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Abstract  30 

Predictive habitat suitability models are powerful tools for cost–effective, statistically 31 

robust assessment of the environmental drivers of species distributions. The aim of this study 32 

was to develop predictive habitat suitability models for two genera of scleractinian corals 33 

(Leptoseris and Montipora) found within the mesophotic zone across the main Hawaiian Islands. 34 

The mesophotic zone (30 – 180 m) is challenging to reach, and therefore historically 35 

understudied, because it falls between the maximum limit of SCUBA divers and the minimum 36 

typical working depth of submersible vehicles. Here, we implement a logistic regression with 37 

rare events corrections to account for the scarcity of presence observations within the dataset. 38 

These corrections reduced the coefficient error and improved overall prediction success (73.6% 39 

and 74.3%) for both original regression models. The final models included depth, rugosity, slope, 40 

mean current velocity, and wave height as the best environmental covariates for predicting the 41 

occurrence of the two genera in the mesophotic zone. Using an objectively selected theta 42 

(“presence”) threshold, the predicted presence probability values (average of 0.051 for 43 

Leptoseris and 0.040 for Montipora) were translated to spatially–explicit habitat suitability maps 44 

of the main Hawaiian Islands at 25 m grid cell resolution. Our maps are the first of their kind to 45 

use extant presence and absence data to examine the habitat preferences of these two dominant 46 

mesophotic coral genera across Hawaiʻi. 47 

 48 

Introduction 49 

 50 

 Consistent and pervasive deterioration of marine ecosystems worldwide highlights 51 

significant gaps in current management of ocean resources (Foley et al. 2010, Douvere 2008, 52 
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Crowder and Norse 2008). One such gap is the data required for informed marine spatial 62 

planning, a management approach that synthesizes information about the location, anthropogenic 63 

use, and value of ocean resources to achieve better management practices such as defining 64 

marine protected areas and implementing harvesting restrictions (Jackson et al. 2000, Larsen et 65 

al. 2004). The creation of spatial predictive models for improved marine planning is a relatively 66 

low–cost and non–invasive technique for projecting the effects of present–day human activities 67 

on the health and geographic distribution of marine ecosystems. 68 

 Defining and managing the biological and physical boundaries of ecosystems is a 69 

complicated but essential component of marine spatial planning (McLeod et al. 2005). The 70 

heterogeneous nature of ecological datasets can require the time–intensive development of 71 

problem–specific ecosystem models (Cramer et al. 2001, Tyedmers et al. 2005). Scientists 72 

frequently use straightforward, easy–to–implement regression methods to analyze complex 73 

datasets. The development of software accessible to relative novices has contributed to the 74 

growing popularity of regression methods (e.g., Lambert et al. 2005, Tomz et al. 2003).  75 

 Here, we employ a logistic regression with rare events corrections (King and Zeng 2001) 76 

to analyze the presence and absence data of two coral genera (Leptoseris and Montipora) and, 77 

thus, develop a predictive framework for the geographic mapping of mesophotic coral reef 78 

ecosystems (MCEs) across the main Hawaiian Islands. Mesophotic coral ecosystems, located at 79 

depths of 30 – 180 meters, are considered to be extensions of shallow reefs because they harbor 80 

many of the same reef species present at shallower depths, and are also oases of endemism in 81 

their own right (Grigg 2006, Lesser et al. 2010, Kane et al. 2014, Hurley et al. 2016). MCE 82 

habitats are formed primarily by macroalgae, sponges, and hard corals tolerant of low light levels 83 

(Lesser et al. 2009). Corals of genus Montipora colonize primarily the shallow reef zone (< 30 84 
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m), but some species, particularly Montipora capitata (Rooney et al. 2010), are able to extend 97 

their settlement into mesophotic depths. Corals of genus Leptoseris construct extremely efficient, 98 

light–capturing skeletons that facilitate their habitation of the lower mesophotic zone (Kahng et 99 

al. 2012) and are considered to be exclusively mesophotic dwellers (Kahng and Kelley 2007). 100 

 Ecological studies in the mesophotic zone are sharply limited in contrast to the shallower 101 

photic zone more accessible by open circuit SCUBA, but steady advances in diving, computing, 102 

and remotely operated vehicle technologies continue to facilitate interdisciplinary mesophotic 103 

research (Pyle 1996, Puglise et al. 2009). Mesophotic research in Hawaiʻi has been conducted 104 

primarily in the ʻAuʻau Channel, Maui, a relatively shallow, semi–enclosed waterway between 105 

the islands of Maui and Lānaʻi that is among the most geographically sheltered and accessible 106 

areas in the Hawaiian Archipelago, and, as a result, much of the existing video and photo records 107 

of MCEs are from this area. This concentration of historic surveys highlights the importance of 108 

creating a pan–Hawaiʻi predictive habitat model to identify likely areas of MCEs across 109 

unexplored areas of Hawaiʻi's mesophotic zone. Increasing our knowledge about the habitat 110 

preferences of the deep extensions of shallow coral species is critical given that approximately 111 

