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ABSTRACT
Introduction.Most documented rare diseases have genetic origin. Because of their low
individual frequency, an initial diagnosis based on phenotypic symptoms is not always
easy, as practitioners might never have been exposed to patients suffering from the
relevant disease. It is thus important to develop tools that facilitate symptom-based
initial diagnosis of rare diseases by clinicians. In this work we aimed at developing a
computational approach to aid in that initial diagnosis. We also aimed at implementing
this approach in a user friendly web prototype.We call this tool Rare Disease Discovery.
Finally, we also aimed at testing the performance of the prototype.
Methods. Rare Disease Discovery uses the publicly available ORPHANET data set of
association between rare diseases and their symptoms to automatically predict the
most likely rare diseases based on a patient’s symptoms. We apply the method to
retrospectively diagnose a cohort of 187 rare disease patients with confirmed diagnosis.
Subsequently we test the precision, sensitivity, and global performance of the system
under different scenarios by running large scale Monte Carlo simulations. All settings
account for situations where absent and/or unrelated symptoms are considered in the
diagnosis.
Results. We find that this expert system has high diagnostic precision (≥80%) and
sensitivity (≥99%), and is robust to both absent and unrelated symptoms.
Discussion.The Rare Disease Discovery prediction engine appears to provide a fast and
robust method for initial assisted differential diagnosis of rare diseases. We coupled this
engine with a user-friendly web interface and it can be freely accessed at http://disease-
discovery.udl.cat/. The code and most current database for the whole project can be
downloaded from https://github.com/Wrrzag/DiseaseDiscovery/tree/no_classifiers.

Subjects Bioinformatics, Evidence Based Medicine, Translational Medicine, Science and Medical
Education, Computational Science
Keywords Computer assisted diagnosis, Rare diseases, eHealth, Family doctors, User-friendly
webserver

INTRODUCTION
A rare or orphan disease affects a small fraction of the population. This fraction is less
than 200,000 individuals in the total population in the USA, less than 50,000 individuals in
Japan, and less than 2,000 in Australia. In Europe, diseases are rare if they affects less than
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one in every 2,000 individuals (EURORDIS Consortium, 2016; Lavandeira, 2002; Schieppati
et al., 2008). Overall, more than 10,000 such diseases have been documented (Rath et
al., 2012; McKusick, 2008; ORPHANET, 2015), and about 10% of the population suffers
from some rare disease (Schieppati et al., 2008). Most known rare diseases have genetic
origin (Rath et al., 2012; McKusick, 2008). The association between specific diseases and
the genes that might cause them can be found at the OMIM database (McKusick, 2008).

Because of their low individual frequency, initial diagnosis of rare diseases by clinicians is
not always easy (Polizzi et al., 2014). Often, those clinicians might never have been exposed
to patients suffering from the disease. In addition, as it can be seen in ORPHANET (Maiella
et al., 2013), many different diseases have a partially overlapping spectrum of symptoms
that can confuse the diagnosis. In general, conclusive diagnosis for most rare diseases comes
from a genetic test that identifies the genetic variations associated to that disease. These
tests tend to be expensive and/or target a specific (small set of) disease(s). Given all these
constraints, it is important to develop methods and tools to facilitate a quick and accurate
symptom-based initial diagnosis of rare diseases.

Symptom-based diagnosis is a pattern recognition/classification problem, where
an accurate prediction (the correct disease) must be made, based on a set of input
characteristics (the symptoms). This is a classical computational problem, and computer-
assisted medical diagnosis (CAD) can have many forms (Eadie, Taylor & Gibson, 2012).
CAD is routinely used in clinical image analysis (see for exampleWang & Summers, 2012),
although other applications, such as telemedicine, are also becoming frequent (Lopman et
al., 2006; Soyer et al., 2005; Steele et al., 2005).

