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The implementation of rare events logistic regression to
predict the distribution of mesophotic hard corals across the
main Hawaiian Islands

Lindsay M. Veazey, Erik C. Franklin, Christopher Kelley, John Rooney, L. Neil Frazer, Robert J. Toonen

Predictive habitat suitability models are powerful tools for cost-effective, mathematically
robust ecological assessment. The aim of this study was to develop a predictive habitat
suitability model for two genera (Leptoseris and Montipora) of mesophotic scleractinian
corals across the main Hawaiian Islands. The mesophotic zone (30 - 180 m) is challenging
to reach, and therefore historically understudied, because it falls between the maximum
limit of SCUBA divers and the minimum typical working depth of submersible vehicles.
Here, we implement a logistic regression with rare events corrections to account for the
scarcity of presence observations within the dataset. These corrections reduced the
coefficient error and improved overall prediction success (73.6% and 74.3%) for both
original regression models. Predictions were translated to spatially independent habitat
suitability maps of the main Hawaiian Islands at 25 m? resolution. Our maps are the first of
their kind to use extant presence and absence data to examine the habitat preferences of
these two dominant mesophotic coral genera across Hawai‘i.
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Abstract

Predictive habitat suitability models are powerful tools for cost-effective, mathematically
robust ecological assessment. The aim of this study was to develop a predictive habitat suitability
model for two genera (Leptoseris and Montipora) of mesophotic scleractinian corals across the
main Hawaiian Islands. The mesophotic zone (30 - 180 m) is challenging to reach, and therefore
historically understudied, because it falls between the maximum limit of SCUBA divers and the
minimum typical working depth of submersible vehicles. Here, we implement a logistic regression
with rare events corrections to account for the scarcity of presence observations within the dataset.
These corrections reduced the coefficient error and improved overall prediction success (73.6%
and 74.3%) for both original regression models. Predictions were translated to spatially
independent habitat suitability maps of the main Hawaiian Islands at 25 m? resolution. Our maps
are the first of their kind to use extant presence and absence data to examine the habitat preferences

of these two dominant mesophotic coral genera across Hawai‘i.

Introduction

Consistent and pervasive deterioration of marine ecosystems worldwide highlights
significant gaps in current management of ocean resources (Foley et al. 2010, Douvere 2008,
Crowder and Norse 2008). One such gap is the data required for informed marine spatial
planning, a management approach that synthesizes information about the location, anthropogenic
use, and value of ocean resources to achieve better management practices such as defining
marine protected areas and implementing harvesting restrictions (Jackson et al. 2000, Larsen et

al. 2004). The creation of spatial predictive models for improved marine planning is a relatively
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low-cost and non-invasive technique for projecting the effects of present-day human activities on
the health and geographic distribution of marine ecosystems.

Defining and managing the biological and physical boundaries of ecosystems is a
complicated but essential component of marine spatial planning (McLeod et al. 2005). The
heterogeneous nature of ecological datasets can require the time-intensive development of
problem-specific ecosystem models (Cramer et al. 2001, Tyedmers et al. 2005). Scientists
frequently use straightforward, easy-to-implement regression methods to analyze complex
datasets. The development of software accessible to relative novices has contributed to the
growing popularity of regression methods (e.g., Lambert et al. 2005, Tomz et al. 2003).

Here, we employ a logistic regression with rare events corrections (King and Zeng 2001)
to analyze the presence and absence data of two coral genera (Lepfoseris and Montipora) and,
thus,develop a predictive framework for the geographic mapping of mesophotic coral reef
ecosystems across the main Hawaiian Islands. Mesophotic coral ecosystems (MCEs), located at
depths of 30 - 180 meters, are extensions of shallow reefs and are known to harbor many of the
same reef species present at shallower depths, and are also oases of endemism in their own right
(Grigg 2006, Lesser et al. 2010, Kane et al. 2014, Hurley et al. 2016). MCE habitats are formed
primarily by lew-tight-telerant macroalgaeﬁonges, and hard corals (Lesser et al. 2009).

Ecological studies in the mesophotic zone are sharply limited in contrast to the shallower
photic zone more accessible by open circuit SCUBA, but steady advances in diving, computing,
and remotely operated vehicle technologies continue to facilitate interdisciplinary mesophotic
research (Pyle 1996, Puglise et al. 2009). Mesophotic research in Hawai‘i has been conducted
primarily in the ‘Au‘au Channel, Mauij a relatively shallow, semi-enclosed waterway between

the islands of Maui and Lana‘i that is among the most geographically sheltered and accessible
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areas in the Hawaiian Archipelago, and as a result, much of the existing video and photo records
of MCEs are from this area. This concentration of historic surveys highlights the importance of
creating a pan-Hawai‘i predictive habitat model to identify likely areas of MCEs across
unexplored areas of Hawai‘i's mesophotic zone. Increasing our knowledge about the habitat
preferences of the deep extensions of shallow coral species is critical given that approximately
40% of shallow (< 20 m) reef-building corals face a heightened extinction risk from the effects
of climate change (Carpenter et al. 2008). Here, we model the habitat associations of mesophotic
scleractinian corals because of both their intrinsic biological value as well as their potential to
recolonize sueh globally threatened shallow reef areas and effef refuge to mobile reef organisms

(Bongaerts et al. 2010, Kahng et al. 2014).

