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ABSTRACT
Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections
of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE)
that are associated with poor clinical outcomes. CFPE involves an increase in disease
symptoms requiring more aggressive therapy.
Methods. Longitudinal sputum samples were collected from 11 patients (n = 44
samples) to assess the effect of exacerbations on the sputum metabolome using liquid
chromatography-tandemmass spectrometry (LC-MS/MS). The data was analyzed with
MS/MS molecular networking and multivariate statistics.
Results. The individual patient source had a larger influence on the metabolome of
sputum than the clinical state (exacerbation, treatment, post-treatment, or stable).
Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the
only known metabolites significantly elevated at exacerbation across the dataset were
platelet activating factor (PAF) and a relatedmonacylglycerophosphocholine lipid. Due
to the personalized nature of the sputum metabolome, a single patient was followed
for 4.2 years (capturing four separate exacerbation events) as a case study for the
detection of personalized biomarkers with metabolomics. PAF and related lipids were
significantly elevated during CFPEs of this patient and ceramide was elevated during
CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to
metabolomics data from the same samples during a CFPE demonstrated that antibiotics
were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and
other lipids were correlated with Streptococcus, Rothia, and anaerobes.
Conclusions. This study identified PAF and other inflammatory lipids as potential
biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific,
supporting a personalized approach to molecular detection of CFPE onset.
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INTRODUCTION
Cystic fibrosis (CF) is a genetic disease caused by mutations in the cystic fibrosis
transmembrane conductance regulator gene (CFTR). Mutations in CFTR result in
airway mucus buildup and chronic airway infections. CF patients experience intermittent
pulmonary exacerbations (CFPE), events that are poorly defined clinically, but known to
lead to lung function decline and accelerated disease progression (Goss & Burns, 2007). A
CFPE is characterized as an acute increase in symptom severity, such as dyspnea, cough,
sputum production, chest pain, fevers, acute and chronic sinusitis, and occasionally
hemoptysis (Dakin et al., 2001; Goss & Burns, 2007; Bilton et al., 2011; Stenbit & Flume,
2011). Exacerbations require an increased use of antibiotic, anti-inflammatory, and lung
clearance therapies. These events decrease the quality of life of CF patients and a higher
CFPE frequency is correlated with poor outcomes in one and three-year probability of death
studies (De Boer et al., 2011;Aaron et al., 2014;Habib et al., 2015). CFPEs are challenging to
predict (Rogers et al., 2011). Clinicians rely on symptoms common across patients or those
that a single patient has previously experienced to provide some indication that a CFPE
is occurring. Biomarkers that predict pulmonary exacerbations are needed to supplement
existing clinical and physiological assessments (Rogers et al., 2011; Stenbit & Flume, 2011).

Omics approaches show great promise for the development of biomarkers as they
generate large data sets containing thousands of variables that may be predictive (Ghosh
& Poisson, 2009; Hu et al., 2011). With appropriate rigor and validation, metabolites are
particularly good biomarkers, because they are easily detectable with analytical methods
and can reflect imbalances in microbial or host metabolism that may explain disease
pathology (Koulman et al., 2009; Li et al., 2013). For example, ceramide has been observed
to accumulate in the epithelium of CFTR knockout mice (Teichgräber et al., 2008; Brodlie
et al., 2010), with follow up studies linking CFTR to ceramide regulation (Bodas et al.,
2011). The fermentation product 2,3-butanedione has been detected in the breath gas
of CF patients; its source traced to streptococcal metabolism in the lung (Whiteson et
al., 2014). Microbial growth signatures have also had value as predictive of exacerbation
(Twomey et al., 2013; Carmody et al., 2013; Quinn et al., 2015a), although some studies
find little change in microbial activity (Stressmann et al., 2011; Fodor et al., 2012). More
comprehensive studies of metabolic and microbial changes through CFPE are needed, as
well as an assessment of the molecular similarity across patients, to determine whether
universal biomarkers can be identified or if a more personalized approach is required.

This study used LC-MS/MS based metabolomics on sputum from patients through
exacerbation events. The sputum chemistry was more similar within individuals than
within shared clinical states (exacerbation, stable, treatment, or post treatment). This
supports a personalized approach to CFPE biomarker detection, and therefore, a case study
of this personalized approach is presented on data collected from a single patient for over
4 years.

