

Artificial reefs and marine protected areas: A study in willingness to pay to access Folkestone Marine Reserve, Barbados, West Indies

Anne E Smith, Philip M Wheeler, Magnus L Johnson

Artificial reefs and marine protected areas offer an interesting management solution to deal with visitor impacts to coral reefs, by providing additional habitat for marine biodiversity viewing. Marine park user fees can generate substantial revenue to help manage and maintain natural and artificial reefs. Using a stated preference survey, this study investigates the present consumer surplus associated with visitor use of the marine protected area in Barbados. Two hypothetical markets were presented to differentiate between respondents use values of either: (a) natural reefs within the marine reserve or (b) artificial reef habitat for amenity enhancement. Information was also collected on visitors' perceptions of artificial reefs, reef material preferences and reef conservation awareness. From a random sample of 250 snorkellers and divers, we estimate a mean willingness to pay of US\$18.33 (median - US\$15) for natural reef use and a mean value of US\$17.58 (median - US\$12.50) for artificial reef use. The number of marine species viewed, age of respondent, familiarity with Folkestone Marine Reserve and level of environmental concern were statistically significant in influencing willingness to pay. Regression analyses indicate visitors are willing to pay a significant amount to view marine life, especially turtles. Our results suggest that entrance fees could provide a considerable source of income to aid reef conservation in Barbados . In addition, the substantial use value reported for artificial reefs indicates a reef substitution policy may be supported by visitors to Folkestone Marine Reserve. We discuss our findings and highlight directions for future research that include the need to collect data to establish visitors' non-use values to fund reef management.

PeerJ Manuscript to be reviewed Title: Artificial Reefs and Marine Protected Areas: A Study in Willingness to Pay to Access Folkestone Marine Reserve, Barbados, West Indies **Authors names and affiliations:** Anne Kirkbride-Smith, Centre for Environmental and Marine Sciences, University of Hull, UK. A.Kirkbride-Smith@2009.hull.ac.uk Philip Wheeler, Centre for Environmental and Marine Sciences, University of Hull, UK. P.Wheeler@hull.ac.uk *Magnus Johnson, Centre for Environmental and Marine Sciences, University of Hull, UK. m.johnson@hull.ac.uk * Corresponding author: E-mail address: m.johnson@hull.ac.uk Telephone number: 01723-357255

PeerJ

Abstract

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Artificial reefs and marine protected areas offer an increasing management solution to deal with visitor impacts to coral reefs, by providing additional habitat for marine biodiversity viewing. Marine park user fees can generate substantial revenue to help manage and maintain natural and artificial reefs. Using a stated preference survey, this study investigates the present consumer surplus associated with visitor use of the marine protected area in Barbados. Two hypothetical markets were presented to differentiate between respondents use values of either: (a) natural reefs within the marine reserve or (b) artificial reef habitat for amenity enhancement. Information was also collected on visitors' perceptions of artificial reefs, reef material preferences and reef conservation awareness. From a random sample of 250 snorkellers and divers, we estimate a mean willingness to pay of US\$18.33 (median – US\$15) for natural reef use and a mean value of US\$17.58 (median – US\$12.50) for artificial reef use. The number of marine species viewed, age of respondent, familiarity with Folkestone Marine Reserve and level of environmental concern were statistically significant in influencing willingness to pay. Regression analyses indicate visitors are willing to pay a significant amount to view marine life, especially turtles. Our results suggest that entrance fees could provide a considerable source of income to aid reef conservation in Barbados. In addition, the substantial use value reported for artificial reefs indicates a reef substitution policy may be supported by visitors to Folkestone Marine Reserve. We discuss our findings and highlight directions for future researc that include the need to collect data to establish visitors' non-use values to fund reef management.

25

1. Introduction

2728

29

30

31

32

33

34

26

Coral reefs are of significant economic value to the scuba diving and snorkelling industries (*Brander*, *van Beukering & Cesar*, 2007) and via these water-based activities, reef tourism contributes millions of dollars annually to coastal regions (*Dixon, Scura & van't Hof, 1993*; *Cesar & van Beukering, 2004*; *Sarkis et al., 2013*). A majority of reefs are located along the coastal strips of developing countries where people depend heavily on reef ecosystems for their livelihoods (*Cesar, 2000*; *Cesar, Burke & Pet-Soede, 2003*; *Burke et al., 2011*). In the Caribbean for example, *Burke & Burke & Pet-Soede, 2003*; *Burke et al., 2011*).

-			
			100
Name of	القصول	(Secol)	II - I
	~	~	

1	Maidens (2004) estimated the value of goods and services derived from coral reefs in
2	2000 were between US\$3.1 and US\$6 billion, from which an annual figure of US\$2.1
3	billion was generated from diving tourism. In St. Lucia and Tobago alone, direct
4	spending by coral reef associated tourists in 2006 contributed an estimated US\$91.6
5	and US\$43.5 million to each economy, respectively (Burke et al., 2008). More
6	recently, Sarkis et al. (2013) calculated the average total economic value of
7	Bermuda's coral reefs was US\$722 million per year, from which US\$406 million was
8	related to coral reef tourism. Despite the value of coral reefs to coastal populations for
9	marine recreation, shoreline protection and fisheries production, among others
10	(Moberg & Folke, 1999), global reef decline continues as a result of various
11	anthropogenic activities (Halpern et al., 2008).
12	
13	Marine protected areas (MPAs) have largely become an effective means of
14	conserving reef ecosystems from human impacts (Halpern, 2003; Lester et al., 2009)
15	while still allowing for recreational use of resources including scuba diving and
16	snorkelling (Thurstan et al., 2012). Considered by some to be the 'pinnacle' in marine
17	conservation (Thurstan et al., 2012), an MPA is defined as "an area of sea especially
18	dedicated to the protection and maintenance of biological diversity and of natural and
19	associated cultural resources, and managed through legal or other effective means"
20	(Department of the Environment, 2013, p.4). The last four decades have witnessed a
21	proliferation of MPAs globally (World Data Base on Protected Areas (WDPA),
22	2013). As of 2006, almost a thousand marine parks and equivalent protected are
23	were designated covering over 98,650 km ² or 18.7% of the world's coral reef habitats
24	(Mora et al., 2006). The many potential conservation benefits of MPAs are well
25	documented (e.g. Gell & Roberts, 2003; Selig & Bruno, 2010), including an increase
26	in the diversity and abundance of numerous fish species (Mosqueira et al., 2000;
27	Halpern & Warner, 2002; McClanahan et al., 2000). As a consequence, biological
28	enhancement typically increases the attractiveness of marine parks to divers and
29	snorkellers (Barker, 2003), though this in itself may cause a dilemma between
30	protection and use of coral reef resources (Thurstan et al., 2012).
31	
32	In general, MPAs manage visitor use of reefs through a system of zoning (Day, 2002;
33	Roman, Dearden & Rollins, 2007) and by implementing carrying capacity measures
34	(e.g. Hawkins & Roberts, 1997; Brylske & Flumerfelt, 2004; Ríos-Jara et al., 2013).

The same of				п
II 30			III.dil	
THE ST	6 <u>-3</u>			
		W.	II (,

1	Increasingly however, marine managers are investigating other ways of reducing the
2	impacts of underwater recreational activities. Artificial reefs and MPAs have been
3	envisaged as potentially interesting management solutions to deal with visitation
4	levels to natural reefs (Oh, Ditton & Stoll, 2008), by providing additional habitat for
5	marine biodiversity viewing (e.g. Wilhelmsson et al., 1998; van Treeck &
6	Schuhmacher, 1999; Polak & Shashar, 2012). This practice helps alleviate visitor
7	pressures from sensitive or heavily used natural reefs (Leeworthy, Maher & Stone,
8	2006; Polak & Shashar, 2012; Kirkbride-Smith, Wheeler & Johnson, 2013) and may
9	contribute significant revenues to local host economies (e.g. Brock, 1994;
10	Wilhelmsson et al., 1998; Dowling & Nichol, 2001; Johns et al., 2001; Johns, 2004;
11	Pendleton, 2005; Oh, Ditton & Stoll, 2008). However, the use of artificial reefs for
12	amenity enhancement has not been without past criticism (Oh, Ditton & Stoll, 2008).
13	Such condemnation has largely been due to the ubiquitous use of 'materials of
14	opportunity' for reef creation (Stone et al., 1991; Tallman, 2006), including car tyres
15	(Collins, Jensen & Albert, 1995; Collins et al., 2002). Nevertheless, well conceived
16	artificial reefs may facilitate various management strategies within protected waters
17	including influencing the location of recreational use (Leeworthy, Maher & Stone,
18	2006; Polak & Shashar, 2012) and visitor behavior via scientifically-based
19	interpretation materials (Rangel et al., 2014).
20	
21	Despite the potential efficacies of MPAs (Halpern & Warner 2002; Halpern, 2003;
22	Lester et al., 2009), many fail to meet management objectives (Burke, Selig &
23	Spalding, 2002; Burke & Maidens, 2004; Wells, 2006; Burke et al., 2011; De Santo,
24	2013), are severely under funded (e.g. Alder, 1996; Depondt & Green, 2006) and
25	exist as 'paper parks' only (Brandon, Redford & Sanderson, 1998; Bruner et al.,
26	2001; Bonham, Sacayon & Tzi, 2008; Mora & Sale, 2011). Various funding
27	mechanisms exist including personal donations, lottery revenues, international
28	assistance and government taxes (Spergel & Moye, 2004). However, none of these
29	mechanisms are wholly reliable. For instance, government taxes can be re-directed to
30	responsibilities elsewhere (Lindberg, 2001), especially in times of economic
31	difficulties (Spergel & Moye, 2004). Reef-based tourism is considered to be a
32	lucrative means of financing protection of marine parks (e.g. Dharmaratne, Sang &
33	Walling, 2000; Depondt & Green, 2006; Peters & Hawkins, 2009), through the
34	recovery of user fees from visitors. Techniques, including the continged aluation

-			
			100
Name of	القصول	(Secol)	II - I
	~	~	

1	method of 'willingness to pay', are used to determine the level visitors would
2	contribute. Fees collected can increase the management capacity of parks through for
3	example; education, scientific monitoring and enforcement (Hime, 2008; Uyarra, Gill
4	& Côté, 2010) collectively helping sustain future conservation of reefs. However,
5	many marine reserves remain free to use, or charge a nominal entrance fee (Terk &
6	Knowlton, 2010; Peters & Hawkins, 2009), this is despite evidence that in some
7	circumstances user fees could increase substantially with little impact on visitor
8	numbers (<i>Thur</i> , 2010).
9	
10	Bryant et al. (1998) and Burke et al. (2011) emphasize the need for countries
11	harbouring coral reefs to conduct applied valuation techniques to help underpin
12	decision and policy-making. An integral part of willingness to pay studies is to
13	discern what motivates people to donate funds. The non-economic motives behind
14	willingness to pay for biodiversity conservation have been explored (Martín-López,
15	Montes & Benayas, 2007) with results proposing familiarity and biophilia as having a
16	marked effect on payment attitudes. Some authors (e.g. Cooper, Poe & Bateman,
17	2004; Spash, 2006) suggest that intrinsic value is the main motivator explaining
18	visitor's choice to contribute, as is bequest value that benefits future generations
19	(Hargreaves-Allen, 2010). Researchers have also sought to establish what factors
20	influence how much visitors are willing to pay. Studies indicate that users of reefs
21	(usually divers and snorkellers surveyed) are willing to allocate more money for an
22	increase in the abundance or quality of a specific reef attribute or group of attributes
23	(e.g. Rudd & Tupper, 2002; Schuhmann, Casey & Oxenford, 2008; Polak & Shashar,
24	2013). Additionally, the opportunity of viewing charismatic mega-fauna including
25	marine turtles and whale sharks is greatly valued (Hargreaves-Allen, 2010;
26	Schuhmann et al., 2013; Farr, Stoeckl & Beg, 2014). Conversely, studies have noted
27	losses in consumer surplus relating to the demise of coral reefs. For example, Doshi et
28	al. (2012) reported a reduction in divers' welfare identified by their decrease in
29	willingness to pay for bleached coral reefs.
30	
31	Numerous researchers (e.g. Dixon, Scura & van't Hof, 2000; Arin & Kramer, 2002;
32	Barker, 2003; Mathieu, Langford & Kenyon, 2003) have undertaken contingent
33	valuation surveys to measure visitors' willingness to pay for marine park entry (Table
34	1). In a meta-analysis detailing 18 studies, Peters & Hawkins (2009) found an

Manuscript to be reviewed

overwhelming approval of users to pay entrance fees, or an increase in fees, where charges currently existed. Additionally, there is evidence that user fees can generate sufficient funds to cover a significant share of marine park operating costs (*Spergel & Moye, 2004*). For example, in Australia's Great Barrier Reef Marine Park, tourist-based user fees of US\$5 million contributed around 20% of the budget of the park authority in 2002/2003 (*Skeat & Skeat, 2003*). On Bonaire, user fee collections of around US\$1 million represented 93% of the income required to operate the National Marine Park in 2008 (*STINAPA, 2009; Uyarra, Gill & Côté, 2010*).