40% of shallow (< 20 m) reef–building corals face a heightened extinction risk from the effects 112 

of climate change (Carpenter et al. 2008). Here, we model the habitat associations of mesophotic 113 

scleractinian corals because of both their intrinsic biological value as well as their potential to 114 

recolonize globally threatened shallow reef areas and serve as a refuge to mobile reef organisms 115 

(Bongaerts et al. 2010, Kahng et al. 2014).  116 

 Previous research about the environmental variables driving mesophotic scleractinian 117 

colonization in Hawaiʻi suggests that distinct variation in community structure exists between the 118 

upper (30 – 50 m) and mid to lower mesophotic (50 – 180 m) depths (Rooney et al. 2010, Kahng 119 
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et al. 2010, Kahng et al. 2014). Potentially influential environmental variables include 125 

photosynthetically active radiation (PAR) levels (Goreau and Goreau 1973, Fricke et al. 1987, 126 

Kahng and Kelley 2007, Kahng et al. 2010), isotherms (Grigg 1981, Kahng and Kelley 2007, 127 

Rooney et al. 2010), and hard substrate availability (Kahng and Kelley 2007, Costa et al. 2012). 128 

Rooney et al. (2010) noted that hard coral abundance declined dramatically below 100 m despite 129 

high (> 25%) availability of colonizable substrate; this sudden reduction in coral cover occurs at 130 

increasingly shallower depths across the northwestern Hawaiian Ridge and may be driven by the 131 

synchronously shallower occurrence of isotherms. 132 

 Light and temperature intensity (Jokiel and Coles 1977, Rogers 1990), physical stress 133 

(e.g., wave energy or uncontrolled tourism) (Dollar 1982, Nyström et al. 2000, Franklin et al. 134 

2013), and availability of colonizable substrate (Jokiel et al. 2004, Franklin et al. 2013) are 135 

known drivers of shallow (< 30 m) reef coral distributions across the world. We expect that our 136 

model will capture the influence of these abiotic variables on the distribution of mesophotic 137 

corals, especially in the shallower mesophotic zone. We speculate that our model may detect 138 

unexpected drivers of Leptoseris distribution, particularly because Leptoseris is known to 139 

colonize deeper depths that bear little resemblance to shallow reefs (Lesser et al. 2009, Rooney 140 

et al. 2010). Finally, previous predictive modeling research about the drivers of Hawaiian 141 

mesophotic coral colonization identified depth, distance from shore, euphotic depth, and sea 142 

surface temperature as potentially influential environmental variables (Costa et al. 2012, Costa et 143 

al. 2015). Our novel modeling approach utilizes all observational data (corals present and absent), 144 

which we believe will offer more insight into the dynamics that facilitate and inhibit coral 145 

colonization across the mesophotic zone. 146 

 147 
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Materials and methods 148 

 149 

Organismal and environmental data 150 

 151 

 The Hawaiʻi Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries 152 

Science Center (PIFSC) provided video and photo records from MCEs in the Hawaiian Islands 153 

for our analyses. This imagery came from 19 dives conducted using submersibles, remotely 154 

operated vehicles (ROVs), autonomous underwater vehicles (AUVs), and tethered optical 155 

assessment devices (TOADs) in the ʻAuʻau Channel, Maui (13 dives) and two other 156 

geographically distinct regions: south Oʻahu (5 dives) and southeast Kauaʻi (1 dive). These dives 157 

were conducted between 2001 – 2013. We analyzed dive video using the Coral Point Count with 158 

Excel extensions (CPCe) tool (Kohler and Gill 2006) in combination with a modified PIFSC 159 

2011 mapping protocol (PIBHMC 2015). PIFSC has used this type of combined analysis, 160 

referred to as the random five point overlay method (RFPOM), to process coral reef ecosystem 161 

benthic imagery throughout the U.S. Pacific Islands Region since August 2011, and our use of it 162 

ensures database consistency with regions processed prior to this study. The CPCe software 163 

placed five points randomly on each snapshot, which we then assessed for coral presence. If any 164 

of the five points was on coral the observation was recorded as a “presence”. In an effort to 165 

evaluate the accuracy of RFPOM, we counted all corals in 200 randomly selected screengrabs 166 

and found that this method missed 2.4% of coral observations recorded in these images. We 167 

categorized corals by genus, as both Montipora (Forsman et al. 2010) and Leptoseris (Luck et al. 168 

2013) contain species complexes that remain the subject of taxonomic uncertainty which prevent 169 

us from being able to reliably identify corals to the species level from photographs.  170 
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 We recorded snapshots every 30 seconds for the duration of each dive video. In addition 181 

to an existing database of 40,193 records from dives in the ʻAuʻau Channel, 3517 new snapshots 182 

were collected from the additional dives across south Oʻahu and Kauaʻi (Fig. 1). Of these 43,710 183 

total images, 20,980 were discarded because either: 1) crucial observational data were absent, 2) 184 

they were redundant due to an extended stationary period, or 3) they fell outside the study depth 185 

range of 30 – 180 m. Of the remaining 22,714 records, we analyzed 2757 unprocessed images 186 

using the RFPOM (Table 1).  187 

 We selected our environmental covariates, listed in Table 2, based on the sufficiency of 188 

the data and the potential significance of each variable as an indicator of hard coral habitat 189 

suitability (e.g., Dolan et al. 2008; Rooney et al. 2010; Costa et al. 2012). We defined summer 190 

and winter seasons as May – September and October – April, respectively (Kay 1994, Rooney et 191 

al. 2010).We delineated significant wave height estimates and mean current velocities by season 192 

and direction. We extracted and averaged significant wave height data from 144 days per season 193 

of twenty–four hour PacIOOS Simulating WAves Nearshore (SWAN) regional wave models 194 

estimated values for 2011 – 2015 (see website: http://oos.soest.hawaii.edu/las/). Mean current 195 

velocity values were available from 0:00 – 21:00 every three hours for all months from 2013 – 196 

