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Dominant forest tree species potentially vulnerable to climate
change over large portions of their range even at high
latitudes
Catherine Perie, Sylvie de Blois

Projecting suitable conditions for a species as a function of future climate provides a
reasonable, although admittedly imperfect, spatially explicit estimate of species
vulnerability associated with climate change. Projections emphasizing range shifts at
continental scale, however, may mask contrasting patterns at local or regional scale where
management and policy decisions are made. Moreover, models usually show potential for
areas to become climatically unsuitable, remain suitable, or become suitable for a
particular species with climate change, but each of these outcomes raises markedly
different ecological and management issues. Managing forest decline at sites where
climatic stress is projected to increase is likely to be the most immediate challenge
resulting from climate change. Here we assess habitat suitability with climate change for
five dominant tree species of eastern North American forests, focusing on areas where
species are projected to be most vulnerable in Quebec (Canada). Results show that these
species are at risk of maladaptation over a remarkably large proportion of their baseline
(contemporary) range. Depending on species, 5 to 21% of currently climatically suitable
habitats are projected to be at risk of becoming unsuitable. This suggests that species that
have traditionally defined whole regional vegetation assemblages could become less and
less adapted to these regions. If they are not already in place, adaptation strategies are
needed, if only to allow sufficient time for forest ecosystems and regional forest economies
to adapt. In spite of their well-recognised limitations and the uncertainty that remains,
regionally-explicit risk assessment approaches remain one of the best options to convey
that message loud and clear, providing that models are interpreted at a scale relevant to
forest management.
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20 ABSTRACT

21 Projecting suitable conditions for a species as a function of future climate provides a reasonable, 

22 although admittedly imperfect, spatially explicit estimate of species vulnerability associated with 

23 climate change. Projections emphasizing range shifts at continental scale, however, may mask 

24 contrasting patterns at local or regional scale where management and policy decisions are made. 

25 Moreover, models usually show potential for areas to become climatically unsuitable, remain 

26 suitable, or become suitable for a particular species with climate change, but each of these 

27 outcomes raises markedly different ecological and management issues. Managing forest decline 

28 at sites where climatic stress is projected to increase is likely to be the most immediate challenge 

29 resulting from climate change. Here we assess habitat suitability with climate change for five 

30 dominant tree species of eastern North American forests, focusing on areas where species are 

31 projected to be most vulnerable in Quebec (Canada). Results show that these species are at risk 

32 of maladaptation over a remarkably large proportion of their baseline (contemporary) range. 

33 Depending on species, 5 to 21% of currently climatically suitable habitats are projected to be at 

34 risk of becoming unsuitable. This suggests that species that have traditionally defined whole 

35 regional vegetation assemblages could become less and less adapted to these regions.  If they are 

36 not already in place, adaptation strategies are needed, if only to allow sufficient time for forest 

37 ecosystems and regional forest economies to adapt. In spite of their well-recognised limitations 

38 and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of 

39 the best options to convey that message loud and clear, providing that models are interpreted at a 

40 scale relevant to forest management.
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41 Introduction

42 During the last century, forest conservation policies and management practices worldwide have 

43 been developed assuming a relatively stable climate regime. Indeed, apart from occasional extreme 

44 events, climate was largely considered as a stable dimension, over decades or centuries, of a 

45 species’ niche or habitat. Although tree species distribution ranges have expanded or shrunk in 

46 response to climate, detectable shifts largely occurred at time scales comparable to those of climate 

47 change in the Quaternary, that is, within centuries or millennia for long-lived trees (Davis et al. 

48 2005). In the coming decades, however, boreal forests are predicted to face multiple stresses under 

49 a rapidly warming climate (Gauthier et al. 2015). Global mean temperatures are projected to 

50 increase at rates unprecedented in human history (Diffenbaugh & Field 2013). By the mid-21st 

51 century, many areas of the globe will be under a new, permanent heat regime, in which the coolest 

52 warm-season months of the 21st century are predicted to be hotter than the hottest warm-season 

53 months of the late 20th century (Diffenbaugh & Scherer 2011), while considerable regional and 

54 interannual variability is expected. Impacts could be profound on forest species distributions, 

55 community structure, and ecosystem functions, as well as on all economic activities and services 

56 that depend on forests. 

57 Projecting suitable conditions for a species as a function of future climate provides a 

58 reasonable, although admittedly imperfect, spatially explicit estimate of tree vulnerability 

59 associated with climate change in this century (Araújo & Peterson 2012; Elith & Leathwick 2009; 

60 Franklin 2013). Species distribution or habitat suitability models have projected dramatic range 

61 shifts at continental scales for hundreds or thousands of species at a time, greatly helping raise 

62 concerns about biodiversity and climate change (Iverson et al. 2008; Ray et al. 2010; Thuiller et 

PeerJ reviewing PDF | (2016:01:8650:0:0:NEW 17 Feb 2016)

Manuscript to be reviewed

davies.411
Highlight

davies.411
Typewriter
slightly odd phrasing, climate regime?

davies.411
Typewriter
Refs needed here



63 al. 2008; Xiao-Ying et al. 2013). Projections will usually show potential for areas to become 

64 climatically unsuitable, remain suitable, or become suitable for a particular species with climate 

65 change compared to baseline climatic conditions. Each of these outcomes, however, raises 

66 markedly different ecological and management issues. For instance, the potential for habitat gain 

67 under warmer climatic conditions exists but natural tree range expansion or tree migration is 

68 unlikely to proceed at rates sufficient to keep up with climate change in this century  (Renwick & 

69 Rocca 2015; Savage & Vellend 2015), whereas the introduction of species outside their natural 

70 range is questioned (Aubin et al. 2011). If, on the other hand, climatic conditions are projected to 

71 become unsuitable for a species, given the long lifespan of trees, many areas are likely to retain 

72 for a while maladapted trees that could affect species turnover at a site and forest productivity. 

