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ABSTRACT
Supertree methods combine a set of phylogenetic trees into a single supertree. Similar
to supermatrix methods, these methods provide a way to reconstruct larger parts of
the Tree of Life, potentially evading the computational complexity of phylogenetic
inference methods such as maximum likelihood. The supertree problem can be
formalized in different ways, to cope with contradictory information in the input.Many
supertree methods have been developed. Some of them solve NP-hard optimization
problems like the well-known Matrix Representation with Parsimony, while others
have polynomial worst-case running time but work in a greedy fashion (FlipCut). Both
can profit from a set of clades that are already known to be part of the supertree. The
Superfine approach shows how the Greedy Strict Consensus Merger (GSCM) can be
used as preprocessing to find these clades. We introduce different scoring functions
for the GSCM, a randomization, as well as a combination thereof to improve the
GSCM to find more clades. This helps, in turn, to improve the resolution of the GSCM
supertree. We find this modifications to increase the number of true positive clades by
18% compared to the currently used Overlap scoring.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genetics, Taxonomy
Keywords Consensus, Supertree, Supermatrix, Divide and Conquer, FlipCut, Phylogeny

INTRODUCTION
Supertree methods are used to combine a set of phylogenetic trees with non-identical but
overlapping taxon sets, into a larger supertree that contains all the taxa of every input tree.
Many supertree methods have been established over the years, see for example: Bininda-
Emonds (2004);Ross & Rodrigo (2004);Chen et al. (2006);Holland et al. (2007); Scornavacca
et al. (2008); Ranwez, Criscuolo & Douzery (2010); Bansal et al. (2010); Snir & Rao (2010);
Swenson et al. (2012); Brinkmeyer, Griebel & Böcker (2013); Berry, Bininda-Emonds &
Semple (2013); Gysel, Gusfield & Stevens (2013); Whidden, Zeh & Beiko (2014); these
methods complement supermatrix methods which combine the ‘‘raw’’ sequence data
rather than the trees (Von Haeseler, 2012).

In contrast to supermatrix methods, supertree methods allow us to analyze large
datasets without constructing a multiple sequence alignment for the complete dataset,
and without a phylogenetic analysis of the resulting alignment. In this context, supertree
methods can be used as part of divide-and-conquer meta techniques (Huson, Nettles
& Warnow, 1999; Huson, Vawter & Warnow, 1999; Roshan et al., 2004; Nelesen et al.,
2012), which break down a large phylogenetic problem into smaller subproblems that are
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computationally much easier to solve. The results of the subproblems are then combined
using a supertree method.

Constructing a supertree is easy if no contradictory information is encoded in the
input trees (Aho et al., 1981). However, resolving conflicts in a reasonable and swift way
remains difficult. Matrix Representation with Parsimony (MRP) (Baum, 1992; Ragan,
1992) is still the most widely used supertree method today, as the constructed supertrees
are of comparatively high quality. Since MRP is NP-hard (Foulds & Graham, 1982),
heuristic search strategies have to be used. Swenson et al. (2012) introduced SuperFine
which combines the Greedy Strict Consensus Merger (GSCM) (Huson, Vawter & Warnow,
1999; Roshan et al., 2003) with MRP. The basic idea is to use a very conservative supertree
method (in this case GSCM) as preprocessing for better-resolving supertree methods
(in this case MRP). Conservative supertree methods only resolve conflict-free clades
and keep the remaining parts of the tree unresolved. We call those resolved parts of a
conservative supertree reliable clades. Other better-resolving supertree methods, such as
the polynomial-time FlipCut (Brinkmeyer, Griebel & Böcker, 2013) algorithm, may also
benefit from this preprocessing.

The number of reliable clades returned by GSCM is highly dependent on the merging
order of the source trees. Although the GSCM only returns clades that are compatible with
all source trees, we find that it likewise produces clades which are not supported by any of
the source trees (bogus clades). Obviously, bogus clades do not necessarily have to be part
of the supertree.