Symptom-based Differential Diagnosis (DDX) generators that assist medical doctors
in automatically generating initial diagnosis have been originally developed in the mid
nineteen eighties (Barnett et al., 1987). A recent comparative analysis of these methods
reveals that their accuracy and sensitivity did not significantly improve since (Bond et
al., 2012; Umscheid & Hanson, 2012). Nevertheless, DDX generators could in principle
be an optimal solution for an initial diagnosis of rare diseases. However, given that the
cost-effectiveness of eHealth solutions appears to be debatable (Black et al., 2011; Free et
al., 2013a; Free et al., 2013b; McLean et al., 2013; Eysenbach et al., 2002; Avery et al., 2012;
Free et al., 2011;Howitt et al., 2012; Sheikh et al., 2014;Morrison et al., 2013;Huckvale et al.,
2012; Greenhalgh & Swinglehurst, 2011; Mazzucato, Houyez & Facchin, 2014), using such a
computer-based solution should either be free or have a low cost.

Some DDX generators dedicated to assisting in the diagnosis of genetic diseases have
been previously developed. They permit associating symptoms to diseases that can
also be rare. Recent examples are Phenomizer (Köhler et al., 2014; Köhler et al., 2009),
FindZebra (Dragusin et al., 2013; Winther et al., 2014), PhenoTips (Girdea et al., 2013),
or Phenotip (Porat et al., 2014). While the first two are aimed at assisting in diagnosing
any genetic disease from a list of symptoms provided by the user, the latter two have a
somewhat different purpose. PhenoTips mostly provides a framework to share and analyze
patient data between professionals. Once data is introduced, it can also be used for assisted
diagnosis. In contrast, Phenotip focuses on prenatal diagnosis, which limits the symptoms
it uses to those that can be obtained from pre-natal analysis methods. These four tools are
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freely available to the medical community. Other free computational tools that assist in
rare disease patient treatment and management do exist. For example, RAMEDIS (Töpel
et al., 2010) provides a highly accurate and manually curated resource of human variations
and corresponding phenotypes for rare metabolic diseases. DiseaseCard (Lopes & Oliveira,
2013) provides a similar service, with automated curation. The office of Rare Diseases
from the NIH (Daneshvari, Youssof & Kroth, 2013; Genetic and Rare Diseases (GARD)
Information Center, 2016) is another useful resource for diagnosis and follow up of rare
diseases. However, these tools do not provide a DDX generator that allow for doctors to
get quick differential diagnostic options of rare diseases.

Developing a specific and freely accessible DDX generator for rare diseases requires
two types of data. First, appropriate data sources associating specific symptoms to
genetic diseases should be available. A highly curated, often updated, dataset containing
information about the association between symptoms and rare diseases is available to
the community at ORPHANET (Maiella et al., 2013). Second, a large and freely available
golden standard dataset of rare disease patients is needed to test and validate the DDX
generator. Although many initiatives are collecting data for tens to hundreds of thousands
of rare disease patients (e.g., Choquet & Landais, 2014; Koutouzov, 2010), these dataset have
yet to made publicly available.

With these constraints in mind we set out to develop and test a prototype rare disease
DDX generator, which we call Rare Disease Discovery. Using the ORPHANET dataset as a
source of information regarding the association between symptoms and rare diseases, we
developed Rare Disease Discovery (RDD, http://disease-discovery.udl.cat/). This free DDX
generator prototype is specific for rare diseases and automatically predicts the most likely
rare diseases based on the known set of symptoms provided by the user.

METHODS
Data sources & software
A highly curated list of rare diseases, associated to their respective symptoms, was
downloaded from ORPHANET (ORPHANET, 2015) on September 2015. A MySQL
database where each disease is associated to its symptoms was built. The web technology
underlying RDD is described in detail in the Supporting Methods section of Appendix S1.
All calculations and experiments were done using local Mathematica scripts.

Diagnostic score function and disease ranking
The goal of RDD is to estimate which are the most likely rare diseases a patient might
suffer from, based on the symptoms shown by that patient and on the symptoms that are
associated to each rare disease in the ORPHANET dataset. To rank diseases and provide a
differential diagnosis, RDD uses the scoring function DSi from Eq. (1).

