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ABSTRACT
Developing a rigorous understanding of multiple global threats to species persistence
requires the use of integratedmodelingmethods that capture processes which influence
species distributions. Species distribution models (SDMs) coupled with population
dynamics models can incorporate relationships between changing environments and
demographics and are increasingly used to quantify relative extinction risks associated
with climate and land-use changes. Despite their appeal, uncertainties associated with
complex models can undermine their usefulness for advancing predictive ecology and
informing conservation management decisions. We developed a computationally-
efficient and freely available tool (GRIP 2.0) that implements and automates a global
sensitivity analysis of coupled SDM-population dynamics models for comparing the
relative influence of demographic parameters and habitat attributes on predicted
extinction risk. Advances over previous global sensitivity analyses include the ability
to vary habitat suitability across gradients, as well as habitat amount and configuration
of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0,
we carried out a multi-model global sensitivity analysis of a coupled SDM-population
dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park
as a case study and quantified the relative influence of input parameters and their
interactions on model predictions. Our results differed from the one-at-time analyses
used in the original study, and we found that the most influential parameters included
the total amount of suitable habitat within the landscape, survival rates, and effects of a
prevalent disease, white pine blister rust. Strong interactions between habitat amount
and survival rates of older trees suggests the importance of habitat in mediating the
negative influences of white pine blister rust. Our results underscore the importance
of considering habitat attributes along with demographic parameters in sensitivity
routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize
research, identify habitat-based thresholds and management intervention points to
improve probability of species persistence, and evaluate trade-offs of alternative
management options.
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INTRODUCTION
Addressing the realities and complexities of population-level responses to global change
increasingly requires the integration of multiple modeling approaches that capture changes
in habitat and climatic suitability and population dynamics, while accounting for the
relationship between the environment and demographics (Schurr et al., 2012). Population
dynamics models coupled with species distribution models (SDMs; Guisan & Thuiller,
2005) is one modeling framework that is used increasingly to quantify relative risks of
extinction, and guide scientific research and management decisions for rare or threatened
species (Keith et al., 2008;Anderson et al., 2009;Naujokaitis-Lewis et al., 2013). By capturing
many of the key ecological processes and mechanisms, coupled SDM-population dynamics
models represent a powerful simulation-based approach to predict the consequences
of populations to dynamic future scenarios of land-use and climate change (Franklin,
2010). Additionally, the explicit modeling of demographic processes that directly relate
to extinction risk addresses some of the challenges with interpretation of SDM outcomes,
where changes in area of suitable habitat are often simply assumed to be linearly related to
extinction risk (Thuiller et al., 2008; Fordham et al., 2012).

While the increasing realism of coupled SDM-population dynamics models is an
attractive feature, the reliance on extensive ecological and landscape data and multi-
model integrations results in complex models with many potential types and sources of
uncertainty. Of particular relevance, epistemic uncertainties, which include uncertainty
related to natural variation of ecological systems, model uncertainties (i.e., model
specification), and parameter uncertainties (Elith, Burgman & Regan, 2002; Regan, Colyvan
& Burgman, 2002), are associated with each of the sub-models, as well as the functions
that link them. For example, in the context of SDMs, various factors can affect model
predictive power and the resultant spatial prediction outcomes, including the type of
SDM algorithm and variables selected to model habitat suitability (Barry & Elith, 2006;
Dormann et al., 2008), while the choice of thresholds to distinguish suitable habitat from
unsuitable areas can introduce further errors into maps (Liu, White & Newell, 2011). When
the habitat map derived from the SDM forms the basis for defining the spatial structure of
a (meta-) population (i.e., number, size, shape, and location of patches or populations),
demographic parameters may be expressed as functions of map-based habitat attributes.
Subsequently, uncertainties associated with SDMs can propagate through to predictions
of (meta-) population trajectories and metrics including estimates of extinction risk.
The predictions from coupled SDM-population dynamics models are also influenced by
uncertainties associated with the specification of relationships and parameters used to
model demographic processes. Population models are often formulated with complex
relationships, which can introduce substantive uncertainties in expectations due to a
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combination ofmodel structure and parameter uncertainties (Reed et al., 2002;Naujokaitis-
Lewis et al., 2009; Zurell et al., 2011).

Despite the advantages of coupled SDM-population dynamics models, it is important
to understand the potential propagation and influence of uncertainties resulting from
each of the sub-models to avoid a false sense of confidence in outcomes and identify
management options that are robust to those uncertainties. Sensitivity analyses are
used to identify factors that influence uncertainty in the predictions, identify research
priorities for reducing uncertainty, evaluate competing model structures, and compare
the expected performance of alternative management scenarios (Cross & Beissinger, 2001;
Saltelli et al., 2006).While extensive recent efforts address uncertainties in SDMs when used
independently (e.g., Dormann et al., 2008; Buisson et al., 2010), evaluating uncertainties
and their propagation through to coupled SDM-population dynamics model predictions is
not consistently considered (Cabral et al., 2011; Zurell et al., 2011; Prowse et al., 2016). Even
the most commonly varied parameters in sensitivity analyses of coupled SDM-population
dynamics models, namely fecundities and survival rates, are inconsistently assessed for
their influence onmodel predictions (Naujokaitis-Lewis et al., 2009). Performing sensitivity
analyses that address the contribution of uncertainty across all sub-models of a coupled
or integrated model is an important step prior to applying complex ecological models to
address conservation problems.