With the objective of improving the GSCM as a preprocessing method, we introduce
new scoring functions, describe a new randomized GSCM algorithm, and show how to
combine multiple GSCM results. Our new scorings increase the number of true positive
clades by 5% while simultaneously reducing the number of false positive clades by 2%.
Combining different scoring functions and randomization further increases the number
of true positive clades by up to 18%. We find that combining a sufficient number of
randomized GSCM trees is more robust than a single GSCM tree.

We describe and implement a variant of the GCSM algorithm for rooted input trees
and adapt the scoring functions used within SuperFine (Swenson et al., 2012). We find that
our new scoring functions and modifications improve on the ones adapted from Swenson
et al. (2012) in the rooted case. Although all scoring functions and modifications can be
generalized to the unrooted case, the results may differ for unrooted trees.

All presentedmethods are part of our GSCM command line tool (https://bio.informatik.
uni-jena.de/software/gscm/).

METHODS
Preliminaries
In this paper, we deal with graph theoretical objects called rooted (phylogenetic) trees. Let
V (T ) be the vertex set. Every leaf of a tree T is uniquely labeled and called a taxon. Let
L (T )⊂V (T ) be the set of all taxa in T . We call every vertex v ∈V (T )\L (T ) an inner
vertex. An inner vertex c ∈V (T ) comprises a clade C =L (T c)⊆L (T ) where T c is the
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Figure 1 Example SCM run including collision handling. The backbone trees T1|X and T2|X are merged
using the strict consensus. The remaining subtrees of T1 and T2 are colored in green and blue, respectively.
Both subtrees attach to the same edge in TX (red). The green and blue subtrees are inserted into TX by
generating a polytomy (collision handling).

subtree of T rooted at c . Two clades C1 and C2 are compatible if C1∩C2 ∈ {C1,C2,∅}. Two
trees are compatible if all clades are pairwise compatible. The resolution of a rooted
tree is defined as |V (T )|−|L (T )|

|L (T )|−1 . Hence, a completely unresolved (i.e., star) tree has
resolution 0, whereas a fully resolved (i.e., binary) tree has resolution 1. For a given
collection of trees T = {T1,...,Tk}, a supertree T of T is a phylogenetic tree with leaf
set L (T )=

⋃
Ti∈T

L (Ti). A supertree T is called a consensus tree if for all input trees
Ti,Tj ∈T , L (Ti)=L (Tj) holds. A strict consensus of T is a tree that only contains clades
present in all trees Ti ∈T . A semi-strict consensus of T contains all clades that appear in
some input tree and are compatible with each clade of each Ti ∈T (Bryant, 2003). For
a set of taxa X ⊂L (T ), we define the X-induced subtree of T, T|X as the tree obtained by
taking the (unique) minimal subgraph T (X) of T that connects the elements of X and then
suppressing all vertices with out-degree one: that is, for every inner vertex v with out-degree
one, replace the adjacent edges (p,v) and (v,c) by a single edge (p,c) and delete v .

Strict consensus merger (SCM)
For a given pair of trees T1 and T2 with overlapping taxon sets, the SCM (Huson,
Vawter & Warnow, 1999; Roshan et al., 2003) calculates a supertree as follows. Let
X =L (T1)∩L (T2) be the set of common taxa and T1|X and T2|X the X-induced subtrees.
Calculate TX = strictConsensus(T1|X ,T2|X ). Insert all subtrees, removed from T1 and T2

to create T1|X and T2|X , into TX without violating any of the clades in T1 or T2. If removed
subtrees of T1 and T2 attach to the same edge e in TX , a collision occurs. In that case, all
subtrees attaching to e will be inserted at the same point by subdividing e and creating a
polytomy at the new vertex (see Fig. 1).

Note that neither the strict consensus nor the collision handling inserts clades into the
supertree TX that conflict with any of the source trees.

