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In this study, we investigated the impact of in-situ nature and urban exposure on human
brain activities and their dynamics. We randomly assigned 32 healthy right-handed college
students (mean age =20.6 years, SD= 1.6; 16 males) evenly to a 20-minute in-situ sitting
exposure to either a nature or an urban-built environment, and measured their EEG
signals. Analyses revealed that a brief in-situ nature experience may induce more efficient
brain connectivity with enhanced small-world properties and stronger global functional
connectivity than a stressful urban-built experience Exposure to nature may also induce
stronger long-term correlated activity across different brain regions with a right
lateralization. These findings enhance our understanding of the impact of different in-situ
environmental exposures on subsequent brain activity, implying that a nature or nature-
like environment may benefit cognitive performance and mental well-being. These results
may foster the construction of large-scale cortical network models to mimic cognitive
computation in real natural situations.
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40 1   Introduction

41 Real-world society and the surrounding environment may be critical in shaping cognitive functions 
42 and brain performance. Evidence has suggested that social pressure and an intense workload can 
43 suppress cognitive performance (Juster et al. 2010; Kuhlmann et al. 2005; Takahashi et al. 2004). 
44 More recent studies, however, have demonstrated improvements in working memory and attention 
45 shortly after a short-term nature experience (Berman et al. 2008; Lee et al. 2015; Taylor & Kuo 
46 2009). In one example, a brief nature walk, as revealed in a recent empirical study, significantly 
47 reduced anxiety-related neural activity in the subgenual prefrontal cortex (Bratman et al. 2015b), 
48 enhancing positive cognitive performance and emotion regulation as well (Bratman et al. 2015a). 
49 This phenomenon suggests that the natural environment in addition to social pressure may be 
50 another key factor influencing human cognitive performance. However, only limited evidence 
51 exists of environmental impact on human cognitive activity (Bowler et al. 2010). 
52 Previous studies have suggested that 1/f characteristics in the log-log power spectrum (a 
53 unique statistical feature of natural signals widely observed in natural environments but rare in 
54 urban-built ones) may be potential key factors in shaping cognitive functions during natural 
55 adaptation and evolution. More and more studies have revealed that mammalian brains can 
56 perform more efficiently in response to naturalistic signals than artificial ones(Simoncelli & 
57 Olshausen 2001). A perfect nature-like signal should contain a high-order statistic of a 1/fβ-like 
58 power spectrum. For example, a natural sound, which is one-dimensional, is close to a power 
59 distribution of 1/f1 while a two-dimensional natural image is close to a distribution of 1/f2 and a 
60 three-dimensional natural video is close to 1/f3 (Chen 2012). In-vivo evidence has demonstrated 
61 that mammalian sensory systems (Gal & Marom 2013; Yu et al. 2005) can process natural signals 
62 more efficiently than artificial ones. This characteristic of cognitive functioning may impact the 
63 efficiency of neural networks (He 2011) and eventually define global cognitive performance.
64 The evidence above, therefore, suggests a new hypothesis: specifically, signal statistics 
65 may be one critical factor driving human brains to perform more efficiently in nature settings than 
66 more urban-built ones. Hence, in this paper, we examine the following questions: Do nature and 
67 constructed artifacts differ significantly in their statistics of visual stimuli? Do human brains 
68 respond differently to these different statistics? What are the significant differences in the brain 
69 when responding to the two types of environmental signals? Although visual signals are probably 
70 among the most important stimuli in the two types of environments, we believe that they only 
71 partially capture the differences between the two. To fully capture the holistic environmental 
72 experience, multisensory immersion is crucial. Therefore, we adopted in-situ exposure instead of 
73 pictorial representation. To minimize the external variables that an in-situ experimental design can 
74 present, we intentionally controlled the thermal comfort, including temperature, humidity, wind 
75 chill, and other conditions, to ensure that the two treatments occurred within equivalent 
76 circumstances. 
77 Indeed, our new hypothesis is supported by a recent analysis of auditory perception. This 
78 study found that music sound with a 1/f property, comparing to random noise, induced an enhanced 
79 brain connectivity with efficient information flow across brain regions featuring a small-world 
80 complex network property (Wu et al. 2013; Wu et al. 2012b). Small-world networks are 
81 hierarchical structures with more efficient and well-connected hubs, which are widely found in 
82 biological, ecological, social, world-wide web, molecular and neuronal networks (Watts & 
83 Strogatz 1998b). The small-world network, because of these hubs, usually entails a large clustering 
84 coefficient and short path length, enabling more efficient flow of information than that found in 
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85 randomly ordered nonhierarchical networks. In this study, we examined the EEG functional 
86 connectivity during in-situ nature and urban experiences, including functional correlation, small-
87 world network statistics, 1/f statistics and their lateralization. 
88 Experiment-observed functional network connectivity could be valuable for constructing 
89 large-scale neural network models underlying cognitive computation and cortical information 
90 processing (Ampazis et al. 2015; Ding et al. 2013; Gao et al. 2014; Sun 2013). In many existing 
91 computational designs, networks are generally studied with the resting state as the default mode, 
92 which is not the actual state in which brains execute behavior. Our study of how brain functional 
93 connectivity changes, both temporally (e.g., 1/f statistics) and spatially (e.g., small-world statistics 
94 and correlation) in response to sensory stimuli, may inspire alternative designs for cognitive 
95 computation such as reservoir computing and attractor networks (Gros 2009). 
96