73 Species decline will have immediate consequences on local community processes, forest 

74 management practices, and related economic activities. Unless forests change mostly through 

75 catastrophic events, it is likely that managing forest decline at sites where climatic stress is 

76 becoming increasingly important will be the most immediate challenges of climate change. 

77 Finally, projections at continental scale that emphasize major range shifts may mask contrasting 

78 patterns at local or regional scale, while forest managers, conservationists, or policymakers need 

79 to understand site-specific impacts to inform adaptation strategies, forest policies, or monitoring 

80 efforts. Monitoring sites at risk, in particular, is increasingly important to determine whether recent 

81 climate change is already affecting population dynamics (Girardin et al. 2014; Worrall et al. 2013) 

82 or species distribution (Boisvert-Marsh et al. 2014; Woodall et al. 2009), or whether species can 

83 indeed persist under novel climatic conditions. 

84 Here, we take advantage of available information on tree species distribution from forest 

85 survey programs in Quebec (Canada) and eastern United-States to assess potential decline in 
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86 habitat suitability associated with climate change for five dominant tree species of deciduous and 

87 coniferous forests. Given the ecological and economic importance of these species, a change in 

88 their distribution and dynamics could make entire ecosystems, ecoregions, and economies 

89 vulnerable. We focus on areas where climate is predicted to become unsuitable or less suitable for 

90 these species as opposed to habitat gain or range shift for the reasons mentioned above. These 

91 species are, in order of decreasing merchantable volume in Quebec forests: Picea mariana (Mill.) 

92 Britton, Sterns & Poggenb. (black spruce), Abies balsamea (L.) Mill. (balsam fir), Betula 

93 papyrifera Marshall (white birch, synonym of paper birch), Acer saccharum Marsh. (sugar maple) 

94 and Betula alleghaniensis Britton (yellow birch). We base our assessment on a rigorous modelling 

95 approach using data spanning two jurisdictions (United States and Canada), but focus our 

96 interpretation at the scale of ecologically and economically significant bioclimatic domains which 

97 are defined by the target species in Quebec forests. We assume that 1) even though other factors 

98 can limit tree distribution (Beauregard & de Blois 2014; Lafleur et al. 2010), climate remains a 

99 significant determinant of a species’ fundamental niche (Araújo & Peterson 2012), given its major 

100 role in determining species presence and genetic variation across landscapes (Jansen et al. 2007; 

101 Woodward & Williams 1987); 2) climate models coupled with greenhouse gas emission scenarios 

102 provide a reasonable estimate of climatic conditions in this century; 3) assessing potential decline 

103 in habitat suitability for a species provides an estimate of the risk of climate-related stress for that 

104 species; and 4) stakeholders need spatially explicit projections  at a scale relevant to decision 

105 making, since trees regenerating today will cope with climate conditions that may drastically 

106 change during their lifespan. This is especially the case in boreal forests where most tree species 

107 grow slowly (ministère des Ressources Naturelles 2013).  We discuss the significance of these 
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108 projections for species conservation and management scenarios, recognising the effect of 

109 uncertainty on adaptation strategies.

110 Materials & Methods

111 Study area

112 We focused our study on forests of Quebec (Canada), which account for 20% of the total 

113 Canadian forests and 2% of the world’s forests. Dense forest covers an area of 761,100 km2, 

114 (equivalent in size to the territories of Norway and Sweden combined — 

115 https://www.mern.gouv.qc.ca/english/international/forests.jsp), of which 70% is considered 

116 productive (commercial forest managed under the Sustainable Forest Development Act). The 

117 productive forest territory (45ºN–53ºN) mainly comprises the northern temperate and boreal 

118 vegetation zones (Fig. 1), which reflect Quebec’s major climatic gradient. They are further 

119 divided, on the basis of edaphic and climatic conditions, into characteristic plant communities of 

120 ecological and economic importance or bioclimatic domains. The temperate zone includes, from 

121 south to north: the sugar maple–bitternut hickory domain (14,500 km2), the sugar maple–

122 basswood domain (31,000 km2), the sugar maple–yellow birch domain (65,600 km2) — all three 

123 being grouped in this study as the sugar maple domains — and the balsam fir–yellow birch 

124 domain (98,600 km2). The boreal zone includes the balsam fir–white birch domain 

125 (139,000 km2), the very large spruce–moss domain (412,400 km2), and the spruce–lichen domain 

126 (299,900 km2) which extends to 55ºN.

127 We constructed habitat suitability models for each species using a modelling area largely 

128 exceeding that of the province taking into account the expected shift north of climate envelope 

129 according to various climate simulations (Logan et al. 2011) as well as available data on current 
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130 species distribution and climate and edaphic conditions. The modelling area (~2,500,000 km2) 

131 ranges from 30°N to 53°N in latitude and from 93°W to 60°W in longitude (Fig. 1). Annual 

132 mean temperature increases gradually from –5 °C in the north to +20 °C in the south, whereas 

133 annual total precipitation ranges from 670 to 2,000 mm, with less of a spatial gradient. Elevation 

134 ranges from sea level to 1,250 m

135 We based the geographic grid we used for modelling on that of the Climate Change Atlas 

136 for 134 Forest Tree Species of the Eastern United States (Iverson et al. 2008; Landscape Change 

137 Research Group 2014). This grid was extended into Quebec to allow the merging of data sets 

138 from both jurisdictions. The mapped area is composed of 6,418 cells (20 × 20-km or 400-km2 

139 each, Fig. 1), each considered as a sampling unit and containing information on tree species 

140 occurrence, climate, elevation and edaphic characteristics.