Materials and methods

Organismal and environmental data

The Hawai‘i Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries
Science Center (PIFSC) provided video and photo records from MCEs in the Hawaiian Islands
for our analyses. This imagery came from 19 dives conducted using submersibles including
remotely operated vehicles (ROV), autonomous underwater vehicles (AUV), and tethered optical
assessment devices (TOAD) in the ‘Au‘au Channel, Maui (13 dives) and two other
geographically distinct regions: south O‘ahu and southeast Kaua‘i (6 dives). We analyzed dive
video using the Coral Point Count with Excel extensions (CPCe) tool (Kohler and Gill 2006) in

combination with a modified PIFSC 2011 mapping protocol (PIBHMC 2015). PIFSC has used

Peer] reviewing PDF | (2016:02:9070:0:1:NEW 13 Feb 2016)


tybsmith
Inserted Text
,

tybsmith
Cross-Out

tybsmith
Cross-Out

tybsmith
Inserted Text
serve as a


Peer]

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

this type of combined analysis, referred to as the random five point overlay method (RFPOM), to
process coral reef ecosystem benthic imagery throughout the U.S. Pacific Islands Region since
August 2011, and our use of it ensures database consistency with regions processed prior to this
study. In an effort to evaluate the accuracy of RFPOM, we counted all corals in 200 randomly
selected screengrabs and found that this method underestimates c by 2.4% in these images.

We recorded snapshots every 30 seconds for the duration of each dive video. In addition
to an existing database of 40,193 records from dives in the ‘Au‘au Channel, 3517 new snapshots
were collected from the additional dives across south O‘ahu and Kaua‘i (Fig. 1). Of these 43,710
total images, 20,980 were discarded because either: 1) crucial observational data were absent, 2)
they were redundant due to an extended stationary period, or 3) they fell outside the study depth
range of 30 — 180 m. Of the remaining 22,714 records, we analyzed 2757 unprocessed images
using the RFPOM (Table 1).

We selected our environmental covariates based on the sufficiency of the data and the
potential significance of each variable as an indicator of hard coral habitat suitability (e.g., Dolan
et al. 2008; Rooney et al. 2010; Costa et al. 2012) (Table 2). We defined summer and winter
seasons as May — September and October — April, respectively (Kay 1994, Rooney et al.
2010).We delineated significant wave height estimates and mean current velocities by season
and direction. We extracted and averaged significant wave height data from 144 days per season
of twenty-four hour PaclOOS Regional Ocean Modeling System values for 2011 - 2015 (see
website: http://0os.soest.hawaii.edu/las/). This model has a 4 km horizontal resolution with 30
vertical levels across seafloor terrain. Mean current velocity values were available from 0:00 -
21:00 every three hours for all months from 2013 - 2015; for each season and direction, 48 mean

current velocity values were extracted and averaged. We sourced monthly MODIS Aqua
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Chlorophyll a averages for the year 2012 from the NOAA PIFSC OceanWatch Live Access
Server (see website: http://oceanwatch.pifsc.noaa.gov/). Using the Morel (2007) method, we

applied the following cubic polynomial equation to obtain logged euphotic depth:
log,, Z,, =1.524 — 0.436x — 0.0145 x> + 0.0186x, (1)

where x represents the measured Chlorophyll a concentrations (mg/m?) at sea surface. Euphotic
depth is the depth at which the level of photosynthetically active radiation (PAR), a limiting
factor for many heterotrophic mesophotic corals, is at 1% of surface PAR. In total, we used 14
environmental predictor variables to shape our model (Table 2) (Supplementary material, Figs.
Al - AS).

The spatial resolution of the bathymetry data was 50 m x 50 m for all islands. We
resampled the bathymetry raster to a cell size of 25 m x 25 m consistent with a conservatively
estimated + 25 m positioning error margin observed at a depth of ~800 m. We estimated an
average camera swath value of 3.24 m (range 2.45 - 4.54 m) based on previous measurements
from 19 still image screenshots taken when the submersible was located at different heights
above the seafloor. Our geopositional error for the images is + 5 m and we can expect that the
location data are within a circle with a 10 m diameter. Our observation sampling area is
projected out from the location area a distance of <5 m. Addition of a conservative 5 m
observation area buffer to the location error area produces an observational data position of + 20
m from the given coordinates of a data point.

