
Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-
induced increases in epilepsy-related gene expression

To date, anticonvulsant effects of the plant cannabinoid, cannabidavarin (CBDV), have been 

reported in several animal models of seizure. However, these behaviourally observed 

anticonvulsant effects have not been confirmed at the molecular level. To examine changes 

to epilepsy-related gene expression following chemical convulsant treatment and their 

subsequent control by phytocannabinoid administration, we behaviourally evaluated effects 

of CBDV (400 mg/kg, p.o.) on acute, pentylenetetrazole (PTZ: 95 mg/kg, i.p.)-induced 

seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, 

Ccl4, Npy , Arc , Penk , Camk2a, Bdnf and Egr1) by qPCR using hippocampal, neocortical 

and prefrontal cortical tissue samples before examining correlations between expression 

changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 

5.00 ) and significantly increased expression of Fos, Egr1, Arc , Ccl4 and Bdnf . Consistent 

with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 

3.25) and increased latency to the first sign of seizure. Furthermore, there were correlations 

between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc , Ccl4 and 

Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated 

animals were grouped into CBDV responders (criterion: seizure severity 3.25) and non-≤

responders (criterion: seizure severity >3.25), PTZ-induced increases of Fos, Egr1, Arc , Ccl4 

and Bdnf expression were suppressed in CBDV responders. These results provide the first 

molecular confirmation of behaviourally observed effects of the non-psychoactive, 

anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to 

underscore its suitability for clinical development.
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1. Introduction

Epilepsy  affects  ~1% of  individuals  and  is  often  characterized  by  recurrent seizures.  Many 

treatments are available but more effective and better-tolerated antiepileptic drugs (AEDs) with 

new mechanisms of actions are needed due to drug resistance (~35%) and poor AED side-effect 

profiles (Kwan & Brodie 2007). 

Several  cannabinoids (∆9-tetrahydrocannabinol:  ∆9-THC,  cannabidiol: CBD,  ∆9-

tetrahydrocannabivarin: ∆9-THCV and cannabidivarin: CBDV) are anticonvulsant in a variety of 

animal models of seizure and epilepsy (Consroe & Wolkin 1977; Hill et al. 2012a; Hill et al. 

2010; Jones et al. 2010). Whilst  CB1 cannabinoid receptor (CB1R) agonism is  anti-epileptiform 

and anticonvulsant  (Chesher  & Jackson 1974;  Deshpande et  al.  2007b;  Wallace  et  al.  2003; 

Wallace  et  al.  2001),  the notable  psychoactivity  associated  with CB1R activation  hinders  the 

prospective clinical utility of this target. However, many plant cannabinoids do not act at CB1R 

and the most promising non-psychoactive anticonvulsant phytocannabinoid studied thus far is 

CBD, which exerts effects via, as yet unknown, non-CB1R mechanisms in vitro,  in vivo and in 

humans (Consroe et al. 1982; Cunha et al. 1980; Jones et al. 2010; Wallace et al. 2001). Because 

CBD has low affinity for CB1 and CB2 receptors (Pertwee 2008), CBD may exert its effects 

through different mechanisms. For instance, it is known that CBD can, at a number of different 

concentrations  in  vitro,   inhibit  adenosine  uptake,  inhibit  FAAH  (the  enzyme  primarily 

responsible for degradation of the endocannabinoid, anandamide), inhibit anandamide reuptake, 

act as a TRPA1 receptor agonist, a TRPM8 receptor antagonist, a 5-HT1A receptor agonist, a T-

type calcium channel inhibitor and  a regulator of intracellular calcium (Izzo et al. 2009). 

Here, we have used molecular methods to further investigate the anticonvulsant potential 

of CBD’s propyl analogue, CBDV (Hill et al. 2012a). Although first isolated in 1969 (Vollner et 

al. 1969), little is known about CBDV’s pharmacological properties (Izzo et al. 2009). Scutt and 

Williamson reported  CBDV to  act  via  CB2 cannabinoid  receptor-dependent mechanisms  but 
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direct CB2 receptor effects were not shown (Scutt & Williamson 2007). De Petrocellis reported 

differential CBDV effects at transient receptor potential (TRP) channels  in vitro, noting potent 

human  TRPA1,  TRPV1 and TRPV2 agonism and TRPM8 antagonism (De Petrocellis  et  al. 

