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ABSTRACT
While there have been enormous advances in our understanding of the genetic drivers
and molecular pathways involved in cancer in recent decades, there also remain key
areas of dispute with respect to fundamental theories of cancer. The accumulation of
vast new datasets from genomics and other fields, in addition to detailed descriptions of
molecular pathways, cloud the issues and lead to ever greater complexity. One strategy
in dealing with such complexity is to develop models to replicate salient features of the
system and therefore to generate hypotheses which reflect on the real system. A simple
tumour growth model is outlined which displays emergent behaviours that correspond
to a number of clinically relevant phenomena including tumour growth, intra-tumour
heterogeneity, growth arrest and accelerated repopulation following cytotoxic insult.
Analysis of model data suggests that the processes of cell competition and apoptosis
are key drivers of these emergent behaviours. Questions are raised as to the role of cell
competition and cell death in physical cancer growth and the relevance that these have
to cancer research in general is discussed.

Subjects Computational Biology, Oncology, Computational Science
Keywords Cancer, Evolution, Computational model, Carcinogenesis, Tissue organisation
field theory, Somatic mutation theory, Modelling, Genetic algorithm, Agent-based model,
Tumour growth

INTRODUCTION
Tumour growth is a complex process characterised by multi-scale phenomena involving
both cancer and non-cancer cell populations. Where previously our focus was directed
primarily at the activities of the cancer cell populations, once conceptualised as a single
homogeneous mass, our increased understanding of cancer biology now incorporates a
more nuanced evolutionary or ecological view of cancer growth (Gatenby, Gillies & Brown,
2011; Kareva, 2011). Key elements of this view of cancer as an evolutionary system are a
focus on the genetic heterogeneity of tumour cell populations (Fisher, Pusztai & Swanton,
2013; De Sousa E Melo et al., 2013), the importance of the tumour microenvironment and
the cross-talk between cancer and non-cancer cell populations (Allen & Louise Jones, 2011;
Hanahan & Coussens, 2012; Quail & Joyce, 2013). A concern among some investigators is
that, in the absence of an evolutionary understanding of population dynamics in cancer,
therapeutic interventions may be doomed to failure (Silva & Gatenby, 2010; Tian et al.,
2011; Gillies, Verduzco & Gatenby, 2012). In other cases there is interest in understanding
the role of the microenvironment in the process of cancer initiation (Pantziarka, 2015) or
the metastatic cascade (Psaila et al., 2007; Barcellos-Hoff, Lyden & Wang, 2013).
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More fundamentally, there are also competing theoretical views of cancer at the most
basic level. The predominant viewof cancer—termed the somaticmutation theory (SMT)—
is that it is a disease caused, and then driven, by genetic mutations in cells. An alternative
view—termed the tissue-organisation field theory (TOFT)—views cancer as a disease
caused by tissue dysfunction, development gone astray, with genetic changes not as the
drivers but as a consequence of the disease. A number of recent publications outline these
competing views of cancer (Baker, 2014; Bizzarri & Cucina, 2014; Sonnenschein et al., 2014).

A challenge to all fundamental theories of cancer is to incorporate the vast array of
new data that molecular biology has afforded to the researcher. The literature expands
exponentially as we develop the tools to probe ever deeper into cellular structures, signalling
pathways and the large data volumes generated by the various ‘omics.’ Against this backdrop
of ever greater detail it is becoming harder to integrate the data into a coherent ‘big
picture.’ Robert Weinberg makes the point that we are going full circle—from an initially
complex picture of disjointed phenomenological facts to simplifying models arising
from the revolution in molecular biology and back to a picture of endless complexity
again (Weinberg, 2014). The impacts of this lack of progress are ultimately felt in the clinic,
where, with a few significant exceptions, progress in developing treatments has significantly
slowed in recent years (Jalali, Mittra & Badwe, 2016).

Computational models can provide ideal platforms for developing conceptual
understanding of complex biological systems (Saetzler, Sonnenschein & Soto, 2011; Janes
& Lauffenburger, 2013). A range of techniques are available to build such software models
of cancer growth specifically to explore evolutionary or ecological hypotheses at an
abstract and non-physiological level, including techniques from evolutionary game theory
(Basanta et al., 2008; Krzeslak & Swierniak, 2014) and machine learning (Gerlee, Basanta &
Anderson, 2011).

For example Ribba et al. (2004) created a hybrid cellular automaton model which aimed
to replicate some features of CHOP therapy for Non-Hodgkin’s Lymphoma (NHL). The
model was calibrated in such a way as to make specific predictions as to the response of
NHL cells to treatment with the chemotherapeutic drug doxorubicin. Gerlee & Anderson
(2007) developed an evolutionary hybrid cellular automatonmodel of solid tumour growth
to investigate the impact of tissue oxygen concentration on the growth and evolutionary
dynamics of a tumour. A key aspect of this model was the calibration of parameters with
physically relevant data in terms of oxygen and glucose consumption rates, time estimates
for cellular proliferation and so on. Enderling and colleagues have developed a series of
hybrid cellular automaton models which include both qualitative and quantitative results
related to cancer stem cell theory and tumour growth (Enderling, Hlatky & Hahnfeldt,
2009; Enderling & Hahnfeldt, 2011; Poleszczuk & Enderling, 2016). Closer in intent to this
work was the genetic algorithm model developed by Gerlee, Basanta & Anderson (2011) to
investigate the evolution of homeostatic tissue in a two-dimensional monolayer system.

NEATG (Non-physiological Evolutionary Algorithm for Tumour Growth) is a simple
softwaremodel of tumour growthwhichmodels cell-to-cell and tissue-level interactions and
population dynamics under different evolutionary scenarios. Furthermore the platform is
structured such that anti-tumour interventions can also be modelled within these different
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scenarios. A number of scenarios are explored in this paper, including the simulation of
cellular response to homeostasis, stress conditions, nutrient deprivation and cytotoxic
intervention. The approach in this work is primarily qualitative rather than quantitative
and does not depend on calibration to physical tumour growth models.

While computational models enable the construction of in silico experiments involving
biological systems, they differ from traditional mathematical models (differential and other
equation-based systems) in that the model itself is encoded in computer code, input/output
file formats, configuration files etc. Therefore, it is important in reporting on such a model
that there is exposition not just of the algorithmic details but also an exploration of how
the model behaves at different stages, of results with differing inputs, the modelling of
different scenarios and so on. Therefore the ‘Results’ of this work presents a significant
level of detail in the hope that we can lessen the degree of opacity.

METHODS
NEATG is implemented as a hybrid model incorporating elements from both genetic
algorithms and cellular automata. It is dual scale, non-deterministic and represents both
cell-level and tissue-level behaviour. It is coded in the Java programming language.

Grid or tissue-level
The tissue-level is represented as a rectangular grid, with each grid element containing a set
of modelled cells, which may be Malignant or Normal. The relative proportion of Normal
and Malignant cells in a grid element determines the state of that grid element. These states
are:

E ={Normal, Majority Normal, Majority Malignant, Tumour, Necrotic}.

Transition of a grid element from one state to another takes place at every clock tick
(generation) and is determined by the proportions of different cell populations within that
element, but also by the state of neighbouring grid elements. Grid elements which are in
the Tumour state (that is, they do not have any Normal cells within them) can transition
to a Necrotic state if they are surrounded by an extended neighbourhood which consists
exclusively of other Tumour grid elements. By default this is a Moore neighbourhood of
radius 2 (see Fig. 1), though this is a configurable model parameter. This Necrotic state
is designed to model cellular compartments within solid tumours in which a high rate of
hypoxia and a low level of nutrient availability lead to high levels of cellular necrosis.

Grid elements in the Necrotic state are suspended and do not take part in further
computational activity unless the neighbouring grid population changes, in which case the
Necrotic state reverts to Tumour.

