the
site where a mutation was detected was ≥10 and the mutation was present in>90% of the
reads (mean coverage, 46×). To avoid strong sample size effects, we removed wells from the
analysis with three or fewer successfully sequenced isolates. This resulted in the removal
of four wells leaving 68 in the analysis. For each of the 68 wells we then constructed
parsimony trees manually to visualize the mutational relationships among the isolates.

Fitness assay
Because 15 of the 68 accepted wells contained one or more isolates where the ancestral
mutation had reverted to wild type, we were led to question our original assumption
that all background mutations were beneficial. We therefore conducted a follow-up set of
competition fitness assays under conditions that matched the adaptation experiment. In
these, we competed each background mutation (plus another mutation that commonly
arose, A–G at site 1910, which we denote 1910aG) against wild type ID11 for six passages
and estimated fitness from changes in mutation frequency. For each mutation we seeded
three wells with a 90:10 mutant to wild type ratio and, in three more wells, the reciprocal
ratio of 10:90. Sampling was done at passages 0, 2, 4 and 6 and population sequencing
was conducted using the techniques described above except primer concentrations were
manipulated to render 24-fold greater coverage in the region of the ancestral mutation.

Statistical analyses
Selection coefficients of background mutations
We estimated the selection coefficient (s) of each mutation relative to the wildtype by
regression. Specifically, we fit the natural log of mutation frequency as a function of
generation (assuming two generations per passage) using the glm function in R. The slope
of this regression estimates s. We then averaged over the six replicate estimates.

Reversion probability between backgrounds
To test whether background had an effect on the probability of reversion we used
a likelihood ratio test (LRT). In short, we calculated the log-likelihood of the data
(i.e., probability of observed presence/absence of a reversion in each well) under the
null model where the probability is the same across all backgrounds, under the alternative
model where each background has a unique probability, and took the difference, 3. The
p-value was determined assuming 3 follows a Chi-squared distribution with df = 8 (9
backgrounds − 1).

Effect of background on parallelism
We defined parallelism between the pair of wells i and j, Pij , as the average of two
comparisions: the proportion of mutations in i found in j and the reciprocal proportion
of j found in i. For each background, we calculated Pij for all pairs of wells and
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then, by partitioning the sum of squares, calculated how much of the variation in
Pij could be attributable to background (Rreal). Because each well was used inmultiple com-
parisons, Pij values were non-independent. We therefore used a data randomization tech-
nique described in the Supplemental Information to generate the distribution of R under
the null (i.e., no background effect) and from this distribution approximated the p-value.

Epistasis
We analyzed our data for epistasis using three methods. Method 1: Continuing with
our parallelism theme, one signature of epistasis is for parallelism to be greater within
than between backgrounds. Therefore we repeated a similar calculation to that described
above, except we calculated Pij between all pairs of wells (i.e., both within and between
backgrounds). We then averaged all within-background values (P̄within), averaged all
between background values (P̄between) and took the ratio (P̄w/b(real) = P̄within/P̄between).
We obtained a p-value for the observed ratio using a bootstrap randomization process.
Method 2: A more powerful test for epistasis can be achieved by asking whether there are
nonrandom associations between individualmutations and backgrounds.We did this using
a likelihood ratio test where we calculated the difference in the log-likelihood (3) under a
null model where a mutation’s probability of arising is the same in every well (irrespective
of background) and an alternative model where it depends on the background. The p-value
of3 under the null was again estimated using randomization. This is a global test where one
highly non-random association can produce a small p-value. To identify which individual
mutations show strong epistasis, we removed the mutation with the smallest individual
likelihood, reran the entire test, and repeated until the p-value was no longer<5%.Method
3: We were also interested in whether pairs of de novo mutations show nonrandom
associations. To identify these, we first removed all singletons and reversions for which
the question is not pertinent. We then took each pairwise combination of mutations and
calculated the number of wells in which the pair was observed in one or more isolates. The
p-value under the null (where the count was due to chance co-occurrence) was determined
by randomization. A two-tailed test was performed so both attraction and repulsion would
be detected. We used this test to probe for interesting patterns rather than draw firm
conclusions and hence did not do a correction for multiple tests. Still, we did remove
the most obvious source of false positives by excluding cases where p< 0.05 and the
combination co-occurred just once.