DSi= 1−
n

Max[SUser,SDisease i]
. (1)

In Eq. (1), SUser represents the number of symptoms provided by the user, SDisease i

represents the number of symptoms of disease i stored in the database, and
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Max[SUser,SDisease i] represents the largest number between SUser and SDisease i. n represents
the number of symptoms that are different between the set submitted by the user and
the set associated to any given rare disease in the database. The fraction n

Max[SUser,SDisease i]
is

always smaller than two and larger than or equal to zero. If all symptoms submitted by the
user are the same as those from a disease and that disease has exactly the same symptoms as
those provided by the user, n= 0. If the symptoms provided by the user and the symptoms
associated to a disease are all different and SUser= SDisease i, n= 2. Thus, −1≤DSi≤ 1.

RDD differentially diagnoses a patient by letting the user choose the list of symptoms
that are relevant for the specific case of interest. Once this list is selected, RDD calculatesDSi
for all diseases stored in the database. Then, RDD ranks the diseases in order of increasing
DSi, presenting the disease with the highest score as the most likely. In the Supporting
Methods section of Appendix S1 we discuss the performance of other scoring functions
and prediction methods that were tested and discarded.

Retrospective study of previously diagnosed rare disease patients
We selected all usable patients with a confirmed rare disease diagnosis from the
RAMEDIS (Töpel et al., 2010) collection of patients in order to retrospectively use their
symptoms and evaluate the diagnostic performance of RDD on a real set of patients. See
Supporting Methods and Supporting Figure 1 in Appendix S1 for selection details.

Calculating sensitivity and accuracy of the DDX predictions and
significance of the DSi score
Monte Carlo simulations were used to calculate the precision p and sensitivity s of RDD. p
is given by Eq. (2) and s is given by Eq. (3):

p=
number of correctly predicted rare diseases

number of correctly predicted rare diseases+number of incorrectly predicted rare diseases
(2)

s=
number of correctly predicted rare diseases

total number of rare diseases
. (3)

A prediction is considered to be correct if the disease that is ranked by DSi as the most
likely is the correct disease.

The global performance of RDD was also calculated using the F1-Score, which is the
harmonic mean of p and s:

F1-Score= 2
p× s
p+ s

. (4)

In addition, Monte Carlo simulations were also used to calculate the statistical significance
of the score DSi. All simulations were done using Mathematica (Wolfram, 1999).

Benchmarking the Rare Disease Discovery algorithm
RDD’s performance was benchmarked using four sets of experiments, all run using
Stochastic Monte-Carlo simulations. These experiments are detailed in the Supporting
Methods section of Appendix S1. The first experiment tested how a combination of
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Figure 1 The web interface for Rare Disease Discovery. (A) Entry screen. Users can type and select var-
ious symptoms. Once all relevant symptoms have been selected, the user can press ‘‘Submit Symptoms.’’
(B) Example of a differential diagnosis provided by the program. (C) List of diseases in the database, with
its associated symptoms. (D) List of symptoms in the database, with its associated diseases.

unreported and unrelated symptoms affects prediction outcome of the RDD algorithm.
The second experiment tested howunreported symptoms affect the prediction performance
of the RDD algorithm. The third and fourth experiments estimate the minimum value
for DSi that can be considered to be statistically significant and the minimum difference
between DSi values that is statistically significant, respectively.

RESULTS
Using the Rare Disease Discovery web
RDD is available at http://disease-discovery.udl.cat/. A simple web interface is provided to
the user (Fig. 1A). Users can search for individual symptoms by typing on the text field.
Once the relevant symptom is identified, it must be selected. The user can type and select as
many symptoms as required. Symptoms that are absent from the database are not accepted
by the server. Once all relevant symptoms are selected, pressing the ‘‘Submit Symptoms’’
will generate a ranked list of disease predictions. The disease with the highest score is
shown. If the score of the predicted disease is not statistically significant, this is indicated
by a symbol. Clicking the name of the disease will lead the user to the ORPHANET
webpage where s/he can look up more information about the disease. In addition, when
the user clicks the link ‘‘Predicted Disease,’’ RDD unfolds the full list of ranked diseases in
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the browser (Fig. 1B). If the user clicks the name of any of the diseases, s/he will be taken
to the RDD webpage with the list of symptoms for that disease. On that page s/he can also
find external links about the disease at NIH.