MATERIALS AND METHODS
Additional details are provided in the Supplemental Information 1.
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Sample collection
Sputum samples were collected at the adult cystic fibrosis center at the University of
California at San Diego Medical Center as described in Lim et al. (2014). Procedures were
approved under the UCSD Human Research Protections Program protocol #081500.
Treating physicians determined which patients would be selected for the study, whether
or not they were presenting with an exacerbation (principally based on the Fuchs criteria
(Fuchs et al., 1994)), and the subsequent treatment regime. Samples were classified as
‘exacerbation,’ according to the clinicians diagnosis of the need for intravenous antibiotic
administration, ‘treatment,’ as any sample collected during the 14 day treatment course,
‘post-treatment,’ as samples collected immediately after treatment course, and ‘stable,’
as samples collected during routine clinical visits that were not known at the time to be
during an exacerbation. Sample collection involved an initial saline mouth rinse followed
by expectoration of sputum into a sputum cup after inhalation of 7% hypertonic saline for
30 min and then syringe homogenized according to Lim et al. (2013). Two different sample
sets were collected for assessment of metabolome similarity in different clinical states or
between patients, one in 2012 and another in 2014 (Table S1). For a separate and more in
depth longitudinal analysis, another sample set was collected from a single patient through
1,492 days (n= 37 sputa, Table S2). This sample set captured four separate exacerbation
events, including samples that were collected daily for 14 days through treatment of the
second exacerbation. Bacterial 16S rRNA gene profiles were previously published on
sputum samples from this daily collection of the second CFPE event (Quinn et al., 2015a)
and this data is also utilized in this study (see methods below and Table S2).

Extraction and LC-MS/MS
The samples were thawed and then extracted using a sequential method of ethyl acetate
solvation, followed by methanol solvation. A volume of 200 µl of sputum was first
mixed with 200 µl of ethyl acetate, extracted for 1 h at room temperature and then
briefly centrifuged. The supernatant was decanted and then evaporated in a centrifugal
evaporator. The same volume of methanol was then added to the remaining sputum
sample and incubated at room temperature for 1 h, and then briefly centrifuged. This
supernatant was added to the dried pellet of the ethyl acetate extract and then evaporated
in a centrifugal evaporator. All pellets were solubilized for 1 h in 100 µl of methanol prior to
LC-MS/MS analysis. Mass spectrometry was performed using a Bruker Daltonics R© Maxis
qTOF mass spectrometer equipped with a standard electrospray ionization source. A
water/acetonitrile solvent separation gradient containing 0.1% formic acid was used from
98:2 to 2:98 water:acetonitrile for a total run time of 840 s. The mass spectrometer was
operated in data dependent positive ion mode, automatically switching between full scan
MS and MS/MS acquisitions.

Metabolome generation and statistical analysis
For identification of the number of unique spectra in each clinical disease state MS/MS
spectral alignments using molecular networking on GNPS (gnps.ucsd.edu) was performed
on data from the 2012 and 2014 longitudinal collections. The number of unique spectra
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identified from molecular networking for each disease state was calculated and visualized
using a Venn diagram.

Statistical analysis including multivariate comparisons and quantification of metabolite
relative abundance was completed using MS1 traces. Molecular features detected in the
mass spectrometer (MS1 level) were identified using the Bruker Daltonics R© DataAnalysis
software and imported into the ProfileAnalyisis software version 2.1 (build 282, 64-bit)
for metabolome generation on the entire data set. The 2012 and 2014 sputum datasets
were processed and analyzed separately due to batch effects, and global similarity between
patient and clinical state was only compared within each dataset. The metabolomes for
dataset 1 and 2 were analyzed with a Bray–Curtis distance matrix separately using the
vegan package in R (Oksanen et al., 2015). Each distance matrix was then projected with
nMDS to visualize clinical state and patient metabolome similarity. The distance matrices
were tested for similarity between the two classifiers using ANOSIM and PerMANOVA
(adonis) from the vegan package in the R statistical software. The ANOSIM R statistic
is a permutation test of the null hypothesis that within group variation is not greater
than between group variation; an R-value above 0.4 is considered sufficient to reject
the null hypothesis. The PerMANOVA test is a non-parametric multivariate analysis of
variance using a pseudo-F-test. Here the larger the value of F the greater likelihood the
null hypothesis of no differences between group variations is false and the p-value comes
from permutations. We used the ANOSIM R and PerMANOVA F to test whether the
metabolomic data classified more strongly by patient or clinical state.