Time to lysis assay and analysis
The result from Method 3 in conjunction with evidence in the literature led us to
hypothesize that a number of the mutations that arose in the experiment delayed lysis. To
test this, we identified four putative lysis-delaying mutations (1910aG, 1911cT, 2131cT and
2134tC) where we had one or more backgrounds both with and without the individual
mutation in our set of sequenced isolates. We then performed an assay for the time to lysis
where phage were added to cells in shaking flasks at 37 ◦C, sampled at one minute intervals
and plated to determine when titer begins to rise. We then averaged the estimated burst
size over replicates for each time point for each genotype and calculated standard errors.
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Quality control
Contamination was a concern in our experiment because adaptations involved 100 transfer
events for each of three 48-well plates using a multichannel pipette. We flagged potential
contamination events based on four criteria: (1) the expected background mutation was
missing from one or more isolates from the well, (2) in those isolates, one of the other
background mutations appeared, (3) the putative contamination isolates carried other
mutations (besides the other background mutation) that could link them to another well
on the same plate and (4) reversions were otherwise rare in wells with the background we
expected to find in the well. Upon obtaining our sequence data, one well showed all four
red flags and was removed from the analysis. Three other wells met criteria 1 and 2, but
not 3 and 4. It was impossible to know if the results from these wells was real evolution
or represented contamination. Given the overall scarcity of evidence for contamination
we suspect these represent real evolution. We therefore present our analysis with the wells
included, but we also reran the analysis without them to confirm that their inclusion or
exclusion has no qualitative effect on our results and conclusions.

RESULTS AND DISCUSSION
Overview
The goal of this research was to assess parallelism and epistasis during adaptive evolution.
The study, however, did not unfold as expected and we therefore begin with an honest
summary of what transpired. The experimental design was to begin with nine different
first-step beneficial mutations, allow each to further adapt, and have enough replication
to formally assess how the accrued mutations depend on initial background, de novo
mutations and chance. The nine backgroundmutations, obtained in previous work (Rokyta
et al., 2005), all arose and were highly beneficial in flasks. To achieve the desired replication
(8 replicates per background) we shifted from passaging in flasks to sealed microtiter plates
and transferred a fixed volume instead of a target number of phage. Titering during the
experiment revealed that initial low MOI conditions in the plates rapidly gave way to high
MOI ones. Sequencing endpoint isolates then revealed that 15 of the 68 wells (4 wells
were removed due to sequencing failures) contained reversions, leading us to question
our assumption that the background mutations were beneficial. Subsequent fitness assays
and analysis (see Supplemental Information) led us to conclude that these background
mutations were adaptive in a low MOI environment but not in a high MOI environment.

We analyzed the data from the perspective of parallel evolution and two major patterns
emerged. First, we found that wells converged on the same phenotypic change.Most isolates
in most wells, regardless of background, had exactly one mutation in the D-promoter. We
further found a small number of other mutations just downstream from the D-promoter
(in the coding region of genes D and E) that were mutually exclusive of each other and of
the D-promoter mutations. The two most frequently observed D-promoter mutations
have also been observed in experimental evolution of the bacteriophage φX174 (Wichman
et al., 1999; Wichman, Millstein & Bull, 2005) and shown to down-regulate genes D and E
(Brown et al., 2010). This led us to hypothesize that our D-promoter mutations and the
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downstream changes in the D/E genes were down-regulating expression or disrupting
function of the lysis protein E and thereby delaying lysis. We reasoned that delay of lysis
might be favored in the high MOI environment in which we passaged because it could
increase burst size with little cost (since subsequent infections are unlikely at high MOI).
We conducted an assay with several of the putative E-down-regulatingmutations on several
different genetic backgrounds and confirmed that they do indeed delay lysis. To quote
Stephen Stills (who quoted Billy Preston), if you can’t be with the one you love, love the one
you’re with (Stills, 1970).

Second, we found that the prevalence of parallelism depends on how and at what
biological level we measure it at. From the population perspective, the proportion of
nucleotide mutations shared between independent wells was 28%. If we redefine shared
changes to be mutations in the same codon or regulatory feature, this value grows to 38%.
Alternatively, we can look at individual mutations and ask how often they occur in more
than one well. Overall, 36 of the 112 mutations (32%) were observed in more than one
well. This moderate value, however, obscures how uneven the distribution of occurence
was: 76 of the 112 mutations (68%) were found uniquely in one well and another 27
(24%) were found in between two and four wells. By contrast, 62 of the 68 wells (91%)
we included in the analysis had a mutation in the D-promoter. We show below that the
D-promoter mutations as well as a number of mutations just downstream of it delay lysis.
Thus, at the phenotypic level, at least 64 of the 68 wells (≥94%) had mutations that delay
lysis. Depending on the level of biological organization considered, parallelism might be
characterized as low as 28% or over 90%, highlighting the need be attentive to the many
biological levels at which the process occurs.