To date, there has been a clear emphasis on measuring the consumer surplus of visitors' recreational use of natural reefs (reviewed in Peters & Hawkins, 2009). In contrast, only a handful of contingent valuation studies appear to have measured visitors' consumer surplus relating to recreation-orientated artificial reefs (Bell, Bonn & Leeworthy, 1998; Ditton & Baker, 1999; Johns et al., 2001; Johns, 2004; Crabbe & McClanahan, 2006; Oh, Ditton & Stoll, 2008; Hannak et al., 2011; Chen et al., 2013). However, none of these studies used marine park entrance fees as the payment vehicle to estimate consumer surplus, and just three papers (Johns et al., 2001; Johns, 2004; Oh, Ditton & Stoll, 2008) estimated recreational values of artificial and natural reefs in the same locality. To address this dearth of information, a valuation study was developed that encompassed both artificial and natural reef habitats within a MPA.

1.1 Research A

The main purpose of this analysis was to investigate the present consumer surplus associated with visitor use of the MPA in Barbados, using the contingent valuation method of willingness to pay. Willingness to possible defined as, "the maximum amount a person is willing to pay for a good or service" (Waite et al., 2014, p.77). The payment vehicle used was a daily, per person entrance fee into the marine reserve. Two hypothetical markets were presented to differentiate between respondents use values of either: (a) natural reefs within the marine reserve or (b) artificial reef habitat for amenity enhancement. Further research objectives were to establish which characteristics influenced and thus explained differences in visitor willingness to pay. Finally, data were collected on respondent preferences towards artificial reef materials that were viewed appealing for use in future reef projects. We

		-a I
Same?		rı
		II U J

1	discuss our findings with relevance to visitors funding reef conservation and highligh
2	the potential that reserves and artificial reefs have for symbiotic partnerships in coral
3	reef management.

Table 1. Selected papers and key findings of willingness to pay studies to access coral reefs in MPAs.

Author(s) (year)	Location	Users surveyed	Per	Value per	user 🎾	Suggested
				WTP mean	median	fee
Dixon, Scura &	Bonaire	Divers only	Annum	\$27.40	\$20	\$10
van't Hof (2000)	_	_	-	_		_
Spash (2000)	Jamaica	Locals & tourists	Annum	\$25.89	\$2.87	N/R
Spash (2000)	Curaçao	Locals & tourists	Annum	\$25.21	N/R	N/R
Arin & Kramer (2002)	Anilao, Philippines	Divers & snorkellers	Visit	\$3.70	\$3	\$4
Arin & Kramer (2002)	Mactan, Philippines	Divers & snorkellers	Visit	\$5.50	\$5	\$5.50
Arin & Kramer (2002)	Alona, Philippines	Divers & snorkellers	Visit	\$3.40	\$3	\$4
Mathieu, Langford &	Seychelles	Divers & snorkellers	Visit	\$12.20	N/R	\$12.20
Kenyon (2003)	_	_	_	_	_	_
Seenprachawong (2003)	Phi Phi, Thailand	Divers & snorkellers	Visit	\$7.18	N/R	\$1

 $\textbf{Notes: } \ ^{a} \ \text{reported in year of study in US dollars. } N/R, \ \text{not recorded in original paper.}$

1	2. Methods
2	
3	2.1 Study Setting
4	
5	All divers completed the survey themselves and gave their permission to use the
6	results. Individuals were not identifiable from the data provided. The work described
7	in this paper was reviewed and approved by the Centre for Environmental and Marine
8	Science departmental ethics committee (certificate number H030). Verbal assurance
9	was provided by a representative of the Barbadian Coastal Zone Management Unit
10 11	that no permit is required to conduct questionnaire based research on the island.
12	This study was conducted on the west (leeward) coast of Barbados (13°10'N,
13	59°32'W) between the months of July to August 2013, over an 18 day period. Akin to
14	many Caribbean islands, the tourism appeal of Barbados depends on its coastal
15	environment. Coral reefs fringing the south-west coast (Lewis, 1960) provide a
16	diversity of recreational opportunities including diving, snorkelling and sub-marine
17	viewing. Schuhmann, Casey & Oxenford (2008) estimate that between 30,000 and
18	50,000 divers visit the island per year and the Inter-American Biodiversity
19	Information Network (2010) report a further 176,600 visitors participating in snorkel
20	trips. As a way of diversifying the marine tourism industry, several artificial reefs
21	have been deployed along the south-west coast (Agace, 2005).
22	
23	One small MPA (2.1 km²) Folkestone Marine Reserve, is located in the parish of St.
24	James on the western side of the island (Cumberbatch, 2001). The reserve extends for
25	2.2 km along the coastal fringe and stretches outwards between 660-950 m offshore
26	(Fig. 1). Legislated in 1981 (Cumberbatch, 2001), the marine reserve protects 0.32
27	km ² of accessible fringing, patch and bank reef (Inter-American Biodiversity
28	Information Network, 2010) including nesting sites of the endangered hawksbill turtle
29	Eretmochelys imbricata (Horrocks & Scott, 1991; Beggs, Horrocks & Krueger,
30	2007). A small artificial reef consisting of a disused barge (approximately 8 m long),
31	that provides a site for instructor-led dives and for snorkellers, is situated within the
32	reserve (Fig. 1). Encompassing just 11% of the coastline (Cumberbatch, 2001), the
33	reserve attracts multiple stakeholders and represents the most heavily used
34	recreational space in Barbados (Blackman & Goodridge, 2009), including

Peer

2

3

4

5

6 7

Manuscript to be reviewed

approximately 7,000 scuba divers using the Folkestone reefs per year (Inter-American
Biodiversity Information Network, 2010). In anticipation of potential user conflict, the
reserve has been divided into four distinct zones (Cumberbatch, 2001) (Fig. 1). The
sites used for this study were located within Folkestone Marine Reserves 'southern
water sports zone' (principally Sandy Lane patch reef and the disused barge – Site 1)
and a site to the outside of the northern reserve boundary (Site 2), adjacent to the
Lone Star reef (Fig. 1).
2.2 Valuation Method and Related Issues

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

8

The survey adopted a payment card contingent valuation method to elicit visitors' willingness to pay. Other common response formats used to measure demands for non-market goods, are single- and double-bounded dichotomous choice and openended questioning techniques. All four valuation approaches are subject to some degree of bias (Bateman et al., 2002; Boyle, 2003), though this can be reduced with the careful design and pre-testing of surveys (e.g. Boyle et al., 1998). Despite various biases, each of these stated preference techniques uses hypothetical market scenarios to discern a respondent's likely behaviour under various conditions of either willingness to pay, or willingness to accept, for an increase/decrease in a public good. In the case of the payment card approach, it uses an ordered set of threshold values that respondents are asked to peruse and indicate the highest value they are willing to pay. Bateman et al. (2002) and Boyle (2003) outline the various advantages of payment cards including the avoidance of anchoring and 'yea saying' to a sole bid presented (a problem in dichotomous choice) and the avoidance of starting point bias. In addition, Mitchell & Carson (1989) suggest payment cards assist in reducing nonresponse rates and eliminate the need for prompting by the interviewer. They have also been shown to yield willingness to pay estimates that are more conservative than those generated using other stated preference techniques (Champ & Bishop, 2006; Thur, 2010). Payment cards are however, subject to specific forms of bias relating to the design configuration in range of monetary values and size of intervals chosen (Bateman et al., 2002). Indeed, in payment card data, the true willingness to pay value is thought to lie between the bid amount chosen and the next highest value up on the payment card (Cameron & Huppert, 1989; Bateman et al., 2002; Boyle, 2003). Thus intervals rather than 'point' valuations are used in most statistical models.

4 **Figure 1. Folkestone Marine Reserve, Barbados.** Map outlining boundary of

- 5 marine protected waters and locations of study sites and proposed artificial reef
- 6 (Modified from: Google earth, 2014).

2.3 Survey Design and Data Collection

2

4

5

6

7

8

9

10

11

12

13

14

any entrance fee payment structure already in place (of which there were none) and to determine visitor trips/user patterns within the reserve. Additionally, an informal focus group consisting of divers and snorkellers was held to ascertain the range of bid values to be used in the data collection instrument. Two versions of the survey were produced; one aimed at valuing artificial reefs and the second aimed at valuing natural reefs. Both instruments were identical with the exception of sentence three and the wording 'artificial reef' in sentence four of the artificial reef valuation question (presented below) which were omitted from the natural reef script. The final survey consisted of 46 questions divided into five sections. A majority of the questions were closed-ended, as *Champ* (2003) suggests this format helps avoid respondent fatigue and simplifies statistical analysis in willingness to pay studies.

An initial site visit to Folkestone Marine Reserve was conducted in 2012, to establish

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

The first section explored respondents demographic characteristics that included number of years spent in education, country of residence and age. In this section also, participants were asked questions relating to their length of stay in Barbados and any previous visits to the island. In the second section, visitors were questioned about their marine recreation participation. A 5-point Likert rating scale (range: very experienced to very poor) was presented to establish their snorkelling proficiency. To gauge the experience of those who scuba dived, we asked for the number of dives they had logged in their diving history. A similar scale (range: very satisfied to very dissatisfied) was used to assess visitor satisfaction with snorkelling and diving on the island. The final question in section two assessed which marine related activities respondents had undertaken during their present stay. In the third part of the survey, the hypothetical valuation scenario was presented to establish each visitor's willingness to pay bid value. The valuation script contained background information pertinent to the reefs within the reserve and the challenges encountered in managing them. A laminated map of the reserve (Fig. 1) was shown to each visitor prior to the willingness to pay question being asked, as were photos of common species found within the reserve. Additionally, in the artificial reef survey, laminated cards of popular artificial reef materials were presented. The exact wording of the valuation question presented in the artificial reef survey was:

3

4

5

6

7

8

9

Today, no entrance fee to visit the coral reefs and marine species within Folkestone Marine Reserve is paid by you as a visitor. All funding to conserve the reefs here is sourced elsewhere. There is a proposal to develop one or more artificial reefs within the reserve for both snorkelling and diving (show map and explain). An entrance fee into the reserve (held in a trust fund) would be used to help manage and maintain the artificial reefs within this protected area. With this in mind, I am going to show you a set of numbers in US dollars. Please consider your total trip costs for this visit and tell me; what is the maximum you would be willing to pay 'over and above your present trip costs' as a daily entrance fee to recreate in Folkestone Marine Reserve?

1011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

The survey presented 12 payment values in ascending order (*Champ*, 2003) from US\$0 to US\$60 (Table 3) from which respondents were asked to choose a value (or to specify another amount if above \$60) as an indication of their willingness to pay to help manage and maintain the reefs within Folkestone. Section three of the survey also included follow-up questions exploring the rationale given for a bid value, or if a zero bid was given, the reason for that particular choice. We also asked respondents which type of organization they would prefer to manage the entrance fee revenues and enquired about any concerns relating to the management of funds raised. The fourth section of the survey was used to query respondents on their knowledge and use of artificial reefs, both in Barbados and elsewhere in the world. We included a specific question to identify respondents preferences, placed in rank order, relating to types of materials used for artificial reef creation. At this point of enquiry, three laminated cards with images of artificial reefs were shown to individuals. Three questions were also embedded in section four to help capture each visitor's environmental awareness and concern for reefs and the marine environment. The final part of the survey aimed to establish respondent's prior and current experience(s) of Folkestone Marine Reserve. We asked visitors to use a 5-point Likert rating scale (range: very good to very poor) to rate the quality of the seawater, coral and fish life encountered on their present trip. A question was also used to establish what marine life visitors had viewed whilst underwater. Finally, respondents were requested to score their overall experience of the reserve on a 4-point Likert rating scale (range: exceeded expectations to not satisfied expectations) after which visitors were asked to clarify if they had plans to return to the reserve in future.