141 Ideally, the modelling area should include the vast majority of the range of climatic 

142 conditions experienced by a species (Barbet-Massin et al. 2010), including the range of projected 

143 climatic conditions according to scenarios of climate change in the study area. Covering the full 

144 distribution range of a species is not always possible and so, in preliminary analyses, we verified 

145 gaps in climate coverage for each species by comparing the modelling area with Little’s range, 

146 which is assumed to cover an entire species range in North America (Little 1971). There were 

147 minimal or no gap in temperature coverage for sugar maple (Fig. S1A), yellow birch (Fig. S2A), 

148 and balsam fir (Fig. S3A; coverage of 100%, 100%, and 97% of the temperature range 

149 respectively). Temperature coverage was 70% for white birch (Fig. S4A)  and 61% for black 

150 spruce (Fig. S5A), but the gaps were for colder temperatures that are not characteristic of the 

151 projected climate trends in the study area (+1.9 °C to +8 °C; Ouranos 2015) . Precipitation 

152 coverage was 98% for both sugar maple (Fig. S1B) and yellow birch (Fig.S2B), and 70% for 
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153 balsam fir (Fig. S3B). The gaps for white birch (35%; Fig. S4B) and black spruce (31%; Fig. 

154 S5B) were towards drier annual climates that again are not characteristic of the projected climate 

155 trends in the study area (+3% to +26%; Ouranos 2015).

156

157 Occurrence data and target species

158 For the eastern United States, our main source of information was the Climate Change Atlas 

159 database (Landscape Change Research Group 2014). For the Canadian part of the modelling 

160 area, we obtained data on tree species occurrence from more than 95,000 forest plots sampled 

161 across the province and inventoried from 1985 to 1998 by the ministère des Forêts, de la Faune 

162 et des Parcs (Quebec’s department of forests, wildlife and parks). The presence (or absence) of 

163 each forest tree species was recorded in each of the 6,418 cells of the modelling area.

164 The five target species (sugar maple, yellow birch, white birch, balsam fir, and black 

165 spruce) are common and widespread in the study area, and define the major bioclimatic domains 

166 described previously. Their ecological and economic importance cannot be overemphasized for 

167 the province: together, they represent 72% of the total volume of merchantable trees (as seen in 

168 Fig. S6), and many local economies are tightly linked to their fate. Their average longevity 

169 ranges from 150 years (balsam fir) to more than 300 years (sugar maple and yellow birch) 

170 (ministère des Ressources Naturelles 2013). Projections to the end of this century are thus well 

171 within their lifespan.

172 Environmental data

173 We used 14 predictor variables for modelling (Table 1), including 3 climate, 1 elevation, 7 soil-

174 class, and 3 soil property variables.
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175 Climatic data 

176 We calculated baseline climate data from normalized (1961–1990) monthly surfaces of total 

177 precipitation and average, maximum, and minimum temperatures, downloaded from the USDA 

178 Forest Service Rocky Mountain station website (http://forest.moscowfsl.wsu.edu). Climate data 

179 were obtained at a spatial resolution of 0.0083 decimal degrees (≈1 km) and averaged for each 

180 20 x 20-km grid cell of the modelling area. To avoid multicollinearity, we used the VARCLUS 

181 procedure in SAS 9.2 (SAS Institute Inc. 2008) to select the three climate variables that most 

182 influenced plant survival and growth among the 35 available climate variables (Rehfeldt et al. 

183 2006). They are mean annual temperature (TEM), mean annual precipitation (PRE) and useful 

184 precipitation (i.e., the ratio of the sum of June, July and August monthly precipitation to total 

185 annual precipitation; PRATIO). 

186 Ouranos (http://www.ouranos.ca/en/), a consortium on regional climatology and 

187 adaptation to climate change, provided different climate simulations using output from 

188 12 general and one regional coupled atmosphere–ocean general circulation models. Each of these 

189 was coupled with one, two or three projected greenhouse gas emissions scenarios (scenarios A2, 

190 A1B and/or B1, based on the Special Report on Emissions Scenarios, or SRES; 

191 http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0). This generated a total of 

192 70 climate simulations, which are a subset of the 86 climate simulations (Logan et al. 2011) 

193 made available from phase 3 of the Coupled Model Intercomparison Project (Meehl et al. 2007). 

194 Note that emission scenarios are now represented by four Representative Concentration 

195 Pathways (RCP), which became available with the IPCC fifth assessment report. The RCPs span 

196 a larger range of stabilization, mitigation and non-mitigation pathways than the range covered by 

197 the SRES scenarios and therefore the resulting range of temperature increase estimates is larger 
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198 for the RCPs. When comparing median global temperature increase projections for the SRES we 

199 used and the four new RCPs for the horizon 2100 in relation to pre-industrial values, RCP8.5 

200 (4.9ºC) > A2 (4.2ºC) > A1B (3.5ºC) > RCP6 (3ºC) > B1 (2.5ºC) ≥ RCP4.5 (2.4ºC) > RCP3-PD 

201 (Rogelj et al. 2012). 

202 For each climate simulation, future (2071–2100) TEM, PRE and PRATIO values were 

203 obtained using the “change field” method (IPCC 1995). Monthly mean differences between the 

204 baseline period model run (1961–1990) and the future climate model run (2071–2100) were 

205 calculated and then combined with baseline values of observed monthly climate data set. 

206 However, due to the relatively coarse spatial resolution of the climate simulations (45 km per cell 

207 side for the regional coupled atmosphere–ocean model, and ~250-km per cell side for the general 

208 coupled atmosphere–ocean circulation models), we interpolated monthly delta values for the 

209 centroids of each 20 km × 20-km grid cell (6,418 in all) using a linear triangle-based 

210 interpolation method (de Berg et al. 2008) between climate model grid cell centroids. We then 

211 created climate simulations for each month by applying interpolated delta values to each 

212 observed grid cell value. 