Mutational dynamics
After quality control (see Supplemental Information) we had 338 sequenced isolates
distributed among 68 wells (4.97 isolates per well). Wells on average contained 4.5
mutations (range 2–9, sd = 1.5). We constructed parsimony trees for each well, in part to
visualize the data, and in part to assess the types of mutational dynamics within the wells.
The trees indicate that complex interference dynamics prevailed during the experiment—as
we would expect in large populations—where multiple mutations of similar effect arise,
compete and rarely fix before more mutations arise and begin increasing in frequency.
Figure 1 illustrates the basic phylogenetic patterns and their prevalence. In just 4 of the 68
wells (6%), all of the sampled isolates were identical; this is consistent with, though not
exclusive to, a simple model of sequential selective sweeps (Gillespie, 1984) (Fig. 1A). In
the remaining 64 wells (94%) the population was not fixed. Models of adaptation differ
with respect to the background(s) upon which secondary beneficial mutations arise. In the
classic clonal interference model of Gerrish & Lenski (1998), multiple single mutations may
arise and compete on a previously fixed background, but one of these secondary mutations
fixes before the process repeats. In our data, 18 of the wells (26%) are consistent with this
model (i.e., observations are confined to single tip mutations and their shared background;
Fig. 1B). The other wells showed more complex, multiple-mutation dynamics (Desai &
Fisher, 2007) where beneficial mutations arise on unfixed backgrounds. In 5 of the wells
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●
n=2

2398.C.T

●
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4827.C.T

●

D

41 of 68 wells

●
2520.C.T

●
n=1

1911.C.T

●●
2386.C.T
1910.A.G

n=1

●
n=2
2152.A.G

●
2311.A.G

n=1

●

Figure 1 Most wells displayed complex interference dynamics. Shown are examples of within-well phy-
logenies corresponding to different types of mutational dynamics and their relative frequencies. Ances-
tral background mutation is black dot; de novo mutations are white; bars above trees show number of
wells with this basic pattern. (A) All isolates fixed for same mutations is consistent with sweep dynam-
ics. (B) Observations confined to single tip mutations and their shared background consistent with the
clonal interference model of Gerrish & Lenski (1998). (C) Unbranched tree in an unfixed population is
consistent with mutations arising sequentially on the most-fit background. (D) Extended branching tree
in an unfixed population indicates competing multi-step lineages. (C–D) Represent complex interference
dynamics.

(7%) the trees were unbranched, consistent with mutations arising sequentially on the
single most-fit background (Fig. 1C) while in 41 of the wells (60%) the tree was branched
in ways that suggest competing multi-step lineages (Fig. 1D) (Miller, Joyce & Wichman,
2011; Desai, Fisher & Murray, 2007). The entire set of phylogenies are presented in the
Supplemental Information. These findings add to a growing body of evidence (e.g., Kao &
Sherlock, 2008; Miller, Joyce & Wichman, 2011; Desai, Fisher & Murray, 2007; Lee & Marx,
2013; Lang et al., 2013; Frenkel, Good & Desai, 2014) that mutational dynamics in large
populations usually involve complex interference dynamics.
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Figure 2 Genome location of all mutations observed across the experiment. A horizontal map of the genome is shown at the bottom of the plot;
de novo mutations are indicated with pins above it. The size of the pin head indicates the number of independent wells with the mutation and the
pin head color gives information about the mutation itself as described in the inset legend. Gene functions: A, DNA replication; A*, inhibits host
DNA replication; B, internal scaffolding protein; C, DNA synthesis; D, external scaffolding protein; E, host cell lysis; F, major coat protein; G, major
spike protein; H, pilot protein for DNA injection; J, DNA binding protein; K, unknown.

Characterizing the mutations
A total of 112 de novo mutations were observed across all wells. These spanned most of
the genome and fell within all but one gene. However, mutations were highly uneven both
in where and how many independent times (wells) they occurred (Fig. 2). By both of these
measures, activity was concentrated in the D-promoter and in genes D and E (which have
overlapping reading frames). It was also moderately high in the J terminator and in gene F.
Of the 112 mutations, 15 were in regulatory regions or known to have regulatory effects, 76
were non-regulatory and non-synonymous, and the remaining 21 were silent. Multiplying
each mutation by the number of wells it occurred in, we have 281 de novo mutational
events in the experiment; 95 (33%) of these were mutational events in the D-promoter,
80 (28%) were in genes D and E, 57 (20%) were in gene F and 49 (19%) of the events
were elsewhere in the genome. Matrix files with all the information about every observed
mutations in every isolate from every well and the ancestral state of that well are available
as Supplemental Information.