Fleischauer and Böcker (2016), PeerJ, DOI 10.7717/peerj.2172 3/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.2172


Greedy Strict Consensus Merger (GSCM)
TheGSCMalgorithm generalizes the SCM idea to combine a collectionT ={T1,T2,...,Tk}

of input trees into a supertree T with L (T )=
⋃k

i=1L (Ti) by pairwise merging trees until
only the supertree is left. Let score(Ti,Tj) be a function returning an arbitrary score of
two trees Ti and Tj . At each step, the pair of trees that maximizes score(Ti,Tj) is selected
and merged, resulting in a greedy algorithm. Since the SCM does not insert clades that
contradict any of the source trees, the GSCM returns a supertree that only contains clades
that are compatible with all source trees.

Algorithm 1. Strict Consensus Merger

1: function scm(tree T1, tree T2)
2: X←L (T1)∩L (T2)
3: if |X | ≥ 3 then B Otherwise, the merged tree will be unresolved.
4: calculate T1|X and T2|X

5: TX← strictConsensus(T1|X ,T2|X )
6: for all removed subtrees of T1 and T2 do
7: if collision then B Subtrees of T1 and T2 attach to the same edge e in TX (Fig. 1)
8: insert all colliding subtrees at the same point on e by generating a polytomy.
9: else
10: Reinsert subtree into TX without violating any of the bipartitions in T1 or T2.
11: end if
12: end for
13: return TX

14: end if
15: end function

Algorithm 2. Greedy Strict Consensus Merger

1: function pickOptimalTreePair(trees S ⊆{T1,T2,...,Tk})
2: Pick two trees {Ti,Tj}⊆S which maximize score(Ti,Tj)
3: return Ti,Tj

4: end function
1: function gscm(trees {T1,T2,...,Tk})
2: S ←{T1,T2,...,Tk}

3: while |S | ≥ 2 do
4: Ti,Tj← pickOptimalTreePair(S )
5: S ←S \{Ti,Tj}

6: Tscm← SCM(Ti,Tj)
7: S ←S ∪{Tscm}

8: end while
9: return Tscm

10: end function
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Figure 2 Example where the collision handling inserts bogus clades (red) into the supertree. Bogus
clades are induced by obviated collisions, which are prevented by a previous collision on the same edge.
Supertrees (A) and (C) are estimated on the same set of source trees, but contain conflicting clades
((ABXZ) conflicts with (ABXY)) induced by different merging orders. The correct supertree is (B).

Tree merging order
Although the SCM for two trees is deterministic, the output of the GSCM is influenced by
the order of selecting pairs of trees to be merged, since the resulting number and positions
of collisions may vary.

Let T1,...,Tn be a set of input trees we want to merge into a supertree using the GSCM.
When merging two trees, the strict consensus merger (SCM) accepts only clades, that
can be safely inferred from the two source trees. In case of a collision during reinsertion
of unique taxa, the colliding subtrees are inserted as a polytomy on the edge where the
collision occurred.

If collisions of different merging steps occur on the same edge, the polytomy created
by the first collision may cause the following collisions to not occur. Such obviated
collisions induce bogus clades (see Fig. 2) which cannot be inferred unambiguously from
the source trees and hence should not be part of the supertree. A clade C of a supertree
T =GSCM(T1,...,Tn) is a bogus clade if there is another supertree T ′=GSCM(T1,...,Tn)
(based on a different tree merging order) that contains a clade C ′ conflicting with C (see
Figs. 2A and 2C). Note that bogus clades cannot be recognized by comparison to the source
trees since they do not conflict with any of the source trees T1,...,Tn. All clades in the
GSCM supertree that are not bogus, are called reliable clades.