213 To maintain a range of variability in climate projections while reducing time 

214 computation, we selected 7 of the 70 available climate simulations as drivers (Table S1), using 

215 an objective approach that uses cluster analysis to obtain a good coverage of overall future 

216 uncertainty (Casajus N. et al. accepted on November 2015; Houle et al. 2012). We considered all 

217 selected scenarios as equiprobable in this analysis. 

218 Topographic and soil data

219 Elevation data were provided by the Climate Change Tree Atlas database for the eastern United 

220 States portion of the modelling area (Landscape Change Research Group 2014), whereas for 
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221 Quebec it was obtained from the Canadian Surface Model Mosaic 

222 (http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/3A537B2D-7058-FCED-8D0B-

223 76452EC9D01F.html) at a resolution of ca. 20 m and averaged to match our grid . We obtained 

224 soil characteristics data (surface deposit and drainage class; Table 1) from the American soil 

225 database (version 2.1, scale 1:24,000) for the eastern United States part of the modelling area, 

226 and from the ministère des Forêts, de la Faune et des Parcs (3rd decennial permanent and 

227 temporary surveys, 1:20 000 scale; http://www.mffp.gouv.qc.ca/forets/inventaire/donnees-

228 inventaire.jsp) for the Quebec portion. For each grid cell, we computed the percentage of the 

229 20 x 20-km cell occupied by each level of each edaphic variable.

230 Modelling current and future habitat suitability

231 Species distribution modelling

232 We computed the geographical distribution of suitable climatic and edaphic conditions – or 

233 habitat, as defined by these particular dimensions of the niche – for each of the target tree 

234 species, following an ensemble procedure (Araújo & New 2007) with the BIOMOD 1.1 

235 modelling package (Thuiller et al. 2009) implemented in R (R Development Core Team 2010). 

236 We considered both a baseline period (1961–1990) and a future period (2071–2100, hereafter 

237 referred to as 2080). We used species occurrence data and environmental predictors to build 

238 species distribution models using eight modelling techniques: three regression methods 

239 (generalized additive models, GAM; generalized linear models, GLM; multivariate adaptive 

240 regression splines, MARS), two classification methods (mixture discriminant analysis, MDA; 

241 classification tree analysis, CTA) and three machine learning methods (artificial neural networks, 

242 ANN; generalized boosted models, GBM; random forest, RF). All models were produced using 

243 default BIOMOD parameters where possible (Thuiller et al. 2009). Further parameters were as 
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244 follows: GLMs were generated using quadratic terms and a stepwise procedure with the AIC 

245 criteria; GAMs were generated with a spline function with three degrees of smoothing; GBMs 

246 were built with a maximum of 2,000 trees; ANNs were produced with five cross-validations (see 

247 Marmion et al. (2009) for further details on these modelling techniques). For each species, we 

248 built the eight species distribution models using a random subset of data containing 70% of the 

249 20 x 20-km cells (i.e., 4,493 cells). We used the remaining 30% (i.e., 1,925 cells) to evaluate the 

250 predictive performance of the models. We repeated this split-sample procedure ten times, thus 

251 calibrating 80 different statistical models for each species. We simulated suitability under 

252 climate change (future suitability) by projecting each of the 80 projections under each of the 

253 seven climate simulations for 2080. This generated a total of 560 probabilities 

254 (ten repetitions x eight modelling techniques x seven climate simulations) of habitat suitability 

255 for each species for the 2080 period. We combined the different probabilities of habitat 

256 suitability (P) based on the area under the receiver-operating characteristic (ROC) curve (AUC) 

257 values; we assigned the AUC values from each modelling technique as the weights of the 

258 weighted average in order to enhance the contributions of models with higher performance 

259 values:

260 [1]𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
=

∑8
𝑗 = 1

∑10
𝑘 = 1(𝐴𝑈𝐶𝑗𝑘 × 𝑃𝑖𝑗𝑘)

∑8
𝑗 = 1

∑10
𝑘 = 1(𝐴𝑈𝐶𝑗𝑘)

261 [2]𝑊𝐴𝑃𝑖2080
=

∑8
𝑗 = 1

∑10
𝑘 = 1

∑7
𝑙 = 1(𝐴𝑈𝐶𝑗𝑘 × 𝑃𝑖𝑗𝑘𝑙)

7 × ∑8
𝑗 = 1

∑10
𝑘 = 1(𝐴𝑈𝐶𝑗𝑘)

262 where  is the weighted average probability of habitat suitability,  is the index of the 𝑊𝐴𝑃 𝑖

263 grid cell (1, …, 6418),  is the modelling technique (GAM, GLM, MARS, CTA, MDA, ANN, 𝑗

264 GBM, RF), is the repetition (1, …, 10) and  is the climate simulation (1, …, 7). Averaged 𝑘 𝑙

265 projections resulted in a single projection at each grid cell for each species (hereafter referred as 
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266 the “average model”) for the baseline period  and the 2080 period(𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
;𝑒𝑞. 1)  

267 . This method is considered to be more robust than other model fusion methods or (𝑊𝐴𝑃𝑖2080
;𝑒𝑞. 2)

268 single model projections (Marmion et al. 2009b).

269 Transforming probabilities of suitability to binary values

270 To transform continuous probabilities of suitability into binary (0/1) values, we calculated a 

271 common threshold (cut-off) value for both the baseline period and the 2080 period using a binary 

272 vector of observed occurrence and a vector of probability of occurrence from the average model 

273 . We searched for the threshold which jointly maximized sensitivity and specificity (𝑊𝐴𝑃𝑖2080
)

274 (Liu et al. 2005). This approach is considered among the most reliable for choosing a threshold 

275 (Freeman & Moisen 2008).

