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ABSTRACT
In this study, we investigated the impacts of in-situ nature and urban exposure

on human brain activities and their dynamics. We randomly assigned 32 healthy

right-handed college students (mean age = 20.6 years, SD = 1.6; 16 males) to a

20 min in-situ sitting exposure in either a nature (n = 16) or urban environment

(n = 16) and measured their Electroencephalography (EEG) signals. Analyses

revealed that a brief in-situ restorative nature experience may induce more efficient

and stronger brain connectivity with enhanced small-world properties compared

with a stressful urban experience. The enhanced small-world properties were found

to be correlated with “coherent” experience measured by Perceived Restorativeness

Scale (PRS). Exposure to nature also induces stronger long-term correlated activity

across different brain regions with a right lateralization. These findings may advance

our understanding of the functional activities during in-situ environmental

exposures and imply that a nature or nature-like environment may potentially

benefit cognitive processes and mental well-being.

Subjects Computational Biology, Neuroscience

Keywords Environmental neuroscience, Nature experience, 1/f statistics, Small-world network,

Functional connectivity

INTRODUCTION
Evidence has suggested that, compared to urban exposure, nature exposure may have a

restorative effect on human health and well-being (Bowler et al., 2010; Calogiuri &

Chroni, 2014; Groenewegen et al., 2006; Velarde, Fry & Tveit, 2007), especially in regulating

emotion (Capaldi, Dopko & Zelenski, 2014) and mitigating excessive arousal (Jiang,

Chang & Sullivan, 2014; Li & Sullivan, 2016; Ulrich, 1984; Ulrich, 1981; Ulrich et al., 1991).

More recent studies have demonstrated improvements in working memory and attention

shortly after a short-term nature experience (Berman, Jonides & Kaplan, 2008; Lee

et al., 2015; Taylor & Kuo, 2009). In one example, a brief nature walk significantly reduced

anxiety-related neural activity in the subgenual prefrontal cortex (Bratman et al., 2015b),

which enhanced cognitive performance (by increasing working memory performance)
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and affective regulation (by reducing negative affect and rumination while increasing

positive affect). This phenomenon suggests that the natural environment may be able to

influence the human cognitive state, which is less understood than emotion regulation

and arousal mitigation are (Bowler et al., 2010).

Previous studies have suggested that the 1/f characteristics in the log-log power

spectrum may be potential key factors in shaping cognitive functions during natural

adaptation and evolution. The 1/f statistic describes the power composition from low to

high frequencies. It is a unique statistical feature of natural signals that is widely observed

in natural environments but rare in urban environments. Studies have revealed that

mammalian brains can perform more efficiently in response to naturalistic signals than

artificial ones (Simoncelli & Olshausen, 2001). A nature-like signal should contain a high-

order statistic of a 1/fb-like power spectrum. In-vivo evidence has demonstrated that

mammalian sensory systems (Gal & Marom, 2013; Yu, Romero & Lee, 2005) can process

natural signals more efficiently than artificial signals. This characteristic of cognitive

functioning may impact the efficiency of neural networks (He, 2011) and may eventually

define global cognitive performance.

The evidence above suggests a new hypothesis: signal statistics may be one critical factor

that drives the human brain to perform more efficiently in nature settings than in urban

settings.Hence, in this paper, we examine the followingquestions:Donature and constructed

artifacts differ significantly in their statistics of visual stimuli? Do human brains respond

differently to these different statistics? What are the significant differences in the brain when

responding to the two types of environmental signals? Although visual signals are probably

among the most important stimuli in the two types of environments, we believe that visual

signals only partially capture the differences between the environments. To fully capture the

holistic environmental experience,multisensory immersion is crucial. Therefore, we adopted

in-situ exposure herein instead of pictorial representation.

Our new hypothesis is supported by a recent analysis of auditory perception (Fintzi &

Mahon, 2014). A visual study of urban and nature scenes found that stress and cognitive

load are more sensitive to low spatial frequencies of the scenes, whereas affective responses

are more sensitive to mid-to-high spatial frequencies (Valtchanov & Ellard, 2015),

which suggests that brain functions may be sensitive to frequencies. Another study found

that, compared to random noise, music sound with a 1/f property can induce enhanced

brain connectivity with efficient information flow across brain regions featuring a

small-world complex network property (Wu et al., 2013; Wu et al., 2012). Small-world

networks are hierarchical structures with more efficient and well-connected hubs, which

are widely found in biological, ecological, social, world-wide web, molecular and neuronal

networks (Watts & Strogatz, 1998). Because of these hubs, the small-world network usually

entails a large clustering coefficient and short path length, which enables a more efficient

flow of information than that found in randomly ordered nonhierarchical networks.

To answer the questions above, we collected data both from brain neural activities

and from subjective perceived experience using a portable electroencephalogram (EEG)

device and psychological scales, respectively. We then examined the EEG functional

connectivity during in-situ nature and urban experiences, including functional
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correlation, small-world network statistics, 1/f statistics and their lateralization, and

compared EEG statistics with a subjective experience measured by psychological scales.

METHODS
Subjects
In this study, we recruited 32 healthy, right-handed participants (mean age = 20.6,

SD = 1.6, 16 males) from among Chinese college students. A between-subjects design was

used in this study, in which participants were randomly assigned to a nature environment

(n = 16, 6 males) or an urban environment (n = 16, 10 males). This study was approved

and supervised by the Ethics Committee of Tongji University (no. 2015yxy103).

No significant levels of neuroticism were detected among the participants as indicated

by the scores (Table 1) on the neuroticism subscale of the NEO Personality Inventory

(Costa & McCrae, 1992). All participants reported a small amount of daily stress and had

relatively stress-reducing living environments. The subjects were generally well-rested

with a broad range of work and entertainment schedules; however, all subjects

participated in moderate exercise and were exposed to nature on a daily basis.