Consideration of uncertainty associated with the whole model in a sensitivity analysis is
not only a best practice, but may also help identify a broad range of influential parameters
that can be manipulated in a management context. For example, while it is not possible
to directly manipulate dispersal ability of a species per se as it is an intrinsic life-history
trait, dispersal rates may be influenced by managing habitat features, such as the size
of habitat patches and their configuration across the landscape. The potential influence
of such factors are only likely to be revealed if these landscape-level habitat attributes
are systematically varied in addition to demographic parameters in a sensitivity analysis
(e.g.,Naujokaitis-Lewis et al., 2013). Given that coupled SDM-population dynamicsmodels
are used to inform species and habitat recovery planning (Camaclang et al., 2014) exploring
the influence of habitat structure in addition to demographic rates in a sensitivity analysis
may reveal insights into alternative factors that may be responsive to management actions.

In this paper we investigate the relative influence of uncertainty associated with
habitat and demographic parameters on model predictions for an endangered plant
species by way of a global sensitivity analysis (GSA). In a GSA the values of multiple
parameters are varied concurrently across their full parameter space, which represents
their entire range of uncertainties and can account for interactions among parameters
(Saltelli & Annoni, 2010). To achieve this objective, we developed GRIP 2.0, a novel
decision-support tool that automates GSAs of coupled SDM-population dynamics models.
GRIP 2.0 extends the functionality of an earlier version of this tool, GRIP 1.0 (Curtis &
Naujokaitis-Lewis, 2008). In addition to evaluating the relative influence of uncertainty
in demographic parameters associated with the population dynamics model, GRIP 2.0
addresses uncertainty associated with the baseline habitat maps (i.e, SDM predictive
output). First, GRIP 2.0 can evaluate SDM-based uncertainties associated with habitat

Naujokaitis-Lewis and Curtis (2016), PeerJ, DOI 10.7717/peerj.2204 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2204


maps derived from applying ensemble approaches whereby a number of alternative
models (e.g., based on different model algorithms) are fit and projected to explore a
range of outcomes (Araújo & New, 2007). Second, if a single SDM was specified, the
tool can vary spatially-explicit habitat attributes including habitat suitability values and
suitability threshold values to convert maps to binary habitat vs non-habitat. Here, users
can specify the degree of spatial-autocorrelation among habitat suitability values. In
both cases, it is possible to vary the size and number of habitat patches in the GSA.
These two approaches to varying SDM-based uncertainties and habitat patches enable
GRIP 2.0 applications to address both macroecological and landscape-scale questions.
By targeting multiple types of uncertainty associated with model structure, parameters,
and natural variation and stochasticity connected to SDMs and population dynamics
models, we capture dominant sources of variation in coupled models (Naujokaitis-Lewis
et al., 2009). We applied GRIP 2.0 to a published coupled model of the threatened plant
species, whitebark pine (Pinus albicaulis) (Ettl & Cottone, 2004), as a proof of concept
to address our objective and to evaluate the application of this decision-support tool.

METHODS
Whitebark pine coupled SDM-population dynamics model
Whitebark pine is classified as an Endangered species (Mahalovich & Stritch, 2013) in
decline primarily due to blister rust infections (Cronartium ribicola J.C. Fisch.), although
themountain pine beetle (Dendroctonus ponderosae) epidemic and fire suppression are also
major threats. The original stochastic spatially-explicit metapopulation dynamics model
was undertaken to evaluate the influence of blister rust infection on whitebark pine viability
and persistence in Mount Rainier National Park, Washington, USA, where it is in danger
of local extinction (Ettl & Cottone, 2004). As such, it is also referred to as a population
viability analysis (PVA).

The whitebark pine model (Ettl & Cottone, 2004) was implemented using RAMAS GIS
software (Akçakaya, 2002) and relied on the RAMAS Spatial module to identify populations
(i.e., habitat patches) using a raster-based habitat suitability map of a 420.3 km2 region in
the park. This population map provides the basis on which metapopulation dynamics are
simulated in the RAMAS Metapop module. A total of 46 populations were identified by
the RAMAS patch detection algorithm, which was consistent with the actual distribution
of trees (Ettl & Cottone, 2004). The authors used aerial photography to estimate initial
abundances within each of the populations. Vegetation plots were used to estimate the
proportion of individuals in each of the 13 stage classes and the final stage matrix included
24 transition probabilities thatmodeled both healthy and trees infectedwith blister rust. The
stage classes included four seedling stages, saplings, infected saplings, non-reproductive
adults, infected non-reproductive adults, healthy adult trees (Class 1), and three adult
stages with various degrees of blister rust infection (Classes 2–4; Table 1). Adults in Class
1 through 4, non-reproductive, and infected non-reproductive adults were affected by a
ceiling model of density dependence.