Peer J	Manuscript to be reviewed
1	A preliminary test of the survey (n = 20) was conducted in Barbados on the target
2	population and changes made accordingly, prior the main data collection period.
3	Dharmaratne & Brathwaite (1998) emphasize the importance of choosing
4	respondents familiar with the good being valued, thus the sample frame population
5	consisted of snorkellers and/or divers with prior experience of either activity. In
6	addition, English speaking overseas tourists of any nationality, between the ages of 18
7	to 70 years of age, visiting the reserve, were a requirement. As very few Barbadian
8	residents scuba dive or snorkel (Inter-American Biodiversity Information Network,
9	2010), they were not included in the surveying process.
10	
11	Visitors to Folkestone Marine Reserve were approached on board Tiami catamaran
12	cruise trips (www.tiamicruises.com). These 5 hr snorkelling trips visit the reserve
13	daily, providing visitors with two 30 minute snorkel stops (Fig. 1) and a beach visit.
14	A randomized sampling technique was chosen to sample the population by
15	approaching every other seated tourist, moving systematically from the front to the
16	rear of the catamaran. In view of the fact that interview context has been reported as a
17	significant determinant of willingness to pay (Arrow et al., 1993; Hime, 2008;
18	Hargreaves-Allen, 2010) all interviews were conducted personally using the same
19	location (i.e. on-board a Tiami catamaran) and after experiencing the reserves
20	underwater environment. Each interview took approximately 20 minutes to complete.
21	For consistency, the same two interviewers administered both surveys on a rotational
22	(daily) basis, initially giving each respondent a short introduction to explain the
23	reasons for the survey. Only one survey type was administered to each respondent.

Prior to the bid valuation question being presented, it was emphasized that no entrance fee is currently imposed on visitors to the reserve. All visitors who participated in the survey gave their permission to use the results on an anonymous

basis.

28 29

26

27

2.4 Data Analysis and Willingness to Pay Estimation

30 31

32

33

34

Responses were analyzed using SPSS (Version 19) or R (R Development Core Team, 2008). To investigate differences between the responses given in survey 1 (artificial reef scenario) and survey 2 (natural reef scenario), we applied Chi-square tests with Yate's Continuity Corrections for categorical data and Mann-Whitney U tests (two-

1	tailed) for continuous data. Variations in willingness to pay were investigated for
2	several variables (e.g. between divers and snorkellers and for Libert scale questions)
3	using Mann-Whitney U tests (two-tailed) and Kruskal-Wallis tests, where applicable.
4	Consistent with the method adopted in Fitzsimmons (2009), a distinction was made
5	between the experience level of divers, denoted by two categories; novice divers (<
6	100 logged dives) and experienced divers (≥ 100 logged dives).
7	
8	Data were screened for zero bids (US\$0) and each individually assesses, via follow
9	up questions, as to why the respondent was not willing to pay. Mean and median
10	willingness to pay, prior to and after zero bid removal, were compared. Following
11	Bateman et al. (2002), zero bids were excluded from the data prior to calculating
12	mean and median willingness to pay for all models. We ensured that specific
13	characteristics of the sample (e.g. age and gender) had not been systematically biased,
14	by testing for significant differences between the two study populations. Standard
15	errors and 95% confidence intervals of estimates of willingness to pay were
16	calculated using bootstrapping (Kling & Sexton, 1990) based on 1,000 replications.
17	
18	2.5 Econometric Analysis
19	
20	Willingness to pay (WTP) is hypothesized to be influenced by a number of
21	independent variables (Arin & Kramer, 2002) represented by the vector x .
22	
23	$WTP_i = \beta' x_i + \varepsilon_i$
24	
25	where β is a vector of slope parameters and x_i is a vector of observations on the
26	explanatory variables for individual i . The error term ε_i is assumed to be normally
27	distributed.
28	
29	Payment card data were analyzed using interval regression (Bateman et al., 2002), as
30	it is thought that the true payment value given lies between the value chosen and the
31	value bounding the upper interval of that category (Cameron & Huppert, 1989). Thus
32	for the payment card sample, a maximum likelihood estimation (MLE) procedure was
33	used (Cameron & Huppert, 1989) that accommodates the intervals, that is the

$\Box \Diamond \Diamond$	M
rcc	II v J

Manuscript to be reviewed

probability that WTP falls in the range defined by the lower limit t_{li} and the upper 1 limit t_{ui} , represented by the adjacent payment card value given by; 2 3 4 $Pr(log w_i \subseteq (log t_{li}, log t_{ui}))$ 5 = $Pr(\log t_{li} - X'_{i}\beta)/\sigma < z_{i} < Pr(\log t_{ui} - X'_{i}\beta)/\sigma)$, 6 7 8 where z_i is the standard normal random variable. Arin & Kramer (2002) note that 9 because the probability given by the latter equation can be written as the difference 10 between two standard cumulative densities a likelihood function can be defined over 11 the parameters β and σ . Interval regression analysis was performed to estimate the 12 interval boundary parameters (*Therneau*, 2014). 13 14 For comparison, an ordinary least squares regression model was also applied. In the 15 latter model, the precise mid-point of each interval category is used as the dependent 16 variable of willingness to pay. Normality is assumed for the regression models 17 (Cameron & Huppert, 1989), with a lognormal conditional distribution proposed as a 18 first approximation. Many researchers have adopted Cameron & Hupperts (1989) 19 methodology in willingness to pay studies using payment cards (e.g. Arin & Kramer, 20 2002; Blaine et al., 2005; Mahieu, Riera & Giergiczny, 2012; Yang, Hu & Liu, 2012), 21 as one of the advantages is that value estimates can be interpreted in a straightforward 22 manner (as apposed to log transformed data). Also, by using both interval regression 23 and an ordinary least square model, it helps validate the payment card range presented 24 and serves as an ad hoc check of the normality assumption. The stepwise backward 25 elimination method was employed for both regression models to investigate the 26 effects of 12 independent predictor variables (Table 2) on visitors' total willingness to pay. Variables that did not yield covariates significant at $\leq 10\%$ level were excluded 27

from the final model.

Table 2. Descriptions of the explanatory variables.

Variable	Description
Age	Continuous: the age of the respondent
Gender	Discrete: $1 = \text{male}$, $0 = \text{female}$
Education	Continuous: number of years the respondent has spent in education
Barbados_visits	Continuous: number of visits to Barbados
Env_concern	Continuous: level of environmental concern: 1 being the least concerned, 10 being the most concerned
Catamaran_cruise	Continuous: how many catamaran cruises undertaken in Folkestone Marine Reserve?
Dived_FMR	Discrete: if the respondent had dived in Folkestone Marine Reserve, $1 = yes$, $0 = no$
Species_view	Continuous: number of species mentioned in response to open ended question to the no. of species encountered
Satisfaction_trip	Discrete: did the snorkel trip satisfy expectations? $1 = yes$, $0 = no$
Fish_life	Discrete: if the respondent rated the fish life viewed as good, $1 = yes$, $0 = no$
Coral_life	Discrete: if the respondent rated the coral life viewed as good, $1 = yes$, $0 = no$
Seawater_quality	Discrete: if the respondent rated the seawater quality as good, $1 = yes$, $0 = no$

D	0		M
	C	C	II υ

3	R	esni	ltc
-7-	-1	CSII	11.5

2

1

3.1 Visitor and Holiday Characteristics

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Surveys (n = 250) were completed during the study period divided equally between the two reef scenarios (n = 125 for each survey). An almost equal sex ratio (51%) female) was recorded from both surveys. The majority of visitors resided in the United Kingdom (72%), followed by the United States (12%), with 5 additional countries (Canada, Brazil, Norway, Italy and the Caribbean Island States) making up the sample. The mean and median age of respondents was 38 (\pm 13.6 s.d.) and 40 years respectively, with an age range of 18 - 69 years recorded. The total number of years visitors had spent in education ranged from 11 - 27 years with the average length being 16 (\pm 3.3 s.d.) years. Over a third (38%) of those surveyed, were repeat visitors to Barbados with a mean of 3 (\pm 3.9 s.d.) visits (including the present one). The number of nights being spent on the island ranged from 2-30 nights, with the majority (50%) of respondents having an average duration of 12 (+ 3.9 s.d.) stopovers. Group differences investigated between survey 1 and survey 2 identified one variable; Age being statistically different between the two surveys (U = 6173, z = -2.206, $p \le 0.027$, r = 0.14). Artificial reef survey participants were slightly older than natural reefs survey participants; means: 39 (\pm 14.25 s.d.) and 36 (\pm 12.7 s.d.) years, medians: 43 and 36 years, respectively. Data from the Caribbean Tourism Organization (2014) for visitors to Barbados in 2013 were used to assess for sample representativeness. From the limited data available, tourist stop-over arrivals for that year suggest that our sample was over-represented by UK respondents. Additionally, no cruise ship tourists were available for interview.

26

27

25

3.2 Marine Recreation Participation

2829

30

31

32

33

34

Prior to the survey being administered, visitors had carried out $3.75 \pm 0.9 \text{ s.d.}$) activities whilst on vacation. The majority had relaxed on the beach (85%), swam (81%), snorkelled from the shore (39%), kayaked (21%) and scuba dived (12%). The majority of snorkellers described themselves as being average (50%) to very good (31%) at the sport, while 17% suggested they were poor and a further 2% very poor at snorkelling. Respondents that scuba dived (n = 76) had an average of 32 (\pm 86.81 s.d.)

- 1 previously logged dives and a median of 10 dives [interquartile range: 2-25].
- 2 Seventy-four percent of the sample had been given a snorkelling and/or diving
- 3 briefing at some point in their life. When visitors were asked to rate their satisfaction
- 4 with snorkelling on the island in general, 83% was either satisfied (41%) or very
- satisfied (42%) with the experience, with the remainder being ambivalent.
- Respondents who had dived (n = 39) whilst visiting Barbados, were all either satisfied
- 7 (66%) or very satisfied (34%) with their prior experiences.

3.3 Folkestone Marine Reserve Willingness to Pay

A total of 7 zero bids (Table 3) for willingness to pay were identified. Follow-up questions were asked to establish the reason why a zero bid was given. Four individuals were uncertain the money would be spent on reef conservation *per se* while the remaining respondents were unsure their contribution would make any difference to the condition of the reefs in Folkestone Marine Reserve.

Table 3. Interval selection frequencies of willingness to pay bids (daily, per person).

			Raw	frequency (%)		
Interval (US\$) 125)	All d	ata (n =250)	AR d	lata $(n = 125)$	NR	data (n =
0	7	(2.8)	4	(3.2)	3	(2.4)
2 - 5	4	(1.6)	3	(2.4)	1	(0.8)
5 - 8	22	(8.8)	12	(9.6)	10	(8.0)
8 - 10	26	(10.4)	11	(8.8)	15	(12.0)
10 - 15	70	(28.0)	35	(28.0)	35	(28.0)
15 - 20	43	(17.2)	16	(12.8)	27	(21.6)
20 - 25	42	(16.8)	26	(20.8)	16	(12.8)
25 - 30	12	(4.8)	7	(5.6)	5	(4.0)
30 - 40	11	(4.4)	8	(6.4)	3	(2.4)
40 - 50	6	(2.4)	1	(0.8)	5	(4.0)
50 - 60	4	(1.6)	1	(0.8)	3	(2.4)
> 60	3	(1.2)	1	(0.8)	2	(1.6)

Notes: AR = Artificial reef, NR = Natural reef. Figures in parenthesis are percentages.

Zero bids were removed and mean and median values calculated for pooled data and for each individual survey (Table 4). Mean values were higher than median values for

all estimates calculated. This was due to positive right skews in the willingness to pay distributions. The removal of the few zero bids had a meager US\$0.51 impact on mean willingness to pay (Table 4), which did not bias the results. For pooled data, mean willingness to pay (person/day) was estimated at US\$17.96 with a lower bound of US\$16.62 and an upper bound of US\$19.27 at a 95% confidence interval. Visitors who were asked the natural reef survey question, had a higher mean willingness to pay of US\$18.33 in comparison to mean values estimated for visitors presented with the artificial reef survey; US\$17.58. The median value was also higher for the natural reef scenario (US\$15) than for the artificial reef scenario (US\$12.50). Differences in willingness to pay between the two surveys were not significant (U = 7291, z = -.167, p > 0.867, r = .01).

Table 4. Respondents' willingness to pay (WTP) to access Folkestone Marine Reserve (daily, per person) in US\$.