Neutral variation will tend to reduce parallel evolution. This leads us to ask, how
much of the observed variation is adaptive vs. how much is neutral? To answer this, we
note that in our data there are two signatures that a mutation is beneficial: (1) when it
appears inmultiple wells independently, and (2) when it rises tomoderate or high frequency
unaccompanied by another mutation. The phylogenies from each well contain information
about which mutations meet this second criteria as explained in the Supplemental
Information (subsection Identifying Neutral vs. Beneficial Mutations). Based on these
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Figure 3 Number and evidence of adaptive mutations. (A) All 112 unique mutations. (B) All 281 mu-
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colored regions are likely adaptive because they are observed in more than one well independently (red),
because one or more well phylogenies implies they rose above low frequency (blue), or both (purple). Mu-
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lines of evidence, at least 46 of the 112 mutations (41%) are adaptive (Fig. 3A). But because
many of these changes occur in multiple wells, the 46 adaptive mutations comprise 215 of
the 281 de novo mutational events observed in the experiment. Thus, at least 77% of the
mutational events are adaptive (Fig. 3B). The Venn diagram also partitions the mutation
and event counts into silent changes on the one side vs. those that are non-synonymous
and in regulatory regions (e.g., in the D-promoter) on the other. Two things jump out.
First, 41% of the mutations and 17% of the mutational events are both nonsynonymous
and lack any evidence of being adaptive. Second, there are only 22 silent mutations in the
data. Three of these, corresponding to 16 (or 6%) of mutational events, are adaptive.

Parallel evolution
The focus of this study is to assess the level of parallel evolution. We begin there, digress
into one of its underlying determinants–epistasis–and then follow this topic back around
to parallel evolution. Parallel evolution refers to the same change occurring in independent
trials of evolution. Although conceptually simple, quantifying it involves some nuance
as illustrated by the following three questions. First, what constitutes the same change?
We might define shared changes at several biological levels: matching nucleotide change,
matching amino acid changes, a change at the same residue, in the same protein domain,
in the same gene, in the same regulatory element, part of the same regulatory network,
or affecting the same phenotype. Second, should we quantify the frequency of parallelism
from the perspective of the mutations or of the replicate populations? In other words, we
can ask how often change x co-occurs in two trials, or we can ask of a random pair of
replicates, how many or what proportion of the changes are shared. Third, how similar
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Figure 4 The number of occurrences of each mutation is highly uneven. (A) All mutations except reversions. D-promoter mutations observed>
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must the starting points of the trials be to consider them replicates? One thing we wish to
emphasize here is how different the answers can be.

Parallel evolution by mutation
Of the 112 DNA mutations observed in the experiment, 36 (32%) were observed in more
than one well whereas 76 (68%) were observed in only one well. Six of the observed
mutations were reversions. We begin by focusing on the non-reversions as this is where
the opportunity for evolution is the same across wells. When we plot the distribution of
well occurrences by mutation, we find it is highly uneven. Two D-promoter mutations
are found often (in 53 and 27 wells) while 103 mutations (92%) are found in four or
fewer wells (Fig. 4A). With an observed well frequency of 0.78 (53/68), the probability of
finding the D-promoter mutation 1910aG in each of two randomly selected wells is 0.61
(0.782). By contrast, a mutation like 2397aG that is found 8 times (frequency 0.12) has just
a 0.014 probability of co-occurring in a randomly selected pair of wells. When we do this
calculation for all 106 mutations and take an unweighted average, we find that a randomly
selected mutation in this experiment has only a 0.009 probability of occurring in each of
two randomly selected wells.

Although the D-promoter mutations 1910aG and 1911cT arise far more often than other
mutations, the distribution in Fig. 4A probably understates the level of parallelism. If we
assume that all changes in the D-promoter have similar regulatory effects (an assumption
we return to later), then it is appropriate to group them together as a single mutational
feature. Upon doing so we find that 62 of the 68 wells (91%) have a D-promoter mutation
and that the probability of two random wells each having one is 0.83. We also clustered all
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DNA mutations that alter the same codon, but because very few mutations affect the same
residue, this had virtually no impact on the distribution of counts.