Seed dispersal among pairs of populations was distance-dependent whereby dispersal
rates are calculated as a function of distance between populations and the parameters of
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Table 1 Input parameters, sampling distributions and parameter ranges, and brief description of all factors varied in the global sensitivity
analysis of the whitepark pine metapopulation population viability analysis. RAMAS module refers to the specific sub-program where the param-
eter is specified. Parameters varied in RAMAS Spatial are unique to GRIP 2.0, whereas those varied in RAMAS Metapop were introduced in GRIP
1.0 (Curtis & Naujokaitis-Lewis, 2008). Parameters with RAMAS Spatial/Metapop specified include habitat-specific environment-demography rela-
tionships varied in both modules.

Input factora Distribution and sampling range Description RAMASmodule

GRIP 2 has 4 options for varying habitat suitability values:
1. Random normal: N (mean=mean of HS values in
original landscape, SD= standard deviation of HS values in
original landscape)
2. Spatially-autocorrelated: HS surface derived from a sim-
ulated gradient where the degree of spatial autocorrelation
between cell values can be modified. Uses functions from the
‘randomFields’ R package
3. Ensemble: Uses ensemble predictions and the measure
of uncertainty to vary new HS values. Ensembles could be
based on multiple types of SDM algorithms used to model
species distributions (e.g., GAM, GLM, RF, BRT). The cur-
rent implementation of GRIP2 resamples HS values using a
random normal variate with the mean based on the ensem-
ble prediction for that gird cell with a SD based on the un-
certainty estimate from the ensemble model (i.e., the model-
based measure of variation) for that grid cell.

Habitat suitability
(HS) map

4. Not varied

Spatially explicit habitat suitability
values (i.e. raster files). These cor-
respond to the predictive outputs of
species distribution models. HS val-
ues are rescaled where the default
settings are: the minimum is the
HS threshold and the maximum is
the highest HS value of the original
landscape. Options exist to specify a
theoretical maximum.

RAMAS Spatial

Neighborhood
distance

N (Original value, 10% CV) Used to find distinct habitat
patches, represents the spatial scale
at which the population can be
assumed to be panmictic

RAMAS Spatial

Distance measure
among habitat
patches

D(‘edge to edge’, ‘center to edge’, ‘center to center’) Measure used to calculate the dis-
tance among pairs of patches, edge
and center refer to the location on
the patch where the measure starts
or ends

RAMAS Spatial

Habitat suitability
threshold

N (original value, 10% CV) Habitat suitability value used as the
threshold to distinguish between
non-suitable and suitable habi-
tat on the raster habitat suitability
map. Any grid cell value above the
threshold will be considered for in-
clusion as a population (i.e., habitat
patch)

RAMAS Spatial

Number of patches N (original number, 50% CV) RAMAS Spatial
Initial abundance N (mean value per patch is a function of total habitat suit-

ability, CV= 10%)
RAMAS
Spatial/Metapop

Carrying capacity N (mean value per patch is a function of total habitat suit-
ability, CV=10%)

RAMAS
Spatial/Metapop

Rmax N (original value, 10% CV) Maximum growth rate RAMAS Metapop
Catastrophe extent D(local, regional) Randomly varies spatial extent of

catastrophe
RAMAS Metapop

(continued on next page)
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Table 1 (continued)

Input factora Distribution and sampling range Description RAMASmodule

Catastrophe
probability

N (original value, 10% CV) Probability of catastrophe occur-
ring

RAMAS Metapop

Catastrophe
intensity

N (original value, 10% CV) Magnitude of catastrophe effect RAMAS Metapop

Dispersal survival U (0, 1) Proportion of dispersers that live RAMAS Metapop
Dispersal rate N (0, 0.1)* dispersal rate Each dispersal rate is varied by a

constant value
RAMAS Metapop

Number of
connections

U (0, number of pairwise population connections possible) Varies number of population pairs
connected through dispersal

RAMAS Metapop

Among-population
correlation coeffi-
cient of vital rates

N (0, 0.1)* correlation coefficient Varies magnitude of correlations in
vital rates among population pairs

RAMAS Metapop

Seed survival L(original value, original value) Seed stage RAMAS Metapop
Seedling 1 survival L(original value, original value) 1 year old seedling RAMAS Metapop
Seedling 2 survival L(original value, original value) 2 year old seedling RAMAS Metapop
Seedling 3 survival L(original value, original value) 3 year old seedling RAMAS Metapop
Seedling 4 survival L(original value, original value) 4 year old seedling RAMAS Metapop
Sapling mortality L(original value, original value) Sapling RAMAS Metapop
Infected sapling sur-
vival

L(original value, original value) Infected sapling RAMAS Metapop

Nr adult survivalb L(original value, original value) Non-reproductive adult RAMAS Metapop
Infected n survivalb L(original value, original value) Infected non-reproductive adult RAMAS Metapop
Class 1fecundity and
survivalb

