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ABSTRACT
Projecting suitable conditions for a species as a function of future climate provides
a reasonable, although admittedly imperfect, spatially explicit estimate of species
vulnerability associated with climate change. Projections emphasizing range shifts at
continental scale, however, can mask contrasting patterns at local or regional scale
where management and policy decisions are made. Moreover, models usually show
potential for areas to become climatically unsuitable, remain suitable, or become
suitable for a particular species with climate change, but each of these outcomes raises
markedly different ecological and management issues. Managing forest decline at sites
where climatic stress is projected to increase is likely to be themost immediate challenge
resulting from climate change. Here we assess habitat suitability with climate change
for five dominant tree species of eastern North American forests, focusing on areas
of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada)
rather than opportunities (increase in suitability). Results show that these species are
at risk of maladaptation over a remarkably large proportion of their baseline range.
Depending on species, 5–21% of currently climatically suitable habitats are projected
to be at risk of becoming unsuitable. This suggests that species that have traditionally
defined whole regional vegetation assemblages could become less adapted to these
regions, with significant impact on ecosystems and forest economy. In spite of their
well-recognised limitations and the uncertainty that remains, regionally-explicit risk
assessment approaches remain one of the best options to convey that message and the
need for climate policies and forest management adaptation strategies.

Subjects Ecology, Ecosystem Science, Environmental Sciences
Keywords Climate change adaptation, Boreal forest management, Forest decline, Climate change,
Habitat suitability, Species distribution model, Tree species maladaptation, Risk assessment,
Quebec

INTRODUCTION
During the last century, forest conservation policies and management practices worldwide
have been developed assuming a relatively stable climate regime. Indeed, apart from
occasional extreme events, climate was largely considered as a stable dimension, over
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decades or centuries, of a species’ niche or habitat. Although tree species distribution
ranges have expanded or shrunk in response to climate, detectable shifts largely occurred at
time scales comparable to those of climate change in theQuaternary, that is, within centuries
or millennia for long-lived trees (Davis, Shaw & R, 2005). In the coming decades, however,
boreal forests are predicted to face multiple stresses under a rapidly warming climate,
including increased frequency of forest fires and insect and disease outbreaks (Gauthier
et al., 2015). Global mean temperatures are projected to increase at rates unprecedented
in human history (Diffenbaugh & Field, 2013). By the mid-21st century, many areas
of the globe will be under a new climate regime, in which the coolest warm-season
months of the 21st century are predicted to be hotter than the hottest warm-season
months of the late 20th century (Diffenbaugh & Scherer, 2011), while considerable regional
and interannual variability is expected. Impacts could be profound on forest species
distributions, community structure, and ecosystem functions, as well as on all economic
activities and services that depend on forests (Hanewinkel et al., 2012; Price et al., 2013).

Projecting suitable conditions for a species as a function of future climate provides a
reasonable, although admittedly imperfect, spatially explicit estimate of tree vulnerability
associated with climate change in this century (Araújo & Peterson, 2012; Elith & Leathwick,
2009; Franklin, 2013). Species distribution or habitat suitability models have projected
dramatic range shifts at continental scales for hundreds or thousands of species at a time,
greatly helping raise concerns about biodiversity and climate change (Iverson et al., 2008;
Ray, Morison & Broadmeadow, 2010; Thuiller et al., 2008; Xiao-Ying, Chun-Yu & Qing-Yu,
2013). Projections will usually show potential for areas to become climatically unsuitable,
remain suitable, or become suitable for a particular species with climate change compared
to baseline climatic conditions. Each of these outcomes, however, raises markedly different
ecological and management issues. For instance, the potential for habitat gain under
warmer climatic conditions exists but natural tree range expansion or tree migration
is unlikely to proceed at rates sufficient to keep up with climate change in this century
(Boisvert-Marsh, Périé & De Blois, 2014; Renwick & Rocca, 2015; Savage & Vellend, 2015),
whereas the introduction of species outside their natural range is questioned (Aubin et al.,
2011). On the other hand, if climatic conditions are projected to become unsuitable for
a species, many areas are likely to retain maladapted trees given trees’ long lifespan; this
could affect forest productivity and species turnover at a site. Species decline will have
immediate consequences on local community processes, forest management practices, and
related economic activities. Unless forests change mostly through catastrophic events, it is
likely that managing forest decline at sites where climatic stress is becoming increasingly
important will be the most immediate challenge of climate change. Finally, projections at
continental scale that emphasizemajor range shiftsmaymask contrasting patterns at local or
regional scale, while forest managers, conservationists, or policymakers need to understand
site-specific impacts to inform adaptation strategies, forest policies, or monitoring efforts.
Monitoring sites at risk, in particular, is increasingly important to determine whether recent
climate change is already affecting population dynamics (Girardin et al., 2014; Worrall et
al., 2013) or species distributions (Boisvert-Marsh, Périé & De Blois, 2014; Woodall et al.,
2009), or whether species can indeed persist under novel climatic conditions.
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Here, we take advantage of available information on tree species distributions from
forest survey programs in Quebec (Canada) and the eastern United States to assess
potential decline in habitat suitability associated with climate change for five dominant tree
species of deciduous and coniferous forests. Given the ecological and economic importance
of these species, a change in their distribution and dynamics could make entire ecosystems,
ecoregions, and economies vulnerable. Consequently, we focus on areas where climate is
predicted to become unsuitable or less suitable for these species as opposed to habitat gain
or range shift to emphasize vulnerabilities rather than opportunities. These species are, in
order of decreasing merchantable volume in Quebec forests: Picea mariana (Mill.) Britton,
Sterns & Poggenb. (black spruce), Abies balsamea (L.) Mill. (balsam fir), Betula papyrifera
Marshall (white birch, synonym of paper birch), Acer saccharum Marsh. (sugar maple)
and Betula alleghaniensis Britton (yellow birch). We base our assessment on a rigorous
modelling approach using data spanning two jurisdictions (United States and Canada), but
focus our interpretation at the scale of ecologically and economically significant bioclimatic
domains which are defined by the target species in Quebec forests. We assume that (1) even
though other factors can limit tree distribution (Beauregard & De Blois, 2014; Lafleur
et al., 2010), climate remains a significant determinant of a species’ fundamental niche
(Araújo & Peterson, 2012), given its major role in determining species presence and genetic
variation across landscapes (Jansen et al., 2007; Woodward & Williams, 1987); (2) climate
models coupled with greenhouse gas emission scenarios provide a reasonable estimate of
climatic conditions in this century; (3) assessing potential decline in habitat suitability
for a species provides an estimate of the risk of climate-related stress for that species; and
(4) stakeholders need spatially explicit projections at a scale relevant to decision making,
since trees regenerating today will cope with climate conditions that may drastically change
during their lifespan. This is especially the case in boreal forests where most tree species
grow slowly (Ministère des Ressources Naturelles, 2013). We discuss the significance of these
projections for species conservation and management scenarios, recognising the effect of
uncertainty on adaptation strategies.