2015; for each season and direction, 48 mean current velocity values were extracted and 197 

averaged from the PacIOOS Regional Ocean Modeling System (see website: 198 

http://oos.soest.hawaii.edu/las/). This model has a 4 km horizontal resolution with 30 vertical 199 

levels across seafloor terrain. We sourced monthly MODIS Aqua Chlorophyll a averages for the 200 

year 2012 from the NOAA PIFSC OceanWatch Live Access Server (see website: 201 

http://oceanwatch.pifsc.noaa.gov/). Using the Morel (2007) method, we applied the following 202 

cubic polynomial equation to obtain logged euphotic depth:  203 
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2 3
10 1.524  0.436   0.0145  0.018l 6og eu x x xZ − − += ,                (1) 214 

where x represents the measured Chlorophyll a concentrations (mg/m3) at sea surface. Euphotic 215 

depth is the depth at which the level of photosynthetically active radiation (PAR), a limiting 216 

factor for many heterotrophic mesophotic corals, is at 1% of surface PAR. In total, we used 14 217 

environmental predictor variables to shape our model (Table 2) (Supplementary material, Figs. 218 

A1 – A5). 219 

 The spatial resolution of the bathymetry data was 50 m x 50 m for all islands. We 220 

resampled the bathymetry raster to a cell size of 25 m x 25 m consistent with a conservatively 221 

estimated + 25 m positioning error margin observed at a depth of ~800 m. We estimated an 222 

average camera swath value of 3.24 m (range 2.45 – 4.54 m) based on previous measurements 223 

from 19 still image screenshots taken when the submersible was located at different heights 224 

above the seafloor. Our geopositional error for the images is + 5 m and we can expect that the 225 

location data are within a circle with a 10 m diameter. Our observation sampling area is 226 

projected out from the location area a distance of < 5m. Addition of a conservative 5 m 227 

observation area buffer to the location error area produces an observational data position of + 20 228 

m from the given coordinates of a data point.  229 

 We removed all subsampling within cells due to slight variations in camera angles or 230 

vessel speed through a point–to–raster conversion. We categorized all cells with > 1 presence 231 

observation as "present" cells and all cells with only absence observations as "absent" cells. This 232 

removal of multiple observations within the same 25 x 25 m pixel effectively eliminated 233 

pseudoreplication within the data. We used ArcToolbox and the Benthic Terrain Modeler 234 

Toolbox to calculate slope, curvature, rugosity, and aspect (compass direction) values (Wright et 235 

al. 2012). We performed a spatial join based on proximity to observation point data to assign 236 
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values for surface Chlorophyll a concentration, mean current velocities, distance from shore, and 242 

significant wave heights.  243 

 244 

Regression methods 245 

 246 

 In describing the relationship between a response variable and one or more predictor 247 

variables, we use a logistic regression model because the response variable is dichotomous 248 

(Hosmer and Lemeshow 2004). The ordinary logistic regression (OLR) model is defined as: 249 

1expit( )
1 exp( )

θ µ
µ

= =
+ −

 ,               (2) 250 

whereθ is the probability that the species of interest is present ( 1)y = , and 1 θ−  is the 251 

probability it is absent ( 0)y = .The logit function is the inverse of the expit function, and 252 

0 1 1logit( ) ... n nx xθ µ β β β= = + + +                 (3) 253 

is the linear sum of predictor variables, 1 2, ,..., nx x x , with intercept 0β and regression 254 

coefficients 1 2, ,..., nβ β β . In the language of generalized linear models (GLM), OLR is said to 255 

have the logit function as its link function and the expit function as its inverse link function. 256 

Logistic regression provides a straightforward, meaningful interpretation of the relationship 257 

between a dichotomous dependent variable y  and a set of predictor variables (Allison 2001). 258 

 Despite the popularity of OLR, it may yield extremely biased results when an imbalance 259 

exists in the proportion of the response variable data (e.g., such as in our case, when260 

0 1y y= >> = ) (Van Den Eeckhaut et al. 2006). King and Zeng (2001) coined the term "rare 261 

events logistic regression" to describe their corrective methodology in dealing with unbalanced 262 
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binary event data: 263 