L(original value, original value) Healthy adult trees RAMAS Metapop

Class 2 fecundity
and survivalb

L(original value, original value) Branch infected adult tree RAMAS Metapop

Class 3 fecundity
and survivalb

L(original value, original value) Bole infected adult tree RAMAS Metapop

Class 4 fecundity
and survivalb

L(original value, original value) 50% crown loss infected adult tree RAMAS Metapop

Notes.
aSelected distributions and their parameters: D= discrete distribution (discrete value1, discrete valuex ), where each value has equal probability of selection; N = normal distribu-
tion (mean, standard deviation—sometimes expressed in terms of coefficient of variation, % CV); L= lognormal distribution (mean, standard deviation); U = uniform distri-
bution (minimum, maximum).

bDenotes that the stage was included in the model of density dependence.

the dispersal-distance function of the original model. The general form of the model is:

mij = a × exp
(
−Dc

ij/b
)

where mij is the dispersal rate between the ith and jth populations, a (scaling parameter),
b, and c are function parameters, and Dij is the distance between a pair of populations. The
dispersal distance function parameters for the whitebark pine model were a= 0.1, b= 0.5,
c = 1, and Dmax= 2.5 km (maximum dispersal distance).

Blister rust disease was modeled as a catastrophe where the probability of invasion of
a site corresponded to the average invasion time of 8 years. When blister rust occurs,
healthy individuals become infected, leading to declines in survival and fecundity rates.
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Specifically, saplings, non-reproductive adults, and healthy adults (Class 1) transition to
infected sapling, infected non-reproductive adults, and Class 2 adult stage, respectively.
Once sapling or non-reproductive adult stages become infected, they continue on to death,
while reproductive adult stages cycle through to Class 4, where fecundities are lower. The
proportion of individuals that transition into an infected class was based on empirical
data and calibration tests in the original model. The model includes both demographic
and environmental stochasticity, with the latter based on a lognormal distribution. A full
description of the model is detailed in Ettl & Cottone (2004) and stage classes are defined
in Table 1.

RAMAS Spatial uses spatial data representing habitat requirements for a species, a
user-defined habitat suitability function, and habitat-specific demographic relationships
to derive metapopulation structure (Akçakaya & Root, 2005). The original study included
a habitat suitability map at a resolution of 0.02 km with suitability values ranging from
0 to 5 and a threshold value of 1 was applied to distinguish between non-suitable and
suitable habitat. We estimated habitat-specific demographic relationships because these
were not provided by the authors. Using data available in the original whitebark pine PVA,
we fit linear regression models to define the relationships of total habitat suitability (ths,
sum of habitat suitability values of all raster cells belonging to a patch), to patch-specific
initial abundances and carrying capacity, separately. We used ths instead of habitat area
as this incorporates a measure of habitat area weighted by habitat quality. Our estimated
relationship between ths and initial abundance was;

Initial abundance= 227.32∗ ths

with an r2= 0.780, p< 0.01. The relationship between ths and carrying capacity, K was;

K = 0.8449∗ ths

with an r2 = 0.765, p< 0.01. Apart from standardizing the time horizon to 100 years
and extinction threshold to 0, and formatting the input files for use with GRIP 2.0 (see
Appendix S1) the model was not further modified. We assumed that the remaining
parameter values and model structure synthesized the best available information.

Overview of GRIP 2.0
We created GRIP 2.0 in R (Generating Random Input Parameters; developed and tested
in v. 2.7.1 through 3.2.1 (R Core Team, 2015), which interacts with RAMAS Spatial and
Metapop, two modules of the software RAMAS GIS (Akçakaya & Root, 2005), and uses
R-spatial packages to facilitate spatial and geostatistical analyses. There are two versions
available, each compatible with a one of RAMASGIS v 5.0 or v 6.0. GRIP 2.0 builds onGRIP
1.0 (Curtis & Naujokaitis-Lewis, 2008) and uses Monte Carlo methods to vary parameters
(1) directly on the grid-based habitat suitability map used as an input to RAMAS Spatial,
(2) specified in the RAMAS Spatial module, and (3) specified in the RAMAS Metapop
module (Fig. 1). Unique sets of input parameters for the Spatial and Metapop modules
of RAMAS GIS are drawn from user-defined random distributions reflecting parameter
uncertainty and the range of plausible values.
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Figure 1 Flowchart of the global sensitivity analysis programGRIP 2.0.GRIP 2.0 implements and au-
tomates global sensitivity analyses of coupled SDM-population dynamics models, created using RAMAS
GIS, for comparing the relative influence of demographic parameters and habitat attributes on predicted
extinction risk. Parameters varied by GRIP 2.0 are indicated by a dashed rectangle, model steps by a rect-
angle, and outputs by a rounded rectangle.
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Once the replicate landscapes and corresponding metapopulation models are defined,
GRIP 2.0 runs the replicate simulations in batch mode, and collates the input parameter
values and predictions into a comma delimited file for subsequent analyses. Thus, GRIP 2.0
automates the generation of unique sets of replicate stochastic simulation files andmanages
the simulations with batch files, which would otherwise be prohibitive if undertaken
manually (McCarthy, Burgman & Ferson, 1995). The code of this global sensitivity analysis
program is annotated and easily customized to reflect a particular species’ biology or
address related research questions. In the following sections, we briefly describe how
habitat attributes and demographic parameters are varied in GRIP 2.0, but details are
also annotated in Appendix S1 and the landscape generator and routine for varying
demographic parameters is described in more detail in Appendix S2.