Environments
Because human cognition of nature and the urban environment may be sensitive to the

frequencies of visual stimuli (Valtchanov & Ellard, 2015), we intentionally controlled

the proportion of frequencies and used the b values in the 1/f statistics of visual stimuli as

the criteria for site selection. Research has shown that the b values of nature images are

typically close to 2 (Szendro, Vincze & Szasz, 2001; West & Shlesinger, 1990) due to an

appropriate distribution between low-frequency contours (e.g., shapes of trees or

mountains) and high-frequency details (e.g., fractal edges, random texture and lines).

This finding implies a moderate long-term correlation level across image components of

all frequency ranges. With increasingly uniform materials (e.g., concrete) and limited

high-frequency detail, urban scenes may be more likely to reveal a larger b, but we were
less confident about this hypothesis before verification.

To find a typical nature and urban environment, we first examined a large number of

photographs. Because of limited confidence in the b estimation for urban scenes, we

intentionally investigated a larger sample of photographs of urban scenes (n = 135) than

nature scenes (n = 80). All of the photos had been captured and reviewed by professional

landscape architects and architects. Both nature and urban photos revealed a normal

distribution of b (Figs. 1C and 1D), with means of 2.30 (SD = 0.22) and 2.61 (SD = 0.18),

respectively (Fig. 1). These results were consistent with those from a previous study (Braun

et al., 2013) that documented an average b of 2.24 (SD = 0.19) for nature scenes and 2.53

(SD = 0.24) for buildings, which were obtained from sample sizes of 200 photos each.

Therefore, we intentionally selected two typical sites (Fig. 2) with representative b slopes:

a wooded campus garden (b = 2.24) for the nature scene and a traffic island under an

elevated highway (b = 2.62) for the urban scene. From where the participants were seated,

the nature scene consisted of 89% visible greenery and water and only 4% visible buildings

and/or paved areas; the urban scene consisted of only 8% visible greenery and 56% visible
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Table 1 Personality and everyday life reported by participants before experimentation.

Personality and everyday-life factors

Nature (n = 16) Urban (n = 16)

Mean SD Mean SD

Age 20.56 1.50 20.63 1.78

NEO-PI neuroticism score* -0.44 0.72 -0.26 0.74

Perceived level of everyday stress* 0.13 1.89 0.56 1.93

Perceived level of stress in living environments* 0.56 1.26 0.06 1.48

Total hours of sleeping per day 6.94 0.93 6.88 1.64

Total hours of exposure to nature per day 0.79 0.56 0.84 0.79

Total hours of study per day 8.69 2.85 7.69 3.69

Total hours of physical exercises per day 0.64 0.49 0.81 0.48

Total hours of entertainment per day 3.09 2.44 3.47 2.28

Note:
* Factors were measured on a 7-point Likert scale.

Figure 1 The 1/f statistics of visual stimuli in nature and urban scenes. Eighty nature images and 135

urban environment images were analyzed and yielded distinct b slopes (A) in the nature (mean = 2.30,

SD = 0.22) and (B) in the urban environment (mean = 2.61, SD = 0.18, p < 0.001). The log-log plot of

frequency and power (C) revealed that nature images contain significantly more high frequencies

than urban images. The two sites that we chose were of a visual 1/f statistics representative of a nature

(b = 2.24) and urban-built environment (b = 2.62 (D)). Error bars in (C) denote SEM.
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buildings and/or paved areas. Based on a focus group interview after a site visit, the nature

environment is highly restorative whereas the urban environment is clearly not.

In-situ environmental stimuli were adopted instead of pictorial representations to

capture the multisensory experiences of the nature and urban environments. We reported

possible factors that may have influenced the viewers’ on-site experiences, and some of the

factors were controlled (Table 2; Figs. 2C–2F). The uncontrolled factors constituted

important features of the nature and urban experience.

Measures
EEG data collection, pre-processing and power analysis
An Emotiv wireless headset (Dekihara & Iwaki, 2014) and its accompanying software were

used to measure EEGs. The headset consists of 14 sensors positioned on the scalp of

the study subject according to the international 10–20 system: antero-frontal (AF3, AF4, F3,

F4, F7, F8), frontocentral (FC5, FC6), occipital (O1, O2), parietal (P7, P8) and temporal

sites (T7, T8). Brain waves were measured in terms of amplitude (10–100 microvolts)

and frequency (1–70 Hz). EEG data were analyzed via Matlab and EEGlab. Data were first
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Figure 2 Environmental conditions used in the experiment. A shaded traffic island was used as an urban site (A) and a campus garden was used

as a nature site (B), acoustic conditions (C), temperatures (D), wind speed (E) and relative humidity (F) were intentionally documented and

controlled. Error bars denote SD.
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filtered (< 0.5 Hz or > 50 Hz) using EEGlab and artifacts were removed using Adjust 1.1

(Mognon et al., 2011).

The signal was first analyzed via fast Fourier transformation and then categorized into

five frequency bands: delta (1–4 Hz), theta (5–8 Hz), alpha (9–12 Hz), beta (13–25 Hz),

and gamma (26–45 Hz). The total mean power was calculated by the frequency bands

and brain connectivity.

Table 2 Perceptive factors that may have impacted the experience and/or neural activities.