276 Model evaluation

277 The predictive model performance was evaluated using area under the receiver operating 

278 characteristic curve (AUC; Fielding & Bell 1997) as an accuracy measure. The area under the 

279 ROC function (AUC) is usually taken to be an important index because it provides a single 

280 measure of overall accuracy that is not dependent upon a particular threshold. Suggested AUC 

281 values for classifying the accuracy of models using AUC are: 0.90–1.00 = excellent; 0.80–

282 0.9 = good; 0.70–0.80 = fair; 0.60–0.70 = poor; 0.50–0.60 = fail (e.g., Virkkala et al., 2010 

283 adapted from Swets, 1988). Sensitivity (true positive fraction) and specificity (false positive 

284 fraction) values were also reported for each species (Lobo et al. 2008).

285 Agreement between the average future projection in each cell and the single projections

286 To measure the level of confidence in our average future projection for a given cell, we also 

287 calculated the percentage of the 560 single projections for that cell that agreed with the average 

288 projection (hereafter referred as “agreement value”). 
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289 Identifying vulnerable habitats under future climates

290 We focused on Quebec’s productive forest territory to evaluate whether predicted future 

291 conditions remained suitable for a species within its baseline range. For this purpose, the baseline 

292 range of a species was defined as the set of grid cells within Quebec productive forests where the 

293 baseline average model predicted a suitable habitat (  ≥ threshold value), as defined by 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

294 climatic, edaphic and topographic variables. Note that a ‘suitable habitat’ does not necessarily 

295 mean an ‘optimal habitat’, since a species can be found on sites with suboptimal conditions. 

296 Cells modelled as suitable habitat under baseline climatic conditions, but which became 

297 unsuitable under future climate conditions, were classified as unsuitable habitat (UH). Cells 

298 modelled as ‘suitable’ under both baseline and future climate further subdivided as: 

299 Less Suitable Habitats (LSH): 

300 [eq. 3][𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
< 0  &  |𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

| ≥ 0.15]

301 Persistent Habitats (PH):

302 [eq. 4][𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
< 0    &  |𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

| < 0.15]

303 OR [eq. 5][𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
≥ 0]

304 LSH reflect predicted probabilities of habitat suitability that decrease over time, but not to 

305 the point of unsuitability like UH. We used the arbitrary threshold of a 15% change of 

306 probabilities of habitat suitability ( ) to select the proper subcategory for 𝑊𝐴𝑃𝑖2080 ‒ 𝑊𝐴𝑃𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

307 each cell. 

308 For each species, we reported trends in relation to the entire productive forest territory, 

309 the baseline range of the species in Quebec, and each of 5 vegetation domains.
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310 RESULTS

311 Model evaluation

312 Overall, all the models performed well and showed good capacity on species prediction as 

313 accuracies showed high values (Table S2). The AUC values of the consensual models ranged 

314 from 0.916 (sugar maple) to 0.984 (for balsam fir), for a mean value of 0.958 ± 0.029.

315 Assessing risk under future climate

316 Species are presented in order of decreasing importance in the study area (as measured by size of 

317 their baseline range in Quebec’s productive forest):

318 Black spruce (Table 2; Fig. 2A)

319 The baseline range for black spruce in the study area essentially covers all five bioclimatic 

320 domains. For this boreal species, 18% of the baseline range in Quebec is projected to become 

321 unsuitable under climate change. Shifts are projected largely within the sugar maple domain 

322 (89% of baseline spruce habitat in that domain shifting to unsuitable), the balsam fir–yellow 

323 birch domain (13%), and the balsam fir–white birch domain (2%). Moreover, all the remaining 

324 baseline habitats in these domains are projected to become less suitable for black spruce 

325 compared to baseline climatic conditions. In the spruce–moss domain, 52% of suitable habitats 

326 are projected to become less suitable for the species. Overall, 78% of the baseline range of black 

327 spruce in Quebec’s productive forest is projected to shift towards unsuitable or less suitable 

328 conditions compared to baseline conditions (agreement value = 68%).

329 Balsam fir (Table 2; Fig. 2B)

330 The baseline range for balsam fir covers more than 97% of Quebec’s productive forests. Shifts 

331 towards habitat unsuitability are projected for 21% of the species’ baseline range, with an 
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332 additional 38% of currently suitable habitats projected to become less suitable under climate 

333 change. Overall, 59% of the baseline range of balsam fir is projected to shift towards unsuitable 

334 or less suitable climatic conditions (agreement value = 69%) with climate change. Essentially, all 

335 baseline sites over the entire sugar maple domains and the balsam fir–yellow birch domain are 

336 projected to become unsuitable or less suitable. Further north, in the balsam fir–white birch 

337 domain, shifts towards unsuitability are projected on 1% of the range, while less suitable 

338 conditions are projected on another 87%. 

339 White birch (Table 2; Fig. 2C)

340 White birch is widely distributed in the study area with a baseline range covering 94% of 

341 Quebec’s productive forests. Shifts towards habitat unsuitability are projected over 14% of its 

342 baseline range, with habitat projected as less suitable over an additional 48%, for a total of 62% 

343 of the baseline range potentially under climate-related stress (agreement value = 71%). In the 

344 sugar maple domains, unsuitability is projected on 63% of the baseline range, with the remainder 

345 projected as less suitable compared to baseline conditions. Only 2% of habitats shifts towards 

346 unsuitability in the balsam fir–yellow birch domain, but less suitable habitats are projected in 

347 67% of the balsam fir–yellow birch domain, 79% of the balsam fir–white birch domain, and 15% 

348 of the spruce–moss domain.