Generation of alternative landscapes
GRIP 2.0 generates alternative landscapes by varying the number of patches (i.e.,
populations; herein we use the terms patch and population interchangeably), patch
size, and the habitat suitability value associated with each raster spatial data cell directly
on the original habitat suitability and patch maps (Table 1). The current version of GRIP
2.0 includes four options for varying habitat suitability maps: ‘random.normal’, ‘spatially
autocorrelated’, ‘ensemble’, and ‘no variation’ (Table 1). In the ‘random.normal’ option,
habitat suitability (HS) values are simulated by drawing a value for each grid cell from a
normal distribution based on the mean and standard deviation of HS values within the
reference landscape. There is no spatial autocorrelation amongst habitat suitability values.
The ‘spatially autocorrelated’ option provides flexibility to vary the degree of autocorrela-
tion among HS values simulated using the RandomFields R package (Schlather et al., 2015).
Base settings include a Gaussian model of spatial autocorrelation with a mean of 0, variance
of 5, nugget value of 1, and a scale of 10, creating a generally highly correlated surface.
All HS values are set to be equal to or greater than the newly sampled HS threshold value
(see below). The ‘ensemble’ approach can evaluate SDM-based uncertainties associated
with alternative models (e.g., based on different model algorithms) whereby a number of
models are fit (an ensemble) and then combined into a consensus prediction. In GRIP 2.0,
users must include a raster-based ensemble SDM prediction layer reflecting a consensus
estimate of habitat suitability and a raster reflecting uncertainties in that prediction. The
sensitivity analysis of habitat suitability thus reflects cell-based uncertainty in the prediction
and captures error propagation across multiple SDMs. Finally, the ‘no variation’ option
ensures that HS is not included in the GSA. Given information contained in the original
model, we varied HS for the whitebark pine based on the ‘random.normal’ option.

Additionally, two user-specified settings in RAMAS Spatial that inform its patch
detection algorithm were varied: the habitat suitability threshold, which is used to
distinguish between unsuitable and suitable cells, and the neighbourhood distance value,
used to identify spatially discrete patches of suitable habitat. For further details see Table 1.

Variation of demographic parameters
GRIP 2.0 generates unique replicate metapopulation models (one for each replicate
landscape model) by varying parameters specified in RAMAS Metapop. A total of 23
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demographic parameters specified in thewhitebark pinemetapopulationmodel were varied
in the GSA (Table 1). These included stage-specific survival and fecundity rates, dispersal
rates, dispersal survival, correlation of vital rates among populations, and catastrophe
parameters. All demographic parameters were varied using sampling distributions and
parameter ranges as specified in GRIP 1.0, a version of this freeware developed for spatial
PVAs that are not based on spatially-explicit maps of habitat or habitat suitability (Curtis
& Naujokaitis-Lewis, 2008). We did not vary the model of density dependence to retain
the original model structure to the extent possible. Further details governing the sampling
distributions, mean and measure of variation for each parameter varied in the GSA are
described in Table 1 and Appendix S2. As with other parameters not varied in this version
of GRIP 2.0, the code is extensively annotated and customizable. To the extent possible,
we used information from the original model to select biologically relevant uncertainty
estimates, and in the case where these were not specified we either applied a 10% coefficient
of variation or sampled from a uniform distribution (Table 1). While this 10% value is
somewhat arbitrary, we used the best available information to select realistic uncertainty
estimates. Users are able to modify these ranges, and even sampling distributions to better
reflect the research and management context of their study system.

Simulations and data analysis
Using the whitebark pine map as the original reference landscape, we created a total
of 10,000 replicates, where refers to the total number of final model configurations
that includes variation in landscape/habitat suitability parameters (Fig. 2), as well as
demographic parameters. Each of the replicate metapopulation dynamics models consisted
of 1,000 stochastic runs using a 100 year time period. For each replicate landscape file,
we calculated landscape composition and configuration metrics using RAMAS GIS. The
landscape metrics included number of patches, total amount of suitable habitat (an
integrated measure of both habitat amount and suitability), mean patch area, edge to area
ratio, and connectivity, calculated as the proportion of all population pairs that are linked
through dispersal. A full description of the landscape metrics calculated by RAMAS GIS
and associated mathematical formulae is available in Akçakaya & Root (2005).