Because of these bogus clades the GSCM supertree with the highest resolution may not
be the best supertree. To use the GSCM as preprocessing for other supertree methods, it
is important to prevent bogus clades. Clades resulting from the preprocessing are fixed
and will definitely be part of the final supertree (even if they are wrong). To use GCSM as
an efficient preprocessing we want to determine a preferably large amount of the existing
reliable clades. Therefore, we searched for scoring functions that maximize the number of
reliable clades by simultaneously minimizing the number of bogus clades.
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Scoring functions
We present three novel scoring functions that produce high quality GSCM supertrees with
respect to F1-score and number of unique clades (unique in terms of not occurring
in a supertree resulting from any of the other scorings). In addition, we use the
original Resolution scoring (Roshan et al., 2003), as well as the Unique-Taxa and Overlap
scorings (Swenson et al., 2012).

Let uc(T ,T ′)=V (T|L (T )\L (T ′) \L (T )) be the set of unique clades of T compared to
T ′.

Unique-Clades-Lost scoring: minimizing the number of unique clades that get lost:

score(Ti,Tj)= −
((
|uc(Ti,Tj)|−|uc(scm(Ti,Tj),Tj)|

)
+
(
|uc(Tj,Ti)|−|uc(scm(Ti,Tj),Ti)|

))
.

Unique-Clade-Rate scoring: maximizing the number of preserved unique clades:

|uc(Ti,Tj)|+|uc(Tj,Ti)|
|uc(scm(Ti,Tj),Ti)|+|uc(scm(Ti,Tj),Tj)|

.

Collision scoring: minimizing the number of collisions:

score(Ti,Tj)=−(number of edges in SCM(Ti,Tj) where a collision occured).

Unique Taxa scoring (Swenson et al., 2012): minimizing the number of unique taxa:

score(Ti,Tj)=−|L (Ti)1L (Tj)|.

Overlap scoring (Swenson et al., 2012): maximizing the number of common taxa:

score(Ti,Tj)= |L (T1)∩L (T2)|.

Resolution scoring (Roshan et al., 2003): maximizing the resolution of the SCM tree:

score(Ti,Tj)=
|V (SCM(Ti,Tj))|−|L (SCM(Ti,Tj))|

|L (SCM(Ti,Tj))|−1
.

Combining multiple scorings
In general, supertrees created with the GSCM using different scoring functions contain
different clades. To collect as many reliable clades as possible, we compute several GSCM
supertrees using different scoring functions and combine them afterwards.

Reliable clades of all possible GSCM supertrees for a given set of source trees are
pairwise compatible. In contrast, bogus clades can be incompatible among different GSCM
supertrees (see Fig. 2). Thus, every conflicting clade has to be a bogus clade. By removing
incompatible clades we only eliminate bogus clades but none of the reliable clades from
our final supertree.

Eliminating bogus clades while assembling reliable clades is done using a semi-strict
consensus algorithm (Bryant, 2003). It should be noted that bogus clades are only eliminated
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if they induce a conflict between at least two supertrees (see Fig. 2). Hence, there is no
guarantee to eliminate all bogus clades.

Combined scoring: Let Combined-3 be the combination of the Collision, Unique-Clade-
Rate and Unique-Clades-Lost scoring functions. Furthermore Combined-5 combines the
Collision, Unique-Clade-Rate, Unique-Clades-Lost, Overlap and Unique-Taxa scoring
functions.

Randomized GSCM
Generating many different GSCM supertrees increases the probability of both detecting
all reliable clades and eliminating all bogus clades. To generate a larger number of GSCM
supertrees, randomizing the tree merging order of the GSCM algorithm may be more
suitable than using a variety of different tree selection scorings. To this end, we replace
picking an optimal pair of trees (see Algorithm 2) by picking a random pair of trees (see
Algorithm 3).

Algorithm 3. Function for randomization step of the GSCM

1: function pickRandomTreePair(trees S ⊆{T1,T2,...,Tk})
2: Randomly pick a pair of trees {Ti,Tj}⊆S with probability

P(Ti,Tj)=
score(Ti,Tj )∑

Ta,Tb∈S ,a6=b

score(Ta,Tb)
,i 6= j

3: return Ti,Tj

4: end function

Running the randomized GSCM for different scoring functionsmultiple (k) times allows
us to generate a large number of supertrees containing different clades. The resulting
trees are combined using a semi-strict consensus as described in the previous section.
For combined scorings (Combined-n) with n different scoring functions we calculate
k
n supertrees for each of the scoring functions and combine all k supertrees using the
semi-strict consensus.