MATERIALS & METHODS
Study area
We focused our study on forests of Quebec (Canada), which account for 20% of the
total Canadian forests and 2% of the world’s forests. Dense forests cover an area of
761,100 km2, (equivalent in size to the territories of Norway and Sweden combined—https:
//www.mern.gouv.qc.ca/english/international/forests.jsp), of which 70% is considered
productive (commercial forest managed under the Sustainable Forest Development Act ).
Quebec forests are largely under publicmanagement (91.6%of forest land) with the respon-
sible ministry allocating harvesting rights. The productive forest territory (45◦N–53◦N)
mainly comprises the northern temperate and boreal vegetation zones (Fig. 1), which reflect
Quebec’s major climatic gradient. The zones are further divided, on the basis of edaphic
and climatic conditions, into characteristic plant communities of ecological and economic
importance or bioclimatic domains. The northern temperate zone includes, from south to
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Figure 1 Modelling area and spatial distribution of bioclimatic domains in Quebec (Canada).

north: the sugar maple–bitternut hickory domain (14,500 km2), the sugar maple–basswood
domain (31,000 km2), the sugar maple–yellow birch domain (65,600 km2)—all three being
grouped in this study as the sugar maple domains—and the balsam fir–yellow birch
domain (98,600 km2). The boreal zone includes the balsam fir–white birch domain
(139,000 km2), the very large spruce–moss domain (412,400 km2), and the spruce–lichen
domain (299,900 km2) which extends to 55◦N.
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We constructed habitat suitability models for each species using a modelling area largely
exceeding that of the province taking into account the expected shift north of climate
envelope according to various climate simulations (Logan et al., 2011) as well as available
data on current species distribution and climate and edaphic conditions. The modelling
area (∼2,500,000 km2) ranges from 30◦N to 53◦N in latitude and from 93◦W to 60◦W in
longitude (Fig. 1). Annual mean temperature increases gradually from –5 ◦C in the north
to +20 ◦C in the south, whereas annual total precipitation ranges from 670 to 2,000 mm,
with less of a spatial gradient. Elevation ranges from sea level to 1,250 m.

We based the geographic grid we used for modelling on that of the Climate Change
Atlas for 134 Forest Tree Species of the Eastern United States (Iverson et al., 2008; Landscape
Change Research Group, 2014). This grid was extended into Quebec to allow the merging of
data sets from both jurisdictions. The mapped area is composed of 6,418 cells (20× 20-km
or 400-km2 each, Fig. 1), each considered as a sampling unit and containing information
on tree species occurrence, climate, elevation and edaphic characteristics.

Ideally, the modelling area should include the vast majority of the range of climatic
conditions experienced by a species (Barbet-Massin, Thuiller & Jiguet, 2010), including
the range of projected climatic conditions according to scenarios of climate change in the
study area. Covering the full distribution range of a species is not always possible and so,
in preliminary analyses, we verified gaps in climate coverage for each species by comparing
the modelling area with Little’s range, which is assumed to cover an entire species range
in North America (Little Jr, 1971). There were minimal or no gap in temperature coverage
for sugar maple (Fig. S1A), yellow birch (Fig. S2A), and balsam fir (Fig. S3A ; coverage of
100%, 100%, and 97% of the temperature range respectively). Temperature coverage was
70% for white birch (Fig. S4A) and 61% for black spruce (Fig. S5A), but the gaps were
for colder temperatures that are not characteristic of the projected climate trends in the
study area (+1.9 ◦C to +8 ◦C; Ouranos 2015). Precipitation coverage was 98% for both
sugar maple (Fig. S1B) and yellow birch (Fig. S2B), and 70% for balsam fir (Fig. S3B). The
gaps for white birch (35%; Fig. S4B) and black spruce (31%; Fig. S5B) were towards drier
annual climates that are also not characteristic of the projected climate trends in the study
area (precipitations +3% to +26%; Ouranos, 2015).