WTP Scenario	N	Lower ^a	Mean <u>+</u> 1 <i>SD</i>	Upper	Median
		bound CI		bound CI	
All data (zero bids in)	250	15.92	17.45 <u>+</u> 11.30	18.96	12.50
All data (zero bids out)	243	16.62	17.96 ± 11.05	19.27	12.50
Artificial reef data	121	15.81	17.58 <u>+</u> 9.96	19.52	12.50
Natural reef data	122	16.25	18.33 <u>+</u> 12.06	20.73	15.00

Note: a Based on 1,000 replications.

Females had a significantly higher (U = 5921, z = -2.709, $p \le 0.007$, r = 0.17) mean willingness to pay of US\$19.54 (\pm 11.89 s.d.) compared with a mean value of US\$16.31 (\pm 9.89 s.d.) estimated for males. Visitors who had viewed a turtle while snorkelling (n = 196) had a mean of US\$19.59 (\pm 11.50 s.d.) compared with a value of US\$11.56 (\pm 5.52 s.d.) for those who had not viewed a turtle (n = 47). This latter difference of US\$7.93 was highly significant (U = 2232, z = -5.588, $p \le 0.001$, r = 0.37). Divers who had experienced the underwater environment within the reserve prior to being interviewed (n = 24) had a lower mean of US\$12.50 (\pm 5.95 s.d.) compared with divers (n = 52) visiting the reserve for the first time; US\$18.55 (\pm

	100
C	II s

1	11.32 s.d.). Again, this difference was highly significant ($U = 1654$, $z = -3.036$, $p \le 10^{-6}$
2	0.002, $r = 0.35$). Finally, repeat catamaran visitors to the reserve (n = 49) had a
3	significantly $(U = 3610, z = -2.946, p \le 0.003, r = 0.19)$ lower mean bid value of
4	US\$13.37 (\pm 8.12 s.d.) compared with individuals who were first time visitors (n =
5	194) to the reserve of US\$18.45 (\pm 11.74 s.d.). From a point of interest, snorkellers
6	and divers had a very similar mean value of US\$17.89 (\pm 11.24 s.d.) and US\$16.45 (\pm
7	11.43 s.d.), respectively. It also appeared that a higher level of experience attained in
8	either sport did not significantly affect willingness to pay of snorkellers ($U = 5993$, z
9	= -0.617, $p \ge 0.537$, $r = 0.04$) or divers ($U = 112.500$, $z = -1.351$, $p \ge 0.190$, $r = 0.15$).
10	
11	Most visitors (75%) reported they would donate to help conserve the reefs for future
12	generations, followed by 10% indicating it gave them genuine pleasure to contribute
13	towards reef conservation. A motivator of being a 'moral duty' to contribute was also
14	important among 8% of visitors. Of those who were willing to pay, 70% reported
15	concerns over the legitimate use of monies collected for reef conservation while the
16	remaining 30% of visitors reported no concerns. Content analyses of the follow-up
17	question to understand these concerns revealed that most individuals were anxious
18	that the funds raised would be spent elsewhere; typically on other government
19	projects in Barbados. Respondents were also asked which type of organization they
20	would prefer to manage the entrance fee revenues. An environmental non-
21	governmental organization was clearly the most popular choice yielding 75% support,
22	followed by the government of Barbados (13%) and public sector (3%), while 9%
23	chose a mix of all three authorities. The question that queried respondents in relation
24	to where they would prefer to see entrance fee revenues spent, yielded a high level of
25	support for marine education/children's outreach programmes (47%) and for
26	recreational artificial reefs (27%). Scientific monitoring also appeared important with
27	18% of respondents choosing this item. In contrast, land-based tourist facilities (1%)
28	and marine reserve patrols (2%) seemed unimportant investments.
29	
30	3.4 Perceptions and Use of Artificial Reefs and Environmental Concern
31	
32	Artificial reef awareness was good amongst the population sampled with 69% having
33	heard of the term artificial reef, and 82 respondents (34%) having either snorkelled or
34	dived on an artificial reef previously. When asked to rate their experience of this type

eerJ	Manuscript to be reviewed
1	of reef, 79% of snorkellers and 88% of divers rated their prior experiences as good to
2	very good. Additionally, 35 respondents had used local artificial reefs, the majority (n
3	= 29) situated in Carlisle Bay and the remaining 6 individuals using the SS
4	Stavronikita, the largest wreck to dive on in the Caribbean (Agace, 2005).
5	
6	Three reef material types were presented using visual aids. The most preferred
7	material choice was a shipwreck (73%), followed by Reef Balls TM (as a snorkel trail)
8	(17%), with underwater art, chosen by only 10% (Fig. 2). Asked whether the creation
9	of an artificial reef in Folkestone Marine Reserve would encourage a repeat visit,
10	77% answered yes, 12% no and 11% were unsure.
11	
12	When asking respondents if they were a member of an environmental group, only
13	10% responded positively. In contrast, 83% of visitors read or watched on television
14	topics about marine life and marine conservation. Respondents rated their level of
15	concern relating to coral reefs and the marine environment (on a scale of $1-10$, with
16	1 being the least concerned) with a mean and median value of 7 (\pm 1.77 s.d.).
17	
18	

Figure 2. Respondents' preferences for type of artificial reef material for future use in Folkestone Marine Reserve. Sample size: n = 243.

3.5 Experience of Folkestone Marine Reserve

A fifth (n = 49) of respondents had previously visited the reserve on catamaran snorkelling cruises, with 1.84 (\pm 2.63 s.d.) former trips recorded. All respondents said they had snorkelled during these trips. Additionally, 24 respondents that had previously dived, had conducted 4.88 (\pm 4.31 s.d.) dives in the reserve.

Respondents were asked to recall the number of 'species' viewed. The marine life noted in the study was; fish, coral, turtles, eels, manta rays and sea urchins. A majority of visitors recalled 3 species (3.4 (\pm 1.11 s.d), median and mode = 3) with a maximum of 6 species seen, with no person noted as viewing no marine life. The most common species recalled were fish, spotted by 95% of people, followed by a turtle noted by 80% of visitors.

eerJ	Manuscript to be reviewed
1	Thirty-two percent of respondents had their expectations of the visit to the reefs
2	exceeded and a further 55% were noted as being satisfied. Only 19 individuals said
3	the trip had made no difference to them, while 8 visitors had not had their
4	expectations satisfied. A significant relationship occurred between visitors'
5	willingness to pay and their level of satisfaction with the marine park (Kruskal-Wallis
6	test; $\chi^2(3) = 12.32$, $p \le 0.006$). Further post hoc analysis revealed the two groups
7	most dissatisfied/ambivalent with the trip (when combined), had a significantly lower
8	willingness to pay than the two 'satisfied' groups combined ($U = 961.500$, $z = -1.960$,
9	$p \le 0.050$, $r = 0.16$). When visitors were asked if they would return to Folkestone
10	Marine Reserve in the future, the majority (80%) said they would, while the
11	remainder said no.
12	
13	The final survey question asked respondents to rate the quality of seawater, fish and
14	coral life they had experienced during their present visit. The overall mean ranks were
15	calculated for each item on a scale of $1-5$, five being the highest quality rating.
16	Seawater (in terms of clarity) was rated highly by visitors, with a mean value of 4.48
17	$(\pm0.43~\text{s.d.})$ recorded. Fish life was rated above average with a mean of 3.80 $(\pm0.88$
18	s.d.). Coral life however, received the lowest mean rating of 3.26 (\pm 0.99 s.d.). It was
19	found that snorkellers and divers differed in their ranking of coral life, with
20	snorkellers rating this attribute significantly higher than divers ($U = 5510$, $z = -2.196$,
21	$p \le 0.028, r = 0.14$).
22	
23	3.6 Econometric Analysis
24	
25	The results of the ordinary least squares and interval regression models are presented
26	in Table 5. Our results showed consistency in the coefficient estimations obtained

$\overline{}$	-	`
,		

between the two regression models, suggesting the payment card design used for the

surveys was well ordered (Cameron & Huppert, 1989) and/or the normality

assumption was well maintained by the data (Yang, Hu & Liu, 2012).

27

28

Table 5. Coefficient estimates of visitors' willingness to pay using ordinary least squares (OLS) and interval (MLE) regression models.

Variable	All data	All data A	artificial reef data	Artificial reef data N	Natural reef data	Natural reef data
Model	OLS	Interval (MLE)	OLS	Interval (MLE)	OLS	Interval (MLE)
Intercept	-6.542**	-5.958**	-7.719**	-7.30**	-9.401**	-8.958**
\overline{Age}	-0.106***	-0.103***	-	-	-0.175***	-0.169***
	(0.040)	(0.038)	-	-	(0.059)	(0.056)
Env_concern	1.264***	1.190***	1.051**	1.00**	1.456***	1.423***
	(0.331)	(0.313)	(0.428)	(0.405)	(0.472)	(0.445)
Dived_FMR	-3.238*	-3.149*	-	-	-	-
	(1.771)	(1.677)	-	-	-	-
Coral_life	-	-	-	-	4.368***	4.286***
	-	-	-	-	(1.460)	(1.378)
Species_view	5.806***	5.685***	5.052***	4.99***	6.573***	6.422***
	(0.516)	(0.490)	(0.709)	(0.672)	(0.714)	(0.677)
Model	n = 243	n = 243	n = 121	n = 121	<i>n</i> = 122	<i>n</i> = 122
parameters	F stat: 71.43	Chi ² : 167.99	F stat: 37.56	Chi ² : 61.6	F stat: 43.04	Chi ² : 112.2
	p = 000	p = 000	p = 000	p = 000	p = 000	p = 000
	R^2 : 47%		R ² : 39%		R ² : 59%	

Notes: standard errors in parentheses. Only significant variables shown. ***, **, * Significance at the $p \le 0.01$, $p \le 0.05$, $p \le 0.10$ levels, respectively.

1	The explanatory powers of the ordinary least squares models were good, yielding r ²
2	values of 39%, or above (Table 5). Overall, five of the twelve estimated coefficients
3	expected to influence willingness to pay, were statistically significant. Based on
4	previous research (Arin & Kramer, 2002; Lindsey & Holmes, 2002; Seenprachawong
5	2003; Togridou, Hovardas, Pantis, 2006; Hargreaves-Allen, 2010), variables
6	expected to show significant explanatory power, but in the event did not, included
7	number of years in education, previous catamaran trips and number of prior visits. Of
8	the variables found to be significant, three (Age, Env_concern and Species_view)
9	were significant at the 1% level (Env_concern 5% significance level for the artificial
10	reef survey), whilst Dive_FMR was marginally significant at the 10% level. Two
11	variables (Age and Dived_FMR) had negative signs on the coefficients, implying that
12	younger respondents and those who had not previously dived in the reserve were
13	willing to pay more as a daily entrance fee into Folkestone Marine Reserve. The
14	coefficients for the remaining three variables (Env_concern, Coral_life and
15	Species_view) were positive. This indicates that respondents who rated the coral life
16	as good, reported higher levels of concern for the reefs and marine environment and
17	viewed more marine life, had higher willingness to pay. It should be noted, the
18	variable Coral_life was only significant in the natural reef entrance fee model.
19	
20	The regression results indicated the variable 'Species_view' made the largest unique
21	contribution to the variance in willingness to pay, with a mean value of 22% noted
22	across all data sets. A one unit increase elevates willingness to pay on average
23	US\$5.69 - US\$5.81 for each additional species viewed (Table 5).
24	
25	A Kruskal-Wallis Test indicated a high level of association between the dependent
26	variable and <i>Species_view</i> (x^2 (5) = 133.39, $p \le 0.001$) (Fig. 3). Further post hoc
27	analysis confirmed significant differences in willingness to pay occurring between
28	'two and three' species viewed, 'three and four' species viewed and 'four and five'
29	species viewed ($U = 1119$, $z = -3.391$, $p \le 0.001$, $r = 0.30$; $U = 1154$, $z = -7.380$, $p \le 0.001$
30	0.001, $r = 0.58$; $U = 314$, $z = -4.703$, $p \le 0.001$, $r = 0.47$), respectively.
31	

Figure 3. The relationship between the number of marine species viewed and respondents willingness to pay for reef protection in Folkestone Marine Reserve (the line is the median, boxes the 25-75% quartiles and the whiskers the 95% CI).

4. Discussion

The principal focus of this study was to estimate visitors consumer surplus for the MPA in Barbados and to differentiate between visitors use value of natural and artificial reefs. As far as we are aware, it constitutes the first work to compare use values of two types of reef habitat within a reserve environment.