349 Yellow birch (Table 2; Fig. 2D)

350 The baseline range for yellow birch covers 44% of Quebec’s productive forests. Shifts towards 

351 unsuitability are projected on 5% of the baseline range, with an additional 19% becoming less 

352 suitable, for a total of 24% of the baseline range (agreement value = 78%) under potential 

353 climate-related stress. All unsuitable areas are in the sugar maple domains (13%), as are most 

354 habitats projected as less suitable (48%).
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355 Sugar maple (Table 2; Fig. 2E)

356 The baseline range of sugar maple covers 31% of Quebec’s productive forests, essentially in the 

357 south. Shifts towards unsuitability are projected on 8% of the baseline range, with projections for 

358 less suitable habitats over an additional 1.3 % of that range, for a total of 9.3% of the sugar 

359 maple baseline range under potential climate-related stress (agreement value = 60%). All sites 

360 shifting to unsuitable conditions are in the sugar maple domains. The more northern domains are 

361 predicted to maintain their current habitats for sugar maple. 

362 Discussion

363 Most studies linking climate change with species distribution models emphasize the 

364 potential for major shifts in species ranges and a massive reorganisation of biodiversity. Our 

365 study is no exception but here we focus on areas where species are projected to become at risk of 

366 climate change-related stress to help define adaptation strategies. We define ‘risk’ as a function 

367 of the probability of an event (climate becoming unsuitable or less suitable for a species as 

368 projected) and the severity of its consequences (FAO 2007; Leung et al. 2012). Whereas one can 

369 rightly argue that there is still much uncertainty in assessing probability of species occurrence in 

370 a changing climate, there is no doubt that the consequences of habitat decline at a particular 

371 location can be highly significant for ecosystems and economies that depend on, or are defined 

372 by these species. Risk assessment through climate/species models, therefore, has at least two 

373 immediate benefits. Just like for climate projections, it can help draw attention of policy makers, 

374 forest management agencies, and the public in general on the sheer magnitude of projected 

375 climate change effects on biodiversity. Secondly, because models are spatially-explicit and 

376 species-specific, they can help target monitoring efforts, especially when resources are scarce, 

377 and potentially inform adaptation strategies.
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378 The consequences of an unsuitable climate on species can be associated to a range of 

379 processes directly or indirectly related to climate change, including increased physiological stress 

380 induced by heat or drought (Anderegg et al. 2015; Park Williams et al. 2013; Sun et al. 2015; Wu 

381 et al. 2012), increased vulnerability to pest and disease outbreaks (Creeden et al. 2014; DeRose 

382 et al. 2013; Fierravanti et al. 2015), competition from other species (Blois et al. 2013; Brooker 

383 2006; Carón et al. 2015; Dukes et al. 2009; Meier et al. 2012) or herbivory (Svenning & Sandel 

384 2013), and increased climate-mediated frequency of fires or destructive weather events 

385 (Bergeron et al. 2010; Terrier et al. 2013). However, the precise pathways through which climate 

386 change will affect a particular forest remains difficult to predict, as is the attribution of any 

387 particular event to climate change.  Based on the proportion of their baseline range that is 

388 projected to become unsuitable, our target species rank as follows, in decreasing order of 

389 vulnerability: balsam fir (21%), black spruce (18%), white birch (14%), sugar maple (8%), and 

390 yellow birch (5%). In the 185,000-km2area where the baseline ranges of all five species intersect, 

391 at least three species - and, in the southernmost part of the study area, all five of them - are 

392 projected to be at some risk of climate-related stress (Fig. 3). This represents a significant 

393 proportion of global forests and suggests that species that have traditionally defined whole 

394 regional vegetation assemblages could become less and less characteristic of these regions. 

395 Forest decline would have, as well, consequences on the value of forest land (Hanewinkel et al. 

396 2012).

397 Because of the strong north-south climatic gradient, species are projected to retract from 

398 their southern margins in the study area with warming. Biotic interactions are often emphasized 

399 over climate in determining southern range edges (Normand et al. 2009; Sunday et al. 2012), and 

400 so this raises the question of whether competitive processes mediated by species traits over novel 
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401 climatic conditions will help shift dominance of species locally. For instance, balsam fir is more 

402 fire-sensitive than black spruce and shifts in fire regime in the northern boreal forests over 

403 millennia have shifted dominance towards one species or the other, with warm and wet 

404 conditions favouring balsam fir over black spruce (Ali et al. 2008; Couillard et al. 2013). 

405 Moreover, the observed northward migration of pests, such as spruce budworms, facilitated by 

406 climate change is also contributing to increase the intensity and frequency of outbreaks in some 

407 areas. Whereas balsam fir is currently considered a more suitable host than black spruce, this 

408 may change when the budworm hits spruce-dominated forests (Pureswaran et al. 2015).  

409 Warming experiments can show direct physiological effect on individual trees, but is not 

410 always clear how warming can influence whole species assemblages over a range of soil 

411 conditions. Increased frequency and intensity of droughts, for instance, have led to negative 

412 effects on the duration of xylogenesis and the production of xylem cells in balsam fir in warming 

413 experiments (D'Orangeville et al. 2013). For sugar maple, the observation that adverse spring 

414 conditions in southern sites negatively impact sugar maple production may provide early 

415 indication for warming effect (Duchesne & Houle 2014). As decreasing growth rates can precede 

416 mortality, an even stronger signal comes from the observation of widespread decreasing growth 

417 rate for sugar maple documented in the Adirondacks (Bishop et al. 2015). While underlying 

418 mechanisms have to be clarified, these observations are in agreement with niche model 

419 projections in the eastern U.S. (Iverson et al. 2008).

420 There is uncertainty in model projections because of uncertainty in climate simulations, 

421 statistical models, and the non-linear responses of ecosystems and species. Climate simulations 

422 are constantly improving (Flato et al. 2013) and the limitations of different statistical models are 

423 well recognised (Marmion et al. 2009a). These limitations are often taken into account, for 
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424 instance by using consensus approaches across several statistical and climate models (Guo et al. 