We now turn to the reversions. Each background had between 6 and 8 replicate
opportunities to revert in the experiment. The number of observed reversions differed
dramatically by background, ranging from zero in three backgrounds up to seven in back-
ground F416 (Fig. 4B). A likelihood ratio test confirms that background has a significant
effect on the probability of a reversion (p= 0.0002). Thus, for some backgrounds, reversions
were a major contributor to parallel evolution and at others they were not. This finding
also highlights that genetic background may influence how likely two wells are to share a
mutation. We provide to a more detailed analysis of these mutational interactions in the
epistasis section below.More immediately, we use this result to justify why, in the next anal-
ysis on parallelism between wells, much of our focus is within (not between) backgrounds.

Parallel evolution by well
In the last section we asked how likely a given mutation was to appear in two independent
wells. We now change the conditioning and ask, for two independent wells evolved from
the same background, what proportion of the mutations observed in them are shared? The
short answer, as we will show in the next paragraph, is 28% at the nucleotide level and
38% when mutations are defined at the regulatory/codon level. At the DNA level, this is
somewhat lower than the 0.5 value observed in a φX174 experiment (Wichman et al., 1999),
but greater than 2–3% values observed in E. coli experiments (Woods et al., 2006; Tenaillon
et al., 2012). The increased level of parallelism at the regulatory/codon level is qualitatively
similar, if less dramatic, than the findings in E. coli where parallelism increases an order of
magnitude at the gene/operon level. (Because there are only 11 genes in the bacteriophage,
it is not all that meaningful to ask how often lines share changes in the same gene.)

Tomake our analysis more precise, we define between-well parallelism as the probability
that a mutation observed in one well was also be found in a second well. We calculated
observed parallelism for all pairs of wells initiated from the same background, denoted
i and j, by determining the proportion of mutations from j found in i, the proportion
of mutations from i found in j, and averaging. At the nucleotide level, mean within-
background parallelism ranged from 0.15 in F421 to 0.46 in F416, with an average of all
nine backgrounds of 0.28 (SE= 0.03; Fig. 5A). The reason F416 shows such high parallelism
is that reversions occurred in 7 of 8 cases (Fig. 4B) and, in each case, mutation 2534gT
also arose. No other background experienced more than 3 reversions. When reversions are
removed from the dataset, parallelism at F416 drops to 0.38 and the global mean drops just
slightly to 0.27. We conducted a randomization test that accounts for the nonindependence
of pairwise comparisons and found that, with reversions excluded, there is no evidence
that parallelism differs among backgrounds (p≈ 0.58).

We have already shown that the D-promoter mutations are found in most wells (Fig.
4A). To quantify their contribution to parallelism, we removed the D-promoter sites and
reanalyzed the data. Within background parallelism falls from an average of 0.28 to 0.13.
Thus, slightlymore than half of the nucleotide level parallelism comes from theD-promoter
mutations.
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Figure 5 Amount of parallelism between pairs of wells within backgrounds. Parallelism is defined as
the mean of the proportion of mutations in one well shared with the other and the reciprocal comparison.
Note that individual pairwise comparisons (x symbols) with same value are stacked vertically, creating the
bars. (A) Mutations are shared only when they match at the nucleotide level. (B) Mutations match when
they occur at the same codon or in the same regulatory element. Backgrounds are indicated on the y-axis;
only within-background comparisons are made. Background F416 has elevated parallelism in large part
because it experienced much higher reversion (Fig. 4). Once reversions are removed, a randomization test
showed no evidence for differences in parallelism between backgrounds at the nucleotide level (p≈ 0.58)
nor the regulatory/codon level (p≈ 0.56).

A broader view of parallelism is to categorize mutations as the same when they occur
in the same regulatory element or codon. When we do this, parallelism increases from
an overall mean of 0.28 to 0.38 (Fig. 5B). The randomization test indicates that F416 is
different from the other backgrounds (p≈ 0.013), but the other eight backgrounds show
no evidence of having different levels of regulatory-level parallelism (p≈ 0.228). Removing
reversions from the dataset has a minimal effect on mean parallelism (0.378 falls to 0.376).
When F416 is removed (but reversions are left in), mean parallelism falls from 0.38 to 0.35.
When the D-promoter mutations are again excluded from the analysis, the overall mean of
this broad parallelism falls to 0.17. We regard 38% to be our single best characterization of
parallelism in this experiment, with slightly more than half of this owing to parallel changes
in the D-promoter.