97 2   Methods

98 In this study, we compared the brain performance of 32 healthy right-handed participants (mean 
99 age=20.6, SD=1.6, 16 males) during a 20-minute in-situ sitting exposure to nature and to a 
100 constructed environment. We utilized a portable wireless EEG recording device in addition to self-
101 report psychological scales. This study was approved and supervised by the Ethics Committee of 
102 Tongji University (no. 2015yxy103).
103 No significant neurotic personality was found among the participants as indicated by scores 
104 (mean = -1.58~1.33 on a 7-point Likert scale) from the neuroticism subscale of the NEO 
105 Personality Inventory (Costa & McCrae 1992). Participants reported small everyday stresses 
106 (mean= 0.29, SD=1.90 on a 7-point Likert scale) and slightly stress-reducing living environments 
107 (mean=0.32, SD=1.40 on a 7-point Likert scale). They were generally well rested (sleeping 
108 hours=6.90, SD=1.33) with a broad range of work (studying hours = [1.5, 15], mean=8.06, 
109 SD=3.25) and entertainment (hours=[1,11], mean=3.25, SD=2.35) schedules, besides moderate 
110 exercise (mean hours=0.73, SD=0.49) and exposure to nature (mean hours=0.83, SD=0.68) on a 
111 daily basis.

112 2.1. Site Selection

113 Because this study was designed to examine the extent to which unique statistics of natural signals 
114 induce more efficient brain functioning, we used the β values in the 1/f statistics of visual stimuli 
115 as criteria for site selection. Research has shown that the β values of nature images are likely to be 
116 close to 2 (Szendro et al. 2001; West & Shlesinger 1990) due to an appropriate distribution between 
117 low-frequency contours (e.g., shapes of trees, mountains) and high-frequency details (e.g., fractal 
118 edges, random texture and lines). This implies a moderate long-term correlation level across image 
119 components of all frequency ranges. With increasingly uniform materials (e.g., concrete) and 
120 limited high-frequency detail, urban-built scenes may be more likely to reveal a larger β, but we 
121 were less confident before verification.
122 To find a typical nature and urban-built environment, we first examined a large number of 
123 photographs. Because of limited confidence in the β estimation for built scenes, we intentionally 
124 investigated a larger sample of photographs of urban-built scenes (n=135) than nature scenes 
125 (n=80). All of the photos had been captured and reviewed by professional landscape architects and 
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126 architects. Both nature and urban photos revealed a normal distribution of β (Fig. 1c and d), with 
127 means of 2.30 (SD=.22) and 2.61 (SD=.18), respectively (Fig. 1a). These results were consistent 
128 with those from a previous study (Braun et al. 2013) which documented an average β of 2.24 
129 (SD=.19) for nature scenes and 2.53 (SD=.24) for buildings, amidst sample sizes of 200 photos 
130 each. 
131 Therefore, we intentionally selected two typical sites with representative β slopes: a 
132 wooded campus garden (β= 2.24) for the nature scene and a traffic island under an elevated 
133 highway (β=2.62) for the urban-built scene (Fig. 1b). Specifically, the nature scene consisted of 
134 89% visible green and water along with 4% visible buildings and paved areas from where 
135 participants were seated while the urban-built scene consisted of 8% visible green with 56% visible 
136 buildings and paved areas (Fig. 2). To control for external variables such as thermal comfort levels, 
137 all experiments were conducted in May and June in a comfortable temperature of 22 degrees 
138 centigrade (difference within ±5), 81 percent humidity (difference within±13), an acoustic level of 
139 72 db (difference within±12), and a wind speed of 0.8 m/s or slower. 