425 2015; Wang et al. 2016). The level of agreement among our projections, was generally high 

426 (averaging 75%), raising confidence in our results given the data available. Nevertheless, the 

427 main source of uncertainty may rest not so much in the methodology used than in the model 

428 assumptions. There is no doubt that climate is a strong predictor of site occupancy patterns for 

429 species, particularly at broad spatial scale (Pearson & Dawson 2003). What remains unclear, 

430 however, is the extent to which climate mainly determines species range boundaries and whether 

431 current distribution patterns really capture the physiological limits of species (Brown & Vellend 

432 2014; García-Valdés et al. 2015; Nowacki & Abrams 2015; Paul et al. 2014). The availability of 

433 suitable conditions other than climate, postglacial dispersal limitations, or competition can all 

434 contribute to species not filling their available climatic niche (Sinclair et al. 2010). Coupling 

435 physiological models or trait information with correlative range models can help refine 

436 projections (Iverson et al. 2011; Talluto et al. 2016), providing that physiological models capture 

437 species responses outside the range of conditions represented by species presence-absence data. 

438 If there is, for instance, evidence for climatically suitable sites colder than those currently 

439 captured by the observed species’ range, the consequences may be minimal on risk assessment 

440 related to warming. If, on the other hand, there is evidence for climatically suitable sites warmer 

441 than those currently defined by a species’ range – or greater tolerance to warming than 

442 previously thought , future projections are likely to overestimate the risk of climate change on 

443 species distribution. Since species interactions also influence species distribution - but are 

444 somewhat integrated in models based on a species’ realised niche, another unresolved issue is 

445 how communities will reassemble. Disagreements as to the geographical extent of climate 

446 vulnerability are likely to persist until monitoring and field evidence clearly show trends in 
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447 support of (or in disagreement with) projections in a given region. Models can only point 

448 towards species or areas at risk for greater scrutiny and, most of all, provide incentive for 

449 developing and testing adaptation strategies.

450 If projections in this study question the future relevance of the current ecological 

451 classification of the forest landscape, they also raise important issues regarding the forest 

452 management regime, especially under the assumption that an ecosystem is defined by a relatively 

453 stable climate and substrate. The ecological principles that underlie current ecosystem-based 

454 management emphasize the need to reduce the differences between natural and managed 

455 landscapes (Gauthier et al. 2009). They imply that sustainable forest management practices 

456 should aim for a desired composition and age structure. This becomes quite a challenge if the 

457 ‘target composition’ is moving fast under a new climate regime (Dhital et al. 2015; Mori et al. 

458 2013). Therefore, the greatest challenges in coming years will be to manage rapid transitions of 

459 forests towards other, largely unknown, ‘steady-states’. As a result, the adaptation literature has 

460 repeatedly highlighted the need to move from a paradigm of preserving current conditions or 

461 restoring ‘historical fidelity’ to one of managing for novel ecosystems that may differ in 

462 composition, structure, and/or function (Hobbs et al. 2009). Models provide some indications of 

463 where the challenges could be the greatest, and whether or not species at risk are worth 

464 maintaining at specific locations under a shifting climate. Publicly managed forests in the study 

465 area, for instance, are restored to production largely by prioritizing practices that protect the 

466 established regeneration. Where regeneration is insufficient, as may increasingly be the case on 

467 sites that we identified as ‘at risk’, reforestation may be carried out. However, the choice of 

468 species is for the most part still made under the assumption that suitable conditions in this 

469 century will be similar to the ones in recent history. Redefined practices are being tested to 
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470 maximize forest resiliency while taking into account transition states, for instance by helping 

471 shift composition (including genetic variability) towards species or individuals adapted to the 

472 new climate regime (Breed et al. 2012; Koralewski et al. 2015; Park et al. 2014). As well, 

473 maintaining biodiverse (both in terms of composition and age structure) forests and landscapes 

474 could provide some insurance against instability (Churchill et al. 2013; Thompson et al. 2009). 

475 Our study area covers large regions where forest exploitation, especially of softwood 

476 stands, contributes significantly to the economy. Forests provide habitats and contribute to global 

477 carbon storage. Be it with species distribution models (Hufnagel & Garamvolgyi 2014), more 

478 detailed process-based models (Zolkos et al. 2014), warming experiments (Dulamsuren et al. 

479 2013) or field evidence (Dudley et al. 2015; Girardin et al. 2014; Worrall et al. 2013), all 

480 attempts to translate climate simulations into forest patterns converge towards the same message: 

481 trees could be at risk of maladaptation over a remarkably large proportion of their baseline range 

482 in this century. Sustaining yield could become increasingly difficult in these conditions. 

483 Reforestation planning will have to take into account climate trajectory and maps indicating 

484 areas at risk. Although it will be tempting to log declining forests, it will be as important to 

485 preserve reference areas under natural disturbances in order to understand ‘natural’ dynamics and 

486 adapt management options accordingly. New engagement rules with the forest industry, which 

487 may see areas at risk as opportunities for ‘salvage logging’, will be needed.

488 To respond to the climate change challenge for forests, efforts are focusing on three fronts: 1) 

489 Risk assessment, including the targeted monitoring of areas at risk, in order to understand forest 

490 dynamics under changing conditions. Quebec has the advantage of having established a large 

491 network of forest sites under observation since the 1970s (ministère des Forêts de la Faune et des 

492 Parcs 2014). Assessment of climate change-related risk is probably where most research efforts 
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493 have focused so far, but there is still a need to better identify and target areas and species at risk. 