Epistasis
Epistasis refers to the way in which the genetic background influences a mutation’s fitness
effect. Parallelism is increased when beneficial mutations have approximately the same
effect on all genetic backgrounds and it will decrease when the fitness effects (including their
sign) depend strongly on the genetic background. By initiating our replicate adaptations
from nine different backgrounds, our experiment was explicitly designed to test how
epistasis influences where mutations arise and, thereby, the amount of parallel evolution
in our system.
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Figure 6 Parallelism within backgrounds is only slightly higher than parallelism between
backgrounds. (A) Parallelism between all pairs of wells from low (light) to high (dark). Above the
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parallelism is, on average, slightly higher within backgrounds (p< 0.01).

Miller et al. (2016), PeerJ, DOI 10.7717/peerj.2227 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.2227


Effect of Background
We have already seen that reversion rate is significantly different among backgrounds (Fig.
4B). In this section, we begin looking for background epistasis by asking whether there is
a difference in parallelism within- vs. between-backgrounds once reversion are removed.
Figure 6A shows a heatmap of all pairwise well comparisons at both nucleotide (red) and
regulatory/codon (blue) levels. Reversions have been removed in this analysis. Notice that
visually the within-background comparisons along the diagonal are not much different
than those off the diaganol by either metric of parallelism. This suggests that parallelism is
similarwithin and between backgrounds.However, whenwe pool all observationswithin vs.
between, we find that the distribution of within-background parallelism is slightly greater
than between (Fig. 6B). Thus, parallel mutations are slightly more likely to occur within
wells of the same background than of different backgrounds. A formal randomization test
accounting for nonindependence of the observations confirms that the difference in means
is significant (p< 0.01). The implication of the within- vs. between-background analysis
of Fig. 6 is that while the occurrence of mutations is highly stochastic, genetic background
does exert a slight but significant influence over where mutations appear.

A second, more powerful, way to assess the role of background epistasis is to ask whether
background affects the individual probability of a mutation arising. More formally, does
a model where the probability of a mutation occurring depends on background fit the
data significantly better than a null model where background does not matter? Given the
parallelism results just presented, it is not surprising that in a likelihood ratio test (LRT)
of these competing hypotheses the null can be rejected (p< 0.001). The main advantage
of the LRT approach is that the disparity between the alternative and null hypotheses
(i.e., the difference in the log-likelihoods, or 1lnL), can be broken down by mutation.
Figure 7 shows the number of times each mutation appears on each background and, to
the right, 1lnL for each mutation. The larger bars are the mutations most responsible
for the association of mutation with background. We removed mutations in a cumulative
manner starting with the largest1lnL value and reran the LRT until we failed to reject. This
revealed that just four of the mutations (red bars in the figure) are principally responsible
for the significant relationship: 2534gT, 2397aG, 2332aG, and 2100tC. Thus, we again find
that background epistasis exists, but the effects are substantial for only a small minority of
the mutations.

Epistasis between de novo mutations
Another type of epistasis involves combinations of new mutations. For our data, the signal
for this is when mutations appear together significantly more or less often then we would
expect by chance. We conducted an analysis on mutation pairs, asking if they tend to
co-occur or avoid each other. The results, summarized in Fig. 8, revealed two interesting
patterns. First, despite finding D-promoter mutations in 62 of 68 (91%) wells and in 273 of
338 (81%) isolates, no twoD-promotermutation are ever found together in the same isolate
(Fig. 8). The significance of this is seen clearly in the figure by focusing on the D-pro block
in the bottom row which represents the combined set of all the D-promoter mutations.
A bootstrap randomization indicated we expect D-promoter mutations to co-occur 19
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Figure 7 Evidence of background epistasis is significant but rare. The main plot shows the number of
wells each mutation appears in with a heatmap scale above the plot. Within cells, ‘rev’ indicates the mu-
tation is a reversion and is excluded from statistical testing. The barplot to the right gives the difference in
log-likelihood (1lnL) between the null (no epistasis) and the alterantive (epistasis) model for each muta-
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moval of the mutations with red bars still resulted in significant results (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p <
0.05). Removal of the red mutations plus the mutation in black results in a non-significant result (p ≈
0.104).
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times; observing 0 is highly nonrandom (p< 0.01). Second, several other mutations are
never found with a D-promoter mutation. Most notably, mutation 2134tC is found in 11
different wells and is expected to co-occur with a D-promotermutation 7 times, but it never
does. Mutations 2094aG, 2131cT and 2158aG are also never observed with a D-promoter
mutation, but thesemutations are rare enough that the observed repulsion is not significant.
Finally, the analysis shows several significantly positive associations that suggest synergistic
epistasis: 2534gT co-occurs with D-promoter mutations and with 2630gT, and 2577cT
occurs with the D-promoter mutation 1910aG more often than expected by chance.