 264 

1. The first step requires the selection of a representative sample. Though researchers 265 

generally prefer to work with more uniform response data (e.g., Liu et al.2005), selection 266 

of an unusually high proportion of the rare event (in this case, 1y = ) to "balance" the 267 

dataset and increase θ estimates will yield nonsensical results. We divided the data in 268 

half to create our training and testing datasets and checked that each set of observations 269 

had an approximately equal proportion ( y ) of presence observations to better reflect the 270 

"true state" of the full dataset. 271 

2. The second step rectifies any bias that might be introduced when dividing the dataset. 272 

This prior correction on the intercept ( 0β ) can be calculated as: 273 

0 0
1ˆ ln

1
y
y

τ
β β

τ

⎡ ⎤⎛ ⎞−⎛ ⎞= − ⎢ ⎥⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠⎣ ⎦
%  ;               (4)       274 

here,  0β̂   is the corrected intercept, 0β%  is the uncorrected intercept, τ  is the true 275 

proportion of 1s in the population; and y   is the observed proportion of 1s in the training 276 

sample.  277 

3. The third step rectifies any underestimation of the  probabilities of the independent 278 

variables 1...nβ  from the substitution of the intercept value, obtained as: 279 

( 1)i i iP y Cθ= = +%  ,               (5)        280 

where the correction factor iC  is given by: 281 

  (0.5 ) (1 ) ( )i i i i iC XV Xθ θ θ β ʹ= − −%% % %  ,                (6)       282 

where X is a 1 ( 1)n× + vector of values for each independent variable iβ , X ʹ is the 283 
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transpose of X , and ( )iV β% is the variance covariance matrix. We obtained the improved 284 

probability estimates through estimation of iβ via iβ% , thereby considered "mostly" 285 

Bayesian (King and Zeng 2001). Our priors in this case would be uninformative, which 286 

means that we lack sufficient knowledge to estimate the probability distributions of our 287 

data and our parameter of interest, θ . This is often the case when working with sparse 288 

ecological datasets.  As the uninformative prior for a regression coefficient with domain 289 

( , )∞ −∞  is uniform, a full Bayesian estimation with uninformative priors is equivalent to 290 

a traditional logistic regression. Therefore, this correction is effectively a correction to the 291 

approximate Bayesian estimator, and its addition improves our regression by lowering the 292 

mean squared error of our estimates. We implemented this rare events logistic regression 293 

using the 'Zelig' package run in R (Imai et al. 2008, Choirat et al. 2015).  294 

 295 

 We constructed a correlation scatterplot matrix per coral genus to observe correlation 296 

levels between all variables. In choosing which highly correlated variables to exclude from the 297 

analyses, we followed the criteria outlined by Dancey and Reidy (2004) and Tabachnick and 298 

Fidell (1996), who suggest a cutoff correlation value of 0.7. Only mean significant wave height 299 

parsed by season consistently overreached this threshold; the covariate that was least correlated 300 

with the response variable was removed. We excluded predictors that lacked a clear distribution 301 

pattern or correlated minimally (< 0.05) with the response variable. 302 

 One of the more studied habitat preferences of Leptoseris and Montipora is the influence 303 

of depth on their distribution (Rooney et al. 2010, Costa et al. 2012, Kahng et al. 2010). 304 

Increasing depths often correlate with greater distance from shore. The inclusion of squared 305 

terms (e.g., 2
2 1x x=  ) in our regression equation 0 1 1expit( ) ... n nx xθ β β β= + + +  permits the 306 
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logistic curve to reflect the bell curve shape expected in plotting the distribution of these animals 308 

across a range of depths or distance from shore. In order to account for these trends, we added 309 

Depth Squared and Distance Squared as potential variables for consideration in our final model. 310 

As depth or distance increases, its square increases even more rapidly, allowing the squared term 311 

to eventually dominate and "pull down" the probability curve. 312 

 We withheld 50% of our information per genus as testing (i.e., validation) data. Using the 313 

remaining 50% (our training data), we performed the rare events corrected logistic regression 314 

described above. Using an exhaustive iterative algorithm (Calcagno and Mazancourt 2010), we 315 

modeled all possible combinations of included covariates. We ranked models using the corrected 316 

Akaike information criterion (AICc) (Hurvich and Tsai, 1989), which is considered an excellent 317 

comparative measurement of model strength, especially for sparse datasets. For both genera, the 318 

models with the lowest (lowest = best) AICc scores were lower than the "second best" AICc 319 

scores by at least 2 (i.e., Δ AICc> 2), indicating strong preference for the best model (e.g., 320 

Hayward et al. 2007).  321 

 In an ideal and unrealistic study, all biotic and abiotic components of a model would be 322 

homogenous and evenly distributed across a sampling space. Our sampling design includes 323 

overlapping submarine dive tracks and the inherent heterogeneity of the marine environment, 324 

which could problematically violate our model’s underlying assumption regarding the 325 

independence of our biological and environmental data. We removed all instances of 326 

pseudoreplication (multiple observations in one grid cell) when we assigned each grid cell to a 327 

category of “corals present” or “corals absent”. After we removed subsampling within our 328 

observational data, we checked for the presence of clustering, or spatial autocorrelation, within 329 

these data. Uncorrected spatial autocorrelation between observational data points confounds and 330 
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undermines any biological inferences drawn from model predictions.  334 