To identify global biomarkers of CFPE, it was initially necessary to unify MS1 data
from all cohorts and batches into a contiguous matrix containing spectral features from all
samples. In order to do so a novel algorithmwas used, which employs robustmethodologies
to overcome difficulties in identifying the same metabolite across multiple data sets (details
in Supplemental Information 1). With this unified MS1 spectral data matrix, a supervised
random forest using clinical state as the classifier produced a variable importance plot
that identified differentially abundant features across clinical states. Ten features were
identified as especially able to differentiate between the clinical states. These features
were tested for significant differences using an ANOVA and Tukey’s test of significance
(p< 0.05) and corrected for multiple comparisons. Biomarkers in the CF1 longitudinal
dataset were identified first using a random forests classification based on disease state. The
variable importance plot (VIP) of these random forests was then used to identify the 30
most differential features across the clinical states. These 30 features were then subjected
to a one-way ANOVA and a Tukey’s test of significance with a Bonferroni correction (30
features compared for CF1 dataset, p< 0.00167).

16S rRNA gene sequencing and metabolome correlations
Bacterial relative abundance data at the level of genus that was previously generated
on the same samples collected during the second exacerbation of the CF1 longitudinal
collection (published in reference Quinn et al., 2015a) was used to compare correlations
between the metabolome and microbiome variables. A correlation matrix was calculated
such that the area under the curve for the abundance of each molecular feature was
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regressed against the normalized abundance of either Pseudomonas, Rothia, Streptococcus,
Stenotrophomonas or total anaerobes (Prevotella, Veillonella, Gamella and Oribacterium).
The Pearson correlation coefficient (r) of this regression was then used to build a network
in the Cytoscape R© software.

Metabolome annotation
LC-MS/MS files generated on the mass spectrometer were converted to the .mzXML
format for dereplication and molecular networking. Spectra generated from the MS/MS
acquisition were searched against the GNPS database (gnps.ucsd.edu) using the molecular
networking algorithm (Watrous et al., 2012).

RESULTS
Metabolome relationships between patient and clinical state
Two sputum sample sets were collected for this study, one in 2011–2012 (n= 25 sputa, 6
patients) and another in 2014 (19 sputa, 5 patients, Table S1). Both data sets contain at
least three samples per patient collected during one of 4 clinical states (Exacerbation ‘Ex,’
Treatment ‘Tr,’ Post Treatment ‘Pt,’ and Stable ‘St’). Technical variability of this method
within a single run was assessed using multiple extractions of the same sample and on
different days, revealing a highly reproducible method within a LC-MS/MS batch (Fig. S1,
Supplemental Information 1 and 3). The data was analyzed with the molecular networking
algorithm that identifies unique MS/MS spectra (a proxy for molecules) available through
the Global Natural Product Social Molecular Networking database (GNPS, gnps.ucsd.edu,
(Watrous et al., 2012)). A total of 4,639 unique MS/MS spectra were detected in the sample
set. Exacerbation samples had 556 unique metabolites, Tr samples contained 132, Pt
samples contained 781, St samples contained 100, and 1,222 metabolites were common
across all clinical states (Fig. 1A).

Batch effects were detected between the sample sets by clustering of the metabolome
data (Fig. S1). Due to these LC-MS/MS batch effects, the similarity of each metabolome
could not be compared across the two datasets, only within each dataset. Therefore, a
Bray–Curtis distance matrix was generated on the metabolite abundance matrix for each
sample set separately and visualized with non-metric multidimensional scaling (nMDS)
(Fig. 1B). The metabolomes were tested for similarity within the patient or clinical state
classifiers using the analysis of similarity (ANOSIM) and permutation multivariate analysis
of variance (PerMANOVA) (Fig. 1B and Table 1). The metabolomes clustered more
strongly by patient than clinical state for both datasets (Fig. 1B). The ANOSIM statistic
R (a measure of the difference of mean ranks between and within groups) was higher by
patient classification than clinical state (for both datasets patient R> 0.4, Table 1). The
PerMANOVA F-test verified this trend (for both datasets patient F ≥ 2.0, Table 1). This
untargeted metabolomics analysis demonstrated that although there were a large number
of unique molecules belonging to each clinical state, particularly exacerbation, the overall
data did not reveal similarity in these clinical states across patients.
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Figure 1 Comparison of metabolomics data across patients and disease state. (A) Venn diagram of
membership of each unique MS/MS spectrum according to clinical state. (B) nMDS projection of a Bray–
Curtis similarity matrix generated from metabolome data of dataset 1 and dataset 2, separately. The sam-
ples are colored by their patient of origin and shaped according to the clinical state at time of collection.
The ANOSIM and PerMANOVA results of this similarity matrix are shown in Table 1.