Occurrence data and target species
For the eastern United States, our main source of information was the Climate Change
Atlas database (Landscape Change Research Group, 2014). For the Canadian part of the
modelling area, we obtained data on tree species occurrence from more than 95,000 forest
plots sampled across the province and inventoried from 1985 to 1998 by the ministère des
Forêts, de la Faune et des Parcs (Quebec’s Ministery of Forests, Wildlife and Parks). The
presence (or absence) of each forest tree species was recorded in each of the 6,418 cells of
the modelling area.

The five target species (sugar maple, yellow birch, white birch, balsam fir, and black
spruce) are common and widespread in the study area, and define the major bioclimatic
domains described previously. The ecological and economic importance of these species
cannot be overemphasized for the province: together, they represent 72% of the total
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Table 1 Predictor variables used in tree habitat suitability models.

Climatic Topographic Edaphic

Surface deposit Drainage

Annual mean temperature (◦C) Average elevation (m) Eolian Humid water regime
Annual total precipitation (mm) Fluvio-glacial Mesic water regime
Ratio of summer precipitation over annual total
precipitation

Glacial Xeric water regime

Littoral, marine or lacustre
Organic
Rocky substrate
Slope or altered

volume of merchantable trees (Fig. S6), and many local economies are tightly linked to
their fate. Their average longevity ranges from 150 years (balsam fir) to more than 300 years
(sugar maple and yellow birch) (Ministère des Ressources Naturelles, 2013). Projections to
the end of this century are thus well within their lifespan.

Environmental data
We used 14 predictor variables for modelling (Table 1), including 3 climate, 1 elevation,
7 soil-class, and 3 soil property variables. The three climate variables were selected among
a set of climate variables through cluster analysis (see below). Collinearity diagnostics
measuring the relationship between the selected climate variables and other environmental
variables were done using several methods (pairwise scatterplots, correlation coefficients,
condition index, variance inflation factor). Collinearity was not found to be an issue at the
scale of this study and for these sets of variables.

Climatic data
Normalized (1961–1990) monthly surfaces of total precipitation and average, maximum,
and minimum temperatures were downloaded from the USDA Forest Service Rocky
Mountain station website (http://forest.moscowfsl.wsu.edu), as were other derived climatic
variables (see Rehfeldt et al. (2006) for more details). Data were obtained at a spatial
resolution of 0.0083 decimal degrees (≈1 km) and averaged for each 20-km × 20-km
grid cell of the modelling area. Climate variables tend to be highly correlated, so we used
the VARCLUS procedure in SAS 9.2 (SAS Institute Inc, 2008) to find groups of variables
that were as correlated as possible among themselves and as uncorrelated as possible
with variables in other clusters. This analysis led to three clusters; in each cluster, we then
selected one climate variable influencing plant survival and growth. They weremean annual
temperature (TEM), mean annual precipitation (PRE) and useful precipitation (i.e., the
ratio of the sum of June, July, August and September monthly precipitation to total annual
precipitation; PRATIO).

Ouranos (http://www.ouranos.ca/en/), a consortium on regional climatology and
adaptation to climate change, provided different climate simulations using output from
12 general and one regional coupled atmosphere–ocean general circulation models.

Périé and De Blois (2016), PeerJ, DOI 10.7717/peerj.2218 6/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.2218/supp-8
http://forest.moscowfsl.wsu.edu
http://www.ouranos.ca/en/
http://dx.doi.org/10.7717/peerj.2218


Each of these was coupled with 1, 2 or 3 projected greenhouse gas emissions scenarios
(scenarios B1, A1B and/or A2, based on the Special Report on Emissions Scenarios, or
SRES; http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0). This generated a
total of 70 climate simulations, which are a subset of the 86 climate simulations (Logan
et al., 2011) made available from phase 3 of the Coupled Model Intercomparison Project
(Meehl et al., 2007).

For each climate simulation, future (2071–2100) TEM, PRE and PRATIO values were
obtained using the ‘‘change field’’ method (IPCC, 2001). Monthly mean differences
between the baseline period model run (1961–1990) and the future climate model run
(2071–2100) were calculated and then combined with baseline values of the observed
monthly climate data set. However, due to the relatively coarse spatial resolution of the
climate simulations (45 km per cell side for the regional coupled atmosphere–ocean model,
and∼250-km per cell side for the general coupled atmosphere–ocean circulation models),
monthly delta values for the centroids of each 20-km × 20-km grid cell (6,418 in all)
were interpolated using a linear triangle-based interpolation method (De Berg et al., 2008)
between climate model grid cell centroids. Climate simulations for each month were then
created by applying interpolated delta values to each observed grid cell value.

To maintain a range of variability in climate projections while reducing computation
time, we selected 7 of the 70 available climate simulations as drivers (Table S1), using an
objective approach that employs a k-means clustering approach to obtain a good coverage
of overall future uncertainty (Casajus et al., 2016). We considered all selected scenarios as
equiprobable in this analysis.