We applied a boosted regression tree (BRT) to rank the relative influence of habitat-
based measures of landscape pattern and demographic parameters on the binary response
variable, conservation status. Conservation status was calculated based on the probability of
extinction over a 100-year time period with 0.1 defined as the threshold for distinguishing
metapopulations expected to be not at risk from those expected to be at risk of extinction.
This benchmark corresponds to international criterion for listing species as Vulnerable
(Criterion E; IUCN, 2001). We used the machine-learning method of BRTs based on our
interest in understanding the relative importance of different parameter uncertainties on
model outcomes and additional flexibilities of BRT for our analysis purposes (De’ath, 2007;
Elith et al., 2008). GRIP 2.0 provides the means to generate and propagate uncertainties
while decisions regarding how to analyze such outcomes are flexible, with BRT representing
one option. The BRT functionality was not coded into GRIP 2.0 but was a supplemental
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A B

C D

Figure 2 Examples of simulated landscapes based on the original whitebark pine model. The origi-
nal 25.32 km× 16.6 km landscape map for whitebark pine (modified from Ettl & Cottone, 2004) includes
46 patches (A), and three of the simulated landscape maps (B–D) created using GRIP 2.0 includes 10, 43,
and 83 patches, respectively. Of the original patches remaining in landscapes B and D, all patches have de-
creased in size, while the original patches remaining in landscape C have increased. Overall, the extent of
the landscape for each replicate simulation remains constant but composition, configuration, and habi-
tat suitability values have changed. For ease of representation, the landscape is depicted in a binary format
where suitable habitat is black and unsuitable habitat is white. New patches created by the GRIP 2.0 land-
scape generator are assumed to be approximately circular in shape to take advantage of existing function-
ality of R-spatial packages.

statistical analysis performed once all replicate simulations were created and run using
GRIP 2.0 and RAMAS.

We specified a binomial error structure and link function and used untransformed data
in the BRT as it does not require data transformations (Elith et al., 2008) . We applied
a tree complexity (tc) value of 2, which fits the BRT with up to two-way interactions.
Learning rate (lr), which determines the contribution of each tree as it is added to the
model, was specified at a value of 0.01, which was optimized to ensure a minimum of 1,000
trees were fit for the model (Elith et al., 2008). Prediction accuracy was measured using
the percent deviance explained by the model, which measures the goodness of fit between
the prediction and observed values. The relative influence of each predictor variable was
assessed by calculating its contribution to reducing the overall model deviance of the
BRT model. We identified important modeled interactions by quantifying the strength
of pairwise interactions while keeping non-focal variables at their mean values. The BRT
model, including relative influence of predictors, and evaluation and visualization of
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Table 2 Relative contribution of the ten most important variables to extinction status of the whitebark
pine based on the 2-way interaction boosted regression tree.

Variable Relative contribution (%) Type of variable

Total habitat amount 40.3 Habitat
Survival class 4 13.7 Demographic
Survival class 3 12.8 Demographic
Catastrophe intensity 8.9 Demographic
Mean carrying capacity 5.9 Habitat
Mean correlations 2.6 Demographic
Mean habitat suitability 1.8 Habitat
Mean dispersal rate 1.5 Demographic
Fecundity class 1 1.2 Demographic
No. of populations 1.1 Habitat

two-way interactions were performed in R (R Core Team, 2015) using the ‘gbm’ package
(Ridgeway, 2015) and functions available in Elith et al. (2008).

RESULTS
Influential parameters on whitebark pine conservation status
The baseline model of the whitebark pine in the presence of blister rust predicts a dramatic
decline of the metapopulation in Mt. Rainier National Park (Ettl & Cottone, 2004). The
two-way interaction BRT model resulted in a high level of explanatory power. The model
accounted for 90% of the mean total deviance (1 − mean residual deviance/mean total
deviance; 1 − 0.014/0.137). For the 2-way interaction BRT model, the loss function was
minimized at 4,250 trees, and the model was optimized with a learning rate of 0.01 and a
bag fraction of 0.05. The five most important variables based on the BRT included total
habitat amount (40.3%), survival class 4 (13.7%), survival class 3a (12.8%), catastrophe
intensity (8.9%), and mean carrying capacity per patch (6.6%) (Table 2).

The partial dependence plots in Fig. 3 illustrate the relationship between the four most
important variables and conservation status after accounting for the average effect of all
other variables. These plots suggest that a conservation status of ‘Vulnerable’ is a function
of low amounts of total habitat in the landscape, low survival rates of trees in classes 3a and
4, and stronger negative effects of catastrophes (i.e., blister rust).

Importance of interactions
The BRT analysis identified a number of strong interactions influencing whitebark pine
conservation status. The strongest interaction was between total habitat amount and
survival rate of trees in class 4 (Fig. 4A). Specifically, extinction risk increases more rapidly
for lower values of survival and lower amounts of habitat in the landscape, but as survival
increases above 0.8, less amount of habitat is required for the conservation status to
remain ‘not-at-risk’. Based on the second most important interaction, the influence of
catastrophe intensity on extinction probability is conditional on the total amount of habitat
in the landscape (Fig. 4B). In other words, when the effect of catastrophes is weaker, less
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Figure 3 Partial dependence plots for the four most important predictors of conservation status of
the whitebark pine. The four predictors include: (A) total habitat area, (B) survival class 4, (C) survival
class 3a, and (D) catastrophe intensity. Importance was ranked based on each predictors’ contribution to
reducing the overall model deviance (value in parentheses expressed as a %). Conservation status was
calculated based on the probability of extinction over a 100-year time period where values=0.1 were con-
sidered to be at risk of extinction (status: 1) and values <0.1 were considered not at risk (status: 0). This
benchmark corresponds to international criteria for listing species as ‘Vulnerable’.

amount of habitat is needed for the predicted status to remain not-at-risk whereas when
catastrophes have a larger effect more habitat is needed to buffer the risk status rank.
Both of these interactions demonstrate the importance of habitat amount in mediating the
negative effects of blister rust on whitebark pine extinction risk within this landscape.