It is apparent that willingness to pay for natural reefs yielded a higher mean value (US\$18.33) than estimates for artificial reef use (US\$17.58). Three studies (*Johns et al.*, 2001; *Johns*, 2004; *Oh*, *Ditton & Stoll*, 2008) have reported use values relating to consumer's surplus of both reef habitats, and all three investigations yielded higher estimates for natural reef usage. *Oh*, *Ditton & Stoll* (2008) estimated an average consumer surplus for diving per trip in Texas waters at US\$171 for natural reef divers

1	and US\$101 for artificial reef divers; a net increase of 70% per trip for scuba diving
2	at natural reefs. Both Johns et al. (2001) and Johns (2004) estimated consumer's
3	surplus for managing and maintaining the natural and artificial reefs in southeast
4	Florida and Martin County, Florida, respectively. Johns et al. (2001) reported an
5	average use value for residents and visitors at natural reefs of US\$12.74/person-day
6	and \$US\$8.63/person-day for artificial reefs at the same location. In a later study,
7	Johns (2004) estimated non-local tourists use value for diving, fishing and snorkelling
8	combined at US\$46.00/person-day at natural reefs, compared to US\$23.84/person-
9	day at artificial reefs.
10	
11	Unlike the latter three studies, our results show mean willingness to pay estimates
12	being just marginally higher for natural reef than for artificial reef habitat.
13	Hypothetical bias linked to the 'warm glow' effect (Andreoni, 1990; Christie, 2007)
14	may partially account for similar bid values been elicited for both reef types. Other
15	environmental studies have identified this phenomenon of impure altruism (Nunes &
16	Schokkaert, 2003; Polak & Shashar, 2013), which may be more prevalent among
17	tourists on vacation (Polak & Shashar, 2013). Kahneman & Knetsch (1992) propose
18	that contingent valuation responses reflect willingness to pay for the moral
19	satisfaction of contributing to public goods - not the economic value of the goods in
20	question, though most (75%) visitors in this present survey exhibited the motivation
21	of bequest value as the main driver of willingness to pay. Diamond & Hausman
22	(1994) believe that willingness to pay would be more conservative if one were asked
23	to pay for it during the surveying process. In spite of this, given at the time the Tiami
24	cruise cost US\$85 per person, it may be plausible that some respondents may have
25	rounded their willingness to pay up to US\$100 regardless of the reef habitat being
26	valued. Indeed, 45% of bid values fell within the US\$10-20 intervals (Table 3).
27	
28	Several variables were significant in influencing willingness to pay. We found that as
29	respondent's age decreased bid value increased, which is not unusual in this type of
30	study. Arin & Kramer (2002) also noted that younger people were more willing to
31	donate towards reef conservation and Uyarra, Gill & Côté (2010) found younger
32	divers had a more positive attitude towards paying higher marine park entrance fees
33	in Bonaire. Moreover, Asafu-Adjaye & Tapsuwan (2008) reported that Thai
34	respondents accepted the bid in a contingent valuation study more readily as the age

1	of the diver decreased. With regard to older generations, it may be plausible that they
2	are more skeptical about contributing towards conservation efforts in general or
3	perhaps are more familiar and experienced with the goods being valued, thus
4	reflecting reduced utility and diminishing marginal returns. In fact, we found repeat
5	visitors to the reserve, had a significantly lower bid value than first-time visitors
6	there. Our results lend support to Dharmaratne, Sang & Walling (2000) who noted
7	repeat visitors to a terrestrial park and marine reserve in Barbados and Jamaica
8	respectively, had a lower willingness to pay than first-time visitors. The present study
9	also confirmed that environmental awareness and concern for reefs generally, has a
10	positive effect on willingness to pay bids (Tapsuwan, 2005; Togridou, Hovardas &
11	Pantis, 2006; Casey, Bro & Schuhmann 2010; Hargreaves-Allen, 2010) but not
12	consistent with $Barker$'s (2003) results.
13	
14	Overall, the number of species viewed had the strongest effect on mean bid value for
15	the marine park entrance fee. The model indicated that each additional species viewed
16	elevated willingness to pay by approximately US\$5.50 (Table 5). This suggests
17	visitors are willing to pay a significant amount to view wildlife within Folkestone.
18	Indeed, marine life is regarded as one of the greatest sources of revenue for the dive
19	and snorkel tourism industries (Barker, 2003) and viewing it has a positive impact on
20	customer satisfaction (e.g. Musa, 2002; Musa, Kadir & Lee, 2006; Coghlan, 2012).
21	Willingness to pay studies have shown that divers will pay significantly for
22	conservation efforts that favour high biodiversity on artificial coral reefs (Polak &
23	Shashar, 2013) and for greater fish abundance/size on natural reefs (Rudd & Tupper,
24	2002; Barker, 2003; Wielgus et al., 2010). Individuals also hold considerable
25	consumer surplus value for viewing large species such as dolphins, rays, whale sharks
26	and turtles (Davis & Tisdell, 1999; Schuhmann, Casey & Oxenford, 2008;
27	Hargreaves-Allen, 2010; Schuhmann et al., 2013; Farr, Stoeckl & Beg, 2014). In
28	Barbados, turtles provide an additional means to attract tourists to the island (Troëng
29	& Drews, 2004; Uyarra et al., 2005) being widely promoted in various advertising
30	campaigns. Willingness to pay to view turtles is substantial in this area of the
31	Caribbean. Divers in Barbados are willing to pay over US\$57 for the first encounter
32	with a marine turtle, and approximately US\$20 per 2-tank dive for each additional
33	encounter (Schuhmann et al., 2013). We also established that turtles are a valuable
34	resource, as they were associated with an US\$8 increase in mean bid value per

1	person, compared to divers and snorkellers who had not viewed a turtle during their
2	trip.
3	
4	An important aspect of this present research was to solicit visitors' opinions on reef
5	material preferences for future purpose-built reef. Overwhelmingly, underwater art as
6	sculptures was viewed as the most unappealing material choice. This is despite its
7	reported success in marine parks in Cancun, Mexico and Grenada in the Caribbean
8	(www.underwatersculpture.com). Salient points noted as to visitors general dislike of
9	this type of reef appeared to firmly centre on the lack of available habitat for species
10	refuge, such as holes and crevices for fishes, and also on the 'out of context'
11	appearance of human statues underwater as well as the small ecological footprint
12	created. On the other hand, Reef Balls TM ($\underline{www.reefball.org}$) presented as a snorkel
13	trail, were viewed more favourably, especially among non-divers. Interestingly,
14	Ramos et al. (2006) concluded that concrete modules were the least important choice
15	of reef material among scuba divers in Portugal. Nevertheless, snorkel trails have
16	been used with notable success in parts of the Caribbean. For example, in Antigua a
17	5-row Reef Ball TM breakwater structure also acts as a successful nature trail for divers
18	and snorkellers (Kaufman, 2006) and in the U.S. Virgin Islands nearly 90% of the
19	50,000 annual visitors use a managed snorkel trail (Thorsell & Wells, 1990). Of
20	significance, Hannak et al. (2011) established that most visitors to a snorkel trail in
21	Dahab, Egypt were willing to pay US\$14-27 for a guided trip. Notwithstanding,
22	purposefully sunken ships were found to be the most popular material choice among
23	73% of respondents. Divers have communicated an immense preference for
24	shipwrecks and deliberately sunken vessels for artificial reef creation (Ditton et al.,
25	2002; Stolk, Markwell & Jenkins, 2005; Shani, Polak & Shashar, 2011; Kirkbride-
26	Smith, Wheeler & Johnson, 2013). Content analysis of our current data suggests the
27	appeal of sunken ships is related to their perceived capacity to provide adequate
28	substrate and shelter for marine species, their 'in keeping' generic form and visual
29	appeal when viewed underwater and to their historical fascination.
30	
31	Our results demonstrate that most (97%) visitors would be willing to pay an entrance
32	fee to access Folkestone Marine Reserve to improve reef management locally. By
33	combining data of the artificial and natural reef models, these results indicate
34	overseas tourists would be willing to pay almost US\$18 as an entrance fee per visit to

1	protect the reefs. This amount is broadly consistent with results of similar willingness
2	to pay studies (Barker 2003; Mathieu, Langford & Kenyon, 2003; Tapsuwan, 2005;
3	Hargreaves-Allen, 2010).
4	
5	However, US\$18 would seem high to charge as a single daily fee, and indeed, to help
6	ensure wider acceptance of marine park fees, they are typically kept low (e.g. Dixon,
7	Scura & van't Hof, 2000; Arin & Kramer, 2002; Seenprachawong, 2003; Table 1)
8	with discriminatory pricing sometimes imposed on divers and snorkellers (Barker,
9	2003; Inter-American Biodiversity Information Network, 2010; Uyarra, Gill & Côté,
10	2010). In view of this, a US\$10 daily entrance fee for overseas divers and a US\$5
11	daily entrance fee for overseas snorkellers seem fair to suggest. By using upper bound
12	figures quoted by the Inter-American Biodiversity Information Network (2010) that
13	indicate 7,000 scuba divers visiting Folkestone's reefs annually and a further 176,600
14	visitors participating in snorkel trips, an estimated consumer surplus of US\$953,000
15	could be generated per annum. This figure is in line with the hypothetical fee
16	structure proposed by the Inter-American Biodiversity Information Network (2010)
17	for the islands MPA. At present, it is unclear what the current operating costs are for
18	Folkestone Marine Reserve. However as a guide, recent running costs for the Bonaire
19	National Marine Park in the Caribbean, are in the region of US\$1.1 million per year
20	(STINAPA, 2009; Uyarra, Gill & Côté, 2010) of which user fees contributed ~US\$1
21	million in 2008.
22	
23	Implementing a successful entrance fee system needs cooperation among visitors,
24	tour operators and managers (Terk & Knowlton, 2010). To help achieve adoption of
25	fees among visitors, they require clarity on how their money is used and managed
26	(Peters & Hawkins, 2009). Studies suggest that fee acceptance improves if visitors
27	have knowledge their funds are managed appropriately (Casey, Brown & Schuhmann,
28	2010) and specifically; that money is spent on reef protection (Casey, Brown &
29	Schuhmann, 2010) and on improving park management (Yeo, 2005). In this current
30	study, we found respondents concerned over how funds would be used and managed,
31	and established that three quarters of visitors wanted a non-governmental
32	organization to manage their payments. To create confidence and support in a fee
33	system, supplying park booklets to visitors detailing the purpose and nature of fees
34	may assist. Indeed, many participants that were interviewed requested information

1	about the reserve and wildlife encountered, as did divers and snorkellers studied by
2	Barker (2003) in St. Lucia. Moreover, by providing meaningful information for
3	tourists, it helps develop place attachment and stewardship (Ham, 1992). Dive and
4	tour operators also need encouragement to adopt fees. As an incentive to collect them,
5	Terk & Knowlton (2010) suggest a system for compensating operators administration
6	time, by giving them a small percentage of the fees gathered. This system was
7	originally employed in Mexico (United Nations Environment Programme, 2003) and
8	appears a simple but fair approach.
9	
10	Visitors also need to see 'what they are getting for their money', and good reserve
11	infrastructure helps justify fee payment (Sedley Associates Inc., AXYS Environmental
12	Consulting (Barbados) Inc. & Scantlebury and Associates Ltd., 2000). This is
13	especially relevant to repeat customers who were noted as having a lower willingness
14	to pay. Developing eco-tourism opportunities via artificial reefs can create unique
15	selling points in a resort (Dowling & Nichol, 2001; Leeworthy, Maher & Stone, 2006;
16	Shani, Polak & Shashar, 2011; Edney, 2012) and have the potential of drawing
17	visitors to reserves. In previous research (Kirkbride-Smith, Wheeler & Johnson, 2013)
18	we established that artificial reefs were a prime motivator for some dive tourists to
19	holiday on Barbados. Also, as fish abundance is often greater within protected waters
20	(e.g. Chapman & Kramer, 1999; Varkey, Ainsworthy & Pitcher, 2012) it appears a
21	fitting environment to deploy artificial reef for amenity enhancement. Creating a new
22	reef within Folkestone's waters appeared to be very popular among respondents, as
23	over three quarters of those interviewed said this type of resource would encourage
24	repeat visitation. We also discovered that many visitors had heard of artificial reefs
25	and over a third had either snorkelled or dived on one previously, including many
26	deployed in Barbados. Increasingly, artificial reefs are becoming more popular,
27	especially among scuba divers (e.g. Blout, 1981, Scuba Travel, 2006; Edney, 2012;
28	Kirkbride-Smith, Wheeler & Johnson, 2013), and given the substantial use value we
29	report for them, it suggests visitors would be willing to support a reef substitution
30	policy in Folkestone and potentially in other reserves offering this type of amenity.
31	
32	Among the recreationally used natural reefs within Folkestone, it is the fringing reefs
33	that are the most impacted (Bell & Tomascik, 1993; Lewis, 2002; Inter-American
34	Biodiversity Information Network, 2010) and this would appear the most appropriate