Note that emission scenarios are now represented by four Representative Concentration
Pathways (RCPs), which became available with the IPCC fifth assessment report and after
this study was initiated. The RCPs span a larger range of stabilization, mitigation and
non-mitigation pathways than the range covered by the SRES we used (Table S2). As a
result, the RCPs now estimate a larger range of temperature increase than the SRES (Rogelj,
Meinshausen & Knutti, 2012). Moreover, climate models have also been developed since
phase 3 of the Coupled Model Intercomparison Project—CMIP3, particularly by including
the representation of biogeochemcal cycles (Flato et al., 2013). Some models do perform
better than others for certain climate variables, but no individual model is clearly the best
overall. The comparison of median model capability in reproducing historical climate
shows relatively modest improvement between CMIP3 and the current CMIP5 generation
(Flato et al., 2013). Each generation exhibits a range in performance, with CMIP5 showing
fewer ‘bad models’ than CMIP3, but the species distribution modelling uses a consensus
approach similar to looking at an ensemble mean of General Circulation Models. As well,
for climate projections, we used the delta method (see above) where only relative changes
from the GCMs are calculated and then applied to observed data. In this case, a similar
range in changes of temperature and precipitation between CMIP5 and CMIP3 is what
matters most in terms of species distribution model results. A detailed comparison of
CMIP3 and CMIP5 is beyond the scope of this paper, but interested readers can consult
Flato et al. (2013), particularly their Figs. 9.44 and Fig. 1 of FAQ 9.1.
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Topographic and soil data
Elevation data were provided by the Climate Change Tree Atlas database for the eastern
United States portion of the modelling area (Landscape Change Research Group, 2014),
whereas for Quebec it was obtained from the Canadian Surface Model Mosaic
(http://geogratis.gc.ca/api/en/nrcan-rncan/ess-sst/3A537B2D-7058-FCED-8D0B-
76452EC9D01F.html) at a resolution of ca. 20 m and averaged to match our grid. For the
eastern United States part of the modelling area, we obtained soil characteristics data
(surface deposit and drainage class; Table 1) from the NRCS Soil Survey data (version
2.1, scale 1:24,000; http://websoilsurvey.nrcs.usda.gov/). For the Quebec part, we used
soil data from the 3rd decennial permanent and temporary surveys (1:20 000 scale)
of the ministère des Forêts, de la Faune et des Parcs, Quebec (available on request at
http://www.mffp.gouv.qc.ca/forets/inventaire/donnees-inventaire.jsp). For each grid cell,
we computed the percentage of the 20-km × 20-km cell occupied by each level of each
edaphic variable.

Modelling current and future habitat suitability
Species distribution modelling
Wecomputed the geographical distribution of suitable climatic and edaphic conditions—or
habitat, as defined by these particular dimensions of the niche—for each of the target tree
species, following an ensemble procedure (Araújo & New, 2007) with the BIOMOD 1.1
modelling package (Thuiller et al., 2009) implemented in R (R Development Core Team,
2010). We considered both a baseline period (1961–1990) and a future period (2071–2100,
hereafter referred to as 2080).

We used species occurrence data and environmental predictors to build species
distribution models using eight modelling techniques: three regression methods
(generalized additive models, GAM; generalized linear models, GLM; multivariate adaptive
regression splines, MARS), two classification methods (mixture discriminant analysis,
MDA; classification tree analysis, CTA) and three machine learning methods (artificial
neural networks, ANN; generalized boosted models, GBM; random forest, RF). All models
were produced using default BIOMODparameters where appropriate (Thuiller et al., 2009).
Further parameters were as follows: GLMs were generated using quadratic terms and a
stepwise procedure with the AIC criteria; GAMs were generated with a spline function with
three degrees of smoothing; GBMs were built with a maximum of 2,000 trees; ANNs were
produced with five cross-validations (seeMarmion et al., 2009a for further details on these
modelling techniques). For each species, we built the eight species distributionmodels using
a random subset of data containing 70% of the 20× 20-km cells (i.e., 4,493 cells). We used
the remaining 30% (i.e., 1,925 cells) to evaluate the predictive performance of the models.
We repeated this split-sample procedure ten times, thus calibrating 80 different statistical
models for each species. We simulated suitability under climate change (future suitability)
by projecting each of the 80 projections under each of the seven climate simulations
for 2080. This generated a total of 560 probabilities (ten repetitions × eight modelling
techniques × seven climate simulations) of habitat suitability for each species for the 2080
period. We combined the different probabilities of habitat suitability (P) based on the area
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under the receiver-operating characteristic (ROC) curve (AUC) values; we assigned the
AUC values from each modelling technique as the weights of the weighted average in order
to enhance the contributions of models with higher performance values:

WAPibaseline =

∑8
j=1
∑10

k=1
(
AUCjk×Pijk

)∑8
j=1
∑10

k=1(AUCjk)
(1)

WAPi2080 =

∑8
j=1
∑10

k=1
∑7

l=1
(
AUCjk×Pijkl

)
7×
∑8

j=1
∑10

k=1(AUCjk)
(2)

where WAP is the weighted average probability of habitat suitability, i is the index of the
grid cell (1, . . . , 6418), j is the modelling technique (GAM, GLM, MARS, CTA, MDA,
ANN, GBM, RF), k is the repetition (1, . . . , 10) and l is the climate simulation (1, . . . ,
7). Averaged projections resulted in a single projection at each grid cell for each species
(hereafter referred as the ‘‘average model’’) for the baseline period (WAPibaseline ; Eq. 1) and
the 2080 period (WAPi2080 ; Eq. 2). This method is considered to be more robust than other
model fusion methods or single model projections (Marmion et al., 2009b).