The alphabetically ordered list of rare diseases, together with its associated symptoms
can be directly accessed by pressing the ‘‘Disease List’’ pane (Fig. 1C). The alphabetically
ordered list of symptoms, together with its associated diseases can be accessed by pressing
the ‘‘Symptom List’’ pane (Fig. 1D). Users can also select symptoms directly from this pane
and use them for prediction. NIH searches can be automatically launched for the disease
or the symptom of interest.

Illustrative examples of RDD usage
To illustrate the use of RDD, we randomly selected 10 diseases from the database. For each
disease, we:
(1) Calculate the number of symptoms associated to that disease in the database.
(2) Randomly select the order of those symptoms.
(3) Use the first symptom in the list to predict the disease.
(4) Calculate the DSi score and rank for the disease.
(5) Use the first five symptoms in the list to predict the disease (see Supporting Table 1 in

Appendix S1).
(6) Calculate the DSi score and rank for the disease.
(7) Identify the minimal number of symptoms that rank the original disease as the most

likely prediction, and the score associated to those symptoms.
Results are summarized in Table 1.We see that one symptom is not sufficient to correctly

identify any of the tested rare disease as the most likely. However, with 5 symptoms, 7 of
the diseases are correctly predicted (although with DSi scores below significance level), and
9 of the diseases are ranked among the top-2 most likely.

Retrospective study of previously diagnosed rare disease patients
A small retrospective study was also performed to evaluate the performance of the
RDD prototype. We obtained short report cards for 187 anonymous patients from the
RAMEDIS (Töpel et al., 2010) database (see Supporting Methods and Supporting Figure 1
in Appendix S1 for details on report cards and patient selection). Symptoms were clearly
itemized and described at best in 30% of the cards. In the remaining cases, descriptions
could fit alternative symptoms. In such cases all alternative symptoms are considered.
Given that 111 of the patients have three or less reported symptoms, errors are expected
to be large. A clinician, with direct knowledge about the patient, is unlikely to introduce
such errors in the diagnostic process. In spite of the noise in the data set, RDD included
the correct disease in the list of predictions for 117 out of 187 patients. In 60% of these
patients, the clinically diagnosed disease was on the top ten list of predictions (see text and
Supporting Figure 2 in Appendix S1 for details). This percentage goes up to 80% if we
consider the top fifty predictions for each patient. We note that only approximately 17%
of the predictions had a score that was significant (>0.5).
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Table 1 Examples of prediction results for a randomly chosen set of ten rare diseases.Diseases are identified in column 1. Column 2 indicates the
total number of symptoms associated to the disease in the ORPHANET dataset. Column 3 presents DSi for the disease when one symptom is sub-
mitted to RDD, as well as the ranking of the disease in the list of predictions. Column 4 shows DSi for the disease when five symptoms are simulta-
neously submitted to RDD, as well as the ranking of the disease in the list of predictions. Column 5 displays minimum DSi at which the disease is
ranked as the most likely prediction, as well as the number of symptoms needed for that value of DSi to be obtained. Finally, column 6 indicates the
number of symptoms that make DSi ≥ 0.5 for the disease, which is the value above which DSi is statistically significant. Details about the symptoms
are given in Supporting Table 1 of Appendix S1.