Parallel evolution at the phenotypic level
The most striking result from analysis of epistasis is that while D-promoter mutations are
pervasive, they never co-occur in the same isolate, and a number of other mutations are
also mutually exclusive of the D-promoter mutations and each other. One parsimonious
explanation of this pattern is that these mutually exclusive mutations have closely related
phenotypic effects and that having two such mutations is either neutral or deleterious. We
now show that the phenotype involves delay of lysis. We postulate that selection favored
lysis delay because, under high MOI conditions, lysing early has a diminished benefit
(finding another host cell is improbable) compared to the advantage of exploiting the
current host more effectively, i.e., producing more progeny.

The first evidence of what selection is doing here comes from experimental evolution
on φX174. In chemostat adaptation experiments where high MOI conditions prevail,
D-promoter mutations are commonly observed (Wichman et al., 1999;Wichman, Millstein
& Bull, 2005). Brown et al. (2010) studied four D-promoter mutations and found that they
all reduce gene D/E mRNA transcript levels on the order of 75–80%. Two of the mutations
studied there are the same as the two most commonly observed in our data: 1910aG and
1911cT. Since the lysis protein E is encoded in this transcript, protein E levels are presumably
reduced by these mutations. We therefore suspected that our D-promoter mutations
are down-regulating the lysis protein in our experiment and thereby delaying lysis.

This led us to examine the 65 isolates that lack a D-promoter mutations. Might these be
achieving similar ends by different means?We found that 56 of these 65 isolates (86%) have
mutations that could reasonably affect the E protein in that the mutations (i) are either just
upstream of the E protein coding region or in the gene itself and (ii) are never found in an
isolate with a D-promoter mutation (46 of 56 have the aforementioned mutations 2094aG
(5 isolates), 2131cT (4 isolates), 2134cT (26 isolates) and 2158aG (11 isolates) while the
other 10 have mutations found in just one well: 2147tA (2 isolates), 2335gT (1 isolate),
2361cG (5 isolates), 2372gT (1 isolate) and 2407aT (1 isolate)). Thus, only 9 of the total
338 isolates (2.7%) had neither a mutation in the D-promoter nor a change that might
reasonably effect the E protein.

These observations led us to do lysis assays on a subset of mutations we hypothesized
were delaying lysis: 1910aG and 1911cT (the two common D-promoter mutations found
in 182 and 62 isolates respectively), 2131cT (found in 4 isolates) and 2134cT (found in 26
isolates). These mutations were selected in part because of their abundance (representing
274 of 338 isolates, or 81%) and because we already had sequenced isolates with andwithout
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Figure 8 Pattern of observed vs. expected co-occurences.Most importantly, the plot reveals that D-promoter mutations never co-occur nor do
they occur with several other mutations including 2134cT, 2094aG, 2131tC, and 2158aG. Each cell shows the observed count in the lower left vs. the
expected count in the upper right for that comparison. Larger counts are shaded more darkly to show the overall pattern and significant differences
(p< 0.05) are highlighted in red. The D-promoter mutations are at sites 1909–1935 (first 7 mutations) and the D-pro block is this collection of mu-
tations. *The D-pro block comparison with itself shows the total number of observed and expected wells where two different D-promoter mutations
co-occur in the same isolate; all other comparisons with D-pro block are observed and expected co-occurences with any D-promoter mutation. Sin-
gletons and reversions have been removed from the figure and expected counts have been rounded to nearest integer. Expected counts are based on
a bootstrap randomization procedure (see methods).
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Figure 9 Time to lysis is delayed by the assayed mutations across backgrounds. Each panel presents a
different genetic background: (A) J15, (B) J20, (C) F178, (D) ID11 wild type. Plotted are the means and
standard errors of all observed burst counts for each genotype at each time point.
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eachmutation. For three of them (all but 2131cT) we had isolates allowing the with/without
comparison to be made on multiple backgrounds. This let us assess phenotypic effect of
each mutation across multiple genetic backgrounds. The results, presented in Fig. 9,
confirm our hypothesis. The D-promoter mutations delay lysis 5–8 min depending on the
mutation and the background. Mutations 2131cT and 2134cT delay lysis on the order of
12–13min. The patterns are very similar across background suggesting that this phenotypic
effect is not very background dependent. Thus, we have strong evidence that over 80% of
the isolates are delaying lysis and, based on the arguments above, there is reason to suspect
that most of the remaining isolates have delayed lysis as well. At the well level, at least 64 of
the 68 wells (≥94%) have mutations that delay lysis or are strongly suspected of doing so.