Transforming probabilities of suitability to binary values
To transform continuous probabilities of suitability into binary (0/1) values, we calculated
a common threshold (cut-off) value for both the baseline period and the 2080 period using
a binary vector of observed occurrence and a vector of probability of occurrence from
the average model (WAPi2080). We searched for the threshold which jointly maximized
sensitivity and specificity (Liu et al., 2005). This approach is considered among the most
reliable for choosing a threshold (Freeman & Moisen, 2008).

Model evaluation
The predictive model performance was evaluated using area under the receiver operating
characteristic curve (AUC; Fielding & Bell, 1997) as an accuracymeasure. The area under the
ROC function (AUC) is usually taken to be an important index because it provides a single
measure of overall accuracy that is not dependent upon a particular threshold. Suggested
AUC values for classifying the accuracy of models using AUC are: 0.90–1.00 = excellent;
0.80–0.9 = good; 0.70–0.80 = fair; 0.60–0.70 = poor; 0.50–0.60 = fail (e.g., Virkkala et al.,
2010 adapted from Swets, 1988). Sensitivity (true positive fraction) and specificity (false
positive fraction) values were also reported for each species (Lobo, Jiménez-Valverde &
Real, 2008).

Agreement between the average future projection in each cell and the
single projections
To measure the level of confidence in our average future projection for a given cell, we
also calculated the percentage of the 560 single projections for that cell that agreed with the
average projection (hereafter referred as ‘‘agreement value’’).

Identifying vulnerable habitats under future climates
We focused on Quebec’s productive forest territory to evaluate whether predicted
future conditions remained suitable for a species within its baseline range. For this
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purpose, the baseline range of a species was defined as the set of grid cells within
Quebec productive forests where the baseline average model predicted a suitable habitat
(WAPibaseline ≥ threshold value), as defined by climatic, edaphic and topographic variables.
Note that a ‘suitable habitat’ does not necessarily mean an ‘optimal habitat’, since a species
can be found on sites with suboptimal conditions. Cells modelled as suitable habitat under
baseline climatic conditions, but which became unsuitable under future climate conditions,
were classified as unsuitable habitat (UH). Cells modelled as ‘suitable’ under both baseline
and future climate further subdivided as:

Less Suitable Habitat (LSH):[
WAPi2080−WAPibaseline < 0&,

∣∣WAPi2080−WAPibaseline
∣∣≥ 0.15

]
(3)

Persistent Habitats (PH):[
WAPi2080−WAPibaseline < 0&

∣∣WAPi2080−WAPibaseline
∣∣< 0.15

]
(4)

OR[
WAPi2080−WAPibaseline ≥ 0

]
. (5)

LSH reflects predicted probabilities of habitat suitability that decrease over time, but not to
the point of unsuitability like UH. We used the threshold of a 15% change of probabilities
of habitat suitability (WAPi2080−WAPibaseline) to select the proper subcategory for each cell.
This threshold was chosen after examining spatial predictions for 2050 and comparing
them with predictions for 2080. The majority of cells classified as less suitable at the 15%
threshold in 2050 became unsuitable in 2080. A sensitivity analysis, where the threshold
value varied from 5% to 25%, showed how forecasts are affected when this value changes
(Fig. S7).

For each species, we reported trends in relation to the entire productive forest territory,
the baseline range of the species in Quebec, and each of five vegetation domains.

RESULTS
Model evaluation
Overall, all the models performed well and showed good capacity on species prediction as
accuracies showed high values (Table S3). The AUC values of the average models ranged
from 0.916 (sugar maple) to 0.984 (for balsam fir), for a mean value of 0.958 ± 0.029. We
also determined that the largest part of variability in future projections was explained by
the SDMs (Fig. S8).

Assessing risk under future climate
Species are presented in order of decreasing importance in the study area (as measured by
size of their baseline range in Quebec’s productive forest).

Black spruce (Table 2; Fig. 2A)
The baseline range for black spruce in the study area essentially covers all five bioclimatic
domains. Overall, 78% of the baseline range of black spruce in Quebec’s productive forest
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Figure 2 Forecasted changes (2080) in (A) black spruce habitat, (B) balsam fir habitat, (C) white birch
habitat, (D) yellow birch habitat and (E) sugar maple habitat.UH: unsuitable habitat; LSH: persistent
but less suitable habitat; PH: persistent habitat. Confidence values were calculated as the percentage of the
560 single predictions for a given cell that agreed with the average prediction for that cell. Values ≤ 50%:
poor; 50% < values ≤ 75%: medium; values > 75%: high.

is projected to shift towards unsuitable (18%) or less suitable (60%) conditions compared
to baseline conditions (agreement value = 68%). Shifts in suitability are projected largely
within the sugar maple domain (89% of baseline spruce habitat in that domain shifting
to unsuitable), the balsam fir–yellow birch domain (13% shifting to unsuitable), and the
balsam fir–white birch domain (2% shifting to unsuitable). Moreover, all the remaining
baseline habitats in these domains are projected to become less suitable for black spruce

Périé and De Blois (2016), PeerJ, DOI 10.7717/peerj.2218 11/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.2218


compared to baseline climatic conditions. In the spruce–moss domain, 52% of suitable
habitats are projected to become less suitable for the species.

Balsam fir (Table 2; Fig. 2B)
The baseline range for balsam fir covers more than 97% of Quebec’s productive forests.
Overall, 59% of the baseline range of balsam fir is projected to shift towards unsuitable
(21%) or less suitable (38%) climatic conditions (agreement value = 69%) with climate
change. Essentially, all baseline sites over the entire sugar maple domains and the balsam
fir–yellow birch domain are projected to become unsuitable or less suitable. Further north,
in the balsam fir–white birch domain, shifts towards unsuitability are projected on 1% of
the range, while less suitable conditions are projected on another 87%.

