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The implementation of rare events logistic regression to
predict the distribution of mesophotic hard corals across the
main Hawaiian Islands
Lindsay M. Veazey, Erik C. Franklin, Christopher Kelley, John Rooney, L. Neil Frazer, Robert J. Toonen

Predictive habitat suitability models are powerful tools for cost-effective, mathematically
robust ecological assessment. The aim of this study was to develop a predictive habitat
suitability model for two genera (Leptoseris and Montipora) of mesophotic scleractinian
corals across the main Hawaiian Islands. The mesophotic zone (30 - 180 m) is challenging
to reach, and therefore historically understudied, because it falls between the maximum
limit of SCUBA divers and the minimum typical working depth of submersible vehicles.
Here, we implement a logistic regression with rare events corrections to account for the
scarcity of presence observations within the dataset. These corrections reduced the
coefficient error and improved overall prediction success (73.6% and 74.3%) for both
original regression models. Predictions were translated to spatially independent habitat
suitability maps of the main Hawaiian Islands at 25 m2 resolution. Our maps are the first of
their kind to use extant presence and absence data to examine the habitat preferences of
these two dominant mesophotic coral genera across Hawaiʻi.
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22 Abstract 

23 Predictive habitat suitability models are powerful tools for cost-effective, mathematically 

24 robust ecological assessment. The aim of this study was to develop a predictive habitat suitability 

25 model for two genera (Leptoseris and Montipora) of mesophotic scleractinian corals across the 

26 main Hawaiian Islands. The mesophotic zone (30 - 180 m) is challenging to reach, and therefore 

27 historically understudied, because it falls between the maximum limit of SCUBA divers and the 

28 minimum typical working depth of submersible vehicles. Here, we implement a logistic regression 

29 with rare events corrections to account for the scarcity of presence observations within the dataset. 

30 These corrections reduced the coefficient error and improved overall prediction success (73.6% 

31 and 74.3%) for both original regression models. Predictions were translated to spatially 

32 independent habitat suitability maps of the main Hawaiian Islands at 25 m2 resolution. Our maps 

33 are the first of their kind to use extant presence and absence data to examine the habitat preferences 

34 of these two dominant mesophotic coral genera across Hawaiʻi.

35

36 Introduction

37

38 Consistent and pervasive deterioration of marine ecosystems worldwide highlights 

39 significant gaps in current management of ocean resources (Foley et al. 2010, Douvere 2008, 

40 Crowder and Norse 2008). One such gap is the data required for informed marine spatial 

41 planning, a management approach that synthesizes information about the location, anthropogenic 

42 use, and value of ocean resources to achieve better management practices such as defining 

43 marine protected areas and implementing harvesting restrictions (Jackson et al. 2000, Larsen et 

44 al. 2004). The creation of spatial predictive models for improved marine planning is a relatively 
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45 low-cost and non-invasive technique for projecting the effects of present-day human activities on 

46 the health and geographic distribution of marine ecosystems.

47 Defining and managing the biological and physical boundaries of ecosystems is a 

48 complicated but essential component of marine spatial planning (McLeod et al. 2005). The 

49 heterogeneous nature of ecological datasets can require the time-intensive development of 

50 problem-specific ecosystem models (Cramer et al. 2001, Tyedmers et al. 2005). Scientists 

51 frequently use straightforward, easy-to-implement regression methods to analyze complex 

52 datasets. The development of software accessible to relative novices has contributed to the 

53 growing popularity of regression methods (e.g., Lambert et al. 2005, Tomz et al. 2003). 

54 Here, we employ a logistic regression with rare events corrections (King and Zeng 2001) 

55 to analyze the presence and absence data of two coral genera (Leptoseris and Montipora) and 

56 thus develop a predictive framework for the geographic mapping of mesophotic coral reef 

57 ecosystems across the main Hawaiian Islands. Mesophotic coral ecosystems (MCEs), located at 

58 depths of 30 - 180 meters, are extensions of shallow reefs and are known to harbor many of the 

59 same reef species present at shallower depths, and are also oases of endemism in their own right 

60 (Grigg 2006, Lesser et al. 2010, Kane et al. 2014, Hurley et al. 2016). MCE habitats are formed 

61 primarily by low light tolerant macroalgae, sponges, and hard corals (Lesser et al. 2009). 

62 Ecological studies in the mesophotic zone are sharply limited in contrast to the shallower 

63 photic zone more accessible by open circuit SCUBA, but steady advances in diving, computing, 

64 and remotely operated vehicle technologies continue to facilitate interdisciplinary mesophotic 

65 research (Pyle 1996, Puglise et al. 2009). Mesophotic research in Hawaiʻi has been conducted 

66 primarily in the ʻAuʻau Channel, Maui, a relatively shallow, semi-enclosed waterway between 

67 the islands of Maui and Lānaʻi that is among the most geographically sheltered and accessible 
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68 areas in the Hawaiian Archipelago, and as a result, much of the existing video and photo records 

69 of MCEs are from this area. This concentration of historic surveys highlights the importance of 

70 creating a pan-Hawaiʻi predictive habitat model to identify likely areas of MCEs across 

71 unexplored areas of Hawaiʻi's mesophotic zone. Increasing our knowledge about the habitat 

72 preferences of the deep extensions of shallow coral species is critical given that approximately 

73 40% of shallow (< 20 m) reef-building corals face a heightened extinction risk from the effects 

74 of climate change (Carpenter et al. 2008). Here, we model the habitat associations of mesophotic 

75 scleractinian corals because of both their intrinsic biological value as well as their potential to 

76 recolonize such globally threatened shallow reef areas and offer refuge to mobile reef organisms 

77 (Bongaerts et al. 2010, Kahng et al. 2014). 