Table 1 Similarity of metabolomes between patient and clinical state classifiers. ANOSIM and per-
MANOVA results on Bray–Curtis dissimilarity of each abundance matrix for the two longitudinal datasets
analyzed.

Patient Clinical state

Statistic ANOSIM R (p) perMANOVA F (p) ANOSIM R (p) perMANOVA F (p)

Dataset 1 0.485 (p= 0.001) 3.07 (p= 0.001) 0.076 (p= 0.772) 0.759 (p= 0.886)
Dataset 2 0.553 (p= 0.001) 2.00 (p= 0.001) 0.196 (p= 0.060) 1.269 (p= 0.074)
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Global biomarkers of CFPE
Common features across the two sample sets were identified using an advanced retention
time alignment and feature detection method (Fig. S1, Supplemental Information 1 and 3).
Although the majority of metabolites unique to exacerbation were patient specific, some
were significantly elevated across patients. These were identified using a supervised random
forests (Liaw &Wiener, 2002) approach with the samples classified by clinical state on the
merged abundance matrix between the two sample sets. Data from both sets were merged
using a novel algorithm expressly designed to overcome inter-batch m/z and retention
time variations in order to maximize the number of metabolites common to both sets (see
Supplemental Information 1). The variable importance plot revealed eight metabolites had
a mean decrease in accuracy of classification above 4, indicating they were highly enriched
in a particular disease state, the remaining metabolites contributed less to the classification
(Fig. S2). Of these eight metabolites, MS/MS spectral matching and GNPS library searching
allowed putative annotations for two. Platelet activating factor (m/z524.36 (M+H+)) was
significantly more abundant in Ex than Tr and Pt states, but not during St (Tukey’s test of
ANOVA, Ex–Tr p= 0.021, Ex–Pt p= 0.022, Fig. 2). The diacylglycerophosphocholine lipid
PC(18:0/3:1) was significantly more abundant in Ex than all other clinical states (Ex–Tr
p= 0.0062, Ex–Pt p= 0.003, Ex–St p= 0.038) (Fig. 2). Lyso-PAF, a related metabolite, was
not significantly different between clinical states.