Types of perception Factors that may have impacted the experience and/or the neural activities

Visual Controlled

1. Daylight

2. Shaded locations and illumination

3. 1/f Statistics: bnature = 2.30 ± 0.22 (SD), burban = 2.61 ± 0.18

Uncontrolled

1. Motions

2. Colors

3. Types of stimuli

Acoustic Controlled

1. Acoustic intensity: Inature = 62.70 ± 4.50 db, Iurban = 76.80 ± 2.97 db

Uncontrolled

1. Sources (The nature environment sounds consisted mostly of birds singing,

humans speaking and leaves trembling; the urban environment sounds were

mostly from vehicles.)

Haptic Controlled

1. Weather: both are of a comparable mix of sunny, cloudy and rainy days.

2. Temperature: Tnature = 20.53 ± 2.50 �C, Turban = 22.44 ± 2.42 �C
3. Humidity: Tnature = 62.70 ± 4.50%, Turban = 76.80 ± 2.97%

4. Wind speed: Wnature = 0.00 ± 0.00 m/s, Wurban = 0.46 ± 0.22 m/s

Olfactory Controlled

1. Absence of strong smell(s)

Uncontrolled

1. Sources (e.g., gas smell in the urban environment and grass smell in nature)

Body movements Controlled

1. Still sitting: instructions were given before the exposures that

participants should sit as still as possible.

Uncontrolled

1. Eye movements
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EEG functional connectivity
To evaluate EEG functional connectivity, we first calculated the EEG correlations and then

calculated the small-world network statistics.

Correlations

Correlations between signals or signal frequency components at different electrodes were

calculated using the following equation:

rðxÞ ¼ CABðxÞ=ðCAACBBÞ (1)

where the cross-covariance between signals A and B was noted as CAB and the

auto-covariances of signals A and B were noted as CAA and CBB, respectively (Guevara &

Corsi-Cabrera, 1996).

Small-world network statistics

Small-world networks are hierarchical structures with more efficient and well-connected

hubs, which are widely found in biological, ecological, social, world-wide web, molecular

and neuronal networks (Watts & Strogatz, 1998; Wu et al., 2013). A small-world network

is defined by two measures: the clustering coefficient (Cmean) to describe functional

segregation and the average shortest path length (Lmean) to describe functional integration

(Rubinov & Sporns, 2010). A small-world network is usually more efficient (Honey

et al., 2009) because it is highly segregated (larger Cmean) and highly integrated (shorter

Lmean). The former allows divisions for tasks to be specialized while the later allows

coordination to support collaboration between divisions.

Based on correlations, we measured small-world network propriety using Lmean, which

is the average shortest path length, and Cmean, which is the clustering coefficient. The

clustering coefficient of an electrode vi was calculated as follows:

Cvi ¼
0 k � 2
2n

k k�1ð Þ k > 2

�
(2)

where k denotes the number of electrodes of an EEG correlation with the electrode vi higher

than a given threshold, and n denotes the number of paths with a correlation higher than

the threshold between the connected k electrodes (where n equals C2
k in a saturated

scenario). The average clustering coefficient for a participant was then calculated as follows:

C
mean

¼ 1

14

X14
i¼1

Cvi (3)

The shortest path length was calculated from the shortest of all total paths from vi to vj

for a pair of electrodes vi and vj using the Floyd algorithm (Floyd, 1962). The Floyd

algorithm defines a n � n weight matrix as

D ¼ dij
� �

n�n
:¼

d11 d12 ::: d1n
d21 d22 ::: d2n
::: ::: ::: :::
dn1 d2n ::: dnn

2
664

3
775; dij 2 R 0;þ1½ Þ (4)
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in which

dij ¼
0; i ¼ j

1; rij � Threshold

13; rij � Threshold

8<
: (5)

where rij denotes the maximum from the correlation function between electrodes vi and vj

with phase difference considered in the calculation, while dij denotes the connectivity

distance instead of the physical Euclidean distance. The weight matrix D is calculated as

follows:

1. First an initial matrix was defined as D(0) = D;

2. Then, let D kð Þ ¼ d
kð Þ
ij

� �
n�n

, k = 1,2, : : : ,n, where

d
ðkÞ
ij ¼ minfdðk�1Þ

ij ; d
ðk�1Þ
ik þ d

ðk�1Þ
kj g (6)

3. Then D nð Þ ¼ d
nð Þ
ij

� �
n�n

, where d
nð Þ
ij is the shortest path from electrode between

electrodes vi and vj.

The path length between two immediate neighbors was coded as 0 (to itself), 1 (beyond

threshold) or 13 (below threshold). By definition, the weight D is usually calculated using

the positive infinity of a comparable disconnected network. However, this calculation

may be flawed because the average of the shortest path length is oversensitive to the

isolated points. Only one or two isolated points will drive the average to positive infinity

when the whole network is far from being truly disconnected. To correct this

oversensitivity, we used a large number instead of positive infinity. We interpreted the

disconnected electrodes vi and vj as a situation when vi must travel through all other

electrodes to reach vj, which is mathematically 13 (or the number of electrodes (14) minus

one). For each participant,

Dmean ¼ 1

C2
14

X14
i¼1;j¼1
i<j

dvi ;vj (7)

where Lvi,vj denotes the shortest path length between a pair of electrodes vi and vj. For

comparison purpose with networks with different number of electrodes, we normalized

Dmean as Lmean, where Lmean ¼ Dmean

Electrodes Number�1
¼ Dmean

13
.

Random network statistics

It is a standard procedure in small-world network analysis to report random referencing

networks for control purposes. We used the following methods to construct such random

networks and to calculate corresponding Lmean and Cmean:

1. For a participant m, we first calculated the EEG correlation matrix Rm :¼ rij
� �

14�14
.