78

79 Materials and methods

80

81 Organismal and environmental data

82

83 The Hawaiʻi Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries 

84 Science Center (PIFSC) provided video and photo records from MCEs in the Hawaiian Islands 

85 for our analyses. This imagery came from 19 dives conducted using submersibles including 

86 remotely operated vehicles (ROV), autonomous underwater vehicles (AUV), and tethered optical 

87 assessment devices (TOAD) in the ʻAuʻau Channel, Maui (13 dives) and two other 

88 geographically distinct regions: south Oʻahu and southeast Kauaʻi (6 dives). We analyzed dive 

89 video using the Coral Point Count with Excel extensions (CPCe) tool (Kohler and Gill 2006) in 

90 combination with a modified PIFSC 2011 mapping protocol (PIBHMC 2015). PIFSC has used 
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91 this type of combined analysis, referred to as the random five point overlay method (RFPOM), to 

92 process coral reef ecosystem benthic imagery throughout the U.S. Pacific Islands Region since 

93 August 2011, and our use of it ensures database consistency with regions processed prior to this 

94 study. In an effort to evaluate the accuracy of RFPOM, we counted all corals in 200 randomly 

95 selected screengrabs and found that this method underestimates corals by 2.4% in these images.

96 We recorded snapshots every 30 seconds for the duration of each dive video. In addition 

97 to an existing database of 40,193 records from dives in the ʻAuʻau Channel, 3517 new snapshots 

98 were collected from the additional dives across south Oʻahu and Kauaʻi (Fig. 1). Of these 43,710 

99 total images, 20,980 were discarded because either: 1) crucial observational data were absent, 2) 

100 they were redundant due to an extended stationary period, or 3) they fell outside the study depth 

101 range of 30 – 180 m. Of the remaining 22,714 records, we analyzed 2757 unprocessed images 

102 using the RFPOM (Table 1). 

103 We selected our environmental covariates based on the sufficiency of the data and the 

104 potential significance of each variable as an indicator of hard coral habitat suitability (e.g., Dolan 

105 et al. 2008; Rooney et al. 2010; Costa et al. 2012) (Table 2). We defined summer and winter 

106 seasons as May – September and October – April, respectively (Kay 1994, Rooney et al. 

107 2010).We delineated significant wave height estimates and mean current velocities by season 

108 and direction. We extracted and averaged significant wave height data from 144 days per season 

109 of twenty-four hour PacIOOS Regional Ocean Modeling System values for 2011 - 2015 (see 

110 website: http://oos.soest.hawaii.edu/las/). This model has a 4 km horizontal resolution with 30 

111 vertical levels across seafloor terrain. Mean current velocity values were available from 0:00 - 

112 21:00 every three hours for all months from 2013 - 2015; for each season and direction, 48 mean 

113 current velocity values were extracted and averaged. We sourced monthly MODIS Aqua 
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114 Chlorophyll a averages for the year 2012 from the NOAA PIFSC OceanWatch Live Access 

115 Server (see website: http://oceanwatch.pifsc.noaa.gov/). Using the Morel (2007) method, we 

116 applied the following cubic polynomial equation to obtain logged euphotic depth: 

117               ,                             (1)2 3
10 1.524  0.436   0.0145  0.018l 6og eu x x xZ   

118 where represents the measured Chlorophyll a concentrations (mg/m3) at sea surface. Euphotic x

119 depth is the depth at which the level of photosynthetically active radiation (PAR), a limiting 

120 factor for many heterotrophic mesophotic corals, is at 1% of surface PAR. In total, we used 14 

121 environmental predictor variables to shape our model (Table 2) (Supplementary material, Figs. 

122 A1 - A5).

123 The spatial resolution of the bathymetry data was 50 m x 50 m for all islands. We 

124 resampled the bathymetry raster to a cell size of 25 m x 25 m consistent with a conservatively 

125 estimated + 25 m positioning error margin observed at a depth of ~800 m. We estimated an 

126 average camera swath value of 3.24 m (range 2.45 - 4.54 m) based on previous measurements 

127 from 19 still image screenshots taken when the submersible was located at different heights 

128 above the seafloor. Our geopositional error for the images is + 5 m and we can expect that the 

129 location data are within a circle with a 10 m diameter. Our observation sampling area is 

130 projected out from the location area a distance of < 5 m. Addition of a conservative 5 m 

131 observation area buffer to the location error area produces an observational data position of + 20 

132 m from the given coordinates of a data point. 