Personalized biomarkers of CFPE
In light of the individuality observed between CF sputum metabolomes, the remainder
of this study focused on a single patient with longitudinal sampling over a four-year
time period, which captured four separate exacerbation events (CF1 dataset, Table S2,
n= 37 sputa). Known spectra detected in the CF1 longitudinal dataset were identified
through the GNPS molecular networking workflow and library searching and their
abundances tracked through time (Figs. 3A and 3B). The abundance of PAF, Lyso-PAF
and a monoacylglycerophosphocholine lipid Lyso-PC (1-O-hexadecyl-2-C-methyl-3-
phosphatidylcholine) were monitored through the data set and revealed fluctuations in the
abundance of these metabolites through time (Fig. 3A). PAF and Lyso-PAF were elevated
during Ex and Tr and the Lyso-PC was elevated during a 6-month period of stability
(Fig. 3A). A Tukey’s test of a one-way ANOVA for each molecule across the clinical states
Ex, Tr and St (no Pt samples were available from this patient) showed that PAF and
Lyso-PAF were significantly more abundant during Ex than during St (PAF p= 0.035,
Lyso-PAF p= 0.039), but not Tr (Fig. 3C). PAF and Lyso-PAF abundance was highly
correlated through the sampling period (Pearson’s r = 0.96, p< 0.0001), but not Lyso-PC
(Pearson’s r = 0.25, p= 0.13). Sphingolipids were also identified in this patient through
GNPS library searching including ceramide, sphingomyelin and sphingosine. Ceramide was
especially elevated during treatment of an exacerbation (Fig. 3B). The Tukey’s test revealed
that this molecule was significantly more abundant during Tr compared to St (p= 0.0008,
Fig. 3D). Ceramide and sphingosine were significantly correlated in their abundances
(Pearson’s r = 0.53, p= 0.0007), but sphingomyelin and ceramide were not (Pearson’s
r = 0.27, p= 0.10). These known molecules may represent specific biomarkers of CF1
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Figure 2 Molecular network of exacerbation biomarkers.Molecular network clusters containing two
significant biomarkers of exacerbation identified in the CF sputum metabolome data. Nodes are colored
according to which clinical state(s) they were detected in and shaped according to whether they were au-
tomatically annotated through GNPS. Each cluster represents a molecular family of molecules related to
the biomarker metabolite identified using a supervised random forests with clinical state as a classifier.
Nodes of interest are highlighted by a green outline. The chemical structure of the biomarker and impor-
tant molecular relatives are also shown. Boxplots of the area under the curve abundance of each biomarker
is shown in each clinical state with significance according to the Tukey’s test (∗,p < 0.05; ∗∗,p < 0.01;
∗∗∗,p< 0.001). Exact locations of the double bond in the PC molecules are unknown.
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Figure 3 The normalized abundance of specific knownmetabolites identified through GNPS in CF1 over 1,492 days.Date of sample collection
is shown on the x-axis and the clinical state of the sample is colored according to the legend. (A) The Lyso-phospholipids PAF, Lyso-PAF and 1-O-
hexadecyl-2-C-methyl-3-phosphatidylcholine. (B) The sphingolipids ceramide (18:1/16:0), sphingosine and sphingomyelin (18:1/14:0). Boxplots of
the distribution of the abundances of the lysophospholipids (C) and sphingolipids (D) in the different disease states, boxes are colored according to
the legend in the panel of the adjacent line graph.

associatedwith inflammation during the onset of an exacerbation and through its treatment.
Othermolecules that were not annotated throughGNPSwere also statistically significant

biomarkers of CFPE for this patient. Thirty of these metabolites were identified using a
random forests based classification of the entire CF1 longitudinal data set based on
clinical state (Fig. S3). Molecular features with parent masses m/z441.317, m/z304.280,
m/z508.331, andm/z551.354 were all significantly elevated during Ex and Tr, compared to
St, after a Bonferroni correction for a Tukey’s test of a one-way ANOVA (p< 0.00167, 30
comparisons, Figs. S4 and S5). Metabolites m/z508.331 and m/z551.354 both contained
a phosphocholine fragment in their MS/MS spectra (Fig. S4), indicating that they are
putatively a monoacylglycerophosphocholine and a glycerophospholipid of unknown
structure, respectively. Although these metabolites remain unidentified these molecules
are especially strong biomarkers of exacerbation in CF1.

Xenobiotic dynamics in CF1
The antibiotics azithromycin, trimethoprim, sulfamethoxazole, and linezolid, and the
bronchodilator albuterol were detected in the longitudinal sampling data of CF1. There was
varying abundance of these antibiotics that fluctuated through time (Fig. 4). Azithromycin,
trimethoprim, sulfamethoxazole, and albuterol were administered consistently as
‘suppressive’ therapy to this patient throughout the sampling period. During the second
exacerbation event, trimethoprim, sulfamethoxazole and linezolid, were administered
intravenously. The abundance of azithromycin was high in sputum through most of the
sampling period, but fluctuated during suppressive administration, occasionally out of the
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Figure 4 Longitudinal dynamics of antibiotics in a single patient over 4 years.Graph of the normalized abundance of xenobiotics in the CF1 lon-
gitudinal dataset. Date of sample collection is shown on the x-axis and the clinical state of the sample is colored according to the legend. Clinical ad-
ministration of particular xenobiotics according to clinical treatment history is shown below the x-axis and colored according to the figure legend.

detectable range. As expected, the abundance of trimethroprim and linezolid increased
during intravenous therapy, but sulfamethoxazole remained at a very low abundance.
Albuterol also increased in abundance during the second exacerbation (this metabolite was
not part of the intravenous treatment regime, but was administered), while being relatively
low during chronic oral therapy.