We removed all subsampling within cells due to slight variations in camera angles or
vessel speed through a point-to-raster conversion. We categorized all cells with > 1 presence
observation as "present" cells and all cells with only absence observations as "absent" cells. We

used ArcToolbox and the Benthic Terrain Modeler Toolbox to calculate slope, curvature,
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rugosity, and aspect (compass direction) values (Wright et al. 2012). We performed a spatial join
based on proximity to observation point data to assign values for surface Chlorophyll a

concentration, mean current velocities, distance from shore, and significant wave heights.
Regression methods

In describing the relationship between a response variable and one or more predictor
variables, we use a logistic regression model because the response variable is dichotomous
(Hosmer and Lemeshow 2004). The ordinary logistic regression (OLR) model is defined as:

1

roxp() ?

6 = expit(u) =

where @ is the probability that the species of interest is present (y=1),and 1-6 is the

probability it is absent (y =0).The logit function is the inverse of the expit function, and
logit(@) = =B, + Bx, +...+ B.x, 3)
is the linear sum of predictor variables, X;,X,,...,X, , with intercept S, and regression

coefficients f,f,,.... 3, . In the language of generalized linear models (GLM), OLR is said to

have the logit function as its link function and the expit function as its inverse link function.
Logistic regression provides a straightforward, meaningful interpretation of the relationship

between a dichotomous dependent variable y and a set of predictor variables (Allison 2001).
Despite the popularity of OLR, it may yieltremely biased results when an imbalance
exists in the proportion of the response variable data (y =0>> y =1) (Van Den Eeckhaut et al.

2006). King and Zeng (2001) coined the term "rare events logistic regression" to describe their

corrective methodology in dealing with unbalanced binary event data:
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The first step requires the selection of a representative sample. Though researchers
generally prefer to work with more uniform response data (e.g., Liu et al.2005), selection

of an unusually high proportion of the rare event (in this case, y =1) to "balance" the

dataset and increase @ estimates will yield nonsensical results. We divided the data in
half to create our training and testing datasets and checked that each set of observations

had an approximately equal proportion ( y ) of presence observations to better reflect the

"true state" of the full dataset.
The second step rectifies any bias that might be introduced when dividing the dataset.

This prior correction on the intercept ( 5, ) can be calculated as:

S

here, ,BO is the corrected intercept, £, is the uncorrected intercept, 7 is the true
proportion of 1s in the population; and ) is the observed proportion of 1s in the training

sample.
The third step rectifies any underestimation of the probabilities of the independent

variables £, , from the substitution of the intercept value, obtained as:

P(y,=D)=0:+C,, (5)
where the correction factor C, is given by:
C,=(0.5-6)0:(1-0)XV ()X, (©6)

where X is a 1x(n+1) vector of values for each independent variable 3., X'is the
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transpose of X', and V' (f3,) is the variance covariance matrix. We obtained the improved

probability estimates through estimation of £, via ﬁ ., thereby considered "mostly"

Bayesian (King and Zeng 2001). Our priors in this case would be uninformative, which
means that we lack sufficient knowledge to estimate the probability distributions of our
data and our parameter of interest, . This is often the case when working with sparse

ecological datasets. As the uninformative prior for a regression coefficient with domain

(00,—0) is uniform, a full Bayesian estimation with uninformative priors is equivalent to

a traditional logistic regression.Therefore, this correction is effectively a correction to the
approximate Bayesian estimator, and its addition improves our regression by lowering the
mean squared error of our estimates. We implemented this rare events logistic regression

using the 'Zelig' package run in R (Imai et al. 2008, Choirat et al. 2015).

We constructed a correlation scatterplot matrix per coral genus to observe correlation
levels between all variables. In choosing which highly correlated variables to exclude from the
analyses, we followed the criteria outlined by Dancey and Reidy (2004) and Tabachnick and
Fidell (1996), who suggest a cutoff correlation value of 0.7. Only mean significant wave height
parsed by season consistently overreached this threshold; the covariate that was least correlated
with the response variable was removed. We excluded predictors that lacked a clear distribution
pattern or correlated minimally (< 0.05) with the response variable.

One of the more studied habitat preferences of mesophotic Leptoseris and Montipora is
the influence of depth on their distribution (Rooney et al. 2010, Costa et al. 2012, Kahng et al.