2. We transformed Rm to a binary (0–1) adjacent matrix Am;th :¼ aij
� �

14�14
, where for a

threshold of th, aij ¼ 1; rij�th

0; rij<th

�
.
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3. We counted the number of cells with a value of 1 in the upper non-diagonal half of

Am,th,, that is, when aij ¼ 1 i < jð Þ as na. The number of such non-diagonal cells in

Am,th should be 2 � na because of symmetry. Because Rm, and hence Am,th, was

diagonally symmetric, only the cell value of the upper half matrix needed to be

assigned.

4. We counted the total number of isolated points in Am,th as niso. If all cells in the ith row

and ith column except the diagonal cell aii are 0, the ith electrode is defined as an

isolated point (i = 1,2, : : : ,14).

5. We constructed a comparable random adjacent matrix ARand
m;th ¼ arij

� �
14�14

for Am,th.

We first defined diagonal cells as arii ¼ 2 and constructed niso isolated points by

randomly assigning 0 to all the cells in the same row or column of niso number of

diagonal cells. Then we randomly assigned na number of 1 to the upper non-diagonal

half matrix of Am,th, except those that were already defined as 0. All undefined cells

in the upper non-diagonal half matrix were assigned as 0.

6. We then calculated the random adjacent matrix of clustering coefficients

CCrand
m;th ¼ ccrij

� �
14�14

, letting ccrij ¼ arij . cc
r
ij was denoted as 1 when electrodes vi and vj

were connected or 0 if electrodes were not counted.

7. We then calculated the random adjacent matrix of the shortest path length

Drand
m;th

¼ dr
ij

� �
14�14

where dr
ij
¼

0; aij¼2

1; aij¼1

13; aij¼0

8<
: .

Power spectrum density 1/f statistics

The power spectral density P(f) describes how the power of a signal x(t) or a time series is

distributed with frequency. It is usually calculated by the following Fourier transform

equations. First, the Fourier transform of a time domain signal x(t) in frequency domain

x(f) is calculated as

xðf Þ ¼
Z 1

�1
xðtÞe�2�ift dt (8)

where f is the frequency in Hz, i.e., cycles per second. The integrand jx(f)j2 can be

interpreted as an energy density function describing the energy per frequency unit

contained in the signal at the frequency f. The power spectrum density of a signal x(t) is

thus defined as

Pðf Þ ¼ lim
T�>1

xðf Þj j2
T

(9)

where T is the infinite time.

The 1/f statistic or 1/fb, which is a log-log linear correlation between power spectrum

and frequency, is commonly found in natural signals. 1/f statistics of EEG networks

describe the nested frequency characteristic of brain networks. Previous evidence has

indicated that a larger b is found in human brain networks during task-free rest, while b
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decreases during tasks (He et al., 2010), and more difficult tasks have been found to trigger

larger decreases in b (Ward, 2002).

The 1/f statistics were calculated as the regression slope b (absolute value) of the log

power over the log frequency in a 1/fb power spectrum. The b values were first calculated

at each electrode for each individual participant and then linearly combined as electrode

and individual global means. Lateralization was calculated as log(R)-log(L) where R and L

represent the right and left symmetrical pairs (i.e., AF4/AF3, F8/F7, F4/F3, FC6/FC5,

T8/T7, O2/O1), respectively.

Subjective affect, experience and attention
We used a 40-item Profile of Mood States (POMS) scale (Grove & Prapavessis, 1992) to

measure the affective states before and after environmental exposure. Participants

completed a POMS scale upon arrival at either experimental site and completed

another scale after a 20-min exposure at the respective site. By linearly combining the

40 items, the scale reveals eight affective measures (tension, anger, fatigue, depression,

vigor, esteem, confusion, and total mood disturbance (TMD)). We calculated the

changes of the eight measures, which revealed the impact of environmental exposure

on subjective affect, and compared the differences in changes between nature and

urban groups.

We used a revised Perceived Restorativeness Scale (PRS) to measure participants’

perception about their environmental experience. Kaplan (1995) summarized the four key

qualities of environmental visual stimuli that induced a restorative experience: (1) the

environment should offer a “being away” feeling, i.e., a mental refuge from everyday

chores and routines; (2) the environment should induce mild and positive emotional

arousal that he termed “(soft) fascination”; (3) the environment should offer “coherent”

information for “extent,” which should be comprehensible and should allow fruitful

explorations, independent of complexity; (4) the environment should promote

“compatibility,” i.e., a potential to afford certain desirable activities. Based on Kaplan’s

theory, Hartig et al. (1997) developed the PRS to measure the restorative qualities of

nature visual exposure. We collected feedback from a focus group of participants with

comparable backgrounds and revised the scale to better capture the experience reported

by the focus group (Table 2).

We used the Necker Cube Pattern Control Test to measure participants’ attention

change (Orbach, Ehrlich & Heath, 1963) before and after environmental exposures.

A higher attention level is indicated by a smaller number of cube pattern changes. We used

the change before and after exposureNpost � Npre to measure the impact of environmental

exposure on one’s attention.

Statistical test
We conducted both a participant-wise comparison using independent t-tests and an

electrode-wise comparison using t-tests that were paired by electrodes. If the differences

were significant in both cases, only the participant-wise results were reported. Two-way

ANOVA was used when two-factor comparisons were made.
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Procedure and data validity control
The experiment was performed via a structured procedure (Fig. 3). The 32 participants

were first randomly assigned to either a nature exposure group (n = 16) or an urban

exposure group (n = 16). After first signing a written consent form containing an

explanation of the experimental procedure and risks, participants completed a two-page

pre-test questionnaire followed by the Necker Cube Pattern Control Test. Portable EEG

electrodes were positioned onto the scalps of participants, who were then asked to sit

facing a wall to temporarily exclude visual information. Participants were instructed to

alternate between either opening or closing their eyes in four one-minute cycles. After this

pre-experimental phase, participants were told to turn and face the environment for

20 min.1 Participants were asked to sit facing either an urban environment (i.e., a traffic

island under an elevated highway) or a natural environment (i.e., a heavily wooded

campus garden). After viewing the environment, participants completed a posttest

questionnaire, a short interview and Necker cube test again. To prevent their minds

from wandering or becoming drowsy, participants were told to count from 1 to 1,000

soundlessly at a speed that was slow enough not to interrupt the environmental

experience.