140 2.1. Procedure and Data Validity Control

141 The experiment was taken via a structured procedure (Fig. 3). After first signing a written consent 
142 form containing a written explanation of the experimental procedure and risks, participants 
143 completed a two-page pretest questionnaire. Portable EEG electrodes were positioned onto 
144 participants' scalps, and they were then asked to sit facing a wall to temporarily exclude visual 
145 information. Participants were instructed to alternate keeping their eyes open and closed in four 
146 one-minute cycles. After this pre-experimental phase, participants were told to turn and face the 
147 environment for 20 minutes1. Participants were asked to sit either in a built environment (i.e., a 
148 traffic island under an elevated highway), or in a natural environment (i.e., a heavily wooded 
149 campus garden) facing a designated view. After viewing the environment, participants completed 
150 a posttest questionnaire and a short interview. To prevent their minds from wandering or becoming 
151 drowsy, participants were told to count from 1 to 1000 soundlessly at a speed which was slow 
152 enough not to interrupt the environmental experience. 
153 We specifically adopted eye-opened and eye-closed pretests in the beginning of the 
154 experiment to verify the reliability/stability of electrode recording across the 20 minutes of 
155 environment exposure. We examined the power distribution and 1/f statistics of two electrodes at 
156 the primary visual cortex (O1 and O2) during the two pretests. The results revealed a clear 1/f 
157 statistic in both the nature and built environments (Fig. 3b~c). At both sites, there was also a clear 
158 bump at the top of the 1/f slope near logf=1 (the location of the alpha range) during the eye-closed 
159 session, while the bump dropped towards the slope during the eye-open session. This bump-
160 dropping effect during the eye-open session is called alpha-blocking (Könönen & Partanen 1993). 
161 The successful capture of 1/f statistics (arrhythmic firing) and alpha-blocking (rhythmic 
162 oscillation) as expected supports the validity of the data.

1 EEG of the entire 20-minute exposure was measured for the latter 16 participants (8 nature) while only the latter half (10 minutes) 
of the exposure was measured for the first 16 participants (8 nature). Paired t-test revealed no significant differences between the 
first half (10 minutes) and the latter half (10 minutes) of exposure for the 16 participants whose EEG was recorded for the entire 
20 minutes in terms of EEG correlation and β exponent, except for two individuals in the built environment groups (see 
supporting materials). Therefore, the full recording length from both groups (10 minutes for first half and 20 minutes for the 
latter half) was used for analyses.
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163 2.2. Measures

164 Participant affective status was measured both before and after the environmental exposure using 
165 the Profile of Mood State questionnaire (Curran et al. 1995). In this questionnaire, participants 
166 were asked to rate the extent to which 40 descriptive words captured their affective status on a 7-
167 point Likert scale.
168 An Emotiv wireless headset (Dekihara & Iwaki 2014) and accompanying software was used to 
169 measure EEG. The headset consists of 14 sensors positioned on the wearer’s scalp according to 
170 the international 10–20 system: antero-frontal (AF3, AF4, F3, F4, F7, F8), frontocentral (FC5, 
171 FC6), occipital (O1, O2), parietal (P7, P8) and temporal sites (T7, T8). Brain waves are measured 
172 in terms of amplitude (10–100 microvolts) and frequency (1–70 Hz). EEG data were analyzed via 
173 Matlab and EEGlab. Data were first filtered (<0.5Hz or >50 hz) using EEGlab and adjusted for 
174 artifacts using Adjust 1.1 (Mognon et al. 2011). 
175 The signal was first analyzed via Fast Fourier Transformation and then categorized into five 
176 frequency bands: delta (1–4 Hz), theta (5–8 Hz), alpha (9–12 Hz), beta (13–25 Hz), and gamma 
177 (26-45 Hz). Total mean power by frequency bands and brain connectivity were calculated.
178
179 Correlations
180 Correlations between signals at different electrodes were calculated using the following 
181 equation:

               ( ) ( ) /( )AB AA BBr x C x C C (1)

182 where the cross-covariance between signals A and B was noted as CAB while the auto-covariances 
183 of signals A and B were noted as CAA and CBB, respectively (Guevara & Corsi-Cabrera 1996). 
184
185 Small-World Network Statistics (Watts & Strogatz 1998b; Wu et al. 2013)
186 We used a small-world characteristic value Cmean/ Lmean to measure the small-world 
187 network propriety, where Lmean is the averaged shortest path length and Cmean is the clustering 
188 coefficient. A higher small-world characteristic value Cmean/ Lmean indicates a higher clustering 
189 effect at smaller path lengths, which is therefore indicative of more distinct small-world 
190 characteristics. The clustering coefficient of an electrode vi was calculated as
191

192                     (2)
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193 where k denotes the number of electrodes of an EEG correlation with the electrode vi higher than 
194 a given threshold, and n denotes the number of paths with a correlation higher than the threshold 
195 between the k electrodes that it is connected to (where n equals  in a saturated scenario). The 2

kC

196 averaged clustering coefficient for an individual is then calculated as 
197                    (3)
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198 The shortest path length was calculated from the shortest of all total paths from vi to vj 
199 for a pair of electrodes vi and vj, using the Floyd algorithm. The path length between two immediate 
200 neighbors was coded as 0 (to itself), 1 (beyond threshold) or 13 (below threshold). For each 
201 individual,
202
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204 where Lvi,vj denotes the shortest path length between a pair of electrodes vi and vj. 
205
206 1/f Statistics 
207 The 1/f statistics were calculated as the regression slope β (absolute value) of the log power 
208 over the log frequency in a 1/fβ power spectrum. The β values were first calculated at each electrode 
209 for each individual and then linearly combined as electrode and individual global means. 
210 Lateralization was calculated as log(R)-log(L), where R and L represent the right and left 
211 symmetrical pairs (i.e., AF4/AF3, F8/F7, F4/F3, FC6/FC5, T8/T7, O2/O1), respectively. 
212
213 Statistical Test
214 As we were primarily interested in documenting how brain regions responded to 
215 environmental stimuli, all differences were tested against electrode variance using T test paired by 
216 electrodes, with an exception of small-world network property which was tested against individual 
217 variances using independent T test. 

218 3   Results

219 3.1. Impact on Affect and EEG Power

220 To investigate the impact of environmental exposures on affect, we linearly combined the 
221 constructs on a 7-point Likert PMOS psychological scale reported by participants. All participants 
222 sitting in front of nature, after a 20-minute exposure, reported a more positive affective status than 
223 those sitting in front of a built environment. Specifically, nature-exposed participants reported less 
224 fatigue (nature=-2.38, SD=4.65; built=1.69, SD= 4.73; p=.020), as well as better-maintained vigor 
225 (nature=-.50, SD=4.65; built=-4.08, SD=3.18; p=.045) and less negative mood disturbance 
226 (nature=-.394, SD=11.29; built =9.64, SD=15.07; p=.007). 
227 To investigate the impact of environmental exposures on EEG power, we performed a two-way 
228 ANCOVA on EEG power in five frequency bands (delta, theta, alpha, beta and gamma) in two 
229 conditions (nature and built environment exposures) with their eye-open pretest baselines 
230 controlled. ANCOVA confirmed a significant overall power difference between nature and built 
231 environment (F(1,129)=4.175 p=.043), with a higher power found during nature exposure in all 
232 frequency bands confirmed by T-test paired by channels (all p<.001, compared at a Bonferroni 
233 correction of .05/5=.01).