We checked small–scale, local spatial autocorrelation using Geary's C statistic (Geary 335 

1954), based on the deviations in the responses of observation points with one another: 336 

2

2
0

( )
1

2 ( )

ij i j
i j

i
i

w x x
nC
S x x

−
−

=
−

∑∑

∑
.                (7) 337 

Here, x is the variable of interest, i and j  are locations (where i j≠  ), ijw represents the 338 

components of the weight matrix, and 0S  is the sum of the components of the weight matrix. 339 

Geary’s C ranges from 0 (maximal positive autocorrelation) to 2 for high negative 340 

autocorrelation. In the absence of autocorrelation, its expectation is 1 (Sokal and Oden 1978).  341 

 We also examined global spatial autocorrelation using Moran's I statistic, which 342 

measures cross–products of deviations from the mean (Moran 1950): 343 

2
0

( )( )

( )

ij i j
i j

i
i

w x x x x
nI
S x x

− −

=
−

∑∑

∑
.                (8) 344 

Moran's I values generally range from –1 to 1, with 0 as the expectation when no spatial 345 

autocorrelation is present.  346 

 We also verified the spatial independence of our observational point data using a 347 

semivariogram, which is a graphical method of quantifying spatial correlation in a set of points 348 

(Figs. 2 – 3). We selected our theoretical semivariogram to fit the empirical semivariance using 349 

the ordinary least squares (OLS) method (Jian et al. 1996, Kendall et al. 2005). The spherical 350 

model had the best quantitative fit based on OLS estimates (Table 3). For each dataset, the low 351 

thresholds at which semivariance stopped increasing indicated the almost complete absence of 352 

spatial autocorrelation for each genus. 353 
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 358 

Model assessment 359 

 360 

 Evaluation of the rare events logistic regression model output is more complicated than 361 

for the typical linear model. For example, R2 values, although calculated, have little applicability 362 

to logistic regressions and are therefore ignored (Menard 2000, Peng et al. 2002). Sample size 363 

and selected threshold largely influence the results of the Hosmer and Lemeshow goodness–of–364 

fit test (Hosmer et al. 1997). Accordingly, we use model classification accuracy as a second 365 

measure of goodness–of–fit (in addition to Δ AICc). We want to maximize true positives (TP) 366 

and true negatives (TN) while minimizing false positives (FP) and false negatives (FN). The 367 

sensitivity–specificity sum maximization approach (Cantor et al. 1999) therefore maximizes 368 

max
TP TNSS

TP FN TN FP
= +

+ +
,               (9) 369 

which is equivalent to finding the point on the ROC (receiver operating characteristics) curve at 370 

which the tangent slope is 1, indicating the optimal cutoff point at which "cost" (here, the 371 

number of FN and FP) and "benefit" (the number of TN and TP) is balanced. We chose this 372 

technique because we aim to identify regions devoid of hard corals as well as regions deemed 373 

potentially suitable for habitation. 374 

 ROC curves plot the true positive test rate against the false positive test rate across 375 

different theta cutoff points (Hadley and McNeil 1982). We calculated values for sensitivity and 376 

specificity for threshold increments of 0.005 + 1 standard deviation of the rounded mean for each 377 

model. Because each theta threshold value varied based on the genus and model, the threshold–378 

independent area under the curve (AUC) test statistic best reflects the predictive accuracy of the 379 
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model.  387 

 In addition to creating ROC curves, we also took into account the overall prediction 388 

success of each model, given as: 389 

TP TNOPS
TP TN FP FN

+
=

+ + + .               (10)
 390 

Overall prediction success is a measure of total correct classification of both present and absent 391 

observations. While this is a good final assessment of model classification error, consideration of 392 

the prediction success alone is not a viable evaluation method when binary data is highly 393 

imbalanced, as a value given by this method may primarily represent model success in 394 

identifying the most common observation type (Fielding and Bell 1997). We plotted our 395 

sensitivity and specificity values on a ROC curve to show how each model performed relative to 396 

chance (Fig. 4). All models fall in the range 0.7 < AUC < 0.9, which indicates good 397 

discrimination and reliability of model predictions (Hosmer and Lemeshow 2004).  398 

 We also created maps of individual and summed predicted occurrence probabilities of 399 

both coral genera across the main Hawaiian Islands and ran a hotspot analysis using the ArcGIS 400 

Getis–Ord Gi* Hotspot Analysis tool. We constructed a polygon fishnet composed of 1 x 1 km 401 

cells which encompassed all islands. We summed each 25 x 25 m raster cell value for probability 402 

of Leptoseris occurrence and probability of Montipora occurrence. We performed a spatial join 403 

of raster cell values within each polygon for an average value of summed probabilities. The 404 

Getis–Ord Gi* statistic identifies clusters within these polygons that display values higher in 405 

magnitude than random chance would permit. The Getis–Ord local statistic is given as: 406 
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Here, ,i jw  represents the spatial weights between features i and j ; n  represents the total number 414 

of features; jx  is the attribute value for feature j ;  
1

1 n

j
j

X x
n =

= ∑  ; and 2 2

1

1 ( )
n

j
j

S x X
n =

= −∑ . 415 

 416 

Results 417 

 418 

 Geary’s C test statistic is a measure of local (small–scale) spatial autocorrelation; in the 419 

absence of correlation, 1 is the expected value of Geary’s C. Moran’s I is a measure of global 420 