We specifically adopted eye-opened and eye-closed pretests in the beginning of the

experiment to verify the reliability/stability of electrode recording across the 20 min of the

environmental exposure. We examined the power distribution and 1/f statistics of two
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Figure 3 Experimental procedures and data validity. Experimental procedures (A) was illustrated. The EEG log-transformed power distribution,

as observed at the occipital lobe (O1 and O2) during the pre-test eye-open sessions and compared to the eye-closed session in both the nature

(B) and built (C) environment sites, revealed a clear 1/f statistic and alpha-blocking effect. Error bars denote SEM.

1EEGs of the entire 20-min exposure were

recorded for the latter 16 participants

(8 nature) while only the latter half

(10 min) of the exposure was measured

for the first 16 participants (8 nature).

Paired t-tests revealed no significant dif-

ferences between the first half (10 min)

and the latter half (10 min) of exposure

for the 16 participants whose EEGs were

recorded for the entire 20 min in terms of

EEG correlation and b exponent, except

for two participants in the urban envir-

onment groups. Therefore, the full

recording length from both groups

(10 min for the first half and 20 min for

the latter half) was used for analyses.
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electrodes at the primary visual cortex (O1 and O2) during the two pretests. The results

revealed a clear 1/f statistic in both the nature and urban environments. At both sites,

there was also a clear bump at the top of the 1/f slope near logf = 1 (the location of the

alpha range) during the eye-closed session, while the bump dropped towards the slope

during the eye-open session (Figs. 1B and 1C). This bump-dropping effect during the eye-

open session is called alpha-blocking (Könönen & Partanen, 1993). The successful capture

of 1/f statistics (arrhythmic firing) and alpha-blocking (rhythmic oscillation) supports the

validity of the data.

RESULTS
EEG functional connectivity

Signal correlation
We computed the functional connectivity by calculating both the time domain EEG

correlation (Figs. 4A and 4B) across electrodes and the frequency domain correlation

(Figs. 4C and 4D). The EEG component correlation across recording sites for the theta

frequency band is shown (the other delta, alpha and beta bands have similar results

and were not shown here). The direct EEG amplitude correlation across recording sites

demonstrated a higher correlation on the right side of the brain than on the left side,

suggesting more synchronized EEG signals on the right side. Additionally, the

correlation on the right side of the brain is higher for natural exposure than in the

urban environment. The EEG measure of frequency-dependent functional connectivity

reveals the coherent property of information transfer at different frequency ranges

across recording regions (Fries, 2005; Varela et al., 2001). A participant-wise two-way

ANOVA was performed on the mean EEG frequency correlation of 14 electrodes and at

two conditions (nature and urban environment exposures). We observed a

significantly higher correlation (in frequency domain, see Figs. 4C and 4D) of overall

electrodes during nature exposure compared to that during urban environment

exposure (the ratio of between-group difference over within-group difference was

F(1,420) = 14.68, p < 0.001), while no significant differences were found in the wall-

facing eye-open baselines (p = 0.314). Stronger functional connectivity networks were

found in the right hemisphere during the nature exposure than the urban exposure.

An electrode-wise two-way ANOVA was then performed on the EEG power

correlations in the four conventional frequency bands (delta, theta, alpha and beta)

and under two conditions (nature and urban environment exposures), which was

followed by a t-test paired by electrodes. We observed a significantly higher overall

power correlation during nature exposure compared to that during urban

environment exposure (F(1,134) = 120.14, p < 0.001) with a higher power correlation

observed during nature exposure observed in delta (T(13) = 10.76, paired by

electrodes, p < 0.001), theta (T(13) = 6.73, paired by electrodes, p < 0.001), alpha

(T(13) = 6.25, paired by electrodes, p < 0.001) and beta (T(13) = 5.06, paired by

electrodes, p < 0.001) frequencies.
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Small-world network
We analyzed the small-world network statistics of the EEG activity by calculating

the average shortest path length (Lmean) and network clustering coefficient

(Cmean). We reported Lmean and Cmean at different thresholds ranging from

0.05–0.95 (Fig. 5).

The average shortest path lengths (Lmean) are smaller during the nature experience than

during the urban experience, but no significant difference was found except at both

ends of the threshold spectrum. Both EEG networks had approximately the same value of

Lmean at their random references. The clustering coefficients (Cmean) were significantly

ba

c

fe

d

Figure 4 EEG functional connectivity. The time-domain functional topography during the nature

(A) and urban exposures (B), which revealed a higher global EEG correlation during nature than during

urban exposure (colorbar, correlation in unitless scale). The frequency-domain functional topography in

the theta band revealed similar results during nature (C) and urban exposure (D, colorbar, correlation in

unitless scale). The functional connectivity density were presented in the supplementary figures

(Fig. S1). The functional connectivity networks revealed stronger networks in the right hemisphere

during the nature exposure (E) than during the urban exposure (F).
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higher during the nature experience than the urban experience (p < 0.05 for most

threshold values, except 0.05, 0.40, 0.55, 0.70–0.80). At both environmental conditions,

the EEG networks had a higher Cmean than did the random references (p < 0.05 for most

threshold values from 0.20–0.85).