Disease Number of
associated
symptoms

Score at 1
symptom
(rank)

Minimun score
at rank 1
(number of
symptoms)

Number of
symptoms for
statistically
significant
score (DSi > 0.5)

Beta-Thalassemia 23 0.043(67th) 0.13(3) 12
Canavan disease 19 0.053(23rd) 0.26(5) 10
Down syndrome 48 0.021(244th) 0.083(4) 24
Fabry disease 66 0.015(111th) 0.12(8) 33
Goldblatt syndrome 23 0.043(81st) 0.13(3) 12
Turner syndrome 26 0.038(21st) 0.077(2) 13
Uncombable hair syndrome 7 0.14(1st) 0.14(1) 4
Williams syndrome 180 0.006(121st) 0.028(5) 90
Yunis-Varon syndrome 66 0.015(7th) 0.14(9) 33
Zellweger-like syndrome without peroxisomal anomalies 25 0.042(31st) 0.12(3) 13

Comparison to other DDX generators
RDD’s performance was also compared with that of other DDX engines that were freely
available for illustrative purposes. After searching through the literature and the programs
analyzed in Bond et al. (2012), this limited us to our own RDD (RareDiseaseDiscovery), in
addition to DiagnosisPro, ISABEL, Phenomizer, and FindZebra. While DiagnosisPro and
ISABEL are general DDX generator, RDD, FindZebra and Phenomizer are DDX generators
that are specific for genetic diseases. We did not include the disease diagnostic assistance
tool from ORPHANET in the comparison because that service is no longer maintained.

By using the same ten diseases with their associated symptoms described in columns
two and four of Supporting Table 1 of Appendix S1, we asked each of the DDX generators
to come up with a diagnosis of the disease. Results are summarized in Table 2. ISABEL
identifies the correct disease as a possibility in three of the ten diseases. Diagnosis Pro
identifies the correct disease as a possibility in four of the ten diseases. FindZebra identifies
correctly nine of the diseases. RDD and Phenomizer identify the correct disease as a
possibility in all ten cases.

Given that the examples fromTable 2were generated using symptoms fromour database,
there was the possibility that the performance of RDDwas inflated with respect to the other
DDX generators. To control for this we randomly selected ten patients from RAMEDIS
for which RDD had included the correct diagnostic in the top ten list of predictions. Using
the symptoms associated to each patient, we interrogated the five DDX engines using their
default parameters and evaluated if the correct disease was diagnosed as a possibility results
are summarized in Table 3. The performance of ISABEL and DiagnosisPro was significantly
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Table 2 Comparison of predictions between DDX generators.Here we compare the most likely diagnosis of four well-known and freely available
(at least for testing purposes) DDX generators with that provided by Rare Disease Discovery, when considering the joint symptoms used to perform
the study summarized in columns 1 and 4 of Table 1.

Disease Diagnosis pro ISABEL Phenomizer FindZebra Rare Disease
Discovery

Beta-Thalassemia + + + ∗ +

Canavan disease ∗ ∗ + + +

Down syndrome ∗ ∗ + + +

Fabry disease + + + + +

Goldblatt syndrome ∗ ∗ + + +

Turner syndrome ∗ + + + +

Uncombable hair syndrome ∗ ∗ + + +

Williams syndrome + ∗ + + +

Yunis-Varon syndrome ∗ ∗ + + +

Zellweger-like syndrome without peroxisomal anomalies + ∗ + + +

Notes.
+ Suggests the appropriate disease in the top 10 ranked list of predictions.
∗ Does not suggest the appropriate disease in any position of the top 10 ranked list of predictions.

Table 3 Comparison of predictions between DDX generators.Here we compare the most likely diagnosis of four well-known and freely available
(at least for testing purposes) DDX generators with that provided by Rare Disease Discovery. 10 patients with different symptoms and/or diseases
were randomly selected from the RAMEDIS dataset. All symptoms were used.