Habitat thresholds
Based on qualitative assessments, the 3-dimensional plots revealed thresholds in habitat-
based features. For the two strongest interactions (Fig. 4), across all survival rates and
catastrophe intensity values, below total habitat amounts of 2 km2 the predicted risk
of extinction increases more steeply. Despite the strong interaction among these pairs
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Figure 4 Three-dimensional partial dependence plots for the two strongest interactions based on a
global sensitivity analysis of the whitebark pine metapopulation model. All other variables not plot-
ted remain at their mean value. (A) Interaction between total habitat amount and survival class 4, and
(B) interaction between total habitat amount and catastrophe intensity.
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of variables, this suggests the existence of thresholds in total habitat amount for the
Mount Rainier whitebark pine metapopulation infected with blister rust. As the number
of populations did not interact strongly with other demographic parameters or habitat
features, the partial dependence plots may be interpreted directly: thresholds were evident
for the number of populations where conserving >20 populations resulted in predicted
conservation status of ‘not-at-risk’, based on international listing criteria.

DISCUSSION
The use of coupled SDM-population dynamics models that relate land-use and climate
dynamics to population-level demographic parameters present large potential applications
for endangered species recovery and habitat planning. However, the potential for the
propagation of errors and uncertainties throughout the modeling process represents a
true concern. We developed a novel tool to illustrate the importance of advancing the
application of global sensitivity analyses to targeting each component model of coupled
SDM-populationmodels. Based on the whitebark pinemodel, themost important variables
on predictive outcomes included a combination of demographic and landscape habitat
features. The inclusion of habitat features in a sensitivity analysis broadens the scope of
potentially effective management actions aimed at supporting persistence of endangered
species beyond the usual focus on vital rates. Such assessments are fundamental not only to
help identify parameters requiring further data collection to reduce model uncertainty but
also for evaluating and prioritizing costly habitat-based management recommendations
for endangered species.

Simulating alternative realizations of landscape and habitat structure
Landscape level experiments involving adequate replication are often difficult to implement
due to issues of scale. Consequently, experimentation by simulation using landscape
generators presents a viable alternative to develop a better understanding of the relationship
between landscape pattern and process (Gardner & Urban, 2007), predict species response
to landscape change (Tischendorf, 2001), andmore generally to develop and test hypotheses.
Because GRIP 2.0 modifies an existing reference landscape, certain landscape elements,
such as size and shape of some patches, are retained in replicate simulations. This leads to
more realistic simulated landscapes, unlike neutral or multi-fractal models (With & Crist,
1995). Although not applied to the whitebark pine model, GRIP 2.0 allows users to include
a landscape mask, enabling habitat creation only in those regions outside of the mask.
This aspect increases the functionality GRIP 2.0 and the realism of its outputs; a mask
may contain intractable barriers to habitat creation, such as roads, representing landscape
constraints that many analysts and managers must contend with.

Replicate landscapes produced by GRIP 2.0 represented a wide range of landscape
structural variation allowing an evaluation of the influence of a broad range of structural
attributes on extinction probability of whitebark pine, and by the same token, a broad
range of scenarios to explore for conservation and management planning. By using Monte
Carlo simulations, landscape features modified included the amount of habitat, patch
sizes, or the degree and directionality of spatial autocorrelation in replicate landscapes.
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Such flexibility is important given simulation studies and our results that have identified
thresholds related to levels of habitat within a landscape below which species viability
rapidly declines (Swift & Hannon, 2010). The GRIP 2.0 code is highly annotated allowing
users to understand, scrutinize, and modify the code to reflect a particular species’ biology,
sampling distributions, or landscape dynamics.

The original whitebark pine model did not model consequences of climate change on
future projections. Thus our implementation of GRIP 2.0 to the whitebark pine model does
not address uncertainty in spatio-temporal projections of habitat suitability under future
climate change associated with selection of General Circulation Models, for example.
However, this is not an inherent limitation of the tool as GRIP 2.0 can be modified
to integrate this additional source of uncertainty as in Naujokaitis-Lewis et al. (2013).
Additionally, while we did not explicitly address uncertainty in the habitat-demographic
relationship, our GSA approach implicitly addresses this source of variation by varying
population-specific initial abundances and carrying capacities. Should models incorporate
temporal trends in vital rates associated with estimated habitat-demographic relationships,
GRIP 2.0 is customizable to reflect this potential source of variation.