However, the difference between the nature and urban environments was that the

average shortest path length (Lmean) was more significant when analyzed in the frequency

domain. The results for the theta band, for example (Fig. 6), revealed that the EEG

functional connection during the nature exposure had a smaller average shortest

path length (p < 0.05 from a threshold of 0.45–0.80) and a larger clustering coefficient

(p < 0.05, from a threshold of 0.40–0.70). The results at the other frequency bands were

reported in the supplementary figures (Figs. S2–S4).

EEG 1/f characteristic
To investigate the environmental impact on the temporal statistics of the EEG recordings,

we performed a Fourier transform for the EEG signals and calculated the power spectrum
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Figure 5 EEG small-world network statistics. The average shortest path lengths (Lmean) of EEG networks during nature and urban exposure at

different thresholds were illustrated in (A), where EEG network and its random referencing network had identical Lmean. The clustering coefficients

(Cmean) of EEG networks during nature and urban exposure at different thresholds were illustrated in (B), with random references. Error bars in

(A) and (B) denote SEM. A two-way ANOVAwas conducted to compare the difference between nature and urban sites, to compare the difference

between EEGs and random references and to compare the interactions for Lmean (C) and Cmean (D).
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versus frequency in a log-log space. Interestingly, the EEG power spectrum also

displays 1/f properties similar to those observed for the natural signals. The fitting slope,

i.e., the b value, for each recording site is approximately 1.5, and the average value for all

recording sites in the natural scene is 1.62 ± 0.027, which is significantly higher than that

in the urban environment (1.54 ± 0.033, T(13) = 2.68, p = 0.019, t-test paired by electrode,

Fig. 7A).

To further investigate the spatial variation of 1/f statistics, six brain regions were

studied: the left (AF3, F7 and F3) and right antero-frontal (AF4, F8 and F4); left (FC5 and

T7) and right temporal/frontocentral (FC6 and T8); and left (P7 and O1) and right

parietal/occipital (P8 and O2). A trend towards larger b slopes in these brain regions

was observed during the nature experience (Fig. 7B). Additionally, for both conditions,

b values were higher on the right brain side than the left side, indicating a clear

lateralization effect. The lateralization was quantified as�� ¼ �right � �left. Fig. 7C shows

�� of six brain regions both for the nature and urban environments. Lateralization is
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Figure 6 EEG small-world network statistics in the theta band. The average shortest path lengths (Lmean) of EEG networks during nature and

urban exposure at different thresholds were illustrated in (A), where EEG network and its random referencing network had identical Lmean. The

clustering coefficients (Cmean) of EEG networks during nature and urban exposure at different thresholds were illustrated in (B), with random

references. Error bars in (A) and (B) denote SEM. A two-way ANOVAwas conducted to compare the difference between nature and urban sites, to

compare the difference between EEGs and random references and to compare the interactions for Lmean (C) and Cmean (D).
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stronger for the nature condition than for the urban condition for most brain regions

except P8/P7 and O2/O1 regions.

Subjective measures and their correlation with
functional connectivity
Perceived restorative experience and small-world
network property
Participants reported a more restorative experience after a nature exposure than that

after an urban exposure. After a nature exposure, participants reported higher fascination

(T(28.93) = 3.23, p = 0.003), higher coherence (T(30) = 3.00, p = 0.005), increased

perception of being away (T(30) = 4.31, p < 0.001) and higher compatibility

(T(30) = 6.68, p < 0.001). Our observations herein are consistent with previous

experimental reports (Berto, 2007; Hartig et al., 1997; Herzog, Maguire & Nebel, 2003).

To investigate the impact of EEGs on perceived experience, we then compared the EEG

correlations during exposure with the four PRS factors and the changes of the eight POMS

scores using Pearson’s correlation. Moderate correlations were observed between the

coherence score from the self-reported PRS factors and the average EEG correlations in

the theta (correlation coefficient, i.e., cc = 0.46, p = 0.008), alpha (cc = 0.37, p = 0.040),

beta (cc = 0.35, p = 0.049) and gamma (cc = 0.36, p = 0.045) bands.

We then regressed the PRS coherence scores on the small-world network statistics in

the lower bands (delta, theta, and alpha, Fig. 8). The participant-wise small-world

network statistics were calculated by averaging the values at mid-range thresholds from

0.65 to 0.85. Regression revealed a significant correlation between the PRS

coherence scores and the individual shortest path length mean (Lmean) in theta

(R2 = 0.291, p = 0.001) and alpha bands (R2 = 0.292, p = 0.001). There was also a

significant correlation between the PRS coherence scores and the individual clustering

coefficient mean (Cmean) in the theta (R2 = 0.201, p = 0.010) and delta bands

(R2 = 0.148, p = 0.030).
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Figure 7 The 1/f statistics of EEGs. EEG signals during the nature experience revealed a larger global b exponent than the EEG signals of the urban

experience (A, p = 0.019, t-test paired by electrode). The b values in the sub-brain regions are illustrated (B) The lateralization of each electrode pair

(calculated by b lateralization, i.e., bright-bleft) was reported (C) with a larger right lateralization at FC6/FC5 (p = 0.009) during the nature

experience and a larger right lateralization at P8/P7 (p = 0.031) during the urban experience. Error bars denote SEM.
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Subjective affect and 1/f statistics
After nature exposure, participants reported less fatigue and reported more positive

emotions than did those exposed to the urban environment. More specifically, after

nature exposure, participants reported less increased fatigue (T(30) = 2.45, p = 0.020),

more sustained vigor (T(30) = 2.09, p = 0.045), more sustained esteem (T(30) = 2.31,

p = 0.028) and less increased TMD (T(30) = 2.88, p = 0.007).