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

zone to site underwater attractions. Several benefits could be yielded from developing artificial reefs in reserves. For example, managers may use them to influence and contain visitor use. Creating 'honey pot' sites within marine parks has been endorsed by some managers (Clark et al., 2005) as a strategy to conserve other coral reefs by redirecting reef use. Such a policy would be especially useful for managing intraining and novice divers who are documented as causing substantial damage to natural reef (Roberts & Harriott, 1994; Walters & Samways, 2001; Warachananant et al., 2008; Chung, Au & Qui, 2013). Moreover, these installations could be of value to dive shops to help sustain existing local resources. However, concentrating tourist use is open to debate as *Barker* (2003) found that visitors disliked the idea of being 'contained', suggesting it would lead to overcrowding and reduced naturalness of an area. In contrast, *Hannak et al.* (2011) established that a marine viewing trail would be the principal reason that their study group would choose a dive or snorkel site. Notwithstanding, artificial reefs have been shown to offer opportunities to view interesting marine life (Wilhelmsson et al., 1998; Perkol-Finkel & Benayahu, 2004; Arena, Jordan & Spieler, 2007; Kirkbride-Smith, Wheeler & Johnson, 2013). Indeed, studies have confirmed artificial reef can support a comparable diversity and density of marine species than found on natural reef outcrops (Clark & Edwards, 1999; Perkol-Finkel & Benayahu, 2004), and this is especially true for fish abundance, where in some instances it has exceeded that present on natural reefs (Fast & Pagan, 1974; Wilhelmsson et al., 1998; Arena, Jordan & Spieler, 2007; Santos, Oliveira & Cúrdia, 2013; Granneman & Steele, 2014). Clearly, creating the right type of artificial reef that encourages a diverse species community is crucial for reef tourism, as this study showed the principal driver of willingness to pay was marine life. In addition, artificial reef development allows for increased accessibility of reefs (Milton, 1989; Stolk, Markwell & Jenkins, 2005) and arguably, encourages the employment of more robust/resistant environments within reserves (Marion & Rogers, 1994; Claudet & Pelletier, 2004). To this end; MPAs provide the greatest opportunity to manage tourism use of natural reefs (Thurstan et al., 2012) and environmental enhancement using 'well planned' artificial reef could potentially facilitate this (Oh, Ditton & Stoll, 2008).

33

_			
5	Canalugiana	and Further	Dogoorch

This study used the MPA in Barbados to differentiate between respondents use value of natural and artificial reefs. Our findings show that most visitors are willing to pay to support reef conservation in Folkestone and this represents an unexploited revenue stream that could be used for the day to day management of the reserve. A mean willingness to pay of US\$18.33 and US\$17.58 was estimated for natural and artificial reef use, respectively. This latter result thus indicates that significant use value could be gained from the provision of recreation-orientated artificial reefs within a reserve environment. Reef tourism is a valuable business in Barbados, and overall, creating substitute dive and snorkel sites have the capacity to maximize revenue without threatening natural resources.

This research serves as a valuable foundation for future work that should aim to uncover divers' willingness to pay for 'diving trips' within the reserve. Also, cruise trip passengers were not represented in this current study, and ideally, this omission needs addressing in future willingness to pay studies for Folkestone. Finally, research into the recovery of non-use values (not current users of the resource) to fund reef management in Folkestone, is also an area worthy of future exploration.

6. Acknowledgements

Our sincere thanks and gratitude extend to Denis Roach, the owner and Chief Executive Officer of Tiami Catamaran Cruises, and to his excellent staff for supporting the data collection period. We thank Jamar Archer, Thomas Atwell, Noddy Banfield, Michael Brown, Michael Captain, Diego De Beauville, Peter Hoad, Ryan Hoyte, Shea Innis, Joshua Roach, Roger Scandella, Sam Sealy and David Young. We also thank Jeffrey Smith who helped with the collection of data.

1	7. References
2	
3	Agace L. 2005. Barbados dive guide: a guide to scuba diving in Barbados. Barbados:
4	Miller Publishing Company, 188.
5	
6	Alder J. 1996. Have tropical marine protected areas worked? An initial analysis of
7	their success. Coastal Management 24(2):97–114.
8	
9	Andreoni J. 1990. Impure altruism and donations to public goods: a theory of warm-
10	glow giving. Economic Journal 100(401):464–477.
11	
12	Arena PT, Jordan LKB, Spieler RE. 2007. Fish assemblages on sunken vessels and
13	natural reefs in southeast Florida, USA. <i>Hydrobiologia</i> 580: 157–171.
14	
15	Arin T, Kramer RA. 2002. Divers' willingness to pay to visit marine sanctuaries: an
16	exploratory study. Ocean & Coastal Management 45(2):171–183.
17	
18	Arrow K, Solow R, Portney P, Learmer E, Radnar, R, Schuman, H. 1993. Report
19	of the National Oceanic and Atmospheric Administration Panel on contingent
20	valuation. Washington, DC: Resources for the Future. 66 pp.
21	
22	Asafu-Adjaye J, Tapsuwan S. 2008. A contingent valuation study of scuba diving
23	benefits: case study in Mu Ko Similan Marine National Park, Thailand. Tourism
24	Management 29: 1122–1130.
25	
26	Barker NHL. 2003. Ecological and socio-economic impacts of dive and snorkel
27	tourism in St Lucia, West Indies. Ph.D. Dissertation thesis, University of York, UK,
28	220.
29	
30	Bateman I, Carson RT, Day BH, Hannemann M, Hanleys N, Hett T, Jones-Lee
31	M, Loomes G, Mourato S, Ozdemiroglu E, Pearce D, Sugden R, Swanson J.
32	2002. Economic valuation with stated preference techniques: A manual. Cheltenham:
33	Edward Elgar Publishing Ltd, 458.

1	Beggs JA, Horrocks JA, Krueger BH. 2007. Increase in hawksbill sea turtle
2	Eretmochelys imbricate nesting in Barbados, West Indies. Endangered Species
3	Research 3: 159–168.
4	
5	Bell F, Bonn M, Leeworthy V. 1998. Economic impact and importance of artificial
6	reefs in Northwest Florida. NOAA Paper Contract Number MR235. 451 pp.
7	
8	Bell PRF, Tomascik T. 1993. The demise of the fringing coral reefs of Barbados and
9	of regions in the Great Barrier Reef (GBR) lagoon – impacts of eutrophication. In:
10	Proceedings of the colloquium of global aspect of coral reefs – health, hazards, and
11	history. University of Miami, 319–325.
12	
13	Blackman K, Goodridge R. 2009. Baseline survey of coral reefs within the
14	Folkestone Marine Reserve, St. James, Barbados. Report no. 5 of the community-
15	based coral reef monitoring and management project. 27 pp.
16	
17	Blaine TW, Lichtkoppler FR, Jones KR, Zondag RH. 2005. An assessment of
18	household willingness to pay for curbside recycling: a comparison of payment card
19	and referendum approaches. Journal of Environmental Management 76:15-22.
20	
21	Blout S. 1981. Why sports divers like artificial reefs. In: Weaver DB, ed. Artificial
22	reefs: conference proceedings. Daytona Beach, Fl.: Florida Sea Grant College, 72-
23	74.
24	
25	Bonham CA, Sacayon E, Tzi E. 2008. Protecting imperiled "paper parks": potential
26	lessons from the Sierra Chinajá, Guatemala. <i>Biodiversity and Conservation</i> 17:1581–
27	1593.
28	
29	Boyle KJ. 2003. Contingent valuation in practice. In: Champ A, Boyle KJ, Brown
30	TC, eds. A primer on non-market valuation. London: Kluwer Academic Publishers,
31	111–169.
22	

1	Boyle KJ, MacDonald HF, Cheng H, McCollum DW. 1998. Bid design and yea
2	saying in single-bounded, dichotomous-choice questions. Land Economics 74(1):49-
3	64.
4	
5	Brander LM, van Beukering P, Cesar HSJ. 2007. The recreational value of coral
6	reefs: a meta-analysis. Ecological Economics 63:209–218.
7	
8	Brandon K, Redford KH, Sanderson SE. 1998. Parks in peril: people, politics and
9	protected areas. The Nature Conservancy, Island Press, 519.
10	
11	Brock RE. 1994. Beyond fisheries enhancement: artificial reefs and ecotourism.
12	Bulletin of Marine Science 55(2-3):1181–1188.
13	
14	Bruner G, Gullison R, Rice R, da Fonseca G. 2001. Effectiveness of parks in
15	protecting tropical biodiversity. Science 291:125–128.
16	
17	Bryant D, Burke L, McManus J, Spalding M. 1998. Reefs at risk: a map-based
18	indicator of threats to the world's coral reefs. World Resources Institute, Washington
19	D.C., USA. 56 pp.
20	
21	Brylske A, Flumerfelt S. 2004. Assessing the carrying capacity of MPAs: how many
22	visitors can your MPA hold? MPA News 6(2):1-6.
23	
24	Burke L, Greenhalgh S, Prager D, Cooper E. 2008. Coastal capital - economic
25	valuation of coral reefs in Tobago and St Lucia. World Resources Institute,
26	Washington D.C., USA. 66 pp.
27	
28	Burke L, Maidens J. 2004. Reefs at risk in the Caribbean. World Resources
29	Institute, Washington D.C., USA. 80 pp.
30	
31	Burke L, Reytar K, Spalding M, Perry A. 2011. Reefs at risk revisited. World
32	Resources Institute, Washington D.C., USA. 114 pp.
33	

1	Burke L, Selig E, Spalding M. 2002. Reefs at risk in Southeast Asia. World
2	Resources Institute, Washington D.C., USA. 72 pp.
3	
4	Cameron TA, Huppert DD. 1989. OLS versus ML estimation of non-market
5	resource values with payment card interval data. Journal of Environmental
6	Economics and Management 17:230–246.
7	
8	Caribbean Tourism Organization 2014. Arrivals by main market "Statistics, 2014".
9	Available online at: http://www.onecaribbean.org/statistics/tourismstats (accessed 26
10	March 2014).
11	
12	Casey JF, Brown C, Schuhmann P. 2010. Are tourists willing to pay additional fees
13	to protect corals in Mexico? Journal of Sustainable Tourism 18(4):557-573.
14	
15	Cesar HSJ. 2000. Coral reefs: their functions, threats and economic value. In: Cesar
16	HSJ, ed. Collected essays on the economics of coral reefs. Kalmar University,
17	Sweden: CORDIO, 14–39.
18	
19	Cesar HSJ, Burke L, Pet-Soede L. 2003. The economics of worldwide coral reef
20	degradation. Arnhem, Cesar Environmental Economics Consulting. 23 pp.
21	
22	Cesar HSJ, van Beukering PJH. 2004. Economic valuation of the coral reefs of
23	Hawai'i. Pacific Science 58(2):231–242.
24	
25	Champ PA. 2003. Collecting survey data for nonmarket valuation. In: Champ PA,
26	Boyle KJ, Brown TC, eds. A primer on nonmarket valuation. London: Kluwer
27	Academic Publishers, 59–98.
28	
29	Champ PA, Bishop RC. 2006. Is willingness to pay for a public good sensitive to the
30	elicitation format? Land Economics 82:162–173.
31	
32	Chapman MR, Kramer DL. 1999. Gradients in coral reef fish density and size
33	across the Barbados Marine Reserve boundary: effects of reserve protection and
34	habitat characteristics. <i>Marine Ecology Progress Series</i> 181: 81–96.