Each grid element is populated with an initial, optimum population of Normal cells. The
size of this optimum population is a model input parameter. The size of the population
can vary over time and can increase to a defined maximum value, termed the carrying
capacity, after which cellular competition takes place (as described below).

Each grid element receives as input a Nutrient, represented as an integer value, and a
set of Gene Factors, represented as real values. The number of Gene Factors is equal to the
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Figure 1 Moore neighbourhood of radius 2.

number of genes in the cell structure. The Nutrient score can be loosely interpreted as a
combination of oxygen and cellular nutrients (e.g., glucose), while the Gene Factors may
be viewed as generic growth factors required for cellular growth and survival.

The grid element has a distribution function to compute the share of Nutrient (DN )
assigned to each cell in its population of P cells based on the relative demand represented
by the Nutrient Target values T for each cell:

DN i=
Ti
P∑

p=1

Tp

. (1)

Similarly the Gene Factor values which are inputs into each grid element are distributed to
each cell according to the transfer function based on the Gene Targets (G):

DGi=
Gi
P∑

p=1

Gp

. (2)

The distribution functions in Eqs. (1) and (2) are designed to share resources within a
given grid element based on relative demand in order to reflect the levels of avidity in
individual cells. In real cells this avidity is controlled via the glucose transporter proteins
Glut1–Glut3, for example.

Cell level
There are two types of cell in this model, Normal and Malignant, with the same internal
structure regardless of type.While the structure is the same the behaviour is type-dependent
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during cell division, as will be shown later. Crucially, theMalignant cell has non-zero values
for Mutation and Invasion rates, whereas for the Normal cells these values are set to zero.

Each cell is a data structure that encodes a Genome and an internal clock. The internal
clock, implemented as an integer value, counts down from a maximum value, known
as the Lifetime, to zero. Cell division is initiated when the clock reaches zero—Lifetime
is therefore analogous to the length of time for the cell cycle. When the system is first
instantiated each cell is initialised with an internal clock value that is equal to a random
integer between the Lifetime and zero. In the experiments that follow, a Lifetime of 100
generations has been used as this simplifies the numerical analysis and empirical testing
showed that it produced robust results in different scenarios. Shorter Lifetimes accelerated
rates of cell proliferation, and longer values slowed growth rates however the qualitative
results were similar in all cases. At initiation all cells have the same Lifetime, though this is
heritable and mutable and therefore subject to evolutionary adaptation over time.

The Genome is a set of N genes, which are defined by a Target and a Tolerance, both
represented as real numbers. The Genome is defined as:

G={(Target0,Gene Tolerance0)...(TargetN ,ToleranceN )}.

While the size of the genome is configurable, the default value of N is 3 in the experiments
presented in this work. Empirical testing indicated that three genes were sufficient to
illustrate genetic evolution and diversity. Increasing the value ofN increased the run-time of
the system but did not otherwise produce much change in the major output characteristics
such as growth inMalignant cell numbers,measures of genetic heterogeneity etc. Decreasing
N improved performance somewhat but with reduced scope for genetic evolution to take
place.

The Gene Target is the optimum level of the corresponding Gene Factor that exists in
the grid environment, and the Tolerance defines a band of tolerable values on either side
of the Target that is the healthy range for that gene. Real cells are able to survive variations
in nutrients, growth factors and so on; the Target and Tolerance mechanism is therefore a
mechanism to allow modelled cells to similarly survive in varying conditions. Gene health
is therefore defined as a Boolean value which evaluates as True when the Gene Factor is
within the desired range, or False if the Gene Factor is above or below the tolerable range:

Health= (Gene Factor< (Gene Target+Gene Tolerance)) &

(Gene Factor> (Gene Target−Gene Tolerance)). (3)

In addition to flagging health status, Genes are also used as a mechanism for the cell to
influence the local grid environment. This is a simple feedback mechanism by which each
cell attempts to alter the local environment in order to achieve the level of Gene Factor
required for its own optimum health. The expression function is:

E = 1−e−(T−F) (4)

where T is the Gene Target value and F exogenously supplied Factor.
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The actual level of Gene Factor available in each Grid Element is calculated as the sum
of the exogenously supplied Factor, which is an input parameter in the model, and the sum
of the expression values from each cell in that grid element.

Additional components of the cell are the Nutrient Target and a Nutrient Rate, which
represent the demand for nutrient and the rate at which nutrient is consumed respectively.
Nutrient which is not consumed is stored in the Nutrient Store. Each cell also has a
Mutation Rate and an Invasion Rate, which are used when cell division is necessitated for
Malignant cells.

Cells can exist in a number of states:

S={HEALTHY, DIVIDING, APOPTOTIC, TO_BE_CLEARED, NECROTIC}.

Note that the cell state of Healthy implies viability, rather than whether a cell is Normal or
Malignant.

At every clock tick the health status of each cell is assessed and the cell clock decremented
according to the state of health. A healthy cell, with adequate Nutrient and Gene Factors,
will decrease the cell clock by 1. Each unhealthy gene will also decrement the cell clock by
one. A cell that has a value of zero for Nutrient store will have the cell clock set to zero
because it is unable to meet its metabolic requirements and must therefore transition from
a Healthy state.

All cells undergo a similar cell cycle. A cell starts as Healthy and undergoes a number
of iterations (clock ticks) in which nutrient and gene factors are processed, the cell clock
decreases at rates that depend on how well the cell is adapted to the local grid environment
defined by the available Nutrient and Gene Factors. When the cell clock or nutrient store
reaches zero the cell changes state according to the following cycle:

Healthy>Dividing>Apoptotic>To Be Cleared.

The cell cycle algorithm is shown in Fig. 2 (note that cell states are indicated in red).
Cells that are flagged as To Be Cleared are removed from the grid element. Dividing cells
undergo cell division during which a new daughter cell is generated and enters the local
population. When the grid element contains fewer than the carrying capacity of the grid
element a new cell is cloned from the dividing cell. At this point the difference between
Malignant and Normal cells is apparent in that Normal cells have Mutation and Invasion
rates fixed at zero, whereas Malignant cells have non-zero values. In the case of Malignant
cells, therefore, cloning can also incur a mutation in which one of the elements of the
cell can change value, for example the Nutrient Target, a Gene Tolerance value or the cell
Lifetime itself may undergo an increase or decrease. Note that the rate of mutation events
is controlled by the Mutation Rate, which is itself mutable and can increase or decrease.

If the grid element is already at carrying capacity then the cell division process is more
complex. In addition to undergoing a chance of mutation, Malignant cells may also
undergo a migration event in which the cell moves into a randomly selected adjacent grid
element. The rate of such migration events is controlled by the Invasion Rate, which, like
the Mutation Rate, is mutable. Cells which are not selected for migration are added to
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Figure 2 Cell cycle algorithm.

the local population. To preserve the carrying capacity of the grid element, all cells are
then ranked according to fitness and the least fit cells are removed. This ranked selection
algorithm is not biased by cell type, and both Malignant and Normal cells are included in
the process.

The fitness function, F , is designed to penalise cells which are poorly adapted to the local
grid environment rather than being a global function across the entire population of cells.
It is defined as:

F =
1
G

G∑
g=1

e−(|Tg−Ag |/Tg) (5)

where T is the Gene Target and A is the Gene Factor value for each Gene in the Genome G.
The fitness function yields a value in the range [0, 1], with a perfect fitness equal to 1, and
is used as the ranking value when selecting the least fit cells for elimination. The rationale
is that at any given point the cell that has Nutrient and Gene Factor demands which
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correspond most closely to the available levels in the local grid is the most well-adapted
and hence the fittest. Note that this is evaluated at every clock tick, and therefore fitness
changes over time as the local conditions change.