White birch (Table 2; Fig. 2C)
White birch is widely distributed in the study area with a baseline range covering 94% of
Quebec’s productive forests. Overall, 62% of the baseline range of balsam fir is projected
to shift towards unsuitable (14%) or less suitable (48%) climatic conditions (agreement
value = 71%) with climate change. In the sugar maple domains, unsuitability is projected
on 63% of the baseline range, with the remainder projected as less suitable compared
to baseline conditions. Only 2% of habitats shifts towards unsuitability in the balsam
fir–yellow birch domain, but less suitable habitats are projected in 67% of the balsam
fir–yellow birch domain, 79% of the balsam fir–white birch domain, and 15% of the
spruce–moss domain.

Yellow birch (Table 2; Fig. 2D)
The baseline range for yellow birch covers 44% of Quebec’s productive forests. Shifts
towards unsuitability (5%) or less suitability (19%) are projected over 24% of the baseline
range (agreement value = 78%). All unsuitable areas are in the sugar maple domains
(13%), as are most habitats projected as less suitable (48%).

Sugar maple (Table 2; Fig. 2E)
The baseline range of sugar maple covers 31% of Quebec’s productive forests, essentially in
the south. Shifts towards unsuitability (8%) or less suitability (1.3%) are projected for 9.3%
of the sugar maple baseline range (agreement value= 60%). All sites shifting to unsuitable
conditions are in the sugar maple domains. The more northern domains are predicted to
maintain their current habitats for sugar maple.

DISCUSSION
Most studies linking climate change with species distribution models emphasize the
potential for major shifts in species ranges and a massive reorganisation of biodiversity.
Our study is no exception but here we focus on areas where species are projected to become
at risk of climate change-related stress to help define adaptation strategies. We define ‘risk’
as a function of the probability of an event (climate becoming unsuitable or less suitable for
a species as projected) and the severity of its consequences (FAO, 2007; Leung et al., 2012).
Whereas one can rightly argue that there is still much uncertainty in assessing probability of
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Table 2 Impact of climate change on tree habitat suitability in 2080. Forecasted changes in species habitat are illustrated both as absolute areas (km2) and proportion of
the baseline range for the region (% of baseline). The baseline (1961–1990) range of a species is the total area (km2) of all cells where the baseline average model predicted
a suitable habitat for that species, within each bioclimatic domain or for all of the Quebec productive forest. The average agreement (% ag.) was calculated as the mean
percentage, within a given region, of single predictions for a given cell that agreed with the average prediction for that cell.

Species/Region Baseline
range (km2)

Forecasted changes in species habitat

Unsuitable habitat Less suitable habitat Persistent habitat

km2 %of
baseline

% ag. km2 %of
baseline

% ag. km2 %of
baseline

% ag.

Black Spruce

Sugar maple domain 103,570 92,348 89 77 11,222 11 48

Balsam fir–yellow birch domain 97,152 12,347 13 66 84,804 87 55

Balsam fir–white birch domain 136,977 2,778 2 65 134,199 98 65

Spruce–moss domain 268,668 209 <0.1 66 139,505 52 76 128,953 48 94

Spruce–lichen domain 2,660 2,660 100 99

Total (Quebec productive forest) 609,027 107,682 18 74 369,730 61 65 131,614 21 94

Balsam fir

Sugar maple domain 109,063 103,583 95 76 5,481 5 57

Balsam fir–yellow birch domain 97,152 21,249 22 59 75,897 78 63 6 <0.01 84

Balsam fir–white birch domain 136,977 1,262 1 58 118,967 87 70 16,748 12 89

Spruce–moss domain 253,288 29,929 12 77 223,359 88 90

Spruce–lichen domain 2,563 2,563 100 99

Total (Quebec productive forest) 599,042 126,093 21 71 230,273 38 68 242,675 41 90

White Birch

Sugar maple domain 109,077 69,167 63 75 39,910 37 63

Balsam fir–yellow birch domain 97,152 1,846 2 61 94,926 98 69 379 86

Balsam fir–white birch domain 136,977 5 <0.01 59 108,101 79 72 28,871 86

Spruce–moss domain 235,395 34,631 15 79 200,764 85 85

Spruce–lichen domain

Total (Quebec productive forest) 578,600 71,019 12 74 277,568 48 70 230,014 40 85

Yellow Birch

Sugar maple domain 109,077 13,915 13 79 52,434 48 77 42,728 39 95

Balsam fir–yellow birch domain 95,316 372 < 87 94,944 99 < 93

Balsam fir–white birch domain 66,705 66,705 100 94

Spruce–moss domain 1,469 1,469 100 100

Spruce–lichen domain

Total (Quebec productive forest) 272,567 13,915 5 79 52,806 19 78 205,847 76 94

(continued on next page)
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Table 2 (continued)
Species/Region Baseline

range (km2)
Forecasted changes in species habitat

Unsuitable habitat Less suitable habitat Persistent habitat

km2 %of
baseline

% ag. km2 %of
baseline

% ag. km2 %of
baseline

% ag.