2011; De Petrocellis et al. 2012). CBDV has also been reported to inhibit diacylglycerol lipase-

α, the primary synthetic enzyme of the endocannabinoid, 2-arachidonoylglycerol (Bisogno et al. 

2003),   in  vitro  (De  Petrocellis  et  al.  2011). However,  2-AG inhibits  status  epilepticus-like 

activity in rat hippocamal neuronal cultures (Deshpande et al. 2007a) such that  diacylglycerol 

lipase-α inhibition is unlikely to be anticonvulsant. Furthermore, inhibition of DAG lipase by 

CBDV occurs at high micromolar concentrations (IC50: 16.6 μM) in vitro which are unlikely to 

have relevance in vivo making it unlikely that CBDV exerts anticonvulsant effects via this route. 

Although the pharmacological relevance of these effects remains unconfirmed  in vivo and the 

targets  identified  have  not  yet  been  linked  to  epilepsy,  they  illustrate  an emergent  role  for 

multiple,  non-CB receptor  targets  of  phytocannabinoids (Hill  et  al.  2012b;  Pertwee  2010). 

Furthermore,  unlike  ∆9-THC, anticonvulsant doses of CBDV exert no detectable effects upon 

motor function (Hill  et al.  2012a) which further supports the assertion that its effects  are not 

CB1R-mediated. 

Despite our earlier report showing significant anticonvulsant effects of CBDV in animal 

models of acute seizure (Hill et al. 2012a), molecular validation of these effects has not yet been 

undertaken.  Here,  we  evaluated  CBDV’s  effect (p.o.)  on  pentylenetetrazole  (PTZ)-induced 

seizures  and  quantified  expression  levels  of  several  epilepsy-related  genes  in  tissue  from 

hippocampus, neocortex and prefrontal cortex. Genes of interest were selected on the basis that: 

i) their expression was significantly changed in previously published gene expression microarray 

results from people with epilepsy (PWE) (Helbig et al. 2008; Jamali et al. 2006; van Gassen et al.  

2008) and animal models of epilepsy (Elliott et al. 2003; Gorter et al. 2006; Gorter et al. 2007; 
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Okamoto et al. 2010) and ii) published results (Johnson et al. 2011; Link et al. 1995; McCarthy et 

al.  1998;  Nanda & Mack 2000;  Saffen et  al.  1988;  Sola  et  al.  1998;  Zhu & Inturrisi  1993) 

suggested  that  expression changes  were  acute  (within  a  few hours  of  seizure),  making  them 

suitable for study in a model of acute seizure. On this basis,  Early growth response 1 (Egr1), 

Activity-regulated  cytoskeleton-associated  protein (Arc),  Chemokine  (C-C  motif)  ligand  3 

(Ccl3), Chemokine  (C-C  motif)  ligand 4  (Ccl4),  Brain  derived  neurotrophic  factor (Bdnf), 

Proenkephalin (Penk)  and  Neuropeptide  Y (Npy)  and  the  downregulated  gene, 

Calcium/calmodulin-dependent protein kinase II alpha (Camk2a) were chosen. FBJ osteosarcoma 

oncogene  (Fos)  and  Caspase  3  (Casp3)  were  also  selected  due  to  the  former’s  increased 

expression in brain regions including hippocampus following experimentally induced seizures 

(e.g. via PTZ) (Popovici et al. 1990; Saffen et al. 1988) and the latter as a result of increased 

expression in resected neocortex from people with temporal lobe epilepsy (Henshall et al. 2000). 
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2. Material and methods

2.1. Animals.

Experiments  were  conducted  in  accordance  with  UK  Home  Office  regulations  (Animals 

(Scientific Procedures) Act, 1986). A total of 51 Wistar-Kyoto rats (Harlan, UK; 3–4 weeks old) 

were used in this study and ARRIVE guidelines complied with.  Animals were group housed in 

cages  of  five  with  water  and  food  supplied  ad  libitum.  Temperature  and  humidity  were 

maintained at 21 °C and 55±10% respectively.