Evolutionary strategies
The processing of Nutrient and Gene Factors is controlled by the treatment strategy
object active during that clock tick. This software component, coded in Java, enables the
NEATG system to model multiple evolutionary strategies, each of which can implement
different algorithms in terms of controlling the rate of cellular attrition, ageing and division.
Strategies are coded as Java components which extend an AbstractTreatmentStrategy class,
which in turn implements an IStrategy Java interface. Dependency injection is used to
load the required strategy, specified in a run-time configuration file, when it is required.
Treatment strategies become active at specific time points, either by activation at a specified
generation or at a specified level of tumour growth. Once triggered a treatment strategy
can remain active until the final generation or for a specified number of generations. There
is also a default ‘no treatment’ strategy during the iterations before and after the ‘active’
strategy is in operation.

RESULTS
Homeostasis
Before exploring the results for different tumour growth scenarios it is important to validate
the behaviour of the system during homeostatic and non-tumour scenarios. Cells in this
scenario are supplied with optimal Nutrient and Gene Factor values, ensuring that they are
unstressed and in ‘good health.’ In the absence of tumour cells we would expect that the
system will display homeostatic behaviour characterised by regular cellular turn-over as
cells age and die, and that cell population size will fluctuate but remain relatively constant.

To represent this scenario a series of experiments were run using a 25 × 25 grid.
Empirical testing had shown that a grid of this size was sufficient to provide illustrative
results in a wide range of scenarios, including tumour growth scenarios in addition to
homeostasis and other non-tumour growth scenarios. The optimum cell population for
each grid was set at 5, with a population of 10 cells as the maximum carrying capacity.
The Nutrient Target used was 10, with a Nutrient Rate of 1. The Nutrient input to each
grid element was also set at 10, ensuring that at optimum population level each cell would
receive a Nutrient input of 10/5 = 2. A genome of three identical genes was used:

G={(5.0,1.0),(5.0,1.0),(5.0,1.0)}.

The Gene Factor supplied to each grid element was set at {25.0,25.0,25.0} , to ensure that
each cell received the Target value of 5.0.

The system was run five times, with 1,000 iterations per run, and the results averaged
for this analysis. Given our input parameters for a grid of 625 elements (25 × 25), and
an optimum cell density of 5 cells per grid element, we would expect a total cell count of
3,125. However, not all of these cells will be healthy, some will be dividing or being cleared.
Figure 3A shows the overall population of cells over time.
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Figure 3 Cell change over time. (A) Total and healthy cell counts over time. (B) Number of dividing cells over time. (C) Average cell fitness over
time. (D) Average cell age over time (all mean± SD).

The number of dividing cells over time is shown in Fig. 3B. Note that the average over
the 1,000 iterations is 31.25. This is as we would expect given that the Lifetime for the cells
is 100, so that at any one time 1% of cells is dividing.

The average fitness, Fig. 3C, is high, fluctuating just below the maximum possible value
of 1.0. And the average age, Fig. 3D, fluctuates just below a value of 50. These latter two
figures displaymore clearly a pronounced periodicity which is also evident in the population
density. This is due to the random distribution of ages in the initial cell population. In the
absence of stress or environmental perturbation, the population of cells ages and divides
in a uniform manner that preserves the distribution of ages from the initial population.

Stress conditions
In the next experiments we assess the behaviour of NEATG when homeostasis is disturbed.
In particular we are interested in the responses to changes in Nutrient and Gene Factors, as
these both have an influence on cell ageing and survival. Again, this series of experiments
does not include Malignant cells as we are primarily interested in exploring the behaviour
of the system in non-tumour scenarios. For both of the following experiments, the same
basic parameters as in the previous experiment are used.

The first stress experiment varies the Nutrient input from 1 to 15, in integer steps. Given
that the Nutrient Rate is set at a value of 1 and the optimum cell population is set to 5,
we would expect that if the Nutrient Supply to each grid element falls below a value of 5
each cell in the grid would consume more nutrient than it receives as input and eventually
deplete the value in its Nutrient Store (which was set to an initial value of 10). Figure 4A
shows the number of healthy cells for different Nutrient Supply values. There is a decline
in cell numbers over time for Nutrient Supply values below 5 but none for greater values
(Fig. S1). Cell populations are therefore shown to be sensitive to the supply of Nutrient
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Figure 4 Changes during stress conditions. (A) Change in Healthy Cell count numbers in response to underfeeding. (B) Change in rate of cell
division vs. Gene Factor Supply (at 1,000 generations). (C) Change in average fitness vs. Gene Factor Supply (at 1,000 generations) (all mean± SD).

such that under-feeding can deplete numbers and in some cases ‘starvation’ reduces cell
numbers to zero.

The supply of Gene Factors is the other external input to each grid element. These
are analogous to generic growth and survival factors and are used to assess the health or
otherwise of each cell in a grid element. In this experiment the same parameters are used
as before, but the Gene Factor Supply is varied from {0.0,0.0,0.0} to {45.0,45.0,45.0}, in
increments of 5.0.

There was little variation in cell counts in response to changes in Gene Factor Supply
(Fig. S1); however, Gene Factors did have an influence on cell turnover, such that it was
lowest for optimum values of Gene Factor Supply and increased by a factor of four as
the deviations from the optimum values increased, as shown in Fig. 4B. The number of
dividing cells at the optimal Gene Factor Supply value is around 1% of the total cell count,
whereas for non-optimal Supply values there is an increased rate of cell division. This is as
we would expect given that ‘unhealthy’ genes cause an increased rate of cell aging.

In addition to being a factor in the cellular aging process, the Genes are also used in
calculations of cell fitness. Fitness is used in the rank selection process to identify the least
fit cells when the population density in a grid element exceeds the maximum capacity. In
this experiment noMalignant cells are present therefore the rank selection procedure is not
active; however we can still assess the influence of the Gene Factor Supply on cell fitness,
(which is defined in the range [0, 1]), as shown in Fig. 4C.
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Figure 5 Tumour growth—no treatment. (A) Change in Normal and Malignant cell counts (Mean± SD). (B) Change in Normal and
Non-Normal Grid Element Counts (all mean± SD). (C) Change in Gene Pool and Clonal Populations Over Time (all mean± SD). (D) Change In
Fitness Over Time (Mean).

Tumour growth—no treatment
Having established the behaviour of the system under homeostatic and non-tumour stress
scenarios, we can now begin to introduce Malignant cells. Initially, we will explore the
behaviour of NEATG in the absence of any treatment scenarios.

In this first series of experiments we will continue to use the same parameters as before,
although the iteration period is increased to 2,000 to allow greater time for the evolution of
appreciable number of tumour cells. Tumour growth is initiated by the insertion of a single
Malignant cell into the grid element in the centre of our 25 × 25 grid. The only difference
between this Malignant cell and the Normal cells is that the cell type is set toMalignant, and
that it has a mutation rate of 5% and an invasion rate of 10%. Estimates of mutation rates
in higher eukaryotes, including human cells, vary considerably. These initial values were
derived from empirical testing of NEATG and were selected as they generated consistent
tumour growth. In subsequent experiments, these values will be varied so that we can see
how tumour growth patterns are affected. Drake et al. (1998) report a mutation rate per
effective genome per replication of 0.004 in humans, which is an order of magnitude lower
than the rate used here.

With the introduction ofMalignant cells we can view results both in terms of the changes
in cell populations across the whole system and also in the evolution of the grid elements.
The change in the global population counts cells is shown in Fig. 5A and grid elements in
Fig. 5B.

Using Fig. 5A we can see that the doubling time for Malignant cells is approximately
500 generations. The doubling time for the NCI-60 human cancer cell lines range from
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Figure 6 Mutation rates over time. (A) Mutations per Malignant cell over time. (B) Change in Mutation and Invasion Rates over time
(all mean± SD).

14.4 h (HCT-116 colon cancer) to 79.5 h (HOP-92 non-small cell lung cancer), with a
median value of 33.25 h (National Cancer Institute, 2015). If we use this median value then
each generation equates to 4 min, and the entire run of 2,000 generations is equivalent to
around 5.5 days of in vitro growth.