Sugar Maple

Sugar maple domain 106,902 14,375 13 57 2,536 2 71 89,990 84 89

Balsam fir–yellow birch domain 69,917 69,917 100 94

Balsam fir–white birch domain 11,683 11,683 100 95

Spruce–moss domain 209 209 100 99

Spruce–lichen domain

Total (Quebec productive forest) 188,712 14,375 57 2536 71 171,800 92
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species occurrence in a changing climate, there is no doubt that the consequences of habitat
decline at a particular location can be highly significant for ecosystems and economies that
depend on, or are defined by these species. Risk assessment through climate/species models,
therefore, has at least two immediate benefits. Just as for climate projections, it can help
draw attention of policy makers, forest management agencies, and the public in general on
the sheer magnitude of projected climate change effects on biodiversity. Secondly, because
models are spatially-explicit and species-specific, they can help target monitoring efforts,
especially when resources are scarce, and potentially inform adaptation strategies.

The consequences of an unsuitable climate on species can be associated with a range of
processes directly or indirectly related to climate change, including increased physiological
stress induced by heat or drought (Anderegg et al., 2015; Park Williams et al., 2013; Sun et
al., 2015; Wu et al., 2012), increased vulnerability to pest and disease outbreaks (Creeden,
Hicke & Buotte, 2014; DeRose et al., 2013; Fierravanti et al., 2015), competition from other
species (Blois et al., 2013; Brooker, 2006; Carón et al., 2015; Dukes et al., 2009; Meier et al.,
2012) or herbivory (Svenning & Sandel, 2013), and increased climate-mediated frequency
of fires or destructive weather events (Bergeron et al., 2010; Terrier et al., 2013). However,
the precise pathways through which climate change will affect a particular forest remains
difficult to predict, as is the attribution of any particular event to climate change. Based on
the proportion of their baseline range that is projected to become unsuitable, our target
species rank as follows, in decreasing order of vulnerability: balsam fir (21%), black spruce
(18%), white birch (14%), sugar maple (8%), and yellow birch (5%). In the 185,000-km2

area where the baseline ranges of all five species intersect, at least three species—and, in
the southernmost part of the study area, all five of them—are projected to be at some
risk of climate-related stress (Fig. 3). This represents a significant proportion of Quebec
forests and suggests that species that have traditionally defined whole regional vegetation
assemblages could become less characteristic of these regions. Forest decline would have,
as well, consequences on the value of forest land (Hanewinkel et al., 2012).

Because of the strong north–south climatic gradient in Quebec, species are projected to
retract from their southern margins in the study area with warming. Biotic interactions
are often emphasized over climate in determining southern range edges (Normand et al.,
2009; Sunday, Bates & Dulvy, 2012), and so this raises the question of whether competitive
processesmediated by species traits over novel climatic conditions will help shift dominance
of species locally. For instance, balsam fir is more fire-sensitive than black spruce and shifts
in fire regime in the northern boreal forests over millennia have shifted dominance
towards one species or the other, with warm and wet conditions favouring balsam fir over
black spruce (Ali et al., 2008; Couillard, Payette & Grondin, 2013). Moreover, the observed
northward migration of pests, such as spruce budworms, facilitated by climate change
is also contributing to increase the intensity and frequency of outbreaks in some areas.
Whereas balsam fir is currently considered a more suitable host than black spruce, this
may change when the budworm hits spruce-dominated forests (Pureswaran et al., 2015).

Warming experiments can show direct physiological effect on individual trees, but it is
not always clear how warming can influence whole species assemblages over a range of soil
conditions. Increased frequency and intensity of droughts, for instance, have led to negative
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Figure 3 Number of tree species, among the 5 studied species, at risk of some climate-related stress in
2080.We considered only cells in the study area where the baseline habitat was suitable for all 5 species.

effects on the duration of xylogenesis and the production of xylem cells in balsam fir in
warming experiments (D’Orangeville et al., 2013). For sugarmaple, the observation that ad-
verse winter and spring conditions in southern sites negatively impact maple syrup produc-
tionmay provide early indication for warming effect (Duchesne & Houle, 2014). As decreas-
ing growth rates can precede mortality, an even stronger signal comes from the observation
of widespread decreasing growth rate for sugar maple documented in the Adirondacks
(Bishop et al., 2015). While underlying mechanisms have to be clarified, these observations
are in agreement with niche model projections in the eastern US (Iverson et al., 2008).

There is uncertainty in model projections because of uncertainty in climate simulations,
statistical models, and the non-linear responses of ecosystems and species. Climate
simulations are improving (Flato et al., 2013) and the limitations of different statistical
models are well recognised (Marmion et al., 2009a). These limitations are often taken
into account, for instance by using consensus approaches across several statistical and
climate models (Guo et al., 2015; Wang et al., 2016). The level of agreement among our
projections was generally high (averaging 75%), raising confidence in our results given
the data available. Nevertheless, the main source of uncertainty may rest not so much in
the methodology used than in the model assumptions. There is no doubt that climate is a
strong predictor of site occupancy patterns for species, particularly at broad spatial scale
(Pearson & Dawson, 2003). What remains unclear, however, is the extent to which climate
mainly determines species range boundaries and whether current distribution patterns
really capture the physiological limits of species (Brown & Vellend, 2014; García-Valdés
et al., 2015; Nowacki & Abrams, 2015; Paul, Bergeron & Tremblay, 2014). The availability
of suitable conditions other than climate (Beauregard & De Blois, in press), postglacial
dispersal limitations, or competition can all contribute to species not filling their available
climatic niche (Sinclair, White & Newell, 2010). Coupling physiological models or trait
information with correlative range models can help refine projections (Iverson et al., 2011;
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Talluto et al., 2016), providing that physiological models capture species responses outside
the range of conditions represented by species presence-absence data. If there is, for
instance, evidence for climatically suitable sites colder than those currently captured by
the observed species’ range, the consequences may be minimal on risk assessment related
to warming. If, on the other hand, there is evidence for climatically suitable sites warmer
than those currently defined by a species’ range—or greater tolerance to warming than
previously thought , future projections are likely to overestimate the risk of climate change
on species distribution. Since species interactions also influence species distribution—but
are somewhat integrated in models based on a species’ realised niche, another unresolved
issue is how communities will reassemble. Disagreements as to the geographical extent of
climate vulnerability are likely to persist until monitoring and field evidence clearly show
trends in support of (or in disagreement with) projections in a given region. Models can
only point towards species or areas at risk for greater scrutiny and, most of all, provide
incentive for developing and testing adaptation strategies.