133 We removed all subsampling within cells due to slight variations in camera angles or 

134 vessel speed through a point-to-raster conversion. We categorized all cells with > 1 presence 

135 observation as "present" cells and all cells with only absence observations as "absent" cells. We 

136 used ArcToolbox and the Benthic Terrain Modeler Toolbox to calculate slope, curvature, 
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137 rugosity, and aspect (compass direction) values (Wright et al. 2012). We performed a spatial join 

138 based on proximity to observation point data to assign values for surface Chlorophyll a 

139 concentration, mean current velocities, distance from shore, and significant wave heights. 

140

141 Regression methods

142

143 In describing the relationship between a response variable and one or more predictor 

144 variables, we use a logistic regression model because the response variable is dichotomous 

145 (Hosmer and Lemeshow 2004). The ordinary logistic regression (OLR) model is defined as:

146              ,                                                 (2)
1expit( )

1 exp( )
 


 

 

147 where is the probability that the species of interest is present , and   is the  ( 1)y  1 

148 probability it is absent .The logit function is the inverse of the expit function, and( 0)y 

149                                                (3)0 1 1logit( ) ... n nx x        

150 is the linear sum of predictor variables, , with intercept  and regression 1 2, ,..., nx x x 0

151 coefficients . In the language of generalized linear models (GLM), OLR is said to 1 2, ,..., n  

152 have the logit function as its link function and the expit function as its inverse link function. 

153 Logistic regression provides a straightforward, meaningful interpretation of the relationship 

154 between a dichotomous dependent variable  and a set of predictor variables (Allison 2001).y

155 Despite the popularity of OLR, it may yield extremely biased results when an imbalance 

156 exists in the proportion of the response variable data ( ) (Van Den Eeckhaut et al. 0 1y y  

157 2006). King and Zeng (2001) coined the term "rare events logistic regression" to describe their 

158 corrective methodology in dealing with unbalanced binary event data:

PeerJ reviewing PDF | (2016:02:9070:0:1:NEW 13 Feb 2016)

Manuscript to be reviewed

tybsmith
Sticky Note
Just to clarify, is this only when the tends towards absence as opposed to consistent presence?



159

160 1. The first step requires the selection of a representative sample. Though researchers 

161 generally prefer to work with more uniform response data (e.g., Liu et al.2005), selection 

162 of an unusually high proportion of the rare event (in this case, ) to "balance" the 1y 

163 dataset and increase  estimates will yield nonsensical results. We divided the data in 

164 half to create our training and testing datasets and checked that each set of observations 

165 had an approximately equal proportion ( ) of presence observations to better reflect the y

166 "true state" of the full dataset.

167 2. The second step rectifies any bias that might be introduced when dividing the dataset. 

168 This prior correction on the intercept ( ) can be calculated as:0

169                             ;                                        (4)      
~

0 0
1ˆ ln

1
y

y
 


           

170 here,  is the corrected intercept,   is the uncorrected intercept,  is the true 0̂
~

0 

171 proportion of 1s in the population; and is the observed proportion of 1s in the training y

172 sample. 

173 3. The third step rectifies any underestimation of the  probabilities of the independent 

174 variables  from the substitution of the intercept value, obtained as:1...n

175                                     ,                                               (5)       
~

( 1) ii iP y C  

176 where the correction factor  is given by:iC

177               ,                                         (6)      
~ ~ ~ ~

(0.5 ) (1 ) ( )i i ii iC XV X      

178 where is a vector of values for each independent variable , is the X 1 ( 1)n  i X 
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179 transpose of , and  is the variance covariance matrix. We obtained the improved X
~

( )iV 

180 probability estimates through estimation of  via , thereby considered "mostly" i
~

i

181 Bayesian (King and Zeng 2001). Our priors in this case would be uninformative, which 

182 means that we lack sufficient knowledge to estimate the probability distributions of our 

183 data and our parameter of interest, . This is often the case when working with sparse 

184 ecological datasets.  As the uninformative prior for a regression coefficient with domain 

185  is uniform, a full Bayesian estimation with uninformative priors is equivalent to ( , ) 

186 a traditional logistic regression.Therefore, this correction is effectively a correction to the 

187 approximate Bayesian estimator, and its addition improves our regression by lowering the 

188 mean squared error of our estimates. We implemented this rare events logistic regression 

189 using the 'Zelig' package run in R (Imai et al. 2008, Choirat et al. 2015). 

190

191 We constructed a correlation scatterplot matrix per coral genus to observe correlation 

192 levels between all variables. In choosing which highly correlated variables to exclude from the 

193 analyses, we followed the criteria outlined by Dancey and Reidy (2004) and Tabachnick and 

194 Fidell (1996), who suggest a cutoff correlation value of 0.7. Only mean significant wave height 

195 parsed by season consistently overreached this threshold; the covariate that was least correlated 

196 with the response variable was removed. We excluded predictors that lacked a clear distribution 

197 pattern or correlated minimally (< 0.05) with the response variable.

198 One of the more studied habitat preferences of mesophotic Leptoseris and Montipora is 

199 the influence of depth on their distribution (Rooney et al. 2010, Costa et al. 2012, Kahng et al. 