234 3.2. Impact on Functional Connectivity and Signal Correlation

235 We analyzed the averaged correlations of EEG power at different frequency bands to understand 
236 the functional connectivity (Fig.4). A channel-wise two-way ANCOVA was performed on EEG 
237 power correlation in five frequency bands (delta, theta, alpha, beta and gamma) and in two 
238 conditions (nature and built environment exposures) with their eye-open pretest baselines 
239 controlled. We observed a significant higher overall power correlation during nature exposure 
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240 compared at that during built environment exposure (F(1,129)=85.09, p<.001), with a higher 
241 power found during nature exposure observed in delta (p=.008<.01, compared at a Bonferroni 
242 correction of .05/5=.01), theta, alpha and beta (all p<.001<.01).
243 We then analyzed the averaged correlations of EEG power to analyze the difference across 
244 electrodes. A participate-wise two-way ANOVA was performed on mean EEG power correlation 
245 in 14 electrodes and in two conditions (nature and built environment exposures) with their eye-
246 open pretest baselines controlled. Again, we observed a significant a significant higher overall 
247 power correlation during nature exposure compared at that during built environment exposure 
248 (F(1,419)=15.32, p<.001), but no significant difference at individual electrode using independent 
249 T test after Bonferroni correction.

250 3.4. Impact on Small-World Network

251 At the beginning, we calculated the average shortest path length Lmean and network clustering 
252 coefficients Cmean to quantify the information flow efficiency within the network. We observed 
253 that Lmean was slightly smaller in the nature scene condition than in the urban environment (Fig. 
254 5a), although there was no significant difference observed across all threshold values. The 
255 clustering coefficients were significantly higher in the nature scene condition than the urban 
256 condition for the medial threshold values (Fig. 5b), indicating a better small-world property. To 
257 see this clearly, we defined a new measure Cmean/Lmean to directly quantify the small-world 
258 characteristic to evaluate the impact of environmental exposure on brain functional network 
259 connectivity. We observed higher values for Cmean/Lmean for almost all thresholds (Fig. 5c) for the 
260 nature scene (the t-test against participant variances indicated significance at .50 with p=.041, .60 
261 with p=.046 and .095 with p=.044, respectively). Hence, participants sitting in the nature scene 
262 may have had more efficient information communication because of a better small-world network 
263 property. 

264 3.5. Impact on the temporal long-term correlation (1/f characteristic) of EEG 

265 To investigate the 1/f statistics during the two environmental exposures, we first investigated the 
266 global β value averaged across the β values of all electrodes. We found, as expected, a significant 
267 difference during the viewing of the two scenes (p=.033, t-test paired by electrode, Fig. 6a). To 
268 further investigate the spatial variation of 1/f statistics, six brain regions were studied: the left 
269 (AF3, F7 and F3) and right antero-frontal (AF4, F8 and F4), left (FC5 and T7) and right 
270 temporal/frontocentral (FC6 and T8), left (P7 and O1) and the right parietal/occipital (P8 and O2). 
271 A trend towards larger β slopes in these brain regions was observed during the nature experience 
272 (Fig. 6b). After noticing a possible lateralization effect of β during the above brain region analysis, 
273 we compared the lateralization of β between nature and built environment exposure. The two 
274 environments revealed distinct lateralization in β values. Specifically, a right lateralization (a 
275 larger β slope in the right) was found at F8/F7 (p=.030, t-test against participant variance), 
276 FC6/FC5 (p=.005) and T8/T7 (p<.001) in the nature experience while a right lateralization at 
277 T8/T7 (p=.002) and P8/P7 (p<.001) was instead found for the built environment (Fig. 6c).
278
279  
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280 4   Discussion