  

2.2. Drug administration

Seizures were induced using PTZ (Sigma, Poole, United Kingdom). After overnight fasting, rats 

received either  vehicle  (20% solutol  (Sigma)  in 0.9%w/v NaCl)  or CBDV (400 mg kg-1;  GW 

Pharmaceuticals  Ltd.,  Salisbury,  UK) in vehicle by oral gavage. Three and a half hours after 

vehicle or CBDV administration, rats were challenged (i.p.) with saline or PTZ (95 mg kg-1) and 

behaviour  monitored  for  1  hour.  Animals  were  euthanised  by  CO2 overdose and  brains 

immediately  removed.  Whole  hippocampi,  neocortices  and  prefrontal  cortices  were  isolated, 

snap-frozen in liquid nitrogen and stored at -80 °C until RNA extraction.

2.3. Analysis of seizure behaviours

Seizure behaviour was video recorded and responses coded exactly as described previously (Hill 

et al. 2012a). Responses were coded using the following modified Racine seizure severity scale: 

0, normal behaviour; 1, isolated myoclonic jerks; 2, atypical clonic seizure; 3, fully developed 

bilateral forelimb clonus; 3.5, forelimb clonus with tonic component and body twist; 4, tonic–

clonic seizure with suppressed tonic phase; 5, fully developed tonic–clonic seizure. Latency to 

the first sign of seizure was also recorded. 
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2.4. Gene expression analysis

Gene expression was quantified in rat  hippocampus,  prefrontal  cortex and neocortex for four 

experimental  groups:  vehicle+saline  treated  (n=5),  vehicle+PTZ  treated  (n=7),  CBDV+saline 

treated (n=5) and CBDV+PTZ treated (n=7). Total RNA was extracted using an miRNeasy Mini 

kit (Qiagen, West Sussex, UK), following the manufacturer’s protocol. RNA purity was assessed 

spectrometrically  at  260/280  nm.  RNA  integrity  was  determined  by  gel  electrophoresis.  A 

28S:18S rRNA ratio of ~2:1 was taken to indicate intact RNA. 

Total RNA (0.5 μg) was reverse-transcribed into cDNA using High Capacity cDNA Reverse 

Transcription Kits (Applied Biosystems). qPCR assays were carried out in a volume of 14 μl, 

containing  5  μl  cDNA,  2  μl  2.5  μM  primer  mix  (forward  and  reverse  primers)  and  7  μl 

QuantiTect  SYBR Green QPCR 2× Master  Mix (Qiagen,  West  Sussex,  UK).  Samples  were 

processed for 40 cycles on a  StepOnePlus™ (Applied Biosystems, Foster City,  CA, USA) as 

follows: denaturation at 95 °C for 15 minutes (one cycle), 40 cycles of denaturation at 95 °C for 

15 seconds and annealing at 60 °C for 1 minute. All samples were analysed in the same plate in a  

single PCR run and quantification was based on the standard curve method. Standard curves were 

constructed  using  cDNA solution  diluted  fivefold  in  series  for  a  total  of  five  dilutions  and 

consisted of a mixture of cDNA equally from hippocampus, prefrontal cortex and neocortex of all 

animals.  Sample  cDNA  concentrations  were  expressed  relative  to  the  concentration  of  the 

standard curves. Normalisation of quantitative data was based on a housekeeping gene, β-actin. 