200 2010). Increasing depths often correlate with greater distance from shore. The inclusion of 
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201 squared terms (e.g.,  ) in our regression equation  permits 2
2 1x x 0 1 1expit( ) ... n nx x      

202 the logistic curve to reflect the bell curve shape expected in plotting the distribution of these 

203 animals across a range of depths or distance from shore. In order to account for these trends, we 

204 added Depth squared and Distance squared as potential variables for consideration in our final 

205 model. As depth or distance increases, its square increases even more rapidly, allowing the 

206 squared term to eventually dominate and "pull down" the probability curve.

207 We withheld 50% of our information per genus as testing (i.e., validation) data. Using the 

208 remaining 50% (our training data), we performed the rare events corrected logistic regression 

209 described above. Using an exhaustive iterative algorithm (Calcagno and Mazancourt 2010), we 

210 modeled all possible combinations of included covariates. We ranked models using the corrected 

211 Akaike information criterion (AICc) (Hurvich and Tsai, 1989), which is consideredan excellent 

212 comparative measurement of model strength, especially for sparse datasets. For both genera, the 

213 models with the lowest (lowest = best) AICc scores were lower than the "second best" AICc 

214 scores by at least 2 (i.e., AICc > 2), indicating strong preference for the best model (e.g., 

215 Hayward et al. 2007). 

216 We checked small-scale, local spatial autocorrelation using Geary's C statistic (Geary 

217 1954), based on the deviations in the responses of observation points with one another:

218                                                   .                                              (7)
2

2
0

( )
1

2 ( )

ij i j
i j

i
i

w x x
nC

S x x










219 Here,  is the variable of interest,  and  are locations (where  ), represents the x i j i j ijw

220 components of the weight matrix, and  is the sum of the components of the weight matrix. 0S

221 Geary’s C ranges from 0 (maximal positive autocorrelation) to 2 for high negative 

222 autocorrelation. In the absence of autocorrelation, its expectation is 1 (Sokal and Oden 1978). 
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223 We also examined global spatial autocorrelation using Moran's I statistic, which 

224 measures cross-products of deviations from the mean (Moran 1950):

225                                      .                                                  (8)2
0

( )( )

( )

ij i j
i j

i
i

w x x x x
nI
S x x

 







226 Moran's I values generally range from -1 to 1, with 0 as the expectation when no spatial 

227 autocorrelation is present. 

228 We also verifiedthe spatial independence of our observational point data using a 

229 semivariogram, which is a graphical method of quantifying spatial correlation in a set of points 

230 (Figs. 2 - 3). We selected our theoretical semivariogram to fit the empirical semivariance using 

231 the ordinary least squares (OLS) method (Jian et al. 1996, Kendall et al. 2005). The spherical 

232 model had the best quantitative fit based on OLS estimates (Table 3). For each dataset, the low 

233 thresholds at which semivariance stopped increasing indicated the almost complete absence of 

234 spatial autocorrelation for each genus.

235

236 Model assessment

237

238 Evaluation of the rare events logistic regression model output is more complicated than 

239 for the typical linear model. For example, R2 values, although calculated, have little applicability 

240 to logistic regressions and are therefore ignored (Menard 2000, Peng et al. 2002). Sample size 

241 and selected threshold largely influence the results of the Hosmer and Lemeshow goodness-of-fit 

242 test (Hosmer et al. 1997). Accordingly, we use model classification accuracy as a second 

243 measure of goodness-of-fit (in addition to AICc). We want to maximize true positives (TP) and 

244 true negatives (TN) while minimizing false positives (FP) and false negatives (FN). The 
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245 sensitivity-specificity sum maximization approach (Cantor et al. 1999) therefore maximizes

246                                  ,                                                 (9)max
TP TNSS

TP FN TN FP
 

 

247 which is equivalent to finding the point on the ROC (receiver operating characteristics) curve at 

248 which the tangent slope is 1, indicating the optimal cutoff point at which "cost" (here, the 

249 number of FN and FP) and "benefit" (the number of TN and TP) is balanced. We chose this 

250 technique because we aim to identify regions devoid of hard corals as well as regions deemed 

251 potentially suitable for habitation.

252 ROC curves plot the true positive test rate against the false positive test rate across 

253 different theta cutoff points (Hadley and McNeil 1982). We calculated values for sensitivity and 

254 specificity for threshold increments of 0.005 + 1 standard deviation of the rounded mean for each 

255 model. Because each theta threshold value varied based on the genus and model, the threshold-

256 independent area under the curve (AUC) test statistics best reflect the predictive accuracy of the 

257 model. 

258 In addition to creating ROC curves, we also took into account the overall prediction 

259 success of each model, given as:

260                                           
.                                        (10)

TP TNOPS
TP TN FP FN




  

261 Overall prediction success is a measure of total correct classification of both present and absent 

262 observations. While this is a good final assessment of model classification error, consideration of 

263 the prediction success alone is not a viable evaluation method when binary data is highly 

264 imbalanced, as a value given by this method may primarily represent model success in 

265 identifying the most common observation type (Fielding and Bell 1997). We plotted our 

266 sensitivity and specificity values on a ROC curve to show how each model performed relative to 
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267 chance (Fig. 4). All models fall in the range 0.7 < AUC < 0.9, which indicates good 

268 discrimination and reliability of model predictions (Hosmer and Lemeshow 2004). 