Changes in grid elements and cell populations are not the only metrics of interest. Also
of interest is the process of evolutionary change in the Malignant cell populations. In the
initial population there is only a single genotype, but as shown in Fig. 5C the rate of change
of the gene pool—the cumulative total of all clonal sub-populations which have been
generated, including extinct populations in addition to existing ones—rises over time,
increasing in line with the Malignant cell counts. Also shown in Fig. 5C is the rise in the
number of clonal sub-populations, reflecting the growth of different active Malignant cell
sub-populations.

The evolution of fitness is shown in Fig. 5D. The first Malignant cell has the same fitness
as the Normal cells in the grid element into which it is inserted, however as the number of
cells increases, the number of mutations rises, Malignant cells proliferate into neighbouring
grid elements and competition for Nutrient and Gene Factors takes place. The noisy signals
indicate a good deal of change and adaptation taking place over time. The initial high fitness
value is degraded once the cell populations start to increase and competition takes place.
It is also clear that the Normal cell population retains an average fitness that is higher than
the average of the Malignant cell population. One plausible explanation is that many of the
mutations are deleterious and do not lead to improved survival for those cells. However,
if we look at the maximum values for the Malignant cells we can see that there are indeed
some cells which do achieve a higher fitness than maximum of the Normal cells.

The average number of mutations per Malignant cell is shown in Fig. 6A. As can be seen
for the first 100 generations or so there are no mutations, which accords with Fig. 5D.

The mutation rate and the invasion rate, which are both mutable characteristics show
some change over time, as shown in Fig. 6B. While initially there is little change, indeed
both rates dip below the starting values, both rates show an increasing trend over time.

Finally, while we have explored the rates of change at the cellular and grid element
levels, we have not explored the spatial distribution of the spread of Malignant cells. A
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Figure 7 Spatial distribution of tumour growth. Evolving tumour mass at (A) 2,000 generations.
(B) 4,000 generations. (C) 6,000 generations. Note that black areas are necrotic grid elements.

representative example of the ‘no treatment’ scenario is shown in Fig. 7, an extended run
of 6,000 generations and a grid size of 45 × 45 has been used to illustrate more fully the
development of the tumour over time. Figure 7A shows ‘tendrils’ of cancer cells infiltrating
into healthy tissue (light coloured background representing Normal cells) from the centre
of the dark blue tumour mass, in Fig. 7B the tumour mass has expanded considerably and
shows a black inner necrotic core and a perimeter of tumour cells with tendrils extending
into the healthy cells. Finally Fig. 7C shows continued expansion, including an expanding
area of necrosis. If allowed to continue expanding, the tumour eventually dominates the
grid completely until further growth is impossible and the mass becomes mainly necrotic.

We can vary the Mutation and Invasion rates to understand the impact they have on
tumour growth. First we vary the Mutation Rate from 2.5% to 30% in increments of 2.5%,
all other settings are as before. Note that while figures are shown for the final time point
of 2,000 generations, these values are representative of the trends apparent at earlier time
points. Whether we look at tumour progression in terms of grid elements or in terms of
Malignant Cell counts, as in Fig. 8A, there is no direct relationship between mutation rate
and tumour progression.

We would expect to see a correlation between the mutation rate and the size of the
Gene Pool, Fig. 8B, though even here the relationship is not completely monotonous as
a mutation rate of 32.5% generated a larger gene pool than a mutation rate of 37.5%.
Similarly, if we look at the number of currently existing clonal sub-populations, Fig. 8C,
there is a correlation with the mutation rate, but again this is not linear. Another interesting
metric is the degree of dominance of the largest of the clonal sub-populations, Fig. 8D.
This shows the percentage of the total number of Malignant cells which belong to the
largest clonal sub-population and shows that a lower mutation rate yields a greater degree
of dominance by a single clonal sub-population.

We also vary the Invasion Rate to see what impact this has on the degree of tumour
growth and the size of the gene pool. In this experiment the Invasion Rate is varied from
2% to 20% in 2% increments, the Mutation Rate of 5% is used; all other settings are as
before. Clearly, as shown in Fig. 9A, there is a direct relationship between the Invasion Rate
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Figure 8 Mutation rates and clonal sub-populations. (A) Number of Malignant Cells. (B) Size of Gene Pool. (C) Number of Clonal Sub-
populations. (D) Dominance of Single Clonal Population (all at 2,000 generations, mean± SD).

and the rate of tumour growth. More migration events correlate closely with increased
tumour spread.

This increased rate of tumour growth also leads to an increase in the size of the Gene
Pool and the number of clonal sub-populations, Figs. 9B and 9C. However, when compared
to the scale of the increase of the Gene Pool with a rising Mutation Rate (Fig. 8B) it is
clearly lower and indicates a less heterogeneous Malignant cell population. In terms of the
dominance of a single clonal population, Fig. 9D, a lower Invasion rate is associated with
an increased dominance by a single clonal sub-population, but even at a high Invasion Rate
of 20% the degree of dominance is much higher than that associated with a high Mutation
Rate (Fig. 8D).

Tumour growth—with treatment
The previous experiments have shown that in the absence of any interventions the number
of Malignant cells and Tumour grid elements increase over time. In the next series of
experimentswe investigate the impact on these growthpatterns of a number of interventions
using an active treatment strategy. This is loosely based on the example of high-dose
cytotoxic chemotherapy. Just as with cytotoxic chemotherapy this is not a targeted
therapy—it is applied to both Normal and Malignant cells. Where real chemotherapy
causes apoptotic or necrotic cell death in rapidly dividing cells, the treatment strategy in
this model flags cells above a specified age with the cell state of TO_BE_CLEARED. The
arbitrary age cut-off is based on the value of a cell’s clock and this value is a configurable
parameter. By adjusting the cut-off value we can approximately control the ‘toxicity’ of
the treatment, the higher the cut-off value the more toxic the treatment as more cells will
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Figure 9 Invasion rates and clonal sub-populations. (A) Number of Malignant cells. (B) Size of Gene Pool. (C) Number of Clonal
Sub-populations. (D) Dominance of Single Clonal Populations (all at 2,000 generations, mean± SD).

be flagged for disposal. The system also allows a degree of specificity in that we can make
Malignant cells more susceptible to the treatment than Normal cells.

In this experiment, the same parameters will be used as in the No Treatment scenario.
The treatment will commence at generation 1,500 (of 2,000), and will be applied for 25
generations. Three different toxicity values are assessed, with both Malignant and Normal
having the same cut-off values. The values used are 0, 10 and 20, which means that any
cell with a clock value ≤ the cut-off is ‘treated.’ Note that the zero cut-off value does not
trigger cell division as in the default scenario, but triggers apoptosis and cell clearance. It
represents the least toxic scenario and is therefore close to the ‘no treatment’ scenario.

The effect of treatment on the total cell count, Fig. 10A, is dramatic. In the case of
the more toxic treatments, there is a sharp decline in total cell numbers followed by a
recovery, and in the case of the highest cut-off value of 20 cell growth accelerates above the
pre-treatment trend.

This growth trajectory is also reflected in the Malignant cell view of tumour growth,
Fig. 10B. This shows that the slow rise in number is briefly interrupted when treatment
begins but then accelerates sharply after the completion of treatment. Furthermore in
both figures the more aggressive treatment is related to an increased tumour growth rate
following the cessation of treatment. The change in the Normal Cell population is shown in
Fig. 10C. The treatment induces a sharp reduction in cell numbers that continues even after
the cessation of treatment, though not at the same rate. We can assume that the decline
in Normal cell numbers has provided the conditions in which Malignant cells can expand
rapidly in number. Supporting evidence is provided by the Gene Pool trends, shown in
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Figure 10 Tumour response to treatment toxicity. Treatment toxicity is altered by varying the cut-off of cell age below which cells are affected by
cytotoxic treatment (e.g., Cut-off= 10 means all cells with a clock value ≤10 are flagged for removal). (A) Change in total cell numbers vs. toxicity.
(B) Change in Malignant cell numbers vs. toxicity. (C) Change in Normal cell numbers vs. toxicity (Mean± SD for all).