Values  are  expressed  as  a  percentage  of  control  (mean  of  the  vehicle+saline  group).  The 

following  primers  were  used  (parenthesised  values  are  forward  and  reverse  sequence  and 

amplicon  length  respectively):  Ccl3  (5’-TGCCCTTGCTGTTCTTCTCTGC-3’,  5’-

TAGGAGAAGCAGCAGGCAGTCG-3’, 96), Ccl4 (5’-CGCCTTCTGCGATTCAGTGC-3’, 5’-

AAGGCTGCTGGTCTCATAGTAATCC-3’,  127),  Npy  (5’-

TCGTGTGTTTGGGCATTCTGGC-3’, 5’-TGTAGTGTCGCAGAGCGGAGTAG-3’, 111), Arc 
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(5’-AGGCACTCACGCCTGCTCTTAC-3’,  5’-TCAGCCCCAGCTCAATCAAGTCC-3’, 146), 

Bdnf  (5’-AGCCTCCTCTGCTCTTTCTGCTG-3’,  5’-TATCTGCCGCTGTGACCCACTC-3’, 

150),  Egr1  (5’-AGCCTTCGCTCACTCCACTATCC-3’,  5’-

GCGGCTGGGTTTGATGAGTTGG-3’,  113),  Penk  (5’-

CCAACTCCTCCGACCTGCTGAAAG-3’,  5’-AAGCCCCCATACCTCTTGCTCGTG-3’,  121) 

and  Camk2a  (5’-TGAGAGCACCAACACCACCATCG-3’,  5’-

TGTCATTCCAGGGTCGCACATCTTC-3’,  142),  Fos  (5’-TGCGTTGCAGACCGAGATTGC-

3’,  5’-AGCCCAGGTCATTGGGGATCTTG-3’,  104),  Casp3  (5’-

TTGCGCCATGCTGAAACTGTACG-3’, 5’-AAAGTGGCGTCCAGGGAGAAGG-3’, 111) and 

β-Actin  (5’-CTCTATCCTGGCCTCACTGTCCACC-3’,  5’-

AAACGCAGCTCAGTAACAGTCCGC-3’,  124).  Primers  were  designed  using NCBI/Primer-

BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).

2.5. Statistics

CBDV effects upon seizure severity and onset latency were assessed by comparing vehicle+PTZ 

treated and CBDV+PTZ treated groups using a two-tailed Mann-Whitney test and a two-tailed t-

test,  respectively.  Subsequently,  animals  in  the  CBDV+PTZ  treated  group  were  divided 

according to median seizure severity score into CBDV ‘responders’ (criterion: seizure severity ≤ 

median)  and  ‘non-responders’  (criterion:  seizure  severity  >  median)  to  permit  a  preliminary 

subgroup analysis of CBDV effects in these two groups without statistical analysis on subgroups. 

In qPCR analysis, differences of mRNA expressions between treatment groups were analysed in 

each brain region using one-way analysis of variance (one-way ANOVA) followed by Tukey’s 

test.  Correlations  between seizure severity and mRNA expression in the CBDV+PTZ treated 

group were analysed using Spearman’s rank correlation coefficient. A preliminary assessment of 

gene expression changes for CBDV ‘responders’ and ‘non-responders’ was performed, in which 
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differences of mRNA expressions between the vehicle+PTZ treated and the CBDV responder or 

non-responder subgroups were analysed in each brain region by two-tailed t-test. Since samples 

from each brain region were analysed on physically separate  PCR plates,  no comparisons  of 

seizure or drug effects between brain areas were made.  Differences were considered statistically 

significant when the P≤0.05.
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3. Results

3.1. Anticonvulsant effects of CBDV on PTZ-induced acute seizures

400 mg kg-1 CBDV significantly decreased seizure severity (vehicle: 5; CBDV: 3.25; P<0.05) 

and increased latency to the first seizure sign (vehicle: 60 s; CBDV: 272 s; P<0.05; Figure 1A & 

1B). Responses of CBDV+PTZ animals sub-grouped into CBDV responders (criterion: seizure 

severity ≤3.25; n=10) and non-responders (criterion: seizure severity >3.25; n=10) showed clear 

behavioural  differences  (Figure  1C  &  1D)  where  CBDV  responders  exhibit  lower  seizure 

severity and increased onset latency.  