269 We also created maps of individual and summed predicted occurrence probabilities of 

270 both coral genera across the MHI and ran a hotspot analysis using the ArcGIS Getis-Ord Gi* 

271 Hotspot Analysis tool. We constructed a polygon fishnet composed of 1 km2 cells which 

272 encompassed all islands. We summed each 25 m2 raster cell value for probability of Leptoseris 

273 occurrence and probability of Montipora occurrence. We performed a spatial join of raster cell 

274 values within each polygon for an average value of summed probabilities. The Getis-Ord Gi* 

275 statistic identifies clusters within these polygons that display values higher in magnitude than 

276 random chance would permit. The Getis-Ord local statistic is given as:

277                         .                                    (11)
, ,

1 1*

2

2
, ,

1 1

1
1

n n

i j j i j
j j

i
n n

i j i j
j j

w x X w
G

S n w w
n

 

 




  
       

 

 

278 Here,  represents the spatial weights between features and ;  represents the total number ,i jw i j n

279 of features;  is the attribute value for feature ;   ; and .jx j
1

1 n

j
j

X x
n 

  2 2

1

1 ( )
n

j
j

S x X
n 

 

280

281 Results

282

283 For our Leptoseris dataset, Geary's C = 0.990; for our Montipora dataset, Geary's C = 

284 0.996. For our Leptoseris dataset, Moran's I =0.006; for our Montipora dataset, Moran's I = 

285 0.003. These values do not indicate any local clustering or global spatial autocorrelation within 

286 either dataset. We observed negligible levels of autocorrelation up to ~100 m for Montipora (Fig. 
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287 3). The absence of spatial autocorrelation within the data allows us to utilize a much less 

288 computationally intensive model than would be required if autocorrelation were present. The 

289 mixed models required to accommodate spatial autocorrelation can take hours or days to run 

290 (e.g., Breslow et al. 1993).

291 The OLR covariate coefficients were modified using the rare events corrections proposed 

292 by King and Zeng (2001), resulting in a change in predictive power (Table 4). Rare events 

293 corrected models usually performed better than the uncorrected models, in terms of improved 

294 specificity and prediction success. Our sensitivity values for both corrected models were slightly 

295 lower than the corresponding OLR sensitivities, but in each case, specificity and prediction 

296 success values were improved. Additionally, standard errors of the coefficient estimates were 

297 lower for corrected models than for uncorrected models (Supplementary material, Tables A1 – 

298 A4).

299 Predicted presence probability values ( ) averaged 0.051 for Leptoseris and 0.040 

300 Montipora models in the validation data (Figs. 5 - 6). These values agree well with the actual 

301 presence frequencies in that data (0.052, 0.042). To better interpret these realistically low theta 

302 values, we chose a theta threshold to transform the probability estimates to presence/absence 

303 values. This is standard practice when examining the results of a rare events logistic regression, 

304 but less common when performing OLR (Liu et al. 2005, Bai et al. 2011). Objective selection of 

305 a theta threshold on a per-model basis is more scientifically sound than, for example, an arbitrary 

306 assignment of 0.5 (Cramer 2003). The transformed model is valid if a threshold value yields a 

307 high percentage of correctly classified observations and a low number of FP and FN observations 

308 (Gobin et al. 2001).We selected an appropriate threshold for each model (Table 4) in order to 

309 maximize (Liu et al. 2005). maxSS
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310 Our final hotspot maps show the results of our analysis for Leptoseris, Montipora, and 

311 both genera combined across all islands (Figs. 7 - 9). We show hotspots of habitat suitability for 

312 both coral genera in red for areas of highest suitability and blue for areas of lowest suitability. 

313 We identify a cell as a hotspot when the sum of its value and the values of its nearest neighbors 

314 is much higher or lower than the mean over all cells. When the local sum of a cluster is very 

315 different from the expected value, a statistically significant hotspot is identified (Gi* statistic > 

316 1.96 or Gi* statistic < -1.96). Neither genus clearly dominated the summed probabilities hotspot 

317 identification across any of the islands. Large Leptoseris hotspots were identified in southwest 

318 Molokaʻi, northeast Oʻahu, west Hawaiʻi, and the central ʻAuʻau Channel. Montipora hotspots 

319 were identified in east Niʻihau, southwest Kauaʻi, west and south Oʻahu, west Hawaiʻi, and the 

320 central ʻAuʻau Channel.

321

322 Discussion

323

324 In this study, we used logistic regression with rare events corrections to predict the 

325 habitat preferences of two dominant scleractinian coral genera across the entire mesophotic zone 

326 surrounding the main Hawaiian Islands. The habitat preferences of mesophotic Montipora appear 

327 distinct from those of Leptoseris. Montipora prefers the middle mesophotic zone (50 - 80 m) of 

328 reefs less exposed to high-energy winter swells. Leptoseris prefers steep, rugose slopes and the 

329 lower mesophotic zone (> 80 m) in regions of high year-round current flow.

330

331 Important environmental covariates

332
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333 Predicted Montipora presence peaks at about 60 meters (median occurrence probability = 

334 7.5%); Leptoseris presence peaks at about 100 meters (median occurrence probability = 7.5%). 