281 While studies have emphasized that the social pressures of urban life can induce cognitive decline 
282 and discomfort (Lederbogen et al. 2011), our study revealed that the distinct statistical properties 
283 of the artificial built environment relative to those from the natural scenes also induce different 
284 macro statistical properties of brain EEG signals, which may therefore lead to cognitive decline 
285 and discomfort. Growing experimental and theoretical evidence supports the notion that human 
286 and animal visual systems are adapted to represent natural scenes efficiently (Simoncelli & 
287 Olshausen 2001). The statistics of natural images are typically characterized by the scale-invariant 
288 power spectra, with the slope of the frequency-power relationship in a log-log plot close to 2 (the 
289 so called 1/f2 statistics) (Ruderman 1997; Ruderman & Bialek 1994). The slope of 2 suggests the 
290 presence of long-term correlations among picture pixels in different scales. Because brain vision 
291 systems have evolved in the natural world, it has been strongly suggested (Olshausen & Field 
292 1996; Simoncelli & Olshausen 2001) that early visual pathways were adapted to de-correlate the 
293 correlational structure of the input signals efficiently and then pool all the encoded information 
294 together in the higher level cortex to formulate internal pictures of the outward natural world. 
295 Hence, brain sensory systems may function more efficiently in response to the natural scene’s 
296 characteristics and consume less energy in their visual processing of natural signals (Laughlin 
297 2001; Olshausen & Field 1997; Simoncelli & Olshausen 2001). As stated in our previous study of 
298 primates (Yu et al. 2005), the visual function of cortical neurons may be designed to tune to 1/f 
299 characteristics for efficient coding, which induce a preference in the visual system for natural 
300 signals in the natural environment. In addition, a recent study (Torralba & Oliva 2003) reported 
301 that cardinal (horizontal and vertical) orientations are more prevalent in sample image statistics of 
302 man-made artifacts (e.g., urban buildings, streets, highway infrastructures) than in images of 
303 natural scenes. In addition, there are more low frequency components and less high frequency 
304 components in built artificial views, resulting in a larger slope (>=2.5) in the power spectra of 
305 urban images (Braun et al. 2013; Torralba & Oliva 2003). This raises a nontrivial issue. That is, 
306 after prolonged exposure to built artifacts with signal statistics distinct from nature, could human 
307 neural responses differ in terms of statistical properties and therefore become overstressed and 
308 uncomfortable (Penacchio & Wilkins 2015)? Actually, recent studies have documented a 
309 significant drop in both self-reported rumination and neural activity in the subgenual prefrontal 
310 cortex of healthy participants after a 90-min walk in a natural environment, while no such effect 
311 was observed for an urban walk (Bratman et al. 2015b). 
312 Our study here examined the above issues and observed several new statistical properties 
313 of brain EEG responses for humans set in nature or urban environments. First of all, as expected, 
314 analysis of the questionnaire forms reported that all the participants reported more pleasant feelings 
315 and less stress in nature than in the urban-built environment. Second, when observers were sitting 
316 within nature, their brain EEG activities were more strongly correlated (almost among all 
317 frequency bands) across the whole brain globally than those sitting in an urban environment. This 
318 suggests that different cortical regions may be in more organized functional states. This idea has 
319 been supported by recent behavior studies which revealed that performance on working memory 
320 tasks improved shortly after a nature experience (Berman et al. 2008; Bratman et al. 2015a; Taylor 
321 & Kuo 2009). The lower global functional EEG connectivity observed during the urban experience 
322 may imply that our neural network may be less efficient at perceiving and reconstructing urban 
323 environment and built artifacts. However, further studies are needed to verify this tentative 
324 hypothesis.
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325 Furthermore, we also calculated the small-world property of all the brain EEG recording 
326 sites (Smit et al. 2008; Watts & Strogatz 1998a). Network measures were calculated as a function 
327 of a certain Pearson correlation threshold value. There was a larger small-world network 
328 characteristic value Cmean/Lmean in the nature than in the urban condition, with a significantly larger 
329 clustering coefficient Cmean at thresholds of .50 (p=.041), .60 (p=.046) and .95(p=.044). The 
330 enhanced small-world network in nature exposure suggests a more optimized configuration and a 
331 higher efficiency of information transfer across the brain regions than that in the urban-built 
332 environment. This enhanced small-world property has also been observed in the context of music 
333 perception (Wu et al. 2012a) when compared to noise listening. 