EXPERIMENTAL SETUP
Dataset
To evaluate the differentmodifications of the GSCMalgorithmwe simulate a rooted dataset
which is based on the SMIDGen protocol (Swenson et al., 2010) called SMIDGenOG.

We generate 30 model trees with 1,000 (500/100) taxa. For each model tree, we generate
a set of 30 (15/5) clade-based source trees and four scaffold source trees containing 20%,
50%, 75%, or 100% of the taxa in the model tree (the scaffold density). We set up four
different source tree sets: each of them containing all clade-based trees and one of the
scaffold trees, respectively.
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The SMIDGen protocol follows data collection processes used by systematists when
gathering empirical data, e.g., the creation of several densely-sampled clade-based source
trees, and a sparsely-sampled scaffold source tree. All source trees are rooted using an
outgroup. Unless indicated otherwise, we strictly follow the protocol of Swenson et al.
(2010), see there for more details:
1. Generate model trees. We generate model trees using r8s (Sanderson, 2003) as

described by Swenson et al. (2010). To each model tree, we add an outgroup. The
branch to the outgroup gets the length of the longest path in the tree, plus a random
value between 0 and 1. This outgroup placement guarantees that there exists an
outgroup for every possible subtree of the model tree.

2. Generate sequences.Universal genes appear at the root of the model tree and do not go
extinct. We simulate five universal genes along the model tree. Universal genes are used
to infer scaffold trees. To simulate non-universal genes, we use a gene ‘‘birth–death’’
process (as described by Swenson et al. (2010)) to determine 200 subtrees (one for each
gene) within the model tree for which a gene will be simulated. For comparison, the
SMIDGen dataset evolves 100 non-universal genes. Simulating a higher number of
genes increases the probability to find a valuable outgroup. Genes (both universal and
non-universal) are simulated under a GTR + Gamma + Invariable Sites process along
the respective tree, using Seq-Gen (Rambaut & Grassly, 1997).

3. Generate source alignments. To generate a clade-based source alignment, we select
a clade of interest from the model tree using a ‘‘birth’’ node selection process (as
described by Swenson et al. (2010)). For each clade of interest, we select the three
non-universal gene sequences with the highest taxa coverage to build the alignment.
For each source alignment, we search in the model tree for an outgroup where all three
non-universal genes are present and add it to the alignment.
To generate a scaffold source alignment, we randomly select a subset of taxa from
the model tree with a fixed probability (scaffold factor) and use the universal gene
sequences.

4. Estimation of source trees.We estimateMaximumLikelihood (ML) source trees using
RAxML with GTR-GAMMA default settings and 100 bootstrap replicates. We root all
source trees using the outgroup, and remove the outgroups afterwards.

Evaluation
To evaluate the accuracy of tree reconstruction methods on simulated data, a widespread
method is calculating the rates of false negative (FN ) clades and false positive (FP) clades
between an estimated tree (supertree) and the corresponding model tree. FN clades are in
the model tree but not in the supertree. FP clades are in the supertree but not in the model
tree.

FN -rates and FP-rates contain information on the resolution of the supertree. Model
trees are fully resolved. If it happens that the supertree is fully resolved too, we get FN -rate
= FP-rate. Otherwise, if FN -rate > FP-rate the supertree is not fully resolved. Clades in
the supertree that are not FPs are true positive (TP) clades.
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Figure 3 FN -rates (A) and FP-rates (B) of single scorings functions (Overlap, Unique-Taxa, Colli-
sion, Unique-Clades-Lost, Unique-Clade-Rate) and their combinations (Combined-3,Combined-5) for
all scaffold factors (20%, 50%, 75%, 100%) of the 1,000-taxon dataset. The Combined scorings are the
semi-strict consensus of the supertrees calculated by the respective scoring functions. The error bars show
the standard error.