335 These predictions are consistent with the inferences of Rooney et al. (2010), which 

336 separatemesophotic reefs into three distinct depth sections: upper (30 - 50 m), branching/plate 

337 dominated (50 - 80 m), and Leptoseris dominated (> 80 m). The depth at which suitability peaks 

338 for Leptoseris occurs at a range where steep ridges and drop-offs are plentiful in our study 

339 region, and therefore the mean preferred depth may be prone to slight overestimation.

340 In addition to depth, four environmental covariates appeared to influence the distribution 

341 of Leptoseris: rugosity, slope, summer mean current velocity (northward), and winter mean 

342 current velocity (eastward). Scleractinians easily colonize environments that are relatively calm 

343 and rugose due to the larger amount of available surface area, and this positive correlation was 

344 reflected in our model. Leptoseris habitat preference was also positively associated with slope, 

345 which was not observed for Montipora. Corals that inhabit the upper mesophotic zone may be 

346 more susceptible to damage from debris displaced by high wave energy, and are therefore less 

347 likely to colonize steep slopes (e.g., Harmelin-Vivien and Laboute 1986, Bridge and Guinotte 

348 2013). The deeper distribution of Leptoseris may protect it from damage related to wave 

349 intensity, allowing it to colonize slopes. Another possibility is that the model is picking up drop-

350 offsfrom masses accreted during the last glacial maximum. These steep drop-offs are 

351 presentbetween 90 - 120 m in the Leptoseris-dominated lower mesophotic zone (Yokoyama et al. 

352 2001, Webster et al. 2004).

353 Leptoseris also favors well-flushed areas exposed to year-round moderate current flow 

354 (i.e., up to 0.3 m/s). The plate-like morphology of Leptoseris corals effectively boosts sunlight 

355 capture by its symbiotic zooxanthellae and zooplankton capture by the corals themselves, but it 

PeerJ reviewing PDF | (2016:02:9070:0:1:NEW 13 Feb 2016)

Manuscript to be reviewed

tybsmith
Inserted Text
 

tybsmith
Inserted Text
 

tybsmith
Inserted Text
 

tyler
Sticky Note
I feel that this information should largely come in the results.  I kept waiting for this information there, as I think the paper is beyond the scope of just statistical methodologies and says some interesting things about the occurrence of these species in MCE.  Can these influence of the variables be brought into the results?  Perhaps this can be a table that shows the influence of each variable on the probability of occurrence of the two genera?  In fact, I don't see anywhere in the manuscript were I can easily see this information.  I think this will make it much more accessible and meaningful to a coral reef science audience.  However, the discussion of those variables here and why they may be important is welcome.

tyler
Sticky Note
Where is this presented in the results?

tyler
Sticky Note
Does this potentially vary between populations that are on tops of banks versus those that are below upslope population that could potentially break and slide down during storms?



356 also makes the coral vulnerable to smothering by sediment accumulation. The success of 

357 Leptoseris corals in areas of moderate current flow may be related to the improbability of 

358 sediment settlement and accumulation. While the model did not capture the same effect of 

359 current flow on Montipora distribution, we recognize that the morphology of some Montipora 

360 species is extremely similar to that of Leptoseris. We do not expect either genus to readily 

361 colonize highly turbid, stagnant regions, especially given that certain species of heterotrophic 

362 Montipora are known to exploit strong currents to meet their energy requirements (Rooney et al. 

363 2010).

364 Substrate hardness, a variable known to influence coral colonization, was notably absent 

365 from each model. Substrate hardness values were derived from acoustic backscatter imagery 

366 readings. The base resolution of these readings (50 m x 50 m) was not sufficiently detailed for 

367 purposes of this analysis. We noted plentiful coral colonization along larger surfaces like lava 

368 fingers, the hardness of which would be detectable by backscatter surveys, as well as across 

369 small rock fragments strewn across a sand flat, which would be obscured by the softness of the 

370 surrounding benthos. We can conclude that measurements of benthic hardness are not detailed 

371 enough for predictive modeling purposes at a 25 m2 resolution.

372 We emphasize that the purpose of this study was to build apan-Hawaiʻi predictive habitat 

373 map for two dominant mesophotic coral genera. Because the scope of this study included all 

374 main Hawaiian Islands, we were constrained by the coarseness of available full-coverage 

375 environmental data. As we build on this analysis, we plan to use our maps to identify areas of 

376 interest for further study at higher resolution and to include additional variables currently only 

377 available in certain regions, such as light intensity and temperature at depth. For example, our 

378 predictive and hotspot maps identify Penguin Bank (southwest Molokaʻi) as particularly suitable 
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379 for Leptoseris colonization, which has not been verified by video or photo records. High 

380 resolution backscatter data (1 m2) exist for this region, and incorporation of these data into new 

381 analyses of subsets of our study area may refine our conclusions. 