334 In addition, we have also studied the power spectrum properties of EEG signals and 
335 observed that they demonstrated a reversed power law phenomenon, called 1/fβ statistics in the 
336 frequency domain, indicating a power law distribution of frequencies. The 1/fβ statistics suggest 
337 long-term correlations in the time domain. A large β value means that any two time events in the 
338 EEG signal have a relatively large correlation time constant. A 1/fβ power spectrum, with power 
339 tending to fall off with increasing frequency, indicates no particularly dominating periodic 
340 oscillatory dynamic. Hence, a pure 1/fβ phenomenon is indicative of arrhythmic activity. Because 
341 EEG signals are also well-known to be characterized by the different oscillatory bands, e.g., δ (0-
342 3Hz), θ (4-7Hz), α (8-12Hz) and β (13-30Hz), frequency bands that are correlated with some 
343 special brain behavior state, the above observations suggest that brain activities are a combination 
344 of oscillatory activity and arrhythmic activity. For decades, research has concentrated on the 
345 former and discarded the latter as pure noise. Not until recently did evidence reveal that the latter 
346 was more than just noise and may be intimately related to brain functioning(Ray & Maunsell 
347 2011). In this study, we observed a larger β value for brain EEG in the natural scene than was 
348 observed in the urban environment. The larger power-law exponent β suggests a higher time-
349 lagged autocorrelation, indicating that the past dynamics of the system have a stronger influence 
350 on its future dynamics, i.e., the system has more long-range memory. A reduced power-law 
351 exponent might indicate enhanced working task behavior, as observed in an ECoG study during a 
352 visual detection task of unpredictable stimuli(He et al. 2010). Therefore, our observation here of a 
353 larger β value for brain EEG in the natural scene may suggest more relaxed and associated brain 
354 states than what exists in urban environments. However, identifying the best range of β values for 
355 the brain in the best performance or most pleasant state requires a better designed task in the future. 
356 The general observation that brain signals contain long-term correlation and oscillatory 
357 components might reflect interactions between bottom-up information process and top-down 
358 cognitive feedback. This requires further investigation to deepen our understanding of cognitive 
359 computation processes within the brain. It will be interesting to construct large-scale cortical 
360 circuit models to investigate the biophysical mechanism of the 1/f response and the oscillation 
361 characteristics as revealed in this study. These brain response features, potentially important to 
362 brain functioning (He 2014; Watts & Strogatz 1998b), have barely been considered in current 
363 cognitive computational models. Moreover, the preference of brain sensory system for the 1/f 
364 characteristic may also require further investigation of cortical computational modeling to reveal 
365 the biophysical mechanism underlying cortically efficient coding. The experimental investigation 
366 of the relationship between environmental statistics and cognitive processing could be valuable for 
367 number of reasons. First, it may deepen our understanding of the functional properties of brain 
368 sensory systems. Second, it may foster the derivation of new cortical computation models based 
369 on environmental statistics for efficient coding. It might also be helpful in the design of new forms 
370 of stochastic experimental protocols and stimuli for probing different brain sensory systems. 
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371 Certainly, the results here can also lead to fundamental improvements in the design of naturalistic 
372 urban architecture that strengthens brain cognitive performance and computation. 
373 In sum, while many studies have emphasized the impact of urban social pressure (e.g., 
374 unemployment, poverty) as being one of the critical stressors on human health and wellbeing 
375 (Seresinhe et al. 2015; Tost et al. 2015), a brief walk or sitting in a natural environment, e.g., pure 
376 natural woods, could benefit brain cognitive performance and alleviate the negative stressors. Our 
377 studies suggest that a nature environment, as characterized by the long-term correlation statistics 
378 in their visual signals, can evoke different brain oscillatory activity and arrhythmic activity, which 
379 may help place brain functioning in a more pleasant and less-stressful state. In other words, brains 
380 generate more memory-like effects of auto-correlated electrical signals when we are watching 
381 nature than when we are watching a busy built environment. This might be an indication of better 
382 memory formation in the natural environment than in the urban environment. Moreover, it may be 
383 possible that this "redundant" autocorrelation, which is seen in many natural phenomena as well 
384 as neuronal signals, could be important to our resilience and mental wellbeing. This idea requires 
385 further careful investigation. 