Fig. 11A. Here we can see that following treatment there is an increase in the size of the
Gene Pool, indicating a post-treatment burst of clonal evolution.

The number of active clonal subpopulations, Fig. 11B, shows a similar trend—a slow
increase until treatment commences at which point there is a dip in numbers followed by a
post-treatment evolutionary explosion. Another view of this evolutionary burst, Fig. 11C,
shows that the process of tumour growth leads to an increase in genetic heterogeneity, as
measured by the decreasing proportion of the Malignant cell population belonging to the
largest sub-population. The increasing heterogeneity is interrupted when treatment begins
and there is a spike which shows that the largest sub-population increases as a proportion
of the total, from which we can infer that a number of clonal sub-populations have been
exterminated completely, in line with Fig. 11B.

In clinical practice maximum tolerated dose (MTD) chemotherapy does not cause equal
levels of damage to all cell populations. Because it impacts rapidly proliferating cells the
‘collateral damage’ to non-tumour cells is restricted to certain populations of non-cancer
cells in the immune system, gut and other tissues associatedwith the side effects of treatment
(Chen et al., 2007). We can model this differential impact in the NEATG system by setting
a lower cut-off value for Normal cells compared to Malignant cells, thus causing fewer
Normal cells to be affected. In the following experiment the cut-off for the Normal cells is
set to 10, and for the Malignant cells it is set to 15, 20 and 25 in three different scenarios.
All other parameters are the same as in the previous experiment.

In terms of the total cell counts, Fig. 12A, there is a similar pattern to the previous
experiment, although the rate of recovery is much lower than in Fig. 10A. The lower
sensitivity of the Normal cells means that even when the cut-off for the Malignant cells
matches the previous values, the recovery of cell populations is lower. The pattern of
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Figure 11 Treatment toxicity and clonal sub-populations. Treatment toxicity is altered by varying the cut-off of cell age below which cells are af-
fected by cytotoxic treatment (e.g., Cut-off= 10 means all cells with a clock value ≤10 are flagged for removal). (A) Change in total cell numbers vs.
toxicity. (B) Change in Malignant cell numbers vs. toxicity. (C) Change in Normal cell numbers vs. toxicity (Mean± SD for all).

increased tumour growth and evolutionary change following the cessation of treatment
also occurs, Fig. 12B.

The lower sensitivity of the Normal cells does not mean that they are immune from
effects of treatment. Figure 12C shows a marked decline when treatment commences,
followed by a continued decline after treatment ends. Note there is no difference in the
three scenarios shown, indicating that the Normal cells are not affected directly by the
higher sensitivity of the Malignant cells. The values shown here are a close match to those
shown for the Cut-off 10 scenario illustrated in Fig. 10C.

Two rather obvious questions arise from this data. The first is what happens if the
period of treatment is extended? It is clear that for the duration of treatment the number
of Malignant cells, tumour grid elements and clonal populations decrease. Is it possible
to extend the treatment period so that the entire Malignant cell population is destroyed?
Secondly, it is clear that the treatment damages Normal cells and that this coincides with
increased cancer growth following the cessation of treatment. Therefore we can ask what
happens in the case when the differential toxicity is such that there is no damage to the
Normal cells—in other words what would happen in the case of a ‘magic bullet’ which has
toxic effects only on Malignant cells? These questions are addressed in turn in the next two
of experiments.

In the following experiment the treatment duration which was varied from 15–60
generations, in increments of 5. A differential toxicity was used, with a Malignant cut-off
value of 20 and a Normal value of 10, all other settings are unchanged.
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Figure 12 Tumour response to differential treatment toxicity.Differential treatment toxicity is modelled by varying the cell age below which cells
are affected by cytotoxic treatment (e.g., Cut-off= 10 means all cells with a clock value ≤10 are flagged for removal) and applying different cut-off
values for Normal and Malignant cells. Normal cell toxicity is fixed at cut-off= 10. (A) Change in total cell numbers vs. differential toxicity.
(B) Change in Malignant cell numbers vs. differential toxicity. (C) Change in Normal cell numbers vs. differential toxicity (Mean± SD for all).

Figure 13A, shows a relationship between the treatment length and the size of the
total cell population. The relationship is complex and non-linear, but it is apparent that
treatment duration longer than 40 generations causes significant reductions in the total
population. This result was robust to repeated runs of the system and there was essentially
no difference between results for any treatment length above this level. Furthermore, this
upper cut-off figure for treatment length was related to the length of the cell Lifetime
(which is 100 in these experiments). In order to simplify the exposition, the rest of the
results in this experiment will focus on treatment lengths of 20–35.

The effect of treatment length on the Normal and Malignant cell populations is shown
in Figs. 13B and 13C respectively. In the case of the Normal cell populations increasing
treatment length is strongly associated with the scale of the decline in cell numbers.
However, in the case of the Malignant cells, the treatment length is also associated with
the rate of recovery. Figure 13C shows that longer treatment length can sometimes lead to
an accelerated increase in Malignant cell numbers, though for treatment lengths beyond
40 (data not shown), there is no recovery in cell numbers, (as should be clear from the
collapse in total cell counts in Fig. 13A). The somewhat surprising result is that in some
cases a more aggressive treatment (longer treatment period) can lead to an unexpected
acceleration in tumour growth.

Length of treatment is also associated with an increase in the size of the Gene Pool,
Fig. 14A, and acts as a spur to clonal evolution, as shown in Fig. 14B.
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Figure 13 Tumour response to treatment length. TL, Treatment Length (number of generations in which treatment is active). (A) Total cell count
vs. treatment length (mean only). (B) Normal cell count vs. treatment length (mean± SD). (C) Malignant cell count vs. treatment length (mean±
SD).

A further indication of the effect of treatment length on clonal evolution is shown in
Fig. 14C, which charts the percentage of the total Malignant population in the most
populous clonal sub-population. It is clear that longer treatment increases dominance
as cells from less popular genotypes are removed, whereas for the short treatment of 20
generations there is no such spike in dominance.

In the final experiment in this section we investigate a ‘magic bullet’ scenario where
treatment is applied only to Malignant cells. In this experiment three different toxicity
levels are applied to the Malignant cells, representing cut-off values of 15, 20 and 25.
In stark contrast to Figs. 10A and 12A, treatment does not lead to a sharp decline in
total cell numbers, as shown in Fig. 15A. This is confirmed by the Normal cell numbers,
Fig. 15B, where there is a slow decline prior to the commencement of treatment followed
by a recovery in numbers and then a slow decline again.

The impact of treatment on Malignant cells, Fig. 15C, shows that the increase in cell
numbers is reversed sharply by the treatment but is then followed by a recovery and a
resumption of tumour growth. However, note that while the pattern is similar to previous
experiments, the absolute number of Malignant cells is markedly lower than in Figs. 10B
and 12B.

In terms of the impact on clonal evolution, Fig. 15D, while there is a pause during
the treatment period, it continues at a similar rate to the pre-treatment trend afterwards.
Again, while this pattern is familiar, the number of clonal sub-populations is lower than in
previous experiments, as shown by Figs. 11B and 14B.
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Figure 14 Treatment length and clonal sub-populations. TL, Treatment Length (number of generations in which treatment is active). (A) Size of
Gene Pool vs. Treatment Length. (B). Number of clonal sub-populations vs. Treatment Length. (C) Sub-clonal Population Dominance vs. Treat-
ment Length (Mean± SD for all).