494 Evidence also shows, however, that we tend to underestimate risks (Nelson 2007). 2) Risk 

495 communication with stakeholders, decision makers, and the public at large. During the last 

496 decade, a great deal of work has been done to provide conceptual frameworks and provide new 

497 approaches and tools for decision making under uncertainty (Janowiak et al. 2014). The recent 

498 publication of the results of a large study involving scientists and stakeholders on the impacts of 

499 climate change on Quebec biodiversity is a positive step in that direction (Berteaux et al. 2014). 

500 When communicating risk, it is indeed important to indicate the uncertainty inherent in all 

501 projections, as it has been for climate change projections in general. However, the treatment of 

502 uncertainty should not deter from action as has often been the case with climate change policies 

503 (Morton et al. 2011). The value of investing in knowledge and taking an adaptive approach could 

504 be higher than privileging a non-adaptive approach (Yousefpour et al. 2014). 3) Risk 

505 management, which involves basing decisions on the best information available. This may be the 

506 most challenging aspect. Comparing the outcomes of alternative management scenarios in 

507 relation to predicted responses of forest to climate change could prove useful (Polasky et al. 

508 2011). If they are not already in place, adaptation strategies are urgently needed, if only to allow 

509 sufficient time for forest ecosystems and regional forest economies to adapt. In spite of their 

510 well-recognised limitations, regionally-explicit risk assessment approaches, such as the one used 

511 here, remain one of the best options to convey that message loud and clear, providing that they 

512 are interpreted at a scale relevant to forest management.
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1
Modelling area and spatial distribution of bioclimatic domains in Quebec (Canada).
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2
Forecasted changes (2080) in A) black spruce habitat, B) balsam fir habitat, C) white
birch habitat, D) yellow birch habitat and E) sugar maple habitat.

UH: unsuitable habitat; LSH: persistent but less suitable habitat; PH: persistent habitat.

Confidence values were calculated as the percentage of the 560 single predictions for a

given cell that agreed with the average prediction for that cell. Values ≤ 50%: poor; 50% <

values ≤ 75%: medium; values > 75%: high.
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3
Number of tree species, among the 5studied species, at risk of some climate-related
stress in 2080.

We considered only cells in the study area where the baseline habitat was suitable for all

5species.
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Table 1(on next page)

Predictor variables used in tree habitat suitability models.
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EdaphicClimatic Topographic 
Surface deposit Drainage 

Annual mean temperature (°C) Average elevation (m) Eolian Humid water regime
Annual total precipitation (mm) Fluvio-glacial Mesic water regime
Ratio of summer precipitation over 
annual total precipitation

Glacial Xeric water regime

Littoral, marine or lacustre
Organic
Rocky substrate
Slope or altered

1
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Table 2(on next page)

Impact of climate change on tree habitat suitability in 2080.

Forecasted changes in species habitat are illustrated both as absolute areas (km2) and

proportion of the baseline range for the region (% of baseline). The baseline (1961-1990)

range of a species is the total area (km2) of all cells where the baseline average model

predicted a suitable habitat for that species, within each bioclimatic domain or for all of the

Quebec productive forest. The average agreement (% ag.) was calculated as the mean

percentage, within a given region, of single predictions for a given cell that agreed with the

average prediction for that cell.
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Forecasted changes in species habitat
Unsuitable habitat Less suitable habitat Persistent habitatSpecies / Region

Baseline 
range 
(km2) km2 % of 

baseline % ag. km2 % of 
baseline % ag. km2 % of 

baseline % ag.

Black Spruce
Sugar maple domain 103570 92348 89 77 11222 11 48
Balsam fir-yellow birch domain 97152 12347 13 66 84804 87 55
Balsam fir-white birch domain 136977 2778 2 65 134199 98 65
Spruce-moss domain 268668 209 <0.1 66 139505 52 76 128953 48 94
Spruce-lichen domain 2660 2660 100 99

Total (Quebec productive forest) 609027 107682 18 74 369730 61 65 131614 21 94
Balsam Fir

Sugar maple domain 109063 103583 95 76 5481 5 57
Balsam fir-yellow birch domain 97152 21249 22 59 75897 78 63 6 <0.01 84
Balsam fir-white birch domain 136977 1262 1 58 118967 87 70 16748 12 89
Spruce-moss domain 253288 29929 12 77 223359 88 90
Spruce-lichen domain 2563 2563 100 99

Total (Quebec productive forest) 599042 126093 21 71 230273 38 68 242675 41 90
White Birch

Sugar maple domain 109077 69167 63 75 39910 37 63
Balsam fir-yellow birch domain 97152 1846 2 61 94926 98 69 379 86
Balsam fir-white birch domain 136977 5 <0.01 59 108101 79 72 28871 86
Spruce-moss domain 235395 34631 15 79 200764 85 85
Spruce-lichen domain

Total (Quebec productive forest) 578600 71019 12 74 277568 48 70 230014 40 85
Yellow Birch

Sugar maple domain 109077 13915 13 79 52434 48 77 42728 39 95
Balsam fir-yellow birch domain 95316 372 < 87 94944 99 < 93
Balsam fir-white birch domain 66705 66705 100 94
Spruce-moss domain 1469 1469 100 100
Spruce-lichen domain

Total (Quebec productive forest) 272567 13915 5 79 52806 19 78 205847 76 94
Sugar Maple

Sugar maple domain 106902 14375 13 57 2536 2 71 89990 84 89
Balsam fir-yellow birch domain 69917 69917 100 94
Balsam fir-white birch domain 11683 11683 100 95
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Species / Region
Baseline 

range 
(km2)

Forecasted changes in species habitat
Unsuitable habitat Less suitable habitat Persistent habitat

km2 % of 
baseline % ag. km2 % of 

baseline % ag. km2 % of 
baseline % ag.

Spruce-moss domain 209 209 100 99
Spruce-lichen domain

Total (Quebec productive forest) 188712 14375 57 2536 71 171800 92
1
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