Given this dramatic delay in lysis time, we were interested in what molecular
mechanism(s) underlie the delay. With the D-promoter mutations, we hypothesized that
the mutations change the binding affinity of the RNA polymerase which alters expression
of the lysis protein, protein E (Brewster, Jones & Phillips, 2012; Kinney et al., 2010). For
mutations downstream of the D-promoter within the D/E genes, we hypothesized that
delay is driven by other means of delaying protein E expression. We considered the
possibility that E is down-regulated by mutation to rare codons (Sharp, Emery & Zeng,
2010), ribosomal pausing at mutationally introduced Shine-Delgarno-like sequences (Li,
Oh &Weissman, 2012) or mutationally altered transcript stability (Agashe et al., 2013). As
we detail in the Supplemental Information, our analyses failed to find strong support for
any of these hypotheses by themselves. We continue to suspect that lysis delay is driven
by change in protein E expression. We speculate that our inability to uncover drivers may
come from having relatively few mutations, from using models (as opposed to molecular
data) for exploring the mechanisms and the possibility that multiple mechanisms may be
involved across and even within individual mutations.

CONCLUSIONS
Our inability to make precise predictions about evolution, even in the laboratory, reveals
how much is yet unknown about the process. The study of parallelism is useful, in part
because it illuminates how inherently stochastic evolution is and, therefore, how good our
predictions may become as knowledge improves. Experimental evolution remains in the
very early stages of tackling the problem. A number of studies have sought to gather insight
by taking one adaptive outcome (i.e., a collection of beneficial mutations), engineering
all the possible pathways to it, and asking how viable is each pathway (Weinreich, Watson
& Chao, 2005; Poelwijk et al., 2007; Chou et al., 2011; Khan et al., 2011). The advantage of
this approach is that it reveals a small region of the adaptive landscape in great detail; the
problem is that it generally leaves the vast majority of the evolutionarily relevant landscape
unexamined. Relatively few studies have attempted to study the broader fitness landscape
and ask about the multiplicity of trajectories evolution might take (Wichman et al., 1999;
Woods et al., 2006; Tenaillon et al., 2012; Lee & Marx, 2013; Lang et al., 2013; Frenkel, Good
& Desai, 2014).

Here we sampled and characterized the range of potential short-term trajectories in
a bacteriophage by allowing eight replicate lines with each of nine first-step mutational
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backgrounds to adapt for 100 passages. Our results provide both informative details
and, stepping back, a simple storyline. The details can be summarized in several succinct
points. (1) Our populations generally displayed complex interference dynamics with
many mutations arising and competing simultaneously. (2) A lot of variation–and adaptive
variation–arose: 112mutations and 281mutational events occurred with at least 40% of the
mutations and 77% of the events being adaptive. (3) The variation was concentrated: over
80% of the mutational events arose in the D-promoter, the J-terminator and genes D, E and
F. (4) Mutational appearance was highly skewed: a few mutations in the D-promoter arose
a lot, a few mutations arose a modest number of times and most mutations arose between
once and just a few times. (5) Overall, parallelism was modest: wells starting with the same
background shared, on average, 27% of their mutations at the DNA level and 38% of their
changes at the broader codon/regulatory level. About half of this parallelism came from
changes in the D-promoter. (6) Epistasis was present, but it was largely driven by a handful
of interactions: a few mutations arose at elevated rates on certain backgrounds, several
mutations tended to co-occur and,most importantly, D-promotermutations and a number
of other mutations within the gene D/E transcript never co-occurred. The likely reason
for this is that the mutations in repulsion are all doing the same thing: delaying lysis time.

Thus, at least one phenotypic change–delay of lysis–was observed in parallel over most
of our replicate lines. 94% of the wells and over 85% of the isolates had mutations that we
know or strongly suspect delay lysis. This leads us to hypothesize that under our high MOI
conditions, selection favored phage delaying the pursuit of a fresh host to better exploit
the host they are in (i.e., love the one the one you’re with). In some ways our findings
echo those of other recent studies that have looked at replicate adaptation and shown or
implicated that parallelism is much higher at the phenotypic level than the genetic level
(Woods et al., 2006; Saxer, Doebeli & Travisano, 2010; Lee & Marx, 2013; Tenaillon et al.,
2012). Our work, like theirs, reinforces the view that answering questions about the range
of possible adaptive trajectories, parallelism, and the predictability of evolution requires
attention to the many biological levels where the process of adaptation plays out.
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