(large–scale) spatial autocorrelation; in the absence of correlation, a value of 0 is expected for the 421 

Moran’s I test statistic. For our Leptoseris dataset, Geary's C = 0.990; for our Montipora dataset, 422 

Geary's C = 0.996. For our Leptoseris dataset, Moran's I =0.006; for our Montipora dataset, 423 

Moran's I = 0.003. These values indicate there was no local clustering or global spatial 424 

autocorrelation within either dataset. We observed negligible levels of autocorrelation up to ~100 425 

m for Montipora (Fig. 3).By ensuring that spatial autocorrelation is not present in our data, we 426 

do not violate the assumption that our response data are independently observed, which enables 427 

us to draw robust conclusions about the ecological factors influencing the distribution of these 428 

coral genera within the mesophotic zone across the main Hawaiian Islands. 429 

 The OLR covariate coefficients were modified using the rare events corrections proposed 430 

by King and Zeng (2001), resulting in a change in predictive power (Table 4). Rare events 431 

corrected models usually performed better than the uncorrected models, in terms of improved 432 
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specificity and prediction success. Our sensitivity values for both corrected models were slightly 442 

lower than the corresponding OLR sensitivities, but in each case, specificity and prediction 443 

success values were improved. Additionally, standard errors of the coefficient estimates were 444 

lower for corrected models than for uncorrected models (Supplementary material, Tables A1– 445 

A4). 446 

 Leptoseris corals inhabit mesophotic regions with high slope and rugosity values, high to 447 

moderate perennial current flow, and their occurrence peaks around 100 m (Supplementary 448 

material, Table A3, Figs. A6 – A10). Montipora corals peak in occurrence around 60 m and 449 

colonize regions less exposed to high energy winter swells (Supplementary material, Table A4, 450 

Figs. A11 – A12). Predicted presence probability values (θ ) averaged 0.051 for Leptoseris and 451 

0.040 for Montipora models in the validation data (Figs. 5 – 6). These values agree well with the 452 

actual presence frequencies in that data (0.052, 0.042). To better interpret these realistically low 453 

theta values, we chose a theta threshold to transform the probability estimates to 454 

presence/absence values. This is standard practice when examining the results of a rare events 455 

logistic regression, but less common when performing OLR (Liu et al. 2005, Bai et al. 2011). 456 

Objective selection of a theta threshold on a per–model basis is more scientifically sound than, 457 

for example, an arbitrary assignment of 0.5 (Cramer 2003). The transformed model is valid if a 458 

threshold value yields a high percentage of correctly classified observations and a low number of 459 

FP and FN observations (Gobin et al. 2001).We selected an appropriate threshold for each model 460 

(Table 4) in order to maximize maxSS (Liu et al. 2005).  461 

Our final hotspot maps show the results of our analysis for Leptoseris, Montipora, and 462 

both genera combined across all islands (Figs. 7 – 9). We show hotspots of habitat suitability for 463 

both coral genera in red for areas of highest suitability and blue for areas of lowest suitability. 464 
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We identify a cell as a hotspot when the sum of its value and the values of its nearest neighbors 467 

is much higher or lower than the mean over all cells. When the local sum of a cluster is very 468 

different from the expected value, a statistically significant hotspot is identified (Gi* statistic > 469 

1.96 or Gi* statistic < –1.96). Neither genus clearly dominated the summed probabilities hotspot 470 

identification across any of the islands. Large Leptoseris hotspots were identified in southwest 471 

Molokaʻi, northeast Oʻahu, west Hawaiʻi, and the central ʻAuʻau Channel. Montipora hotspots 472 

were identified in east Niʻihau, southwest Kauaʻi, west and south Oʻahu, west Hawaiʻi, and the 473 

central ʻAuʻau Channel. 474 

 475 

Discussion 476 

 477 

 In this study, we used logistic regression with rare events corrections to predict the 478 

habitat preferences of two dominant scleractinian coral genera across the entire mesophotic zone 479 

surrounding the main Hawaiian Islands. The habitat preferences of Montipora in the mesophotic 480 

zone appear distinct from those of Leptoseris. Montipora prefers the middle mesophotic zone (50 481 

– 80 m) of reefs less exposed to high–energy winter swells. Leptoseris prefers steep, rugose 482 

slopes and the lower mesophotic zone (> 80 m) in regions of high year–round current flow. 483 

 484 

Important environmental covariates 485 

 486 

Predicted Montipora presence peaks at about 60 meters (median occurrence probability = 487 

7.5%); Leptoseris presence peaks at about 100 meters (median occurrence probability = 7.5%). 488 

These predictions are consistent with the inferences of Rooney et al. (2010), which separates 489 
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mesophotic reefs into three distinct depth sections: upper (30 – 50 m), branching/plate dominated 495 

(50 – 80 m), and Leptoseris dominated (> 80 m). The depth at which suitability peaks for 496 