We compared individual global b with the POMS affective measures and the Necker

change ratio using the Pearson correlation. Significant correlations were found between

individual global b and their changes in fatigue (cc = -0.410, p = 0.020) and vigor

(cc = 0.442, p = 0.011).

Attention
We did not observe any significant differences between the nature and urban groups in

attention changes that were measured by the Necker cube change (p = 0.343), although
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Figure 8 Scatterplots of the PRS coherence scores of 32 participants on their small-world network

statistics. We calculated the individual shortest path length mean (L mean, L) and the individual clustering

coefficient mean (Cmean, CC) of the 32 participants by averaging the values at mid-range threshold (from

0.65 to 0.85) at different frequency bands and used the frequency bands as a predictor of PRS coherence in a

simple linear regression. The x axis in (A), (C) and (E) denotes the participant’s shortest path length mean

(L) averaged by the 14 electrodes, while the x axis in (B), (D) and (F) denotes the clustering coefficientmean

(CC) averaged by the 14 electrodes. The y axis in all six figures denotes PRS coherence.
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such differences have been reported elsewhere (Tennessen & Cimprich, 1995). No

correlations were found between the Necker cube changes and functional connectivity,

either in the 1/f statistic or the small-world network property.

DISCUSSION
Growing experimental and theoretical evidence supports the notion that human and

animal visual systems are adapted to represent natural scenes efficiently (Simoncelli &

Olshausen, 2001). Because brain vision systems have evolved in the natural world, it has

been strongly suggested (Olshausen & Field, 1996; Simoncelli & Olshausen, 2001) that early

visual pathways were adapted to de-correlate the correlational structure of the input

signals efficiently and then pool all the encoded information together in the higher level

cortex to formulate internal pictures of the outward natural world. Hence, brain sensory

systems may function more efficiently in response to a natural scene and consume less

energy in the visual processing of natural signals (Laughlin, 2001;Olshausen & Field, 1997;

Simoncelli & Olshausen, 2001). As stated in our previous study of non-human primates

(Yu, Romero & Lee, 2005), the visual function of cortical neurons may be designed to tune

to 1/f characteristics for efficient coding, which induces a preference in the visual system

for natural signals in the natural environment. Additionally, a recent study (Torralba &

Oliva, 2003) reported that cardinal (horizontal and vertical) orientations are more

prevalent in sample image statistics of man-made artifacts (e.g., urban buildings, streets,

highway infrastructures) than in images of natural scenes. Further, there are more low-

frequency components and fewer high-frequency components in built artificial views,

which result in a larger slope (� 2.5) in the power spectra of urban images (Braun et al.,

2013; Torralba & Oliva, 2003).

This raises a nontrivial issue. That is, after prolonged exposure to urban artifacts with

signal statistics that are distinct from those in nature, could human neural responses

differ in terms of statistical properties and therefore become overstressed and

uncomfortable (Penacchio & Wilkins, 2015)? In fact, recent studies have documented

a significant drop in both self-reported rumination and neural activity in the

subgenual prefrontal cortex of healthy participants after a 90 min walk in a natural

environment, but no such effect was observed following a walk in an urban environment

(Bratman et al., 2015b).

Small-world network property and perceived environment coherence
We found enhanced small-world network properties in the brain functional connection

during exposure to nature. The functional network in nature was found to be of both a

higher functional segregation (larger clustering coefficient, i.e., Cmean) and a higher

functional integration (smaller average shortest path length, i.e., Lmean) than that of urban

exposure. This finding implies that human brains are functionally connected during

nature exposure in a way that enables divisions for specialized information processing and

coordination between these divisions. This enhanced small-world property has also been

observed in the context of music perception (Wu et al., 2012) when compared to

noise listening.
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The small-world characteristics of the functional network during nature experiences

were most prominent in the theta band, which is a frequency band that is thought to be

associated with new information encoding (Klimesch, 1999) and indicates a possible

higher efficient network for information encoding in nature. However, additional studies

are needed to verify this claim.

Measures of the small-world network characteristics, clustering coefficient (Cmean) and

average shortest path length (Lmean) were found to be correlated with “coherence,” which

is a subjective psychological measure that refers to one of the qualities in a restorative

environment when one feels that the environment information is in order, is not chaotic

and is therefore more comprehensible.

1/f statistics, perceived fatigue and vigor
We have also studied the power spectrum properties of EEG signals. The recorded EEG

signals also displayed a reversed power law phenomenon known as the 1/fb statistic. The

1/fb statistic suggests that long-term correlations exist in the time domain. A large b value

means that any two time events in the EEG signal have a relatively large correlation time

constant. A 1/fb power spectrum with power tending to diminish with increasing

frequency indicates arrhythmic activities with no particularly dominating periodic

oscillatory dynamic. EEG signals are more commonly analyzed for rhythmic activity

(Başar et al., 2001), with arrhythmic statistics discarded as noise. Indeed, the arrhythmic

activity may be functional and meaningful during information processing and cognitive

tasks (He, 2011; He, 2014; He et al., 2010; Ray & Maunsell, 2011).

We observed a larger b in the 1/fb statistics during the nature exposure than during the

urban exposure. Additionally, the b values in the right hemisphere are generally higher

than those in the left hemisphere. Because a large b value means that there are more low-

frequency components in the EEG signal, this result suggests slower brain activity without

strong high-frequency spiking activities. Therefore, a large b following nature exposure

herein suggests a more relaxed, less task-loaded state with weaker activities as evidenced by

brain imaging experiments (He, 2011;Ward, 2002). This conclusion is consistent with the

mental states reported by the participants wherein the global average b was positively

associated with the affect changes in vigor (corr. beta = 0.442, p = 0.011) and negatively

associated with fatigue (corr. beta = -0.410, p = 0.020). However, identifying the best

range of b values for the brain in the best performance and/or the most pleasant state will

require a better designed task that should be investigated in future studies.