The relative influence of parameters and their interactions
By varying multiple parameters simultaneously using probability distribution functions to
represent the plausible range of parameter values, GRIP 2.0 performs a global sensitivity
analysis, in which parameters are varied concurrently over the plausible range of parameter
space (Saltelli et al., 2006). Varying habitat features associated with habitat suitability maps,
such as habitat amount, habitat suitability, and number of patches enabled a comparison
of the relative influence of habitat-based attributes on whitebark pine meta-population
dynamics relative to demographic parameters. Outcomes of our global sensitivity analyses
indicated that both demographic and habitat factors influence predictions of whitebark
pine persistence. Our GSA identified different influential parameters from the original
study, which did not vary habitat-based factors (Ettl & Cottone, 2004). Based on the
predicted trajectories of individual whitebark pine subpopulations over time, Ettl &
Cottone (2004) concluded that size and distribution of subpopulations influenced the
trajectory of individual populations. The authors also concluded that the model was more
sensitive to changes in the vital rates of healthy trees than infected trees, and less sensitive
to changes in the vital rates of mature trees than of younger trees, and more sensitive to
the frequency of invasion than by the effect of blister rust on vital rates. Without applying
a GSA, however, the authors were not able to rank the relative influences of these factors
on the dynamics of the meta-population as a whole, or identify key interactions among
parameters and thresholds that could be used to informmanagement decisions. By contrast,
the results of our GSA indicated that model predictions were more sensitive to older stage
classes that were also infected by blister rust disease. We also identified certain habitat
variables as highly influential, which broadens the range of information that can be used
to develop effective management actions. Our simulations were standardized to 100 years
(as per criterion E for IUCN species assessments), but with poor recruitment/low survival,
this metapopulation may be at greater risk over the longer term (Ettl & Cottone, 2004) .

Naujokaitis-Lewis and Curtis (2016), PeerJ, DOI 10.7717/peerj.2204 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.2204


The relatively high rank of certain habitat factors, such as total amount of habitat,
highlights the importance of spatial habitat-based landscape features as important drivers
of whitebark pine persistence as a way to mediate the negative consequences of blister rust
disease. Spread of the fungal blister rust pathogens is complex; blister rust has a five-stage
life cycle and requires two hosts, whitebark pine (or any other five-needled pines) and any
species in the genus Ribes. Predicting the spread of the blister rust through the distribution
of whitebark pine individuals and populations is difficult as the pathogen spreads from
Ribes hosts to whitebark pine via wind-borne spores, and not from tree to tree (McDonald
& Hoff, 2001). Although the original PVA model does not explicitly model transmission
through Ribes, the outcomes of our GSA indicate that managing habitat parameters could
help offset declines in abundance related to blister rust. Given that proximity to Ribes
species contributes to increased rates of blister rust infection (Smith et al., 2011), future
research that explicitly explores the spatial context of Ribes’ role in disease transmission
dynamics would improve our understanding of the role of multiple interacting parameters
that influence whitebark pine persistence.

Thresholds and conservation implications
Theoretical models have been used to generate hypotheses, such as the nonlinear threshold
hypothesis, which predicts that species exhibit threshold responses due to the increasing
influence of fragmentation below a certain amount of habitat (Andrén, 1994). Although
theoretical models predict that below critical threshold points, increased fragmentation
results in lowered colonization success and increased extinction probability (With & King,
1999), empirical validation of such responses are uncommon (Fahrig, 2003). Our results
corroborate the occurrence of thresholds in response to declines in both habitat amount
and quality. Visual assessment of bivariate plots of probability of extinction as a function
of landscape variables indicated the presence of thresholds as evidenced by strong negative
exponential decay curves (results not shown). Although we did not quantitatively derive
threshold points for whitebark pine, these roughly translate to 20 populations, a mean
connected distance of approximately 5 km, an average habitat suitability of 2.3 per patch,
and a mean patch size of ∼ 0.35 km2. Further insights into the behavior and occurrence of
thresholds in real settings may help identify conservation strategies that specify minimum
patch size targets, or provide guidance related to landscape level measures, such as habitat
amount (Betts, Forbes & Diamond, 2007).

CONCLUSIONS
Understanding the relative importance of factors influencing species extinction risk can
provide information needed for the design of actions to target species recovery and
persistence. Our approach provides one way to assess the role of uncertainty of multiple
parameters on species persistence, and assist in the prioritization of research and evaluation
of alternative management strategies (Guisan et al., 2013). In this particular case, we have
shown that for a species threatened by disease invasion, both demographic and habitat-
based variables rank high in terms of influence on the risk of extinction. This suggests
that there are multiple options for effective management of whitebark pine, ranging
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from direct actions targeting diseased individuals or mediation through habitat-based
measure. However, the relative influence of such options only becomes apparent through
their explicit inclusion in a global sensitivity analysis and subsequent assessment via an
appropriate analysis, such as a BRT as applied in this example. Furthermore, a global
sensitivity analysis framework is considered a best practice that can be incorporated
into the development and communication of PVAs (Pe’er et al., 2013). Future work
using coupled SDM-population dynamics models to prioritize research and evaluate
management strategies would benefit from the integration of a decision-theory approach
and socio-economic information to help inform investments required to achieve specified
conservation objectives.
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