Figure 15 Tumour response to ‘magic bullet’. Treatment toxicity is altered by varying the cut-off of cell age below which cells are affected by
cytotoxic treatment (e.g., Cut-off= 10 means all cells with a clock value ≤10 are flagged for removal). Here we model ‘no collateral damage’ and
toxicity only applies to Malignant cells. (A) Total cell count vs. no collateral damage. (B) Normal cell count vs. no collateral damage. (C) Malignant
cell count vs. no collateral damage. (D) Clonal sub-populations vs. no collateral damage (Mean± SD for all).
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DISCUSSION
The results outlined above display a range of behaviours and phenomena which are
indicative of real tumour growth. In the first instance the model is capable of reproducing
homeostatic behaviour. In optimal conditions the model displays a steady turnover of
cells, which age and divide in such a manner that the target cell population is preserved.
However, under stress conditions, such as a restriction in the Nutrient supply or a reduction
in Gene Factors, we see a change in behaviour. In the case of underfeeding or starvation
we see that cell numbers are markedly reduced; however, over-feeding does not lead to an
increase in cell populations.

For Gene Factors, we see that under or over-supply does not impact cell numbers to the
same extent, though both scenarios lead to a small reduction in total cell numbers. The
variations in Gene Factor supply do however impact on cell turnover, with an increase in
rates of cell division in both under and over-supply situations. In this respect we may view
the impact of deviations from the Gene Factor target values acting as mitogenic factors.
There is also a marked impact on the calculation of cell fitness, with deviations from the
optimal values fitness. We may conclude, therefore, that variations in the Gene Factor
supply are deleterious to some extent, but do not cause the same level of cellular damage
as restriction in the supply of Nutrient.

Tumour growth
Once tumour growth is initiated the proliferation of cancer cells, (also reflected in the
number of affected Grid Elements), increases in the absence of any counter-measures
(i.e., left untreated). As each Grid Element can support a number of cells over and above
the optimum level, this initial increase in numbers does not displace or replace non-cancer
cells. However, once the carrying capacity of the Grid Element has been reached there
is a competition between cells in which ultimately the Malignant cells out-compete the
Normal cells. The influence of carrying capacity on Malignant cell growth is illustrated
in Fig. 17B, which shows that changing the trigger point for competition by varying the
optimum cell count has an impact on the rate of tumour growth. Over time the number of
Malignant cells increases and the rate of invasion increases, while there is a corresponding
decrease in Normal cell numbers. As with the homeostatic case, this behaviour is not pre-
programmed but emerges from the interactions between the cells, between neighbouring
Grid Elements and the operation of a few simple rules. Additionally, there is a consistent
increase in the number of clonal sub-populations as growth continues—mirroring the
genetic heterogeneity which is a hall-mark of real tumour growth (Sun & Yu, 2015). The
system also shows that in the face of changing conditions there is an increase in the number
of clonal sub-populations and a decrease in the dominance of the most populous sub-clone
over time, again, reflecting real tumour genetic heterogeneity (Jamal-Hanjani et al., 2015).

We should note that in the first instance the seededMalignant cell has the same genomic
structure as the Normal cell population in these experiments; that is, the Malignant cell is
not conferred any genetic advantage over the rest of the non-Malignant cell population.
The single difference between the Malignant cell and the Normal cell is that the Malignant
cell is flagged as such and that it has an ability to mutate and undergo repeated division. It
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may be assumed that the increasing success of the Malignant cells in outcompeting Normal
cells may be due to an increasing evolutionary fitness that arises through a succession
of mutational events occurring during cell division. However, the data does not support
this assumption.

Evolutionary fitness is not defined in absolute or global terms in NEATG. Instead it
is a local function that reflects cellular adaption to the changing conditions in each Grid
Element. Thus it is clear from the data, as shown in Fig. 5D, that in general the fitness
of many Malignant cells is lower than the initial fitness of the Normal cells, and that it
often decreases as a result of intra-Grid Element competition between cells. Furthermore,
many mutations are actually deleterious and do not confer evolutionary advantage over
competing cells, Normal or Malignant. Some Malignant cells do experience mutations
which provide an advantage, and these are the cells which manage to survive and expand
in number. However, a cell with a positive advantage in one Grid Element may migrate
to an adjacent Grid Element and find that it is less fit and therefore does not survive. This
view of evolutionary fitness as locally responsive to the environment and therefore having
an impact on the success, or otherwise, of genetic mutations is in line with more recent
theoretical models of evolutionary processes in cancer (Rozhok & DeGregori, 2015).

The rate of evolutionary change is initially set by the Mutation Rate, which is heritable
and mutable. It may be thought that the Mutation Rate would be an important driver in
the rate of cancer growth; however our data show that in this model it has a weak influence
on the rate of growth of cancer. It does however directly influence the size of the Gene Pool
and the number of clonal sub-populations. More influential in terms of driving growth
is the Invasion Rate, which represents the probability that a dividing Malignant cell in an
overcrowded Grid Element can migrate to a neighbouring Grid Element. The data show
that this is a very strong driver of growth rates, but it does not lead to the same increase
in the size of the Gene Pool or the number of clonal sub-populations. These observations
are in line with results reported by Enderling, Hlatky & Hahnfeldt (2009) also using an
agent-based model of tumour growth.

In terms of modelling interventions against tumour growth, we have explored the use of
a treatment option that loosely mimics maximum tolerated dose chemotherapy in two key
respects. Firstly, the treatment is not genetically targeted—it applies to both Normal and
Malignant cells, though we can confer an increased sensitivity toMalignant cells if required.
Secondly, the treatment induces cell death in affected cells, analogous to the apoptotic or
necrotic cell death induced by chemotherapy. Finally, cells are affected depending on where
they are in the cell cycle—which is modelled in this instance by the reading of the cell clock.

Tumour regrowth
One of the most interesting emergent behaviours exhibited by the NEATG system is the
response of the modelled tumour mass to a treatment that mimics aspects of chemotherapy
treatment.

The response to this treatment, which we have varied in intensity and duration, is
consistent in our experiments. There is an initial response marked by massive tumour kill
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Figure 16 Growth of tumour mass over time. Treatment is initiated at 3,000 generations (E). (F) and (G) show tumour mass shrinkage. (H–J)
show the accelerated growth following treatment. (K) shows the corresponding graph of malignant cell counts over time.

followed by a resumption of tumour growth, which is often characterised by an accelerated
and aggressive tumour expansion, as shown in Fig. 16.

This response to treatment bears some resemblance to real cancer treatment, where
an initial reduction in tumour growth, characterised as complete or partial remission, is
followed by renewed tumour growth or the appearance of metastatic disease. Clinically
this phenomenon is sometimes termed accelerated repopulation (Davis & Tannock, 2000;
Kurtova et al., 2015; Yom, 2015). While the mechanisms of treatment resistance in real
tumours are complex and multifactorial, it is assumed that tumour heterogeneity is
an important factor; a tumour may harbour clonal subpopulations which are resistant
to treatment and which therefore benefit from reduced competition after chemo-
sensitive populations have been destroyed by treatment (Von Manstein et al., 2013;
Gottesman et al., 2016).
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Figure 17 Invasion rate and optimal cell count. (A) Tumour growth for different levels of Invasiveness. (B) OC, Optimal Cell Count—cell compe-
tition is initiated when the number of cells in a grid element reaches the OC level (Mean± SD for all).

In the NEATG model, treatment resistance is not related to drug efflux or other
mechanisms of acquired resistance. Instead the phenomenon is associated with a pool
of cells which survive due to their age (i.e., they are above the treatment cut-off age)
and which are therefore faced with a decreased level of competition for resources and
a lower population density of cells in each Grid Element. This is a finding in line with
the Norton-Simon hypothesis in which a proportion of cancer cells in tumour are
resistant not due to biochemical factors but due to the growth kinetics of the tumour
(Norton & Simon, 1977).

Increasing the intensity or duration of treatment as a strategy to improve response is
shown to be problematic in that it can cause reductions in Normal cell numbers which do
not recover and therefore this strategy is assumed to be deleterious. Again, there is a clear
parallel to clinical experience in which increased toxicity causes excess morbidity without
necessarily leading to improved outcomes.