Disease (Patient ID) Diagnosis
pro

ISABEL Phenomizer FindZebra Rare disease
discovery

Classical homocystinuria (5) + ++ ++ ++ ++

Propionic acidemia (821) + + + ∗ ++

Glycogen storage disease (1086) + ++ + ++ ++

Isovaleric acidemia (1050) + ∗ + ++ ++

Galactosemia (970) + + ++ ++ ++

Carnitine palmitoyl transferase II deficiency (1024) ∗ ++ ++ + ++

Canavan disease (492) ∗ ∗ ∗ ++ ++

Porphyria (866) + ∗ ++ ++ ++

Mitochondrial DNA depletion syndrome (940) ∗ + + ++ ++

Congenital neuronal ceroid lipofuscinosis (830) + + ++ ++ ++

Notes.
+ Suggests the appropriate disease in the top 100 list of possible diseases.
++ Suggests the appropriate disease in the top 10 list of predictions.
∗ Does not suggest the appropriate disease in any position of the top 100 list of predictions.

better in this experiment. These two DDX engines succeeded in identifying seven out of
ten diseases. ISABEL performed slightly better than DiagnosisPro, as it identified three of
the seven diseases among the first ten suggestions. Phenomizer and FindZebra correctly
identified nine of the ten diseases. Phenomizer identified five of the nine correct diseases
in its top ten of suggestions. FindZebra identified eight of the nine correct diseases in its
top ten of suggestions.
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Figure 2 Joint effect of unreported and unrelated symptoms on the predictive accuracy of Rare Dis-
ease Discovery. (A) Plot of F1-Score as a function of the % of patients with a known rare disease where 1,
2, 3, 4, 5, 10, or 20 symptoms were randomly added or deleted. (B) Plot of Precision as a function of the
% of patients with a known rare disease where 1, 2, 3, 4, 5, 10, or 20 symptoms were randomly added or
deleted. (C) Plot of Sensitivity as a function of the % of patients with a known rare disease where 1, 2, 3,
4, 5, 10, or 20 symptoms were randomly added or deleted. Without noise, the F1-Score is always 1. The
F1-Score decreases as noise (% of patients with deleted symptoms) increases. This is mainly due to a de-
crease in precision. Sensitivity is always low because the number of false positives is always orders or mag-
nitude smaller than the number of true negatives. In the worst case scenario (20 incorrect symptoms in
100% of the patients), the appropriate disease is contained in the set of diseases with the highest score for
more than 80% of the patients.

Benchmarking the rare disease discovery prototype
Four additional benchmark tests were needed to evaluate the effect of absent and unrelated
symptoms on the diagnostic performance of RDD under more realistic, well controlled
conditions. The first experiment measured the aggregate effect of absent and unrelated
symptoms in predicting the correct disease. The precision p, sensitivity s, and F1-Score of
RDD were calculated (Fig. 2). When no symptoms are added or deleted p, s, and F1-Score
are always 1, and the correct disease is predicted 100% of the times. As the number
of incorrect symptoms increases, p decreases, while s remains approximately constant.
Decreases in either p or the F1-Score only becomes larger than 5% when the number of
symptoms that are randomly added or deleted is equal to or higher than 10 in most of the
patients.

The second experiment tested the effect of unreported/absent symptoms in predicting
the correct disease. The precision p, sensitivity s, and F1-Score of RDD were calculated
(Fig. 3). When no symptoms are deleted p, s, and F1-Score are always 1. The correct disease
is predicted 100% of the times. As the number of patients with deleted symptoms increases,
p decreases, while s remains approximately constant. Decreases in p or F-Score only become
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Figure 3 Effect of unreported symptoms on the predictive accuracy of Rare Disease Discovery.
(A) Plot of F1-Score as a function of the % of patients with a known rare disease where 25%, 50%, and
75% of the symptoms were randomly deleted. (B) Plot of Precision as a function of the % of patients
with a known rare disease where 25%, 50%, and 75% of the symptoms were randomly deleted. (C) Plot
of Sensitivity as a function of the % of patients with a known rare disease where 25%, 50%, and 75% of
the symptoms were randomly deleted. Without noise (no deleted symptoms), the F1-Score is always 1.
The F1-Score decreases as noise (% of patients with deleted symptoms) increases. This is mainly due to
a decrease in precision. Sensitivity is always low because the number of false positives is always orders or
magnitude smaller than the number of true negatives. In the worst case scenario (75% deleted symptoms
in 100% of the patients), the appropriate disease is contained in the set of diseases with the highest score
for more than 90% of the patients.

larger than 5% for the sets where 75% of the symptoms are deleted in 50% or more of the
patients.