Microbial and metabolome correlations
The second exacerbation event during the CF1 longitudinal sampling also had bacterial
16S rDNA amplicon sequencing data previously published in a separate manuscript on
the same sputum samples (Quinn et al., 2015a). Therefore, abundances of Pseudomonas,
Stenotrophomonas, Streptococcus, Rothia and anaerobes (Veillonella, Prevotella, Gemella and
Oribacterium) from the published data were regressed against the metabolite abundances in
the same CFPE1 samples (n= 16). Statistically significant Pearson correlations (p< 0.05)
were visualized by networking analysis using Pearson’s r as the edge values, such that
molecules that were positively correlated with a particular bacterial genus would be
connected in the network (Fig. 5). The network topology revealed that there were
168 molecular features significantly correlated with Pseudomonas abundance, 66 with
Stenotrophomonas, 46 with Streptococcus, 23 with Rothia, and 22 with anaerobes. The
network topology showed two groups of molecules, those that correlated with either
Stenotrophomonas or Pseudomonas and those that correlated with Streptococcus, Rothia, and
anaerobes (Fig. 5). A number of molecules were correlated to more than one bacterium,
but there were no correlations between these two groups of bacteria. This indicated
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Figure 5 Correlation betweenmicrobes andmolecules during a single exacerbation.Microbial and molecule correlation network built using
Pearson’s r regression score between the normalized abundance of molecules and the normalized abundance of bacterial genera from 16S rDNA
sampling in the same samples. The value of r is scaled to the thickness of the edge connections and the nodes are colored by their microbial associa-
tions. Annotated metabolite putative structures are highlighted.

that there were two microbial and molecular communities in this patient during this
exacerbation, one associated with Stenotrophomonas and Pseudomonas and one with
Gram-positives and anaerobes. These two communities have been previously identified as
the Climax and Attack communities, respectively, from a parallel study of these samples
(Quinn et al., 2015a).

Automatic metabolite annotation through GNPS led to putative identification of 14 of
the 303 molecules in the correlation network. Ceramide (18:2/16:0) and sphingomyelin
(16:1/16:0) were correlated with Streptococcus, Rothia and anaerobes. N,N-dimethyl
arachidonly amide and arachidonyl amide were correlated to Rothia and anaerobes,
but not Streptococcus. Two diacylglycerophosphocholines were correlated with presence
of Streptococcus. A number of antibiotics were correlated with Stenotrophomonas and
Pseudomonas including trimethoprim, linezolid and acetylsulfamethoxazole, all three were
administered intravenously as treatment for this exacerbation. Cholesterol, tryptophan,
another diacylglycerophosphocholine, and ceramide (18:1/24:0) were correlated specifically
with Pseudomonas relative abundance.

DISCUSSION
CF exacerbations negatively impact patient quality of life and accelerate lung function
decline (De Boer et al., 2011). Antibiotic treatment is most often used to reduce the flare
of acute symptoms (Horsley et al., 2013), but patients often have lingering effects and
25% of those treated do not return to their previous level of lung function (Sanders et al.,
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2010; Sanders et al., 2011). There is a need to identify the onset of these events before they
develop to facilitate more effective treatment and minimize permanent lung remodeling.
Biomarkers that could be longitudinally monitored to provide predictive value of the
probability of an imminent CFPE would greatly aid clinicians. However, significant
challenges exist in identifying ubiquitous biomarkers for CF due to the heterogeneity
between patients in disease presentation (Collaco et al., 2010;Horsley & Siddiqui, 2015) and
microbial infections (Carmody et al., 2013; Lim et al., 2013).

This study assessed the metabolomic changes that occurred through exacerbations in CF
patients. A collective assessment of the similarity in the longitudinal sputum metabolomes
from 11 different patients demonstrated that there was not a universal signature of
exacerbation. Instead, the chemistry of sputum was more similar within individuals
longitudinally than between different patients at the same clinical state of disease. Cystic
fibrosis manifests in heterogeneous phenotypes, but the reasons for this are not clear
(Collaco et al., 2010; Horsley & Siddiqui, 2015). At least 1,700 mutations in CFTR have
been described and the clinical relevance of most of them is unknown (Bareil et al., 2010).
Moreover, there are five described classes of CFTR mutations that disseminate into CF,
but even within the same genotype class, the presentation of disease can be quite variable
(Rowntree & Harris, 2003). The data in this study supports the heterogeneous nature of CF,
where patients were found to have different chemical populations within their lung. It is
well known that microbial profiles of patients are often unique (Carmody et al., 2015), this
study indicates that the collective chemistry of sputum is also very specific to the individual.