386 4   Summary

387 In last decades, there are increased experimental evidences reported that animal sensory 
388 neurons process natural signals more efficiently than artificial signals (Lewen et al. 2001; Rieke 
389 et al. 1995). Computational studies revealed that the structure and function of sensory neurons and 
390 network may be designed to efficient coding to signals in natural environment due to long-term 
391 adaptation and natural evolution. Our study designed in an early stage to examine whether the 
392 human brain function more efficiently in a natural environment than in urban environment. The 
393 answer and underlying mechanism related to this issue may be critical to understanding the 
394 operating principle of human brains. 
395 Previous experiments have revealed that a short walk in purely natural wooded area may 
396 greatly refresh the brain’s cognitive performance and alleviate negative stressors. Our study 
397 revealed that in additional to the social pressures found in urban environments, the distinct 
398 statistical properties of the built artifacts may also shape the human brain response properties 
399 differently, and thus, further stress human brains. Additional investigations are needed to more 
400 precisely examine the performance differences observed between these two types of environments. 
401 This study revealed the presence of a more efficient brain network during a nature 
402 experience than during an urban one. Specifically, stronger global functional connectivity was 
403 observed in nature, as well as a more enhanced small world property with a higher small-world 
404 characteristic value (Cmean/Lmean) and higher mean clustering coefficients (Cmean) at .50, .60 and 
405 .95. The more efficient brain network in nature may help explain the better affective states reported 
406 in this study and the potential cognitive improvements exhibited shortly after a nature experience 
407 as observed elsewhere in the research literature (Berman et al. 2008; Bratman et al. 2015a; Taylor 
408 & Kuo 2009).
409 This study also documented some relevant changes to long-term correlation characteristics 
410 of human EEG signals during in-situ environmental exposures to nature and to a built environment. 
411 We found a larger β exponent in the 1/fβ frequency spectrum during the nature experience, as well 
412 as a larger β in the right hemisphere during the exposures to nature and to the built environments 
413 with distinct differences. This may be among the earliest studies of changes in the 1/f power 
414 spectrum exponent β of human EEG signals as a function of different environmental experiences. 
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415 A larger sample size and repeated experiments are needed to further investigate the key properties 
416 intrinsic within the nature-related that impact the resulting EEG signal statistics. Greater 
417 understanding of the functional connectivity characteristics observed in this study in response to 
418 different environmental stimuli will be beneficial in constructing better cognitive computational 
419 models.
420
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1
The 1/f statistics of visual stimuli in the nature and urban-built scenes.

Eighty nature images and 135 urban-built environment (BE) images were analyzed, yielding

distinct β slopes (a) in the nature (mean=2.30, SD=.22) and urban-built environment

(mean=2.61, SD=.18, p<.001). The β distributions of the analyzed nature (c) and urban-built

(d) environments are shown. We then selected two sites (b) with visual 1/f statistics

representative of a nature (β=2.24) and urban-built environment (β=2.62). Error bars denote

SEM.
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2
Environmental conditions of the experiment.

A shaded traffic island as a built environment site (a) and a campus garden as a nature site

(b). Acoustic conditions (c), temperatures (d), wind speed (e) and relative humidity (f) were

intentionally documented and controlled. Error bars denote SEM.
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3
Experiment procedure and data validity.

Experiment procedure (a) was illustrated. The EEG log-transformed power distribution, as

observed at the occipital lobe (O1 and O2) during the pre-test eye-open sessions and

compared to the eye-closed session in both the nature (b) and built (c) environment sites,

revealed a clear 1/f statistic and alpha-blocking effect. Error bars denote SEM.
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4
EEG functional connectivity.

A higher global EEG correlation (p<.001, paired t-test by electrode) was found during nature

experience (a) relative to the urban experience (b) while no significant difference was found

in the eye-open baselines (p=.314, paired t-test by electrode). Average correlation

coefficients ranged from 0.3 (blue) to 0.7 (red) at the 14 electrodes (c). Error bars denote

SEM.
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5
EEG small-world network statistics.

The average shortest path lengt h ( Lmean ) and average clustering coefficients ( Cmean ) in the

nature and built environment experience. Although Lmean was comparable between the two

exposures (a), a higher Cmean (b) was observed during the nature experience at a threshold of

.50 (p=.041, t-test against participant variance), .60 (p=.046) and .95 (p=.044) . A higher

Cmean/Lmean coefficient was consistently observed at virtually all thresholds (c). Error bars

denote SEM.
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6
The 1/f statistics of EEG.

EEG signals during the nature experience revealed a larger global β exponent than in the

built environment (a, p=.033, t-test paired by electrode). The β values in the sub-brain

regions are illustrated (b). A larger β in the right hemisphere (calculated by β lateralization ,

i.e., βright-βleft) was found during the nature experience at F8/F7 (p=.030, t-test against

participant variance), FC6/FC5 (p=.005) and T8/T7 (p<.001) while the built environment

experience revealed a different right lateralization at T8/T7 (p=.002) and P8/P7 (p<.001) .

Error bars denote SEM.
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