Limitations
This study makes an initial attempt at understanding brain functional connectivity in

response to environmental exposure. Although interesting evidence about enhanced

functional connectivity in natural environments has been revealed herein, there are a few

limitations.

First, this study only revealed the general impact of un-attentional multisensory

environmental signals on functional connectivity. The study was designed to understand

the holistic in-situ impact of nature and urban environments during a free-exploring
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multisensory naturalistic experience. Our intention was not to draw any causal

connections between specific environmental stimuli and brain activities. To specify exactly

how much different types of signals in the environment impact brain functional

connectivity, more strictly controlled experiments with isolated stimuli and both

controlled saliency and motion will be needed.

Second, this study examined the detailed impact of exposure to very few nature and

urban sites. However, to explore how the results and conclusions could be generalized

across various types of nature and urban sites, more extensive control conditions and

more sites will need to be examined in future studies. We cannot specify whether the

signal statistics, such as the 1/f characteristic, promoted a more efficient information

processing functional network. We also do not know whether we accidently selected a less

information-loaded nature site, which may have afforded an easier and more fluent

cognitive process.

Third, this study used a between-subject design that introduced unnecessary variance.

The between-subject design was adopted to minimize possible learning effects; however,

the design also introduced more individual variance to the designed comparison.

Therefore, a within-subject replicated design would have better controlled for individual

variances.

Implications and future directions
The general observation that brain activities contain long-term correlation and oscillatory

components might reflect interactions between bottom-up information processes and

top-down cognitive feedback. This conclusion requires further investigation to deepen

our understanding of cognitive computation processes within the brain. Constructing

large-scale cortical circuit models to investigate the biophysical mechanism of the 1/f

response and the oscillation characteristics as revealed in this study will be interesting.

The brain response features, which are potentially important to brain functioning

(He, 2014; Watts & Strogatz, 1998), have not been largely considered in current cognitive

computational models. Moreover, the preference of the brain sensory system for the

1/f characteristic may also require further investigation of cortical computational

modeling to reveal the biophysical mechanism underlying cortically efficient coding.

The experimental investigation of the relationship between environmental statistics and

cognitive processing may be valuable for numerous reasons. First, such an investigation

may deepen our understanding of the functional properties of brain sensory systems.

Second, the derivation of new cortical computation models based on environmental

statistics for efficient coding may be fostered. Finally, further investigations might also be

helpful in the design of new forms of stochastic experimental protocols and stimuli for

probing different brain sensory systems.

In summary, our studies suggest that a nature environment, which is characterized by

long-term correlation statistics in visual signals, can evoke different brain oscillatory

activities and arrhythmic activities that may help place brain functioning in a more

restorative experience. Brains generate more memory-like effects of auto-correlated

electrical signals when we are visualizing nature than when we are visualizing a busy urban
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environment. This result might be an indication of better memory formation in the

natural environment than in the urban environment. Moreover, this “redundant”

autocorrelation, which is observed for many natural phenomena and neuronal signals,

may be important to our resilience and mental well-being; however, this idea will require

further investigation.

SUMMARY
Increasing experimental evidence has reported that animal sensory neurons process

natural signals more efficiently than artificial signals (Lewen, Bialek & Steveninck, 2001;

Rieke, Bodnar & Bialek, 1995). Computational studies have revealed that the structure and

function of sensory neurons and networks may be designed to efficiently encode signals

from natural environments due to long-term adaptation and evolution mechanisms.

Our study was designed to examine whether the human brain functions more efficiently

in a natural environment than in an urban environment. The answers and underlying

mechanisms related to this question may be critical in understanding the operating

principle of the human brain.

Previous experiments have revealed that a short walk in a natural wooded area may

greatly refresh the brain’s cognitive performance and alleviate negative stressors. Our

study indicated that the distinct statistical properties of urban artifacts may also shape the

human brain response properties differently and may thus further stress human brains.

Additional investigations are needed to more precisely examine the performance

differences observed between these two types of environments.

This study revealed the presence of a more efficient brain network during a nature

experience than during an urban experience. Specifically, stronger global functional

connectivity was observed in nature, and a more enhanced small-world property

with a larger clustering coefficient (Cmean) and a smaller average shortest path length

(Lmean) was also observed, which were most prominent in the theta band. The

enhanced small-world properties were found to be correlated with a “coherent”

experience measured by PRS psychological scale (Hartig et al., 1997), referring to an

orderly, comprehensible environment experience. The more efficient brain network in

nature may help explain the restorative experience reported in this study and may

explain the potential cognitive improvements exhibited shortly after a nature

experience, as observed elsewhere in the literature (Berman, Jonides & Kaplan, 2008;

Bratman et al., 2015a; Taylor & Kuo, 2009).

This study also documented some relevant changes to long-term correlation

characteristics of human EEG signals during in-situ environmental exposures to nature

and to an urban environment. We found a larger b exponent in the 1/fb frequency

spectrum during the nature experience and a larger b in the right hemisphere during the

exposures to nature and to urban environments. This study may be among the earliest

studies of changes in the 1/f power spectrum exponent b of human EEG signals as a

function of different environmental experiences. A larger sample size and repeated

experiments are needed to further investigate the key properties that are intrinsic to the

nature environment that impact the resulting EEG signal statistics. Environmental impact
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on the brain functional connectivity characteristics observed in this study may be

beneficial in constructing better cognitive computational models.
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