A total of 556molecules were unique to the Ex clinical state that could represent potential
CFPE biomarkers for future screening (Fig. 1), however, the supervised random forests
classified by clinical state demonstrated that few of these were significantly elevated across
the patient cohort (Fig. S1). Two of the universally elevated molecules were PAF and a
related molecule PC (18:0/3:1). The elevation of these two metabolites may indicate lipid
remodeling during exacerbation. PAF is a particularly intriguing biomarker of CFPE, as it is
a known inflammatory signaling lipid (Camussi, Tetta & Baglioni, 1990; Welch et al., 2009;
Yost, Weyrich & Zimmerman, 2010) and has been reported to be elevated in exacerbations
of other inflammatory lung diseases, such as asthma (Schauer et al., 1992; Kasperska-Zajac,
Brzoza & Rogala, 2008). PAF and Lyso-PAF have opposing effects on neutrophil activation,
the former activating neutrophils, and the latter deactivating them (Welch et al., 2009).
Monitoring the flux through PAF and other related lipids might be an effective means of
identifying increased neutrophilic inflammation and the potential onset of exacerbations.

Due to the personalized nature of sputum chemistry, a single patient was monitored
with metabolomics for 4.2 years, as a case study for personalized medicine biomarker
development. This dataset captured four unique exacerbation events. Known molecules
identified through GNPS spectral matching (including PAF-like lipids, sphingolipids
and specific drugs) were monitored for changes in their abundance through time with
attention to different disease classifications of each sample. PAF and Lyso-PAF had
highly correlated abundances. This may indicate that PAF is being synthesized through
phospholipid breakdown, first through the production of Lyso-PAF by phospholipase A2,
then acetylation by Lyso-PAF acetyltransferase. This is the classic remodeling pathway

Quinn et al. (2016), PeerJ, DOI 10.7717/peerj.2174 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.2174/supp-1
http://dx.doi.org/10.7717/peerj.2174


Figure 6 Potential biomarker pathways of CFPE onset identified in this study. Potential biomarker
pathways of CFPE onset identified in this study. Lipid remodeling through PAF and ceramide may indi-
cate inflammatory responses occurring during the onset and treatment of a CFPE. Membranes of neu-
trophils and epithelial cells contain these lipids and are the likely source of these signatures.

of PAF synthesis and is associated with pathology and inflammation (Uemura, Lee &
Snyder, 1991) (Fig. 6). PAF production may be another host physiological response to
exacerbation and an important signature of an increased inflammatory load. Sphingolipids
were also followed through the CF1 longitudinal data set. Ceramide, another potent
inflammatory signaling lipid (Nixon, 2009), was especially abundant during treatment of
an exacerbation. This too may represent a heightened inflammatory response, or influx
of ceramide containing inflammatory cells in response to CFPE (Fig. 6). Together, PAF
and ceramide are potentially strong candidates as CFPE biomarkers across patients or
within certain individuals. The pathways of their production in the context of the CF lung
microenvironment are illustrated in Fig. 6. This figure depicts the potential biomarkers
detected in this study and their likely source from the membranes of both epithelial and
recruited inflammatory cells.
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Changes in sputum at CFPE onset have been observed in other studies, including a breath
gas study and a sputum study using metabolomics (Twomey et al., 2013; Whiteson et al.,
2014). Here we demonstrate changes in the lipid pool within a single patient through time.
The fluctuations in sphingolipids and overall elevation of ceramide during CFPE treatment
indicate that sphingolipid signaling may be dynamic through an exacerbation. Because cells
deficient in CFTR have been shown to accumulate ceramide in the epithelium (Teichgräber
et al., 2008; Bodas et al., 2011; Brodlie et al., 2010; Ziobro et al., 2013), CFTR mutations
may be responsible for the buildup of ceramide in sputum (Quinn et al., 2015b), which
is then observed as large fluctuations in ceramide signaling in response to inflammation
induced at the onset of exacerbation. Although this study represents a relatively small
sample size, these results support further research into the role of ceramide and ceramide
induced signaling in CF as a potential therapeutic target (Brodlie et al., 2010; Becker et al.,
2011; Ziobro et al., 2013) and biomarker of exacerbation. Larger population studies will be
needed to determine if PAF and ceramide could be universally useful biomarkers or if they
may be more patient specific.