2010). Increasing depths often correlate with greater distance from shore. The inclusion of
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squared terms (e.g., X, =x, ) in our regression equation expit(d) = f, + Bx, +...+ B,x, permits
the logistic curve to reflect the bell curve shape expected in plotting the distribution of these
animals across a range of depths or distance from shore. In order to account for these trends, we
added Depth squared and Distance squared as potential variables for consideration in our final
model. As depth or distance increases, its square increases even more rapidly, allowing the
squared term to eventually dominate and "pull down" the probability curve.

We withheld 50% of our information per genus as testing (i.e., validation) data. Using the
remaining 50% (our training data), we performed the rare events corrected logistic regression
described above. Using an exhaustive iterative algorithm (Calcagno and Mazancourt 2010), we
modeled all possible combinations of included covariates. We ranked models using the corrected
Akaike information criterion (AICc) (Hurvich and Tsai, 1989), which is consideredan excellent
comparative measurement of model strength, especially for sparse datasets. For both genera, the
models with the lowest (lowest = best) AICc scores were lower than the "second best" AICc
scores by at least 2 (i.e., AAICc > 2), indicating strong preference for the best model (e.g.,
Hayward et al. 2007).

We checked small-scale, local spatial autocorrelation using Geary's C statistic (Geary

1954), based on the deviations in the responses of observation points with one another:

" 122%(%—%)2
_n-175 . 7
MRS ey 7

Here, x is the variable of interest, i and j are locations (where i # j ), w, represents the
components of the weight matrix, and S, is the sum of the components of the weight matrix.

Geary’s C ranges from 0 (maximal positive autocorrelation) to 2 for high negative

autocorrelation. In the absence of autocorrelation, its expectation is 1 (Sokal and Oden 1978).

Peer] reviewing PDF | (2016:02:9070:0:1:NEW 13 Feb 2016)


tybsmith
Inserted Text
 


Peer]

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

We also examined global spatial autocorrelation using Moran's I statistic, which

measures cross-products of deviations from the mean (Moran 1950):

zzwzj(xi _)_C)(xj _f)
j= T @®)
SO Z(xi_)?)z .

Moran's I values generally range from -1 to 1, with 0 as the expectation when no spatial
autocorrelation is present.

We also verifiedthe spatial independence of our observational point data using a
semivariogram, which is a graphical method of quantifying spatial correlation in a set of points
(Figs. 2 - 3). We selected our theoretical semivariogram to fit the empirical semivariance using
the ordinary least squares (OLS) method (Jian et al. 1996, Kendall et al. 2005). The spherical
model had the best quantitative fit based on OLS estimates (Table 3). For each dataset, the low
thresholds at which semivariance stopped increasing indicated the almost complete absence of

spatial autocorrelation for each genus.

Model assessment

Evaluation of the rare events logistic regression model output is more complicated than
for the typical linear model. For example, R? values, although calculated, have little applicability
to logistic regressions and are therefore ignored (Menard 2000, Peng et al. 2002). Sample size
and selected threshold largely influence the results of the Hosmer and Lemeshow goodness-of-fit
test (Hosmer et al. 1997). Accordingly, we use model classification accuracy as a second
measure of goodness-of-fit (in addition to AAICc). We want to maximize true positives (TP) and

true negatives (TN) while minimizing false positives (FP) and false negatives (FN). The
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sensitivity-specificity sum maximization approach (Cantor et al. 1999) therefore maximizes

TP TN
SSmax = + ?
TP+ FN TN+ FP

©)

which is equivalent to finding the point on the ROC (receiver operating characteristics) curve at
which the tangent slope is 1, indicating the optimal cutoff point at which "cost" (here, the
number of FN and FP) and "benefit" (the number of TN and TP) is balanced. We chose this
technique because we aim to identify regions devoid of hard corals as well as regions deemed
potentially suitable for habitation.

ROC curves plot the true positive test rate against the false positive test rate across
different theta cutoff points (Hadley and McNeil 1982). We calculated values for sensitivity and
specificity for threshold increments of 0.005 + 1 standard deviation of the rounded mean for each
model. Because each theta threshold value varied based on the genus and model, the threshold-
independent area under the curve (AUC) test statistics best reflect the predictive accuracy of the
model.

In addition to creating ROC curves, we also took into account the overall prediction
success of each model, given as:

_ TP+IN
TP+ TN+ FP+FN | (10)

Overall prediction success is a measure of total correct classification of both present and absent
observations. While this is a good final assessment of model classification error, consideration of
the prediction success alone is not a viable evaluation method when binary data is highly
imbalanced, as a value given by this method may primarily represent model success in
identifying the most common observation type (Fielding and Bell 1997). We plotted our

sensitivity and specificity values on a ROC curve to show how each model performed relative to
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267 chance (Fig. 4). All models fall in the range 0.7 < AUC < 0.9, which indicates good

268  discrimination and reliability of model predictions (Hosmer and Lemeshow 2004).