1	Chen J, Chuang C, Jan R, Liu L. 2013. Recreational benefits of ecosystem services
2	on and around artificial reefs: a case study in Penghu, Taiwan. Ocean and Coastal
3	Management 85(A): 58–64.
4	
5	Christie M. 2007. An examination of the disparity between hypothetical and actual
6	willingness to pay using the contingent valuation method: the case of red kite
7	conservation in the United Kingdom. Canadian Journal of Agricultural Economics
8	55(2): 159–169.
9	
10	Chung S, Au A, Qui J. 2013. Understanding the underwater behaviour of scuba
11	divers in Hong Kong. Environmental Management 51:824-837.
12	
13	Clark AM, De Meyer K, Jacobson A, Causey B. 2005. "Sacrificial" areas: an
14	appropriate management tool for MPAs? MPA news 7(3):3-4.
15	
16	Clark S, Edwards AJ. 1999. An evaluation of artificial reef structures as tools for
17	marine habitat rehabilitation in the Maldives. Aquatic Conservation: Marine and
18	Freshwater Ecosystems 9:5–21.
19	
20	Claudet J, Pelletier D. 2004. Marine protected areas and artificial reefs: a review of
21	the interactions between management and scientific studies. Aquatic Living Resources
22	17: 129–138.
23	
24	Coghlan A. 2012. Facilitating reef tourism management through an innovative
25	importance-performance analysis method. <i>Tourism Management</i> 33(4): 767–775.
26	
27	Collins KJ, Jensen AC, Albert S. 1995. A review of waste tyre utilization in the
28	marine environment. Chemistry and Ecology 10(3-4):205–216.
29	
30	Collins KJ, Jensen AC, Mallinson JJ, Roenelle V, Smith IP. 2002. Environmental
31	impact assessment of a scrap tyre artificial reef. ICES Journal of Marine Science
32	59: 243–249.
22	

1	Cooper P, Poe GL, Bateman IJ. 2004. The structure of motivation for contingent
2	values: a case study of lake water quality improvement. Ecological Economics 50(1-
3	2):69–82.
4	
5	Crabbe M, McClanahan TR. 2006. A biosocioeconomic evaluation of shipwrecks
6	used for fishery and dive tourism enhancement in Kenya. Western Indian Ocean
7	Journal of Marine Science 5(1):35–53.
8	
9	Cumberbatch J. 2001. Case study of the Folkestone Marine Park and reserve,
10	Barbados. Caribbean Natural Resources Institute (CANARI). CANARI technical
11	report no. 281. 11 pp.
12	
13	Davis D, Tisdell CA. 1999. Tourist levies and willingness to pay for a whale shark
14	experience. Tourism Economics 5(2):161–174.
15	
16	Day JC. 2002. Zoning - lessons from the Great Barrier Reef Marine Park. Ocean and
17	Coastal Management 45:139–156.
18	
19	Department of the Environment. 2013. The benefits of marine protected areas.
20	Available at http://www.environment.gov.au/resource/benefits-marine-protected-
21	areas-discussion-paper (accessed 5 August 2013).
22	
23	Depondt F, Green E. 2006. Diving user fees and the financial sustainability of
24	marine protected areas: opportunities and impediments. Ocean and Coastal
25	Management 49: 188–202 .
26	
27	De Santo EM. 2013. Missing marine protected area (MPA) targets: how the push for
28	quantity over quality undermines sustainability and social justice. Journal of
29	Environmental Management 124:137–146.
30	
31	Dharmaratne GS, Brathwaite AE. 1998. Economic valuation of the coastline for
32	tourism in Barbados. Journal of Travel Research 37(2):138–144.
33	

1	Dharmaratne GS, Sang FY, Walling LJ. 2000. Tourism potentials for financing
2	protected areas. Annals of Tourism Research 27(3):590-610.
3	
4	Diamond PA, Hausman JA. 1994. Contingent valuation: is some number better than
5	no number? Journal of Economic Perspectives 8(4):45-64.
6	
7	Ditton RB, Baker TL. 1999. Demographics, attitudes, management preferences, and
8	economic impacts of sport divers using artificial reefs in offshore Texas waters.
9	Technical report no. HD-99-0. Human Dimensions of Fisheries Lab, Texas A&M
10	University, College Station, Texas, USA. 44 pp.
11	
12	Ditton RB, Osburn HR, Baker TL, Thailing CE. 2002. Demographics, attitudes,
13	and reef management preferences of sports divers in offshore Texas waters. ICES
14	Journal of Marine Science 59: 186–191.
15	
16	Dixon JA, Scura LF, van't Hof T. 1993. Meeting ecological and economic goals -
17	marine parks in the Caribbean. Ambio 22:117-125.
18	
19	Dixon JA, Scura LF, van't Hof T. 2000. An economic and ecological analysis of the
20	Bonaire Marine Park. In: Cesar HSJ, ed. Collected essays on the economics of coral
21	reefs, Kalmar University, Sweden: CORDIO, 158-165.
22	
23	Doshi A, Pascoe S, Thebau O, Thomas C, Setiasih N, Hong J, True J,
24	Schuttenberg H, Heron S. 2012. Loss of economic value from coral bleaching in
25	S.E. Asia. In: Proceedings of the 12th international coral reef symposium. Cairns,
26	QLD, Australia, 9–13 July 2012, 1–5.
27	
28	Dowling RK, Nichol J. 2001. The HMAS swan artificial dive reef. Annals of
29	Tourism Research 28(1): 226–229.
30	
31	Edney J. 2012. Diver characteristics, motivations, and attitudes: Chuuk Lagoon.
32	Tourism in Marine Environments 8(1/2):7–18.
33	

1	Farr M, Stoeckl N, Beg RA. 2014. The non-consumptive (tourism) 'value' of marine
2	species in the Northern section of the Great Barrier Reef. Marine Policy 43:89-103.
3	
4	Fast DE, Pagan FA. 1974. Comparative observations of an artificial tire reef and
5	natural patch reefs off southwestern Puerto Rico. In: Proceedings: artificial reef
6	conference. Texas A&M University, TAMU-SG-74-103, 49-50.
7	
8	Fitzsimmons C. 2009. Why dive? And why here?: a study of recreational diver
9	enjoyment at a Fijian eco-tourist resort. Tourism in Marine Environments 5(2-3):159-
10	173.
11	
12	Gell FR, Roberts CM. 2003. Benefits beyond boundaries: the fishery effects of
13	marine reserves. Trends in Ecology and Evolution 18:448-455.
14	
15	Google earth. 2014. Available at http://www.google.com/earth (accessed 6 July
16	2014).
17	
18	Granneman JE, Steele MA. 2014. Fish growth, reproduction, and tissue production
19	on artificial reefs relative to natural reefs. ICES Journal of Marine Science
20	71(9): 2494–2504 DOI 10.1093/icesjma/fsu082.
21	
22	Halpern BS. 2003. The impact of marine reserves: do reserves work and does reserve
23	size matter? Ecological Applications 13(1):117–137.
24	
25	Halpern BS, Wallbridge S, Selkoe KA, Kappel CV, Micheli F, et al. 2008. A
26	global map of human impact on marine ecosystems. Science 319(5865):948-952.
27	
28	Halpern BS, Warner RR. 2002. Marine reserves have rapid and lasting effects.
29	Ecology Letters 5:361–366.
30	
31	Ham S. 1992. Environmental interpretation: a practical guide for people with big
32	ideas and small budgets. Golden, CO: Fulcrum/North American Press, 51.

1	Hannak JS, Kompatscher S, Stachowitsch M, Herier J. 2011. Snorkening and
2	trampling in shallow-water fringing reefs: risk assessment and proposed management
3	strategy. Journal of Environmental Management 92:2723–2733.
4	
5	Hargreaves-Allen V. 2010. Economic values, distributional impacts and
6	conservation outcomes for coral reef marine protected areas. Ph.D. Dissertation
7	thesis, Imperial College London, UK, 294.
8	
9	Hawkins JP, Roberts CM. 1997. Estimating the carrying capacity of coral reefs for
10	scuba diving. In: Proceedings of the 8th international coral reef symposium.
11	Smithsonian Tropical Research Institute, Panama, 24–29 June 1996, 2:1923-1926.
12	
13	Hime SP. 2008. The effects of marine based tourism on the coral reefs of the British
14	Virgin Islands. Ph.D. Dissertation thesis, University of East Anglia, UK, 192.
15	
16	Horrocks JA, Scott NM. 1991. Nest site location and nest success in the hawksbill
17	turtle Eretmochelys imbricata in Barbados, West Indies. Marine Ecology Progress
18	Series 69: 1–8.
19	
20	Inter-American Biodiversity Information Network. 2010. Barbados reef fix
21	exercise, draft report: Economic valuation of goods and services derived from coral
22	reefs in the Folkestone Park and Marine Reserve, Barbados. Draft report prepared by
23	the Inter-American Biodiversity Information Network. 53 pp.
24	
25	Johns G. 2004. Socioeconomic study of reefs in Martin County, Florida. Report
26	prepared for Martin County, Florida by Hazen and Sawyer, P.C., Hollywood, FL. 120
27	pp.
28	
29	Johns GM, Leeworthy VR, Bell FW, Bonn MA. 2001. Socioeconomic study of
30	reefs in Southeast Florida: final report, 2001. Report prepared for Broward County,
31	Palm Beach County, Miami-Dade County, Monroe County, Florida Fish and Wildlife
32	and Conservation Commission: Hazen and Sawyer. 348 pp.
33	

1	Kahneman D, Knetsch JL. 1992. Valuing public goods: the purchase of moral
2	satisfaction. Journal of Environmental Economics and Management 22:57-70.
3	
4	Kaufman S. 2006. If you build it, they will come? Toward a concrete basis for coral
5	reef gardening. In: Precht WF, ed. Coral reef restoration handbook. Boca Raton,
6	Florida: CRC Press, 119–142.
7	
8	Kirkbride-Smith AE, Wheeler PM, Johnson ML. 2013. The relationship between
9	diver experience levels and perceptions of attractiveness of artificial reefs -
10	examination of a potential management tool. PLoS ONE 8(7):e.68899 DOI
11	10.1371/journal.pone.0068899.
12	
13	Kling CL, Sexton RJ. 1990. Bootstrapping in applied welfare analysis. American
14	Agricultural Economics Association 72:406–418.
15	
16	Leeworthy VR, Maher T, Stone EA. 2006. Can artificial reefs alter user pressure on
17	adjacent natural reefs? Bulletin of Marine Science 78(1):29-37.
18	
19	Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines
20	SD, Airamé S, Warner RR. 2009. Biological effects within no-take marine reserves:
21	a global synthesis. Marine Ecology Progress Series 384:33-46.
22	
23	Lewis JB. 1960. The coral reefs and coral communities of Barbados, W.I. Canadian
24	Journal of Zoology 38(6): 1130–1145.
25	
26	Lewis JB. 2002. Evidence from aerial photography of structural loss of coral reefs at
27	Barbados, West Indies. Coral Reefs 21:49-56.
28	
29	Lindberg K. 2001. Protected area visitor fees overview. Part of project: generating
30	revenue through ecotourism for marine protected areas. The International Ecotourism
31	Society and Programme for Belize. 7 pp.
32	
33	Lindsey G, Holmes A. 2002. Tourist support for marine protection in Nha Trang,
34	Viet Nam. Journal of Environmental Planning and Management 45(4):461-480.