3.2. Effects of PTZ treatment on mRNA expression of epilepsy-related genes in the hippocampus,  

neocortex and prefrontal cortex

PTZ treatment  significantly  upregulated  Fos mRNA expression  in  neocortex  (P=0.0001) and 

prefrontal cortex (P=0.0003; Table 1) whilst hippocampal Fos mRNA expression only showed a 

trend to  increase  (P=0.1089).  Egr1  mRNA expression  was  significantly  upregulated  by PTZ 

treatment  in  the  hippocampus  (P=0.0244),  neocortex  (P=0.0001)  and  prefrontal  cortex 

(P<0.0001) whilst Arc mRNA expression was also significantly upregulated by PTZ treatment in 

the hippocampus (P=0.0374), neocortex (P=0.0039) and prefrontal cortex (P=0.0038). Expression 

of Ccl4 mRNA was significantly upregulated only in the prefrontal cortex (P=0.0220) by PTZ 

treatment. Trends toward an increase of Ccl4 mRNA expression in the hippocampus (P=0.1720) 

and  neocortex  (P=0.1093)  by  PTZ  treatment  were  seen.  Expression  of  Bdnf  mRNA  was 

significantly upregulated in the neocortex (P=0.0308) and prefrontal cortex (P=0.0345) but only a 

trend towards increased expression in the hippocampus was seen (P=0.0564). mRNA expression 

of Casp3, Npy, Penk, Ccl3 and Camk2a were not significantly changed by any treatment.
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3.3. Effects  of  CBDV upon  PTZ-induced  mRNA expression  of  epilepsy-related  genes  in  the  

hippocampus, neocortex and prefrontal cortex

Fos and Egr1 mRNA expression were significantly upregulated in the neocortex (P=0.0201 and 

P=0.0033, respectively) and the prefrontal cortex (P=0.0156 and P=0.0023, respectively) in the 

CBDV+PTZ  treated  group.  Although  there  were  no  statistically  significant  changes  in  the 

expression levels of any other genes between the vehicle+saline and CBDV+PTZ treated groups 

which suggests an inhibitory effect of CBDV on PTZ-induced upregulation of gene expression, 

neither  were  statistically  significant  differences  in  gene  expression  levels  between  the 

vehicle+PTZ  and  CBDV+PTZ  treated  groups  found.  However,  when  potential  correlations 

between the behavioural measure of seizure severity and mRNA expression levels of Fos, Egr1, 

Arc,  Bdnf and Ccl4  in the CBDV+PTZ treated group were examined using Spearman’s rank 

correlation  coefficient,  mRNA expression  levels  of  these  genes  were  highly  correlated  with 

seizure severity in the majority of brain regions  examined (Figure 2: hippocampus,  Figure 3: 

neocortex and Figure 4: prefrontal cortex). Fos mRNA expression correlated with seizure severity 

in the hippocampus (R2=0.91, P=0.0008), neocortex (R2=0.91, P=0.0008) and prefrontal cortex 

(R2=0.91, P=0.0008) of the CBDV+PTZ treated group. Egr1 mRNA expression was correlated 

with seizure severity only in the hippocampus (R2=0.91, P=0.0008) whilst Arc mRNA expression 

was  correlated  with  seizure  severity  in  the  hippocampus  (R2=0.91,  P=0.0008),  neocortex 

(R2=0.91, P=0.0008) and prefrontal  cortex (R2=0.71, P=0.0175). Bdnf mRNA expression was 

correlated with seizure severity in the hippocampus (R2=0.71, P=0.0175) and neocortex (R2=0.65, 

P=0.0291)  whilst  Ccl4  mRNA  expression  was  correlated  with  seizure  severity  in  the 

hippocampus  (R2=0.91,  P=0.0008),  neocortex  (R2=0.71,  P=0.0175)  and  prefrontal  cortex 

(R2=0.71,  P=0.0175).  Together,  these  suggest  a  possible  contribution  of  the  anti-convulsant 

effects of CBDV in reduction of mRNA expression of Fos, Egr1, Arc, Bdnf and Ccl4.
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3.4. Effects of CBDV treatment on the PTZ-induced increases of the epilepsy-related genes in  