269 We also created maps of individual and summed predicted occurrence probabilities of
270 both coral genera across the MHI and ran a hotspot analysis using the ArcGIS Getis-Ord G;*
271 Hotspot Analysis tool. We constructed a polygon fishnet composed of 1 km? cells which

272  encompassed all islands. We summed each 25 m? raster cell value for probability of Leptoseris
273  occurrence and probability of Montipora occurrence. We performed a spatial join of raster cell
274  values within each polygon for an average value of summed probabilities. The Getis-Ord G;*
275 statistic identifies clusters within these polygons that display values higher in magnitude than

276 random chance would permit. The Getis-Ord local statistic is given as:

n __n
Z w, %, =X Z Wi
= =

278  Here, w, ; represents the spatial weights between features iand j ; n represents the total number

e 1< -
279  of features; x; is the attribute value for feature j; X ==>x, ;and S= |—> x7—(X)*.
J n% j n% J

280

277 G = (11)

S

1
n—1

281 Results

282

283 For our Leptoseris dataset, Geary's C = 0.990; for our Montipora dataset, Geary's C =
284  0.996. For our Leptoseris dataset, Moran's 1 =0.006; for our Montipora dataset, Moran's [ =
285 0.003. These values do not indicate any local clustering or global spatial autocorrelation within

286 either dataset. We observed negligible levels of autocorrelation up to ~100 m for Montipora (Fig.
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3). The absence of spatial autocorrelation within the data allows us to utilize a much less
computationally intensive model than would be required if autocorrelation were present. The
mixed models required to accommodate spatial autocorrelation can take hours or days to run
(e.g., Breslow et al. 1993).

The OLR covariate coefficients were modified using the rare events corrections proposed
by King and Zeng (2001), resulting in a change in predictive power (Table 4). Rare events
corrected models usually performed better than the uncorrected models, in terms of improved
specificity and prediction success. Our sensitivity values for both corrected models were slightly
lower than the corresponding OLR sensitivities, but in each case, specificity and prediction
success values were improved. Additionally, standard errors of the coefficient estimates were
lower for corrected models than for uncorrected models (Supplementary material, Tables A1 —
A4).

Predicted presence probability values (€) averaged 0.051 for Leptoseris and 0.040
Montipora models in the validation data (Figs. 5 - 6). These values agree well with the actual
presence frequencies in that data (0.052, 0.042). To better interpret these realistically low theta
values, we chose a theta threshold to transform the probability estimates to presence/absence
values. This is standard practice when examining the results of a rare events logistic regression,
but less common when performing OLR (Liu et al. 2005, Bai et al. 2011). Objective selection of
a theta threshold on a per-model basis is more scientifically sound than, for example, an arbitrary
assignment of 0.5 (Cramer 2003). The transformed model is valid if a threshold value yields a
high percentage of correctly classified observations and a low number of FP and FN observations
(Gobin et al. 2001).We selected an appropriate threshold for each model (Table 4) in order to

maximize SS__(Liu et al. 2005).
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Our final hotspot maps show the results of our analysis for Leptoseris, Montipora, and
both genera combined across all islands (Figs. 7 - 9). We show hotspots of habitat suitability for
both coral genera in red for areas of highest suitability and blue for areas of lowest suitability.
We identify a cell as a hotspot when the sum of its value and the values of its nearest neighbors
is much higher or lower than the mean over all cells. When the local sum of a cluster is very
different from the expected value, a statistically significant hotspot is identified (G;* statistic >
1.96 or G;* statistic < -1.96). Neither genus clearly dominated the summed probabilities hotspot
identification across any of the islands. Large Leptoseris hotspots were identified in southwest
Moloka‘i, northeast O‘ahu, west Hawai‘i, and the central ‘Au‘au Channel. Montipora hotspots
were identified in east Ni‘ihau, southwest Kaua‘i, west and south O‘ahu, west Hawai‘i, and the

central ‘Au‘au Channel.

Discussion

In this study, we used logistic regression with rare events corrections to predict the
habitat preferences of two dominant scleractinian coral genera across the entire mesophotic zone
surrounding the main Hawaiian Islands. The habitat preferences of mesophotic Montipora appear
distinct from those of Leptoseris. Montipora prefers the middle mesophotic zone (50 - 80 m) of
reefs less exposed to high-energy winter swells. Leptoseris prefers steep, rugose slopes and the

lower mesophotic zone (> 80 m) in regions of high year-round current flow.