If projections in this study question the future relevance of the current ecological
classification of the forest landscape, they also raise important issues regarding the forest
management regime, especially under the assumption that an ecosystem is defined by
a relatively stable climate and substrate. The ecological principles that underlie current
ecosystem-based management emphasize the need to reduce the differences between
natural and managed landscapes (Gauthier et al., 2009). They imply that sustainable forest
management practices should aim for a desired composition and age structure. This
becomes quite a challenge if the target composition is moving fast under a new climate
regime (Dhital et al., 2015; Mori et al., 2013). Therefore, the greatest challenges in coming
years will be to manage rapid transitions of forests towards other, largely unknown,
steady-states. As a result, the adaptation literature has repeatedly highlighted the need to
move from a paradigm of preserving current conditions or restoring ‘historical fidelity’ to
one of managing for novel ecosystems that may differ in composition, structure, and/or
function (Hobbs, Higgs & Harris, 2009). Models provide some indications of where the
challenges could be the greatest, and whether or not species at risk are worth maintaining
at specific locations under a shifting climate. Publicly managed forests in the study area,
for instance, are restored to production largely by prioritizing practices that protect the
established regeneration. Where regeneration is insufficient, as may increasingly be the
case on sites that we identified as ‘at risk’, reforestation may be carried out. However,
the choice of species is for the most part still made under the assumption that suitable
conditions in this century will be similar to the ones in recent history. New practices are
being tested to maximize forest resiliency while taking into account transition states, for
instance by helping shift composition (including genetic variability) towards species or
individuals adapted to the new climate regime (Breed et al., 2012; Koralewski et al., 2015;
Park Williams et al., 2014). As well, maintaining biodiverse (both in terms of composition
and age structure) forests and landscapes could provide some insurance against instability
(Churchill et al., 2013; Thompson et al., 2009).

Our study area covers large regions where forest logging, especially of softwood stands,
contributes significantly to the economy. Forests provide habitats and contribute to
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global carbon storage. Be it with species distribution models (Hufnagel & Garamvolgyi,
2014), more detailed process-based models (Zolkos et al., 2014), warming experiments
(Dulamsuren et al., 2013) or field evidence (Dudley, Burns & Jacobi, 2015; Girardin et
al., 2014; Worrall et al., 2013), all attempts to translate climate simulations into forest
patterns converge towards the same message: trees could be at risk of maladaptation over
a remarkably large proportion of their baseline range in this century. Sustaining yield
could become increasingly difficult in these conditions. Reforestation planning will have to
take into account climate trajectory and maps indicating areas at risk. Although it will be
tempting to log declining forests, it will be as important to preserve reference areas under
natural disturbances in order to understand ‘natural’ dynamics and adapt management
options accordingly. New engagement rules with the forest industry, which may see areas
at risk as opportunities for salvage logging, will be needed.

To respond to the climate change challenge for forests, efforts are focusing on three
fronts: (1) Risk assessment, including the targeted monitoring of areas at risk, in order to
understand forest dynamics under changing conditions.Quebec has the advantage of having
established a large network of forest sites under observation since the 1970s (Ministère des
Forêts de la Faune et des Parcs, 2014). Assessment of climate change-related risk is probably
where most research efforts have focused so far, but there is still a need to better identify
and target areas and species at risk. (2) Risk communication with stakeholders, decision
makers, and the public in general. During the last decade, a great deal of work has been
done to provide conceptual frameworks and provide new approaches and tools for decision
making under uncertainty (Janowiak et al., 2014). In Quebec, the recent publication of
the results of a large study involving scientists and stakeholders on the impacts of climate
change on Quebec biodiversity is a positive step in that direction (Berteaux, Casajus & De
Blois, 2014). When communicating risk, it is indeed important to indicate the uncertainty
inherent in all projections. However, the scientific emphasis on uncertainty has also been
seen as possibly deterring from early action regarding climate change policies (Morton et
al., 2011). (3) Risk management, which involves basing decisions on the best information
available (Yousefpour et al., 2014). This may be the most challenging aspect. Comparing
the outcomes of alternative management scenarios in relation to predicted responses of
forest to climate change could inform management decisions (Messier et al., 2016). If they
are not already in place, adaptation strategies are needed, if only to allow sufficient time for
forest ecosystems and regional forest economies to adapt. In spite of their well-recognised
limitations, regionally-explicit risk assessment approaches, such as the one used here,
currently remain one of the best options to convey the need for climate policies and forest
management adaptation strategies.
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