CBDV responders

Consistent  with  differing  behavioural  patterns  observed  between  CBDV responder  and  non-

responder subgroups, alterations in gene expression were also seen. Importantly, changes in gene 

expression  levels  between  the  vehicle+PTZ  and  the  CBDV responder  subgroups  were  most 

obvious,  with  few  changes  seen  in  gene  expression  levels  between  vehicle+PTZ  and  the 

CBDV+PTZ non-responder subgroups. Importantly,  PTZ-induced increases in gene expression 

were  most  reliably  suppressed  in  the  hippocampus  of  CBDV responders,  with  less  obvious 

suppression  in  prefrontal  cortex  and  neocortex.  The  PTZ-induced  increase  of  Fos  mRNA 

expression in CBDV responders was suppressed in the neocortex (P=0.0274) and the prefrontal 

cortex  (P=0.0337),  and  there  was  a  strong  trend  towards  a  decrease  in  the  hippocampus 

(P=0.0579; Figure 5A).  The PTZ-induced increase of Egr1 mRNA expression was suppressed in 

the  hippocampus  (P=0.0234)  of  CBDV  responders,  but  less  obviously  so  in  the  neocortex 

(P=0.1837)  and  the  prefrontal  cortex  (P=0.1038;  Figure  5B).  The  increase  in  Arc  mRNA 

expression induced by PTZ treatment was also suppressed in the hippocampus (P=0.0221) of 

CBDV responders, and there were strong trends towards decreases in the neocortex (P=0.0643) 

and  the  prefrontal  cortex  (P=0.0879;  Figure  5C).  The  increase  of  Bdnf  mRNA  expression 

following  PTZ  treatment  was  most  suppressed  in  the  hippocampus  (P=0.0441)  of  CBDV 

responders whilst  less decreases were seen in the neocortex (P=0.1099) and prefrontal  cortex 

(P=0.4128;  Figure  5D).  Finally  the  PTZ-induced  increase  of  Ccl4  mRNA  expression  was 

suppressed in the hippocampus (P=0.0323) and the prefrontal cortex (P=0.0459), and there was a 

strong trend towards a decrease in the neocortex (P=0.0942; Figure 5E).  On the other  hand, 

neither statistically significant decreases nor trends towards decreases in the gene expressions 

were found in the CBDV non-responder subgroup.
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4. Discussion

PTZ treatment upregulated (significant increase or statistically strong trend to increase) mRNA 

expression coding for Fos, Egr1, Arc, Ccl4 and Bdnf in all brain regions tested. Clear correlations 

between seizure severity and mRNA expression were observed for these genes in the majority of 

brain  regions  of  CBDV+PTZ  treated  animals  and  mRNA  expression  of  these  genes  was 

suppressed  in  the  majority  of  brain  regions  examined  from the  CBDV responder  subgroup. 

Upregulation of Fos and Egr1 mRNA expression following PTZ treatment has previously been 

reported in rat hippocampus (Saffen et al. 1988) and both Fos and Egr1 are transcription factors  

belonging  to  IEG  (immediate  early  gene)  family  which  is transiently  and  rapidly  activated 

following a variety of cellular  stimuli.  IEGs can identify activated  neurons and brain circuits 

since seizure activity, and other excitatory stimuli, can induce rapid and transient Fos expression 

increases (Herrera & Robertson 1996), making it a useful metabolic marker for brain activity 

(Dragunow  &  Faull  1989).  Fos  expression  level  in  the  brain  is  typically  low  under  basal 

conditions and is induced in response to extracellular signals such as ions, neurotransmitters, 

growth factors and drugs and is closely linked to the induction of transcription of other genes 

(Kovacs 2008). Fos induction also correlates with the mossy fibre sprouting (Kiessling & Gass 

1993;  Popovici  et  al.  1990)  that  occurs  during  epileptogenesis  and  may  play  a  role  in  the 

subsequent manifestation of seizure symptoms. Like Fos, Egr-1 also  activates transcription of 

other  genes  (Beckmann  et  al.  1997;  Christy & Nathans  1989)  and  is  considered  to  play  an 

important role in  neuronal plasticity (Knapska & Kaczmarek 2004).  Furthermore, the expression 

of Fos and Egr1 in seizure onset regions in PWE strongly correlates with interictal spiking [10].  