Important environmental covariates
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333 Predicted Momtipora presence peaks at about 60 meters (median occurrence probability =
334 7.5%); Leptoseris presence peaks at about 100 meters (median occurrence probability = 7.5%).
335 These predictions are consistent with the inferences of Rooney et al. (2010), which

336  separatgmesophotic reefs into three distinct depth sections: upper (30 - 50 m), branching/plate
337 dominated (50 - 80 m), and Leptoseris dominated (> 80 m). The depth at which suitability peaks
338 for Leptoseris occurs at a range where steep ridges and drop-offs are plentiful in our study

339 region, and therefore the mean preferred depth may be prone to slight overestimation.

340 In addition to depth, four environmental covariates appeared to influence the distribution
341  of Leptoseris: rugosity, slope, summer mean cun‘@velocity (northward), and winter mean

342  current velocity (eastward). Scleractinians easily colonize environments that are relatively calm
343  and rugose due to the larger amount of available surface area, and this positive correlation was
344 reflected in our model. Leptoseris habitat preference was also positively associated with slope,
345 which was not observed for Montipora. Corals that inhabit the upper mesophotic zone may be
346 more susceptible to damage from debris displaced by high wave energy, and are therefore less
347 likely to colonize steep slopes (e.g., Harmelin-Vivien and Laboute 1986, Bridge and Guinotte
348  2013). The deeper distribution of Lerz's may protect it from damage related to wave

349 intensity, allowing it to colonize slopes. Another possibility is that the model is picking up drop-
350  offgfrom masses accreted during the last glacial maximum. These steep drop-offs are

351 presentbetween 90 - 120 m in the Leptoseris-dominated lower mesophotic zone (Yokoyama et al.
352 2001, Webster et al. 2004).

353 Leptoseris also favors well-flushed areas exposed to year-round moderate current flow
354 (i.e., up to 0.3 m/s). The plate-like morphology of Leptoseris corals effectively boosts sunlight

355 capture by its symbiotic zooxanthellae and zooplankton capture by the corals themselves, but it
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also makes the coral vulnerable to smothering by sediment accumulation. The success of
Leptoseris corals in areas of moderate current flow may be related to the improbability of
sediment settlement and accumulation. While the model did not capture the same effect of
current flow on Montipora distribution, we recognize that the morphology of some Montipora
species is extremely similar to that of Leproseris. We do not expect either genus to readily
colonize highly turbid, stagnant regions, especially given that certain species of heterotrophic
Montipora are kno@o exploit strong currents to meet their energy requirements (Rooney et al.
2010).

Substrate hardness, a variable known to influence coral colonization, was notably absent
from each model. Substrate hardness values were derived from acoustic backscatter imagery
readings. The base resolution of these readings (50 m x 50 m) was not sufficiently detailed for
purposes of this analysis. We noted plentiful coral colonization along larger surfaces like lava
fingers, the hardness of which would be detectable by backscatter surveys, as well as across
small rock fragments strewn across a sand flat, which would be obscured by the softness of the
surrounding benthos. We can conclude that measurements of benthic hardness are not detailed
enough for predictive modeling purposes at a 25 m? resolution.

We emphasize that the purpose of this study was to build apa@lawai‘i predictive habitat
map for two dominant mesophotic coral genera. Because the scope of this study included all
main Hawaiian Islands, we were constrained by the coarseness of available full-coverage
environmental data. As we build on this analysis, we plan to use our maps to identify areas of
interest for further study at higher resolution and to include additional variables currently only
available in certain regions, such as light intensity and temperature at depth. For example, our

predictive and hotspot maps identify Penguin Bank (southwest Moloka‘i) as particularly suitable
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for Leptoseris colonization, which has not been verified by video or photo records. High
resolution backscatter data (1 m?) exist for this region, and incorporation of these data into new

analyses of subsets of our study area may refine our conclusions.

Error sources and model reliability

We examined two types of error (false negatives and false positives) and analyzed our
models without giving preference to either one. This approach is widely accepted as the best
method of overall error minimization (e.g., Liu et al. 2005, Fielding and Bell 1997). Rare events
corrected models for both Leptoseris and Montipora achieved levels of specificity and sensitivity
well above the null, indicating good predictive power. Additionally, both models attained about
74% overall prediction success. We assumed coral detectability was constant across the study
region and that we can therefore consider the true absence observations to be reliable indicators
of a potentially unsuitable habitat for corals. For each genus, the model tended to slightly over-
predict presence observations; large numbers of false positives lowered sensitivity values. This is
inevitable in the analysis of severely imbalanced or sparse binary data; the ongoing addition of
presence observations to the dataset will improve overall model classification accuracy.