The two final experiments were used to determine statistical significance of both, the
value of the DSi score used to rank the diseases and the difference between two DSi scores.
These experiments estimate that a score DSi ≥ 0.5 has a probability lower than 0.0001
of being obtained by choosing a random set of symptoms (see Supporting Methods and
Supporting Figure 3 in Appendix S1). In addition, it also suggests that differences between
DSi scores lower than 0.01 are significant (p-value < 0.001), as long as more than three
symptoms are simultaneously submitted to RDD. If only one symptom is submitted, then
two DSi scores must differ by more than 0.14 (p-value < 0.001). Further details are given
in Supporting Methods and Supporting Table 2 of Appendix S1.

DSi decreases sharply with noise in all performed experiments; however, even if DSi is
below the statistically significant level, it can still be used to accurately predict the correct
rare disease, although with a lower confidence (see Supporting Methods and Supporting
Figure 4 in Appendix S1 for details).
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DISCUSSION
Rare disease discovery
In the vast majority of cases, a definitive and precise diagnostic of a rare disease requires
genetic tests. However, in order to direct patients towards the appropriate medical
specialists, family doctors need to make a preliminary diagnosis of the potential rare
diseases that are consistent with the symptoms observed in the patient. These symptoms
are either macroscopic phenotypic observations or clinical parameters from generic
biochemical tests. It is at this stage of the diagnosis that rare disease DDX generators are
likely to be most useful. Here we presented an approach to create such a DDX generator,
Rare Disease Discovery. We implemented that approach as a fast, free, and user-friendly
web prototype for initial CAD of patients with suspected rare diseases. We also tested the
performance of this prototype in the limited context of the datasets that are available to us.

RDD runs typically take a few seconds, depending on the number of symptoms selected
by the user. In the limited conditions under which we could test it, RDD has high precision
and sensitivity in our benchmark experiments, suggesting that its diagnostic performance
might be robust to situations where not all symptoms have been identified or are directly
related with the disease the user is trying to identify. Precision is less robust to these factors
than sensitivity, because the number of false positives is always orders or magnitude smaller
than the number of true negatives. This makes precision decrease with noise much more
sharply than sensitivity. We also show that even when the ranking score DSi is below
significance level, the correct disease is frequently in the set of diseases with the top ten
highest DSi. This is also observed in our retrospective studied of 187 previously diagnosed
patients. Nevertheless, we remark that testing the performance of the application on much
larger, more diverse, anonymized datasets of real patients is needed to validate RDD and its
performance. To our knowledge, such datasets are not freely available to the community
at present, although they may exist (see below).

Finally, we note that the approach underlying RDD can in principle be extended to any
set of diseases. If one has a database associating symptoms to diseases, then one can test
the same score function we use and benchmark that score using tests that are similar to
the ones performed for RDD, establishing limits of statistical significance for the score
function in the context of that database.

Comparing RDD to similar tools
Interestingly, our illustrative examples of usage suggest that RDD, Phenomizer, and
FindZebra have very similar performances while accurately diagnosing rare diseases.
RDD and Phenomizer have an equally accurate performance in diagnosing ten out of
ten synthetic patients generated from our symptoms database. FindZebra is almost as
good, only missing a beta thalassemia diagnosis in one of the ten synthetic patients. This
experiment evaluated if the disease used to generate the list of symptoms was included in
the list of possible diseases associated to those symptoms. When we randomly select real
patients from the RAMEDIS dataset and perform the same experiment, RDD performs
slightly better than the other two rare disease DDX tools. While RDD always proposes
the disease that was clinically diagnosed to the patient in its top ten of diagnosed diseases,
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FindZebra repeats this performance for eight out of ten patients and Phenomizer for
five out of ten patients. However, both FindZebra and Phenomizer provide the correct
disease in its top 100 list of possibilities for nine out of the ten patients. As expected, RDD,
FindZebra, and Phenomizer significantly outperformDDX engines that where designed for
CAD of general diseases (ISABEL and DiagnosisPro). We note that these experiments were
run using the default settings of all programs. In the case of Phenomizer we also repeated
the experiments changing the similarity measure and the multiple testing procedure of
the program. However, the results remained qualitatively similar. To be more confident
about the comparative performance of the RDD prototype with respect to Phenomizer
and FindZebra, a batch study for the one hundred and eighty seven patients from the
RAMEDIS dataset would have been desirable. However, a level of access to these tools
that would permit automating this study is not available to the general public and this
comparison could not be performed. RDD performs fairly well in this dataset, as the
clinically diagnosed disease was on the top ten (fifty) list of predictions for more than 60%
(80%) of the patients.