The role of mutations
The rule of genetic mutation is a central concern in oncology, both in terms of fundamental
theories and increasingly at a clinical level in terms of targeted treatments. At a simplistic
level the SMT places the delinquent cell at the centre of cancer development, whereas the
TOFT places the poor neighbourhood central to the story (Baker, 2014; Sonnenschein et al.,
2014). A key difference between these competing theories is the role of cellular proliferation.
The SMT suggests that in the non-transformed state cells are non-proliferative by default.
Mutations in genes associated with cell cycle control mean cells become proliferative and
malignant. In contrast the TOFT posits that cells are proliferative by default and that this
proliferative ability is kept in check at the tissue level. A disordered tissue results in the
removal of the proliferative blocks and the cell can multiply without control.

In our model, both cell and tissue (Grid Element) level structures are featured. The
process of cancer initiation consists of seeding a transformed cell into a grid element
and letting it proliferate. The model does not have anything to say about how the initial
cell is transformed, it is taken as a given. The initial cell has the same parameters as the
untransformed cells; the only difference is that proliferative blocks have been removed. The
transformed cell, and its progeny, is able to accumulate mutations during cell division and
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replication. Some of these mutations will be deleterious and some will be advantageous, we
would expect therefore that the average fitness of the Malignant population will increase
and that these advantageousmutations will drive further evolutionary change—particularly
mutations that increase the Invasion rate. However, this does not appear to occur. Indeed,
a surprising result is that neither the Mutation Rate nor the Invasion Rate, which are
both heritable and mutable, appears to undergo significant increase during the process of
tumour growth. In fact, as shown in Fig. 6B, both show marginal rates of change, and can
rise and fall rather than rising monotonically and driving malignant growth. While some
mutations may provide evolutionary advantage, it is clear that the majority of mutations
are passenger mutations rather than driver mutations. This is another instance where the
NEATG model parallels biological systems, as it has become increasingly clear that the
majority of somatic mutations in human tumours are also passenger mutations, many of
which are actively deleterious to the cancer cell (Greenman et al., 2007; McFarland et al.,
2013;McFarland, Mirny & Korolev, 2014).

The question arises then as to whether mutational change is a necessary precondition
for cancer growth in this model. To investigate this question an additional series of
experiments was performed in which the Mutation Rate was set at zero, and the Invasion
Rate varied from zero to 8% in increments of 2%, with all other settings as in the previous
set of experiments. The results show that Malignant cell growth can occur even with
a zero Mutation rate, which was verified by confirming that the Gene Pool retained a
constant value of 1 (Fig. S2). This may be viewed as analogous to tissue hyperplasia where
non-transformed cells proliferate at an increased rate. The rate of growth in this model,
as shown in Fig. 17A, depends on the Invasion Rate, as one would expect, but even at the
lowest non-zero rate tumour growth occurs, and furthermore the growth rate accelerates
after treatment.

What is more, the data shows that with a zero rate of Invasion and Mutation there is
growth in Malignant cell numbers to the maximum possible in the Grid Element where
seeding occurred, but that without an Invasion Rate there is no possibility of a Malignant
cell migrating to a neighbouring Grid Element. One implication of this result is that in the
NEATGmodel cancer growth is not driven primarily by somatic mutation and is primarily
dependent on proliferation and invasiveness.

Reflecting on real tumour growth
Clearly this is a very simple model that does not incorporate many biologically relevant
oncogenic mechanisms—the model was deliberately designed to be as parsimonious
as possible. Validation of the growth curves produced by this model in comparison to
biologically relevant systems is not straightforward but we can make some preliminary
assessments. As NEATG is a two-dimensional grid model the most appropriate place to
look for validation is in vitromonolayer systems using a range of different cancer cell lines.
To fully assess that this is the case with the NEATGmodel a series of additional experiments
were performed in which the model grid was scaled up and the run-time, in terms of the
number of generations, was significantly extended by a factor of 10. Running NEATG with
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Figure 18 Comparison to real tumour growth. (A) Change in Normal and Non-Normal Grid Element Counts (mean± SD). (B) Growth of
monolayer cells from human cancer cell lines (reproduced from Castro et al., 2003). The solid lines are the best-fit Gompertzian curves and the
points are experimental data of the cell panel: SW-620 (©), HT-29 (�), U-251 (4), NCI-H520 ( ), NCI-H596 (�) and A-549 (N). The cell-density
scale is transformed logarithmically. (C) Change in Malignant cell numbers—absolute (mean± SD) and log transformed (mean) Inset shows
NEATG mean Malignant cell growth (red line) to scale compared to human cancer cell lines.

a grid size of 100 × 100 and for 20,000 generations allowed for a more realistic generation
of cell numbers and tumour growth, (albeit at the cost of increased computation time).

The first thing to note is that the growth of the tumour area more clearly follows a
sigmoidal curve, as shown by looking at the growth curves in Fig. 18A. These results can be
compared to the log growth curves in cell numbers for a range of human colon carcinoma,
malignant glioma and non-small cell lung carcinoma cell lines reported by Castro et al.
(2003), and reproduced in Fig. 18B. We can compare these results to the log transformed
growth curve of Malignant cells, Fig. 18C, and verify that there is a similar pattern of
growth, and that the asymptotic cell numbers are of roughly the same order of magnitude.
Furthermore we can compare the x-axes and make an informal estimate that in these
experiments 1,000 generations in NEATG roughly corresponds to one day of growth in the
monolayer systems used by Castro et al. in their experiments. In doing so, we can scale the
NEATG Malignant cell growth line appropriately and compare to the human cancer cell
lines growth, as shown in the inset in Fig. 18C.

While this falls short of fully validating the growth patterns produced by NEATG, they
do indicate that the growth rates that emerge from model share some quantitative and
qualitative features of the growth of human cancer cell lines in vitro.

Yet, given the limited physiology modelled by the system it has reproduced a series of
emergent phenomena which are analogous to biologically relevant phenomena—tumour
growth, intra-tumour genetic heterogeneity, response to virtual cytotoxic intervention and
accelerated repopulation.

By definition this is an evolutionary model, ‘descent with modification’ is a given, but
as we have seen it is also possible to run the model with a zero mutation rate and still
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generate a growing population of Malignant cells. One notes that although they harbour
no mutations and may be considered Normal cells with a hyperplastic phenotype, there
are also rare instances of cancers in which no genetic mutations or epigenetic drivers are
present (Versteeg, 2014). We have also defined Malignant cells as those with the ability
to mutate and to move into neighbouring Grid Elements. How these abilities arise is not
a question we are investigating in the model. What then are the key drivers of tumour
growth and accelerated repopulation? The detailed analysis of the behaviours outlined in
the Results suggests that there are two key drivers:

• Cell competition
• Cell death.

Competition occurs in theNEATGmodelwithin eachGrid Elementwhen the population
density reaches a set level (the optimum cell count). As can be seen in Fig. 17B, when
competition begins earlier (when the optimum cell count is 1), the rate of tumour growth
is much higher. As one would expect, competition also spurs growth of the gene pool
(Fig. S3). Competition for resources leads to cell death when the number of cells exceeds
the carrying capacity of the Grid Element. A ranked selection algorithm means that the
least fit (within that Grid Element) cells are removed. Importantly, this competitive process
takes place entirely within a Grid Element and is a process that involves both cell-to-cell
(cell-autonomous) and tissue-level (non-cell-autonomous, defined by the optimum cell
count for the Grid Element) factors.

Cell death arises both from the competition between cells within each Grid Element and
also exogenously via ‘treatment’—in this work loosely modelled on maximum tolerated
dose chemotherapy. It is clear from the data that increasing the rate of cell death, both in
Normal andMalignant cells, leads to accelerated repopulation andmore aggressive tumour
growth.