Leptoseris occurs at a range where steep ridges and drop–offs are plentiful in our study region, 497 

and therefore the mean preferred depth may be prone to slight overestimation. 498 

 In addition to depth, four environmental covariates appeared to influence the distribution 499 

of Leptoseris: rugosity, slope, summer mean current velocity (northward), and winter mean 500 

current velocity (eastward). Scleractinians easily colonize environments that are relatively calm 501 

and rugose due to the larger amount of available surface area, and this positive correlation was 502 

reflected in our model. Leptoseris habitat preference was also positively associated with slope, 503 

which was not observed for Montipora. Corals that inhabit the upper mesophotic zone may be 504 

more susceptible to damage from debris displaced by high wave energy, and are therefore less 505 

likely to colonize steep slopes (e.g., Harmelin–Vivien and Laboute 1986, Bridge and Guinotte 506 

2013). The deeper distribution of Leptoseris may protect it from damage related to wave 507 

intensity, allowing it to colonize slopes (e.g., White et al. 2013). Another possibility is that the 508 

model is picking up drop–offs from masses accreted during the last glacial maximum. These 509 

steep drop–offs are present between 90 – 120 m in the Leptoseris–dominated lower mesophotic 510 

zone (Yokoyama et al. 2001, Webster et al. 2004). 511 

 Leptoseris also favors well–flushed areas exposed to year–round moderate current flow 512 

(i.e., up to 0.3 m/s). The plate–like morphology of Leptoseris corals effectively boosts sunlight 513 

capture by its symbiotic zooxanthellae and zooplankton capture by the corals themselves, but it 514 

also makes the coral vulnerable to smothering by sediment accumulation (Bak et al. 2005, 515 

Bongaerts et al. 2010, Marcellino et al. 2013). The success of Leptoseris corals in areas of 516 

moderate current flow may be related to the improbability of sediment settlement and 517 
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accumulation. While the model did not capture the same effect of current flow on Montipora 529 

distribution, we recognize that the morphology of some Montipora species is extremely similar 530 

to that of Leptoseris. We do not expect either genus to readily colonize highly turbid regions, 531 

especially given that certain species of heterotrophic Montipora are thought to exploit strong 532 

currents to meet their energy requirements (Grottoli et al. 2006, Rooney et al. 2010).  533 

 Substrate hardness, a variable known to influence coral colonization, was notably absent 534 

from each model. Substrate hardness values were derived from acoustic backscatter imagery 535 

readings. The base resolution of these readings (50 m x 50 m) was not sufficiently detailed for 536 

purposes of this analysis. We noted plentiful coral colonization along larger surfaces like lava 537 

fingers, the hardness of which would be detectable by backscatter surveys, as well as across 538 

small rock fragments strewn across a sand flat, which would be obscured by the softness of the 539 

surrounding benthos. We can conclude that measurements of benthic hardness are not detailed 540 

enough for predictive modeling purposes at a 25 x 25 m resolution. 541 

 We emphasize that the purpose of this study was to build a pan–Hawaiʻi predictive 542 

habitat map for two dominant coral genera within the mesophotic zone. Because the scope of this 543 

study included all main Hawaiian Islands, we were constrained by the coarseness of available 544 

full–coverage environmental data. As we build on this analysis, we plan to use our maps to 545 

identify areas of interest for further study at higher resolution and to include additional variables 546 

currently only available in certain regions, such as light intensity and temperature at depth. For 547 

example, our predictive and hotspot maps identify Penguin Bank (southwest Molokaʻi) as 548 

particularly suitable for Leptoseris colonization, which has not been verified by video or photo 549 

records. High resolution backscatter data (1 x 1 m) exist for this region, and incorporation of 550 

these data into new analyses of subsets of our study area may refine our conclusions.  551 
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 560 

Error sources and model reliability 561 

 562 

We examined two types of error (false negatives and false positives) and analyzed our 563 

models without giving preference to either one. This approach is widely accepted as the best 564 

method of overall error minimization (e.g., Liu et al. 2005, Fielding and Bell 1997). Rare events 565 

corrected models for both Leptoseris and Montipora achieved levels of specificity and sensitivity 566 

well above the null, indicating good predictive power. Additionally, both models attained about 567 

74% overall prediction success. We assumed coral detectability was constant across the study 568 

region and that we can therefore consider the true absence observations to be reliable indicators 569 

of a potentially unsuitable habitat for corals. For each genus, the model tended to slightly over–570 

predict presence observations; large numbers of false positives lowered sensitivity values. This is 571 

inevitable in the analysis of severely imbalanced or sparse binary data; the ongoing addition of 572 

presence observations to the dataset will improve overall model classification accuracy. 573 

 While the consistent identification of southern coastal areas as suitable is reliable, the 574 

comparatively infrequent selection of northern coasts is likely due to the source of the model–575 

building observations. The vast majority of mesophotic exploration has been along southern 576 

coastlines, which is often where waters are calmest in Hawaiʻi. It is speculated that because 577 

mesophotic corals are more shielded from winter long–period wave energy than their shallow 578 

water counterparts, they are able to flourish at depth along northern coastlines (Grigg 1998, 579 