1	Mahieu P, Riera P, Giergiczny M. 2012. Determinants of willingness-to-pay for
2	water pollution abatement: a point and interval data payment card application.
3	Journal of Environmental Management 108:49–53.
4	
5	Marion JL, Rogers CS. 1994. The applicability of terrestrial visitor impact
6	management strategies to the protection of coral reefs. Ocean and Coastal
7	Management 22: 153–163.
8	
9	Martín-López B, Montes C, Benayas J. 2007. The non-economic motives behind
10	the willingness to pay for biodiversity conservation. Biological Conservation 139:67-
11	82.
12	
13	Mathieu LF, Langford IH, Kenyon W. 2003. Valuing marine parks in a developing
14	country: a case study of the Seychelles. Environment and Development Economics
15	8: 373–390.
16	
17	McClanahan TR, Marnane J, Cinner JE, Kiene WE. 2006. A comparison of
18	marine protected areas and alternative approaches to coral-reef management. Current
19	Biology 16: 1408–1413.
20	
21	Milton JW. 1989. Artificial marine habitat characteristics and participation
22	behaviour by sport anglers and divers. Bulletin of Marine Science 44(2):853-862.
23	
24	Mitchell RC, Carson RT. 1989. Using surveys to value public goods: the contingent
25	valuation method. Washington D.C.: Resources for the Future, 463.
26	
27	Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems.
28	Ecological Economics 29:215–233.
29	
30	Mora C, Andréfouët S, Costello MJ, Kranenburg C, Rollo A, Veron J, Gaston
31	KJ, Myers RA. 2006. Coral reefs and the global network of marine protected areas.
32	Science 312: 1750–1751.
33	
34	

1	Mora C, Sale PF. 2011. Ongoing global biodiversity loss and the need to move
2	beyond protected areas: a review of the technical and practical shortcomings of
3	protected areas on land and sea. Ecology Progress Series 434:251-266.
4	
5	Mosqueira I, Côté IM, Jennings S, Reynolds JD. 2000. Conservation benefits of
6	marine reserves for fish populations. Animal Conservation 3:321–332.
7	
8	Musa G. 2002. Sipadan: a scuba-diving paradise: an analysis of tourism impact, diver
9	satisfaction and tourism management. Tourism Geographies 4:195-209.
10	
11	Musa G, Kadir SLSA, Lee L. 2006. Layang Layang: an empirical study on scuba
12	divers' satisfaction. Tourism in Marine Environments 2:89-102.
13	
14	Nunes PALD, Schokkaert E. 2003. Identifying the warm glow effect in contingent
15	valuation. Journal of Environmental Economics and Management 45:231–245.
16	
17	Oh C, Ditton RB, Stoll JR. 2008. The economic value of scuba-diving use of natural
18	and artificial reef habitats. Society and Natural Resources 21:455-468.
19	
20	Pendleton LH. 2005. Understanding the potential economic impacts of sinking ships
21	for scuba recreation. Marine Technology Society Journal 39(2):47–52.
22	
23	Perkol-Finkel S, Benayahu Y. 2004. Community structure of stony corals on
24	vertical unplanned artificial reefs in Eilat, (Red Sea): comparison to natural reefs.
25	Coral Reefs 23: 195–205.
26	
27	Peters H, Hawkins JP. 2009. Access to marine parks: a comparative study in
28	willingness to pay. Ocean and Coastal Management 52:219-228.
29	
30	Polak O, Shashar N. 2012. Can a small artificial reef reduce diving pressure from a
31	natural coral reef? Lessons learned from Eilat, Red Sea. Ocean and Coastal
32	Management 55: 94–100.
33	
34	

1	Polak O, Shashar N. 2013. Economic value of biological attributes of artificial coral
2	reefs. ICES Journal of Marine Science 70(4):904–912.
3	
4	R Development Core Team. 2008. R: a language and environment for statistical
5	computing. R Foundation for Statistical Computing, Vienna, Austria. Available at
6	http://www.R-projects.org. (accessed 15 August 2014).
7	
8	Ramos J, Santos MN, Whitmarsh D, Monteiro CC. 2006. The usefulness of the
9	analytic hierarchy process for understanding reef diving choices: a case study.
10	Bulletin of Marine Science 78(1): 213–219.
11	
12	Rangel MO, Pita CB, Gonçalves JMS, Oliveira F, Erzini K. 2014. Developing
13	self-guided scuba dive routes in the Algarve (Portugal) and analysing visitors'
14	perceptions. Marine Policy 45:194–203.
15	
16	Ríos-Jara E, Galván-Villa CM, Rodríguez-Zaragoza FA, López-Uriarte E,
17	Muňoz-Fernández VT. 2013. The tourism carrying capacity of underwater trails in
18	Isabel Island National Park, Mexico. Environmental Management 52:335-347.
19	
20	Roberts L, Harriott VJ. 1994. Recreational scuba diving and its potential for
21	environmental impact in a marine reserve. In: Bellwood O, Choat H, Saxena N, eds.
22	Recent advances in marine science and technology. Townsville, Australia, 695–704.
23	
24	Roman GSJ, Dearden P, Rollins R. 2007. Application of zoning and "limits of
25	acceptable change" to manage snorkelling tourism. Environmental Management
26	39(6): 819–830.
27	
28	Rudd MA, Tupper H. 2002. The impact of Nassau and grouper size and abundance
29	on scuba dive site selection and MPA economics. Coastal Management 30:133-151.
30	
31	Santos MN, Oliveira MT, Cúrdia J. 2013. A comparison of the fish assemblages or
32	natural and artificial reefs off Sal Island (Cape Verde). Journal of the Marine
33	Biological Association of the United Kingdom 93(2):437–452.
34	

1	Sarkis S, van Beukering PJH, McKenzie E, Brander L, Hess S, Bervoets T,
2	Looijenstijn-van der Putten L, Roelfsema, M. 2013. Total economic value of
3	Bermuda's coral reefs: a summary. In: Sheppard C, ed. Coral reefs of the United
4	Kingdom overseas territories: coral reefs of the world. London: Springer, vol. 1,
5	201–211.
6	
7	Schuhmann PW, Casey JF, Horrocks JA, Oxenford HA. 2013. Recreational
8	SCUBA divers' willingness to pay for marine biodiversity in Barbados. Journal of
9	Environmental Management 121:29–36.
10	
11	Schuhmann P, Casey J, Oxenford HA. 2008. The value of coral quality to SCUBA
12	divers in Barbados. In: Proceedings of the 11th international coral reef symposium.
13	Ft. Lauderdale, Florida, 7 – 11 July 2008. vol. 2, 1149–1152.
14	
15	Scuba Travel. 2006. Top 10 dive sites in the world. Available at
16	http//www.scubatravel.co.uk/ topdives.html (accessed 16 July 2014).
17	
18	Sedley Associates Inc., AXYS Environmental Consulting (Barbados) Inc.,
19	Scantlebury and Associates Ltd. 2000. Feasibility studies of Harrison's Cave and
20	associated site, Carlisle Bay Marine Park and Folkestone Park and Marine Reserve.
21	Business plan for the proposed Carlisle Bay marine recreational park and Folkestone
22	marine management area. 101 pp.
23	
24	Seenprachawong U. 2003. Economic valuation of coral reefs at Phi Phi Islands,
25	Thailand. International Journal of Global Environmental Issues 3(1):104–114.
26	
27	Selig ER, Bruno JF. 2010. A global analysis of the effectiveness of marine protected
28	areas in preventing coral loss. PLoS ONE 5(2):e9278 DOI
29	10.1371/journal.pone.0009278.
30	
31	Shani A, Polak O, Shashar N. 2011. Artificial reefs and mass marine ecotourism.
32	Tourism Geographies 1:1–22.
33	
34	

1	Skeat A, Skeat H. 2003. Systems to make tourism and others contribute to protected
2	areas in the Great Barrier Reef. Background paper for the fifth world parks congress,
3	Durban, South Africa. Available at http://www.conservationfinance.org (accessed 17
4	December 2013).
5	
6	Spash CL. 2000. Assessing the benefits of improving coral reef biodiversity: the
7	contingent valuation method. In: Cesar HSJ, ed. Collected essays on the economics of
8	coral reefs. Kalmar University, Sweden: CORDIO, 40-54.
9	
10	Spash CL. 2006. Non-economic motivation for contingent values: rights and
11	attitudinal beliefs in the willingness to pay for environmental improvements. Land
12	Economics 82: 602–622.
13	
14	Spergel B, Moye M. 2004. Financing marine conservation. A menu of options.
15	Washington D.C.: WWF Centre for Conservation Finance. 68 pp.
16	
17	STINAPA. 2009. Annual financial report 2008. Kralendijk: Stichting Nationale
18	Parken Nederlandse Antillean. 28 pp.
19	
20	Stolk P, Markwell K, Jenkins J. 2005. Perceptions of artificial reefs as scuba diving
21	resources: a study of Australian recreational scuba divers. Annals of Leisure Research
22	8(2-3): 153–173.
23	
24	Stone RB, McGurrin JM, Sprague LM, Seaman W. 1991. Artificial habitats of the
25	world: synopsis and major trends. In: Seaman W, Sprague LM, eds. Artificial habitats
26	for marine and freshwater fisheries. San Diego: Academic Press, 31-60.
27	
28	Tallman J. 2006. Aesthetic components of ecological restoration. In: Precht WF, ed.
29	Coral reef restoration handbook. Boca Raton, Florida: CRC Press, 193-203.
30	
31	Tapsuwan S. 2005. Valuing the willingness to pay for environmental conservation
32	and management: a case study of scuba diving levies in Moo Koh Similan islands
33	Marine National Park, Thailand. In: Proceedings of the Australian conference of
34	economists, 1–28.

1	Terk E, Knowlton N. 2010. The role of SCUBA diver user fees as a source of
2	sustainable funding for coral reef marine protected areas. Biodiversity 11:78-84.
3	
4	Therneau T. 2014. A package for survival analysis in S. R package version 2.37-7,
5	Avaialble at http://CRAN.R-project.org/package=survival (accessed 16 September
6	2014).
7	
8	Thorsell J, Wells S. 1990. A global overview of tourism activities in coastal and
9	marine parks. In: Proceedings of the 1990 congress on coastal and marine tourism.
10	National Coastal Resources Research and Development Institute, Newport, Oregon,
11	221-224.
12	
13	Thur S. 2010. User fees as sustainable financing mechanisms for marine protected
14	areas: an application to the Bonaire National Marine Park. Marine Policy 34:63-69.
15	
16	Thurstan RH, Hawkins JP, Neves L, Roberts CM. 2012. Are marine reserves and
17	non-consumptive activities compatible? A global analysis of marine reserve
18	regulations. Marine Policy 36:1096-1104.
19	
20	Togridou A, Hovardas T, Pantis JD. 2006. Determinants of visitors' willingness to
21	pay for the national marine park of Zakynthos, Greece. Ecological Economics
22	60: 308–319.
23	
24	Troëng S, Drews C. 2004. Money talks: economic aspects of marine turtle use and
25	conservation. WWF - International, Gland, Switzerland, 41. Available at
26	http://assets.panda.org/downloads/moneytalks.pdf (accessed 11 June 2014).
27	
28	United Nations Environment Programme. 2003. Utility of user fees as financial
29	instruments for the management of marine parks and marine protected areas in the
30	wider Caribbean region. Available at
31	http://www.unep.org/documents/utility_of_user_fees.pdf (accessed 10 July 2014).
32	
33	

1	Uyarra MC, Côté IM, Gill JA, Tinch RRT, Viner D, Watkinson AR. 2005.
2	Island-specific preferences of tourists for environmental features: implications of
3	climate change for tourism-dependent states. Environmental Conservation 32(1):11-
4	19.
5	
6	Uyarra MC, Gill JA, Côté IM. 2010. Charging for nature: marine park fees and
7	management from a user perspective. Ambio 39:515-523.
8	
9	van Treeck P, Schuhmacher H. 1999. Mass diving tourism – a new dimension calls
10	for new management approaches. Marine Pollution Bulletin 37(8-12):499-504.
11	
12	Varkey D, Ainsworthy CH, Pitcher TJ. 2012. Modelling reef fish population
13	responses to fisheries restrictions in marine protected areas in the coral triangle.
14	Journal of Marine Biology 2012:1–18.
15	
16	Waite R, Burke L, Gray E, van Beukering P, Brander L, McKenzie E, Pendleton
17	L, Schuhmann P, Tompkins E. 2014. Coastal capital: ecosystem valuation for
18	decision making in the Caribbean. Washington D.C.: World Resources Institute. 78
19	pp.
20	
21	Walters RDM, Samways MJ. 2001. Sustainable dive ecotourism on a South African
22	coral reef. Biodiversity and Conservation 10:2167–2179.
23	
24	Warachananat S, Carter RW, Hockings M, Reopanichkul P. 2008. Managing
25	the impacts of SCUBA diving on Thailand's coral reefs. Journal of Sustainable
26	Tourism 16(6):645–663.
27	
28	Wells S. 2006. Assessing the effectiveness of marine protected areas as a tool for
29	improving coral reef management. In: Côté IM, Reynolds JD, eds. Coral reef
30	conservation. UK: Cambridge University Press, 314-331.
31	
32	WDPA. 2013. World data base on protected areas. Available at
33	http://www.wdpa.org/AnnualRelease.aspx (accessed 12 December 2013).
3/1	

1	Wielgus J, Balmford, A, Lewis TB, Mora C, Gerber LR. 2010. Coral reef quality
2	and recreation fees in marine protected areas. Conservation Letters 3:38-44.
3	
4	Wilhelmsson D, Ohman MC, Stahl H, Sheslinger Y. 1998. Artificial reefs and dive
5	tourism in Eilat, Israel. Ambio 27(8):764–766.
6	
7	Yang S, Hu WH, Liu Y. 2012. Consumer willingness to pay for fair trade coffee: a
8	Chinese case study. Journal of Agricultural and Applied Economics 44(1):21–34.
9	
10	Yeo BH. 2005. The recreational benefits of coral reefs: a case study of Pulau Payar
11	Marine Park, Kedah, Malaysia. In: Ahmed M, Chong CK, Cesar H, eds. <i>Economic</i>
12	valuation and policy priorities for sustainable management of coral reefs. World
13	Fish Centre Conference Proceedings 70: 108–117.