As mentioned above, we try to improve the GSCM as a preprocessing method and thus
want to maximize the number of TP , while keeping the number of FP minimal. This is
reflected in the F1-score:

F1=
2TP

2TP+FP+FN
.

We measure the statistical significance of differences between the averaged F1-scores
by the Wilcoxon signed-rank test with α= 0.05. We calculate the pairwise p-values for
all 16 scoring functions (including combined scorings and randomized scorings with
400 iterations). This leads to 162−16

2 = 120 significance tests. Respecting the multiple
testing problem we can accept p-values below 0.005

120 ≈ 0.0004 (Bonferroni correction). The
complete tables can be found in Tables S1, S3 and S5.

Furthermore, Tables S2, S4 and S6 contain the number of times that each scoring
function outperforms each other scoring function. Ties are reported as well.

RESULTS AND DISCUSSION
We find the influence of scoring functions and randomization to increase with the size
of the input data (as expected for greedy algorithms). Thus, in the further evaluation we
only consider the larger (1,000 taxa) dataset. However, the overall effects are similar for all
datasets. For the results of the 500 and 100 taxa datasets, we refer to Figs. S1–S16.

The scaffold factor highly influences the quality of the supertrees (see Figs. 3 and 4). In
general, all scoring functions profit from a large scaffold tree. In particular, for a scaffold
factor of 100% nearly all scorings perform equally well and better than for all other scaffold
factors. A source tree that already contains all taxa simplifies the supertree computation
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Figure 4 F1-scores (a high score is good) of different scoring functions (including combined scor-
ings) with and without randomization for all scaffold factors (20%, 50%, 75%, 100%) of the 1,000 taxa
dataset. The Combined scorings are the semi-strict consensus of the supertrees calculated by the respec-
tive scorings. The integer value after the keyword ‘‘Rand’’ represents the number of randomized iterations.
The error bars show the standard error. (A) Comparison of single scoring functions (Overlap, Unique-
Taxa, Resolution, Collision, Unique-Clades-Lost, Unique-Clades-Rate). (B) Comparison of single scoring
functions (Overlap, Unique-Taxa, Collision, Unique-Clades-Lost, Unique-Clade-Rate) and their combi-
nations (Combined-3,Combined-5). (C) Comparison of different scoring functions (Overlap, Collision,
Unique-Clades-Lost) with (25, 100 and 400 random iterations) and without randomization. (D) Compar-
ison of single (Overlap, Unique-Taxa, Collision, Unique-Clades-Lost) and combined (Combined-5) scor-
ings. Both with 400 random iterations and without randomization.

for the GSCM algorithm. Starting with the scaffold tree and merging the remaining source
trees in arbitrary order leads to the optimal solution. No collision can occur, when the
taxon set of one tree is a subset of the taxon set of the other tree. However, the Resolution
and Unique-Taxa scoring functions do not necessarily pick the scaffold tree in the first
step and therefore do not necessarily lead to an optimal solution. In contrast, the Overlap
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scoring—which does not perform well for small scaffold tree sizes (20%, 50%)—produces
optimal solutions for a scaffold factor of 100%.