382

383 Error sources and model reliability

384

385 We examined two types of error (false negatives and false positives) and analyzed our 

386 models without giving preference to either one. This approach is widely accepted as the best 

387 method of overall error minimization (e.g., Liu et al. 2005, Fielding and Bell 1997). Rare events 

388 corrected models for both Leptoseris and Montipora achieved levels of specificity and sensitivity 

389 well above the null, indicating good predictive power. Additionally, both models attained about 

390 74% overall prediction success. We assumed coral detectability was constant across the study 

391 region and that we can therefore consider the true absence observations to be reliable indicators 

392 of a potentially unsuitable habitat for corals. For each genus, the model tended to slightly over-

393 predict presence observations; large numbers of false positives lowered sensitivity values. This is 

394 inevitable in the analysis of severely imbalanced or sparse binary data; the ongoing addition of 

395 presence observations to the dataset will improve overall model classification accuracy.

396 While the consistent identification of southern coastal areas as suitable is reliable, the 

397 comparatively infrequent selection of northern coasts is likely due to the source of the model-

398 building observations. The vast majority of mesophotic exploration has been along southern 

399 coastlines, which is often where waters are calmest in Hawaiʻi. It is speculated that because 

400 mesophotic corals are more shielded from winter long-period wave energy than their shallow 

401 water counterparts, they are able to flourish at depth along northern coastlines (Grigg 1998, 
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402 Rooney et al. 2010). The addition of data sourced from northern expeditions would likely 

403 improve predictive power of the model across north-facing coastlines (Alin 2010). 

404 We acknowledge that the original data were not collectedin a standardized fashion (e.g., 

405 variation in vessel traveling speed or differences in data collection vessel and/or quality). Our 

406 careful exclusion of overlapping observation points within each 25 m2 rectified this sampling 

407 design flaw as much as possible and eliminated pseudoreplication.

408

409 Distinctions between coral genera

410

411 Our Montipora model was simpler than the Leptoseris model in that the only variable 

412 included other than depth was winter significant wave height. Though uncertainty was highest at 

413 lower values of significant wave height, Montipora demonstrated a preference in colonizing 

414 habitats that experience lower significant wave height during winter. This preference contrasts 

415 with Montipora species in shallow waters that were more likely to be observed in higher wave 

416 height environments (Franklin et al. 2013). This likely influenced the inability of the model to 

417 identify any suitable habitat around Niʻihau, where the average winter significant wave height 

418 equaled 1.78 meters, almost double the mean significant wave height of our model training data 

419 (0.91 m). Though mesophotic corals are generally thought to be exempt from the growth 

420 limitations faced by shallow water corals in regions of high wave energy, prolonged wave 

421 intensity has been shown to negatively affect the colonization of upper mesophotic 

422 scleractinians, especially in sloping areas prone to debris avalanches (Bridge and Guinotte 2013, 

423 Kahng et al. 2014). Continuation of this work might include a more in-depth examination of the 

424 relationship of this coral genus with the slope of available substrate and exposure to wave 
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425 energy.

426 We found no records of Montipora presence when processing our Oʻahu dataset, which 

427 probably contributed to the very low predicted mean probability of Montipora occurrence there 

428 (0.1%). We believe this is due in part to the sampling pattern across south Oʻahu; we recorded 

429 62.3% of all observations processed for this region at a depth of 75 m or greater. Montipora 

430 prevalence is greater in the upper-to-middle mesophotic zone, and the relative deepness of the 

431 Oʻahu dives likely influenced their nonappearance in this portion of the dataset. The mean 

432 significant wave height across the mesophotic zone was lower across the southern and western 

433 coasts (1.50 m) than that observed across the northern and eastern coasts (2.37 m) of the island. 

434 As at Niʻihau, we assume that this high northern and eastern average height, coupled with the 

435 absence of Montipora presences in Oʻahu in the training dataset, greatly impacted our model's 

436 ability to detect areas of suitable habitat around the island. The results of our Getis-Ord Gi* 

437 Hotspot Analysis corroborate the findings of Costa et al. (2015), who used Maximum Entropy 

438 software to predict the highest occurrence probability of Leptoseris and Montipora in the middle 

439 and mid-coastal ʻAuʻau Channel, respectively (Costa et al. 2015).

440 The factors influencing the distribution of coral species in shallow and mesophotic 

441 habitats differ. One of the fundamental drivers of the occurrence and abundance of coral species 

442 on shallow reefs in Hawaiian waters is wave stress (Dollar 1982, Grigg 1983, Franklin et al. 

443 2013). Given the depth range of MCEs, wave stress is unlikely to serve as a direct influence on 

444 coral occurrence but may provide secondary effects as wave events lead to debris reaching 

445 MCEs (Kahng 2014). Furthermore, the decoupled effects of environmental drivers between on 

446 shallow and mesophotic zones extend between the islands. In shallow reef communities 

447 Montipora species become more relatively dominant from Hawaii Island to Niʻihau (Franklin et 
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448 al. 2013), but appear to peak in occurrence in the mesophotic zone of Maui Nui. While the 

449 distribution of shallow corals are influenced by strong environmental drivers, the occurrence 

450 patterns of mesophotic corals may reflect a more stable environment with an increased influence 

451 of biotic factors such as interspecific competition in a habitat zone with limited light and space 

452 resources available.

453

454 Conclusions

455

456 We implemented a rare events corrected logistic regression to determine the most 

457 influential environmental predictors of mesophotic Montipora and Leptoseris colonization. 