Rooney et al. 2010). The addition of data sourced from northern expeditions would likely 580 

improve predictive power of the model across north–facing coastlines (Alin 2010).  581 

 We acknowledge that the original data were not collected in a standardized fashion (e.g., 582 
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variation in vessel traveling speed or differences in data collection vessel and/or quality). Our 587 

careful exclusion of overlapping observation points within each 25 x 25 m rectified this sampling 588 

design flaw as much as possible and eliminated pseudoreplication. 589 

 590 

Distinctions between coral genera 591 

 592 

 Our Montipora model was simpler than the Leptoseris model in that the only variable 593 

included other than depth was winter significant wave height. Though uncertainty was highest at 594 

lower values of significant wave height, Montipora demonstrated a preference in colonizing 595 

habitats that experience lower significant wave height during winter. This preference contrasts 596 

with Montipora species in shallow waters that were more likely to be observed in higher wave 597 

height environments (Franklin et al. 2013). This likely influenced the inability of the model to 598 

identify any suitable habitat around Niʻihau, where the average winter significant wave height 599 

equaled 1.78 meters, almost double the mean significant wave height of our model training data 600 

(0.91 m). Though mesophotic corals are generally thought to be exempt from the growth 601 

limitations faced by shallow water corals in regions of high wave energy, prolonged wave 602 

intensity has been shown to negatively affect the colonization of upper mesophotic scleractinians, 603 

especially in sloping areas prone to debris avalanches (Bridge and Guinotte 2013, Kahng et al. 604 

2014). Continuation of this work might include a more in–depth examination of the relationship 605 

of this coral genus with the combined effects of slope of available substrate and exposure to 606 

wave energy. 607 

 We found no records of Montipora presence when processing our Oʻahu dataset, which 608 

probably contributed to the very low predicted mean probability of Montipora occurrence there 609 
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(0.1%). We believe this is due in part to the sampling pattern across south Oʻahu; we recorded 612 

62.3% of all observations processed for this region at a depth of 75 m or greater. Montipora 613 

prevalence is greater in the upper–to–middle mesophotic zone, and the relative deepness of the 614 

Oʻahu dives likely influenced their nonappearance in this portion of the dataset. We emphasize 615 

that the dearth of Montipora observations around Oʻahu is an artifact of the dataset we used to 616 

construct our model; Montipora corals have been observed in mesophotic depths across Oʻahu 617 

(e.g., Fig. 4b, Rooney et al. 2010).The mean significant wave height across the mesophotic zone 618 

was lower across the southern and western coasts (1.50 m) than that observed across the northern 619 

and eastern coasts (2.37 m) of the island. As at Niʻihau, we assume that this high northern and 620 

eastern average height, coupled with the absence of Montipora presences in Oʻahu in the training 621 

dataset, greatly impacted our model's ability to detect areas of suitable habitat around the island. 622 

The results of our Getis–Ord Gi* Hotspot Analysis corroborate the findings of Costa et al. (2015), 623 

who used Maximum Entropy software to predict the highest occurrence probability of Leptoseris 624 

and Montipora in the middle and mid–coastal ʻAuʻau Channel, respectively (Costa et al. 2015). 625 

 The factors influencing the distribution of coral species in shallow and mesophotic 626 

habitats differ. One of the fundamental drivers of the occurrence and abundance of coral species 627 

on shallow reefs in Hawaiian waters is wave stress (Dollar 1982, Grigg 1983, Franklin et al. 628 

2013). Given the depth range of MCEs, wave stress is unlikely to serve as a direct influence on 629 

coral occurrence but may provide secondary effects as wave events lead to debris reaching 630 

MCEs (Kahng 2014). Furthermore, the decoupled effects of environmental drivers on shallow 631 

and mesophotic zones extend between the islands. In shallow reef communities Montipora 632 

species become relatively more dominant from Hawaii Island to Niʻihau (Franklin et al. 2013), 633 

but appear to peak in occurrence in the mesophotic zone of Maui Nui. While strong 634 
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environmental drivers influence the distributions of shallow corals, the occurrence patterns of 643 

mesophotic corals may reflect a more stable environment with an increased influence of biotic 644 

factors such as interspecific competition in a habitat zone with limited light and space resources 645 

available. 646 

 647 

Conclusions 648 

 649 

 We implemented a rare events corrected logistic regression to determine the most 650 

influential environmental predictors of Montipora and Leptoseris colonization in the mesophotic 651 

zone. Habitat preference differences between these genera appear distinct and multi–faceted. 652 

Montipora thrives in the middle mesophotic zone in areas sheltered from high intensity winter 653 

swells, while Leptoseris tends to colonize steep, rugose, well–flushed areas in the lower 654 

mesophotic zone. Improved understanding of the distribution of mesophotic corals will enable 655 

resource managers to propose the construction of seafloor power cables and other offshore 656 

infrastructure in areas less likely to contain coral communities. Results will likewise facilitate 657 

efforts to protect these communities by supplementing scientific dive planning and strategies for 658 

conservation, such as marine spatial planning. 659 
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