While the consistent identification of southern coastal areas as suitable is reliable, the
comparatively infrequent selection of northern coasts is likely due to the source of the model-
building observations. The vast majority of mesophotic exploration has been along southern
coastlines, which is often where waters are calmest in Hawai‘i. It is speculated that because
mesophotic corals are more shielded from winter long-period wave energy than their shallow

water counterparts, they are able to flourish at depth along northern coastlines (Grigg 1998,
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Rooney et al. 2010). The addition of data sourced from northern expeditions would likely
improve predictive power of the model across north-facing coastlines (Alin 2010).

We acknowledge that the original data were not collectedin a standardized fashion (e.g.,
variation in vessel traveling speed or differences in data collection vessel and/or quality). Our
careful exclusion of overlapping observation points within each 25 m? rectified this sampling

design flaw as much as possible and eliminated pseudoreplication.

Distinctions between coral genera

Our Montipora model was simpler than the Leptoseris model in that the only variable
included other than depth was winter significant wave height. Though uncertainty was highest at
lower values of significant wave height, Montipora demonstrated a preference in colonizing
habitats that experience lower significant wave height during winter. This preference contrasts
with Montipora species in shallow waters that were more likely to be observed in higher wave
height environments (Franklin et al. 2013). This likely influenced the inability of the model to
identify any suitable habitat around Ni‘ihau, where the average winter significant wave height
equaled 1.78 meters, almost double the mean significant wave height of our model training data
(0.91 m). Though mesophotic corals are generally thought to be exempt from the growth
limitations faced by shallow water corals in regions of high wave energy, prolonged wave
intensity has been shown to negatively affect the colonization of upper mesophotic
scleractinians, especially in sloping areas prone to debris avalanches (Bridge and Guinotte 2013,
Kahng et al. 2014). Continuation of this work might include a more in-depth examination of the

relationship of this coral genus with the slope of available substrate and exposure to wave
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We found no records of Montipora presence when processing our O‘ahu dataset, which
probably contributed to the very low predicted mean probability of Montipora occurrence there
(0.1%). We believe this is due in part to the sampling pattern across south O‘ahu; we recorded
62.3% of all observations processed for this region at a depth of 75 m or greater. Montipora
prevalence is greater in the upper-to-middle mesophotic zone, and the relative deepness of the
O‘ahu dives likely influenced their nonappearance in this portion of the dataset. The mean
significant wave height across the mesophotic zone was lower across the southern and western
coasts (1.50 m) than that observed across the northern and eastern coasts (2.37 m) of the island.
As at Ni‘ihau, we assume that this high northern and eastern average height, coupled with the
absence of Montipora presences in O‘ahu in the training dataset, greatly impacted our model's
ability to detect areas of suitable habitat around the island. The results of our Getis-Ord G;*
Hotspot Analysis corroborate the findings of Costa et al. (2015), who used Maximum Entropy
software to predict the highest occurrence probability of Leptoseris and Montipora in the middle
and mid-coastal ‘Au‘au Channel, respectively (Costa et al. 2015).

The factors influencing the distribution of coral species in shallow and mesophotic
habitats differ. One of the fundamental drivers of the occurrence and abundance of coral species
on shallow reefs in Hawaiian waters is wave stress (Dollar 1982, Grigg 1983, Franklin et al.
2013). Given the depth range of MCEs, wave stress is unlikely to serve as a direct influence on
coral occurrence but may provide secondary effects as wave events lead to debris reaching
MCEs (Kahng 2014). Furthermore, the decoupled effects of environmental drivers between on
shallow and mesophotic zones extend between the islands. In shallow reef communities

Montipora species become meore-relatively dominant from Hawaii Island to Ni‘ihau (Franklin et
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al. 2013), but appear to peak in occurrence in the mesophotic zone of Maui Nui. While the
distribution, of shallow corals are influenced by strong environmental drivers, the occurrence
patterns of mesophotic corals may reflect a more stable environment with an increased influence
of biotic factors such as interspecific competition in a habitat zone with limited light and space

resources available.

Conclusions

We implemented a rare events corrected logistic regression to determine the most
influential environmental predictors of mesophotic Montipora and Leptoseris colonization.
Habitat preference differences between dominant mesophotic genera appear distinct and multi-
faceted. Montiporaghrives in the middle mesophotic zone in areas sheltered from high intensity
winter swells, while Leptoseristends to colonize steep, rugose, well-flushed areas in the lower
mesophotic zone. Improved understanding of the distribution of mesophotic corals will enable
resource managers to propose the construction of seafloor power cables and other offshore
infrastructure in areas less likely to contain coral communities. Results will likewise facilitate
efforts to protect these communities by supplementing scientific dive planning and strategies for

conservation, such as marine spatial planning.
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1

The mesophotic zone of the main Hawaiian Islands

The study domain, demarcated in blue, encompasses the mesophotic zone (30 - 180 m in
depth) of the main Hawaiian Islands. Black circles are the observations from the pre-existing

Maui Nui dataset. Red circles are the previously unprocessed observations in south O‘ahu

and southeast Kaua'i.
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2

Modeled spherical semivariogram for Leptoseris.