A number of unknown metabolites were significantly elevated at exacerbation for CF1.
While these were not automatically annotated molecules through GNPS, in the context of
personalized biomarker detection for CFPE, metabolite signatures do not need to be known
spectra to be to clinically relevant. If they are statistically robust and provide a consistent
LC-MS/MS signature, they may be just as effective in identifying CFPE onset as known
metabolites. Annotation of the thousands of spectra generated in a mass spectrometry
experiment is a significant challenge in the metabolomics field (Da Silva, Dorrestein &
Quinn, 2015). As databases and algorithms improve, the ability to annotate the most
statistically robust metabolites will be more attainable for any clinical biomarker. This
will greatly improve the application of mass spectrometry to the clinical environment,
particularly for personalized and precision medicine approaches.

Drug metabolism and penetration to the target site is an important aspect of treatment
not easily assessed during routine clinical regimes. Azithromycin, constitutively prescribed
to CF1 throughout the four years of sample collection, had dynamic fluctuations in this
patient through the four years of study. Whether this is due to poor treatment adherence or
time since actual patient ingestion cannot be known from the data collected in this study, but
the fluctuating abundance of this xenobiotic may have a specific effect on the metabolome
and microbiome of the lung. Intravenous administration of an antibiotic results in a
more sustained presence in CF sputum, as is shown for trimethoprim, sulfamethoxazole
and linezolid. This indicates that this form of therapy does result in the presence of high
amounts of these molecules in lung mucus throughout the two-week treatment course.

Bacterial 16S rRNA microbiome profiles of sputum from CF1 were also generated on
the same samples collected during the intravenous therapy for the second exacerbation
(Quinn et al., 2015a). This allowed for a unique opportunity to monitor the changes in
sputum microbiome along with metabolome using correlation. The network topology
of the correlations between microbial and metabolite relative abundance identified the
contrasting microbial communities previously proposed to exist in CF lungs (Conrad et al.,
2012). Many molecules were positively correlated to Pseudomonas and Stenotrophomonas
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abundance, as well as Streptococcus, Rothia and anaerobes. However, there were no cross
correlations between these groups, indicating that separate microbial communities may
have separate chemical communities associated with them. Trimethoprim and linezolid
were correlated with the Pseudomonas and Stenotrophomonas, indicating the inherent
resistance of these microbes to the intravenous antibiotic treatment (Zhang, Li & Poole,
2000; Betriu, 2001; Lister, Wolter & Hanson, 2009). Ceramide and arachidonyl amides were
associated with the Gram-positive and anaerobic community. Combining microbiome
sequencing with the ability of LC-MS/MS and molecular networking through GNPS
to automatically identify both host, microbial and xenobiotic metabolites represents a
powerful clinical tool to monitor the effect of antibiotic therapy on lung chemistry and
microbiology.

CONCLUSIONS
The chemistry of sputum samples compared in this study was more similar within
patients through time than across patients with the same clinical state. Although there
was not a universal signature of exacerbation, personalized approaches to biomarker
development show promise, as a large number of metabolites were unique to this clinical
state. Monitoring an individual through multiple exacerbations could provide statistically
robust molecular biomarkers with future predictive value. Here, PAF and ceramide are
potentially useful biomarkers as inflammatory lipids indicating the potential onset of a
CFPE. Monitoring lipid remodeling through the classical PAF and ceramide pathways
may provide information about inflammatory processes occurring prior to and during a
CFPE event (Fig. 6). Because mass spectrometry-based metabolomics can be completed in
clinically relevant time frames, application of these methods to screen for fluctuations in
the abundance of metabolites associated with clinically relevant phenotypes is a powerful
approach to personalized medicine. The metabolomics analysis methods applied to this
single patient represents a proof-of-principle that personalized metabolomics can be used
to study chemical dynamics during exacerbation. Further research concerning the role of
CFTR in ceramide induced hyperinflammation associated with exacerbations may lead to
novel treatment approaches to reduce the damage caused by a CFPE.
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