We note the qualitatively different approach that these three tools take to ranking the
list of possible diseases for a given set of symptoms. Phenomizer takes what we would call
a purely statistical approach and calculates the probability that a subset of symptoms could
be generated from the complete set of symptom of a disease simply by accident. FindZebra
performs a similar analysis for the random occurrence of specific terms in web documents.
In contrast, RDD ranks the diseases based on a normalized hamming-like distance between
the list of symptoms provided by the user and the list of symptoms from every disease in its
database. Internally, RDD establishes the likelihood that a given score is significant or not,
informs the user about it, but does not use this significance in the ranking of diseases. We
speculate that a meta-server combining RDD, Phenomizer, and FindZebra and providing
a consensus diagnostic list would be more accurate than any of the three programs alone.
To facilitate this possibility we provide the RDD code and databases as a GitHub project
(https://github.com/Wrrzag/DiseaseDiscovery/tree/no_classifiers).

Limitations
RDD could in the future be developed to become a quick way to assist in initial DDX of rare
diseases. This speed comes at the cost of constraining server functionality. For example,
admissible symptoms are restricted to those present in the database. This should not be a
problem because the data regarding association between rare diseases and symptoms we use
comes from ORPHANET. It is well-organized and extensively curated by medical experts.
We observed that the improvement in the quality of the ORPHANET annotated dataset
leads to an improvement in the predictions made by RDD, as indicated by comparing
the benchmark of the server with the ORPHANET data from 2014 to the benchmark
of the server with the ORPHANET data from 2015 (see Appendix S1). However, these
improvements are small, suggesting that the quality of the ORPHANET disease-symptom
annotation is quite high and further improvements to that dataset might not have a
significant influence in the performance of RDD.
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It is clear that any rare disease that is not included in that database can not be identified
by RDD. However, this is also true for all other computer-assisted DDX tools, such as
Phenomizer, or FindZebra, which can only identify diseases that are in their respective
databases. Overall, the architecture of RDD allows for an easy replacement of the
ORPHANET dataset by any other more comprehensive or more adequate dataset that
may become available in the future.

An additional important limitation of this study is the size and lack of diversity in the
dataset of real patients that we use to evaluate how RDD performs on a real world scenario.
This limitation will remain until larger, more diverse datasets of patients are made freely
available to the community. We remark that there are projects that have the potential to
generate such datasets (e.g., Choquet & Landais, 2014; Koutouzov, 2010), enabling a more
thorough validation of this and other rare disease DDX prototypes. For example, CEMARA
reports having data for 235,000 rare disease patients. However, an anonymized version
of that data is not readily available for public use. If, or when, such a database becomes
available we will use it to further validate and test RDD. In addition we are actively looking
for clinical teams that are interested in using the RDD prototype for testing.

CONCLUSIONS
Rare Disease Discovery is a high performance web prototype for CAD of rare diseases. Its
diagnostic performance appears to be robust to situations where not all symptoms have
been identified or are directly related with the disease the user is trying to identify. The
diagnostic performance of the prototype on a limited set of 187 rare disease patients was
good. If this diagnostic performance could be tested and confirmed on larger and more
diverse sets of rare disease patients, RDDmight potentially become a helpful tool for initial
assisted diagnosis of rare disease patients.
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