458 Habitat preference differences between dominant mesophotic genera appear distinct and multi-

459 faceted. Montiporathrives in the middle mesophotic zone in areas sheltered from high intensity 

460 winter swells, while Leptoseristends to colonize steep, rugose, well-flushed areas in the lower 

461 mesophotic zone. Improved understanding of the distribution of mesophotic corals will enable 

462 resource managers to propose the construction of seafloor power cables and other offshore 

463 infrastructure in areas less likely to contain coral communities. Results will likewise facilitate 

464 efforts to protect these communities by supplementing scientific dive planning and strategies for 

465 conservation, such as marine spatial planning.

466
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1
The mesophotic zone of the main Hawaiian Islands

The study domain, demarcated in blue, encompasses the mesophotic zone (30 - 180 m in

depth) of the main Hawaiian Islands. Black circles are the observations from the pre-existing

Maui Nui dataset. Red circles are the previously unprocessed observations in south Oʻahu

and southeast Kauaʻi.
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2
Modeled spherical semivariogram for Leptoseris.
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3
Modeled spherical semivariogram for Montipora.
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4
ROC curves for all models.

AUC values for all models fall in between 0.7 and 0.9, which indicates predictive reliability.

The dashed line from (0, 0) to (1, 1) indicates the null threshold at which model performance

is considered unacceptable (< 0.5).
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5
Modeled area of suitable habitat for Leptoseris.

Probability of presence is depicted along a color gradient ranging from red (1; most suitable)

to blue (0; least suitable).
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6
Modeled area of suitable habitat for Montipora.

Probability of presence is depicted along a color gradient ranging from red (1; most suitable)

to blue (0; least suitable).
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7
Mapped result of our Getis-Ord Gi* hotspot analysis performed for probability estimates
of Leptoseris occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (> 1.96) or blue

(< -1.96).
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8
Mapped result of our Getis-Ord Gi* hotspot analysis performed for probability estimates
of Montipora occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (> 1.96) or blue

(< -1.96).
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9
Mapped result of our Getis-Ord Gi* hotspot analysis performed for summed probability
estimates of Leptoseris and Montipora occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (>1.96).
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Table 1(on next page)

Number of field observations for each coral genus.
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1
2

Source No. observations Leptoseris Montipora
Oʻahu 2645 192 0
Kauaʻi 112 38 3
Maui 19957 708 791
Total 22714 938 794

3
4
5
6
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Table 2(on next page)

List of all variables considered for inclusion in our analyses.
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1
2
3
4 Variable Category Variable description Source Resolution Variable

Leptoseris

B
io

lo
gi

ca
l (

re
sp

on
se

)

H
ar

d 
co

ra
l

Presence/ absence between 
30 - 180 m in depth

PIFSC,
HURL optical 
validation data

NA

Montipora

Li
gh

t 
av

ai
la

bi
lit

y

The depth of the euphotic 
zone (PAR 1%) determined 

using the Morel method 
(2007)

NOAA 
Oceanwatch Live 

Access Server; 
NASA, 2014

4 km x 4 km Mean euphotic depth (m)

Seafloor complexity 
calculated with the ArcGIS 
BTM Terrain Ruggedness 

tool

Rugosity (unitless)

Depth of seafloor Depth (m)

Rate of change calculated 
with the ArcGIS BTM Slope 

tool
Slope (degrees)

Curvature of the seafloor 
calculated using the ArcGIS 

Curvature tool
Curvature (degrees of degrees)

Hardness of seafloor 
detected by acoustic 

backscatter
Substrate hardness (unitless)

Distance of observation 
point  to nearest coastline Distance to coastline (m)

To
po

gr
ap

hy

Compass direction of 
maximum slope calculated 
using the ArcGIS Aspect 

tool

USGS, 1998; 
University of 

Hawaii SOEST, 
2014

50 m x 50 m 
resampled to 
25 m x 25 m

Aspect (degrees)

Mean cur. vel. (northward/summer) 
(m s-1)

Mean cur. vel. (northward/winter) 
(ms-1)

Mean cur. vel. (eastward/summer) 
(m s-1)

Mean current velocity data 
obtained per season 

(winter/summer) for depths: 
200, 150, 125, 100, 75, 50, 

30 m

PacIOOS Hawaii 
Regional Ocean 

Model 4 km x 4 km

Mean cur. vel. (eastward/winter)(m 
s-1)

Sig. wave height (summer) (m)

En
vi

ro
nm

en
ta

l (
pr

ed
ic

to
r)

W
av

es
/c

ur
re

nt
s

Sea surface mean significant 
wave height

PacIOOS Hawaii 
SWAN Wave 

Model

1 km x 1 km

Sig. wave height (winter) (m)
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Table 3(on next page)

Summary statistics for theoretical semivariogram models.
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Genus Sum of 
squares Input 2 Input  Actual 2 Actual  Actual 2

Leptoseris 2940.671 0.055 218 0.051 206.909 0

Montipora 14013.610 0.020 390 0.032 390.000 0.003

1
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Table 4(on next page)

Predictive models output.

Results by genus: theta threshold subscripts indicate model type and training and validation

(c-v) outputs. Sensitivity and specificity totals apply to training data only.
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