Comparing the different scoring functions, we find that in general, the FN -rate varies
more than the FP-rate (see Fig. 3). Our presented scoring functions (Collision, Unique-
Clade-Lost, Unique-Clade-Rate) decrease the FN -rate, without increasing the FP-rate (see
Fig. 3). This leads to the highest F1-scores for all scaffold factors (see Fig. 4A). They clearly
outperform the Resolution, Overlap and Unique-Taxa scorings for scaffold factors 50%
and 75%. The differences in the F1-scores are significant (p-values below 0.000033). For
a scaffold factor of 20% the improvements of our scoring functions in comparison to
Unique-Taxa are not significant. For a scaffold factor of 100% the Overlap scoring function
is on par with our scoring functions (all of them will return the optimal solution). The
differences between Collision, Unique-Clade-Lost and Unique-Clade-Rate are not signif-
icant. Nevertheless Unique-Clade-Lost provides the most robust and input independent
results. For scaffold factors of 20% and 50%, Resolution and Overlap show significantly
worse (p-values≤ 0.000006) F1-scores than all other scoring functions (see Fig. 4A). There
is no significant difference (p-values > 0.09) between Resolution and Overlap scoring. For
scaffold factors of 75% and 100%, the Resolution scoring function performs significantly
worse than all others. For a scaffold factor of 75%, there is no significant difference between
Unique-Taxa and Overlap scoring. For a scaffold factor of 100%, the Overlap scoring func-
tion performs better than Unique-Taxa, which is still significantly better than Resolution.

Even for equally-performing scoring functions, the resulting trees are often different
(except for scaffold factor 100%). Thus, we combine the GSCM supertrees computed with
different scorings using the semi-strict consensus. Since the Resolution scoring function
performs badly, we only combine the remaining five scoring functions. The combination of
different scoring functions strongly improves the FN -rate. Thus, the combined supertrees
have improved F1-scores for all scaffold densities (see Fig. 4B). The combination of
Collision, Unique-Clade-Lost, Unique-Clade-Rate, Overlap andUnique-Taxa (Combined-
5) results in the best F1-score. However, Combined-5 has a significantly worse FP-rate
than all other scorings. In contrast, the combination of Collision, Unique-Clade-Lost,
Unique-Clade-Rate scoring (Combined-3) shows no significant decline of the FP-rate.

To collect as many TP clades as possible, we use a randomized tree merging order
generating multiple (k) supertrees which are combined using the semi-strict consensus.
Generally we found that randomization further improves the F1-score in comparison to
the single scoring functions (see Fig. 4D). Compared to the Combined-5 scoring there is
only an improvement of the F1-score for scaffold factors of 50% and 75%. Again, these
improvements come with a significant increase of the FP-rate.

Already for 25 random iterations, all presented scoring functions perform on almost
the same level (see Fig. 4C). As the number of random iterations increases, the difference
between the reported scoring functions vanishes.

CONCLUSION
We found that collisions not only destroy source tree clades but also introduce bogus
clades to the supertree. Thus, the scoring functions that minimize the number of collisions
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perform best. Combining multiple GSCM supertrees using a semi-strict consensus method
helps to better resolve the supertree.

We presented three novel scoring functions (Collision, Unique-Clades-Lost, Unique-
Clade-Rate) that increase the number of true positive clades and decrease the number
of false positive clades of the resulting supertree. Unique-Clades-Lost score is the overall
best-performing scoring function.

Combining the supertrees calculated by these three scorings using a semi-strict consensus
algorithm further increases the number of true positive clades without a significant increase
of the false positives.

For almost all presented scoring functions, the highest F1-scores and best resolved trees
are achieved using randomized GSCM. Randomization indeed increases the number of
true positive clades but also significantly increases false positive clades. Thinking of GSCM
as a preprocessing method, those false positive clades will have a strongly negative influence
on the quality of the final supertree.

Depending on the application, ‘‘best performance’’ is characterized differently. The
most conservative approach is our Unique-Clade-Lost scoring function which increases
the TP-rate by 5%while decreasing the FP-rate by 2% compared to Overlap. To use GSCM
as a preprocessing method, we recommend a combination of Collision, Unique-Clade-
Lost and Unique-Clade-Rate (Combined-3) scoring. In comparison to the Overlap scoring
function, this increases the number of true positive clades by 9% without a significant
increase of false positive clades. The overall best ratio of true positive and false positive
clades can be achieved with a combination of randomized Collision, Unique-Clade-Lost,
Unique-Clade-Rate, Overlap and Unique-Taxa (Combined-5) scoring.

All presented methods are part of our platform-independent GSCM command line tool
(https://bio.informatik.uni-jena.de/software/gscm/).
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