So, while both cell competition and cell death are both integral components of the
model, the impact that these have is not pre-programmed. These are unexpected key
drivers of the emergent behaviours that the model displays and the major findings of this
work.

Many of the core findings from molecular biology are not included in this model.
For example the NEATG model does not explicitly make use of the cancer stem cell
hypothesis. Cancer stem cells (CSC), also known as tumour-initiating or cancer-initiating
cells, are functionally characterised as a small fraction of tumour cell populations with the
ability to self-renew, differentiate into multiple cell types and to generate new tumours
when transplanted (Reya et al., 2001; Jordan, Guzman & Noble, 2006; Bozorgi, Khazaei
& Khazaei, 2015). Crucially, CSC are assumed to generate the non-CSC cells which
make up the major population of malignant cells in a tumour. In addition to being
characterised by a range of cell markers (CD44+, CD133+, ALDH1 etc.), CSC are theorised
to be relatively chemo- and radio-resistant and a key factor in resistance to treatment
(Yang & Rycaj, 2015).

However, the CSC hypothesis is increasingly being challenged as evidence emerges that
rather than being a distinct cell population there is a set of properties which together define
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‘stemness’ (Lewis, 2008; Antoniou et al., 2013; Wang et al., 2015). In particular, the claim
that tumour growth is mainly attributable to the rapid proliferation of CSC populations
rather than the non-CSC fraction is open to some dispute (Adams & Strasser, 2008; Hegde
et al., 2012). Additionally there is evidence that cancer cells display a significant degree of
plasticity such that ‘stemness’ traits can be acquired by non-CSC cells (Chaffer et al., 2011;
Cabrera, Hollingsworth & Hurt, 2015). Indeed, some recent work suggests that non-CSC
cells acquire stem-like properties in response to therapeutic challenge with chemotherapy
(Hu et al., 2012;Martins-Neves et al., 2016).

NEATG, therefore, does not explicitly model CSC and non-CSC populations but makes
the simplifying assumption that all Malignant cells are proliferative. The key point is that
the existence of CSC, whether as a separate population of cells or a collection of cellular
traits, is immaterial to the operation of the model and the ability to reproduce tumour
cell growth. At this level of abstraction, the behaviour of the model would be the same
regardless of the underlying complexities of the CSC hypothesis.

Similarly, the model does not include oncogenes, specific molecular pathways, a realistic
cell cycle, a vascular or lymphatic system, immune responses, different cell types, tumour
stroma and many more biologically important aspects of real disease. However, the
model does propose that cell competition and cell death have an important, and perhaps
underestimated, role in patterns of tumour growth and response to treatment. Given
that induction of cell death, particularly via the apoptotic pathway, is central to the most
common forms of cancer treatment this would be of some clinical significance if confirmed
in the laboratory. Based on these results, it is therefore hypothesised that cell competition
and cell death are major drivers of tumour growth.

There are some indications that these two aspects of cancer biology are of biological
significance.

A number of investigators have looked at the question of the role of cell competition in
cancer, for example Baker & Li (2008), and Moreno (2008), both referring to results from
research in Drosophila melanogaster which outlined the process whereby cells of differing
genotype within a given compartment engage in competition such that locally less fit cells
undergo apoptosis and are replaced with locally fitter cells. Very recent work by Suijkerbuijk
et al., (2016) has described the process whereby cell competition between APC-/- intestinal
adenoma cells and normal host cells in Drosophila melanogaster leads to cell death in
normal cells, host tissue attrition and the invasion of more rapidly proliferating adenoma
cells. Eichenlaub and colleagues have also investigated cell competition in the same animal
model (Eichenlaub, Cohen & Herranz, 2016). They report that EGFR over-expression in
wing imaginal disc cells leads to benign tissue hyperplasia and subsequent epithelial tumour
formation.

We should note that there are different cell types, molecular drivers and pathways active
in the latter two studies, yet both groups report that blocking the apoptotic process blocks
tumour development. This prompts the conclusion that targeting cell competition itself
may be a valid strategy in cancer therapy (Gil & Rodriguez, 2016).

While cell competition may be a necessary pre-condition of cancer development, it is
not sufficient, and our model clearly indicates that cell death is also required. This poses
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the question as to the role of cell death, particularly apoptosis, in tumour growth. One
of the hallmarks of cancer is defined as ‘resistance to apoptosis’ (Hanahan &Weinberg,
2011), yet it is known that tumours show a high rate of apoptosis, and at least in some
cancer types high apoptosis rates are a negative prognostic factor (Nishimura et al., 1999).
A number of recent studies have outlined the much more complex relationship between
cancer and apoptosis than has been assumed in the past (Gregory & Pound, 2011; Wang et
al., 2013; Labi & Erlacher, 2015; Lauber & Herrmann, 2015; Ford et al., 2015). While these
studies outline numerous mechanistic explanations as to why increased apoptosis may lead
to increased tumour growth, it is clear that there are underlying phenomena which may
have important clinical implications in terms of treatment strategies.

One rather obvious conclusion is that rather than aiming at maximum tumour kill using
traditional cytotoxic chemotherapy perhaps, other treatment strategies which produce
lower levels of cancer cell death may be more beneficial. For example, using metronomic
chemotherapy, in which chemotherapeutic drugs are administered at non-cytotoxic doses
and with no treatment breaks is one such strategy (Scharovsky, Mainetti & Rozados, 2009;
Kareva, Waxman & Klement, 2014; André, Carré & Pasquier, 2014). Another example is the
concept of ‘adaptive therapy,’ in which chemotherapy is used to maintain a population of
tumour cells rather than aiming to maximise tumour kill (Gatenby et al., 2009; Enriquez-
Navas et al., 2016).

While it is clear that the NEATG system does not provide us with mechanistic
explanations for the pro-tumour growth effects of cell competition and apoptosis, it
does direct our attention to these areas of current, active but not yet mainstream research.
Having directed our attention to the role of cell competition and cell death, there is ample
scope for continuing to use the model to explore the processes at work and, perhaps, to
suggest relevant laboratory experiments in light of further model results.

CONCLUSION
Having identified cell competition and apoptosis as key concerns, we may look to
incorporate additional aspects of this in more detail. For example, the onset of cell
competition is triggered when the optimum cell count is reached. In part this is a function
of the carrying capacity of the Grid Element—when this level is exceeded, Malignant cells
are able to migrate to a randomly selected neighbouring Grid Element (a stochastic process
depending on the Invasion Rate). In some respects this is analogous to tissue stiffness or
rigidity in that Grid Elements can be made more or less ‘stiff’ by increasing or decreasing
the carrying capacity. Tissue stiffness is also a current concern in oncology (Wei & Yang,
2016) and may be amenable to additional investigation by extending this model.

NEATG has been designed as a platform for investigating different interventions
and how they impact the growth of Malignant cells and tumour Grid Elements. In the
experiments described in this paper only one strategy, loosely based onmaximum tolerated
dose chemotherapy, has been explored. Clearly there is scope for additional interventions
to be modelled; for example, combinations of Nutrient restriction and chemotherapy, a
treatment strategy of some clinical interest (Raffaghello et al., 2008; Safdie et al., 2009; Lee
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et al., 2012), may be modelled in NEATG. Similarly, the use of metronomic chemotherapy,
chemo-switch strategies, targeted therapies and the use of different treatment schedules
are also amenable to modelling using the NEATG system.

The value of agent-based evolutionary models is that they can generate biologically
relevant behaviour through algorithmic means, which may in turn shed new light on the
underlying biological systems. Obviously increasing the complexity of the model so that
additional features are included may be of some value. Here we have generated hypotheses
as to the role that cell competition and cell death have in cancer, suggesting that these
relatively under-researched processes may have much greater important than has hitherto
been accepted. At the same time the model has not required the implementation of cancer
stem cell populations, specific oncogenic pathways and has shown a limited role for genetic
mutation—all of which are currently predominant concerns in much cancer research.
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