Leptoseris Semivariogram
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3

Modeled spherical semivariogram for Montipora.

Montipora Semivariogram
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4

ROC curves for all models.

AUC values for all models fall in between 0.7 and 0.9, which indicates predictive reliability.
The dashed line from (0, 0) to (1, 1) indicates the null threshold at which model performance

is considered unacceptable (< 0.5).
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5

Modeled area of suitable habitat for Leptoseris.

Probability of presence is depicted along a color gradient ranging from red (1; most suitable)

to blue (0; least suitable).
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6

Modeled area of suitable habitat for Montipora.

Probability of presence is depicted along a color gradient ranging from red (1; most suitable)

to blue (0; least suitable).
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7

Mapped result of our Getis-Ord Gi* hotspot analysis performed for probability estimates
of Leptoseris occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (> 1.96) or blue

(< -1.96).
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8

Mapped result of our Getis-Ord Gi* hotspot analysis performed for probability estimates
of Montipora occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (> 1.96) or blue

(< -1.96).
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9

Mapped result of our Getis-Ord Gi* hotspot analysis performed for summed probability
estimates of Leptoseris and Montipora occurrence.

A significant hotspot is < -1.96 or > 1.96; here, all hotspots are shown in red (>1.96).
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Table 1(on next page)

Number of field observations for each coral genus.
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1
2
Source No. observations Leptoseris Montipora
O‘ahu 2645 192 0
Kaua‘i 112 38 3
Maui 19957 708 791
Total 22714 938 794
3
4
5
6
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Table 2(on next page)

List of all variables considered for inclusion in our analyses.
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Variable Category Variable description Source Resolution Variable
2
= .
9] _ Leptoseris
Z g
£ S Presence/ absence between PIFSC,
Ei e Eoee aseree AETee HURL optical NA
2 s 30 - 180 m in depth L
& s validation data )
s Montipora
m
2
= ;; The depth of the euphotic NOAA
s zone (PAR 1%) determined | Oceanwatch Live .
= ] using the Morel method Access Server; 4km x 4 km Mean euphotic depth (m)
© (2007) NASA, 2014
Seafloor complexity
calculated with the ArcGIS Rugosity (unitless)
BTM Terrain Ruggedness gosity
tool
Depth of seafloor Depth (m)
Rate of change calculated
with the ArcGIS BTM Slope Slope (degrees)
tool
>
= Curvature of the seafloor
. % calculated using the ArcGIS Curvature (degrees of degrees)
S 2 Curvature tool
2 g
ﬁ =
g Hardness of seafloor
= detected by acoustic USGS. 1998; 50mx50m Substrate hardness (unitless)
= backscatter S resampled to
g University of 25 mx 25 m
5 ) ) Hawaii SOEST,
E D}stance of obsewathn 2014 Distance to coastline (m)
5 point to nearest coastline
Compass direction of
maximum slope calculated
using the ArcGIS Aspect Aspect (degrees)
tool
Mean cur. vel. (northward/summer)
(ms-1)
Mean current velocity data Mean cur. vel. (northward/winter)
- obtained per season PaclOOS Hawaii (ms-1)
g (winter/summer) for depths: Regional Ocean 4 km x 4 km Mean cur. vel. (eastward/summer)
= 200, 150, 125, 100, 75, 50, Model (ms-1)
2 30 m .
§ Mean cur. vel. (eastward/winter)(m
= s-1
S )
_ PacIOOS Hawaii Sig. wave height (summer) (m)
Sea surface mean significant 1 kmx 1 km
. SWAN Wave
wave height del ) . )
Mode Sig. wave height (winter) (m)
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Table 3(on next page)

Summary statistics for theoretical semivariogram models.

Peer] reviewing PDF | (2016:02:9070:0:1:NEW 13 Feb 2016)



PeerJ Manuscript to be reviewed

Sum of

2 Input 2 Actual 2
Genus squares Input & nput ¥ Actual o ctual ¥ Actualr
Leptoseris 2940.671 0.055 218 0.051 206.909 0
Montipora 14013.610 0.020 390 0.032 390.000 0.003
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Table 4(on next page)

Predictive models output.

Results by genus: theta threshold subscripts indicate model type and training and validation

(c-v) outputs. Sensitivity and specificity totals apply to training data only.
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