Thus,  suppression  of  Fos  and Egr1  mRNA expression  are  consistent  with  ameliorative  drug 

effects on seizures, epileptogenesis and/or epilepsy. In addition, increased Arc mRNA expression 

in  rat  hippocampus  (0.5-4 hours)  and cortex  (0.5-1 hour)  after  PTZ treatment  has  also  been 

reported (Link et al. 1995). It has been reported that newly synthesised Arc mRNA is selectively 
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localised in active dendritic segments and that Arc plays a role in activity-dependent plasticity of 

dendrites (Lyford et al. 1995; Steward et al. 1998). Arc is induced by hippocampal seizures, and 

glutamatergic neurons increase Arc expression in response to increased synaptic activity (Korb & 

Finkbeiner 2011), implying a relationship between seizure activity and Arc expression. Ccl4  is 

a proinflammatory chemokine that is known as a chemo-attractant for monocytes and T cells and 

has been suggested to play a part in various nervous system pathologies such as inflammation, 

trauma, ischemia and multiple sclerosis (Semple et al. 2010). Although a relationship between 

CCL4 and epilepsy is unclear,  a relationship between epilepsy and immune response has been 

suggested (Vezzani  & Granata  2005). Moreover,  increased Ccl4 mRNA expression has  been 

reported  in  rat  hippocampus  and  temporal  lobe  tissue  following  status  epilepticus events 

triggered by electrical stimulation of the amygdala (Guzik-Kornacka et al. 2011). In the present 

study, PTZ-induced increase of Ccl4 expression was suppressed in CBDV responders, although 

whether this is a direct anti-inflammatory effect of CBDV or an indirect effect of reduced seizure 

severity remains unknown. Increased expression of mRNA coding for Bdnf was confirmed in rat 

hippocampus after PTZ treatment (Nanda & Mack 2000). BDNF is one of many neurotrophic 

factors  and is  known to promote  survival  and growth of a  variety of neurons in addition  to 

strengthening  excitatory  (glutamatergic)  synapses  (Binder  &  Scharfman  2004).  BDNF  is 

involved in the control of hippocampal  plasticity and  is thought to play an important role in 

epileptogenesis and in temporal lobe epilepsy (Binder et al. 2001; Scharfman 2002), suggesting 

therapeutic importance for control of Bdnf expression.

5. Conclusions

We have confirmed upregulation of mRNA expression coding for Fos, Egr1, Arc, Ccl4 and Bdnf 

in  the  brains  of  rats  treated  with  PTZ  and  shown  that  PTZ-induced  increases  of  mRNA 

expression for these genes were suppressed in CBDV responders, and not animals that failed to 
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respond  to  CBDV  treatment.  Overall,  we  provide  molecular  evidence  that  directly  supports 

behavioural  evidence  that  CBDV exerts  significant  anticonvulsant  effects  via  oral  and  other 

routes of administration (Hill et al. 2012a). Whether gene expression changes demonstrated here 

also underlie cellular and molecular mechanisms by which CBDV exerts its anticonvulsant effect 

presently  remains  unknown.  However,  these  results  provide  important  acute  biomarkers  for 

additional investigation in models of the progressive disorder and following longer term CBDV 

treatment. 
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Table 1(on next page)

Relative mRNA expression levels of epilepsy-related genes in the hippocampus (HIP), 

neocortex (Nctx) and prefrontal cortex (PFC).

Expression of Fos, Egr1, Arc, Ccl4 and Bdnf were upregulated by PTZ treatment. mRNA 

levels are presented as a fold change vs mean level of vehicle+saline treated group (data are 

expressed as mean ± s.e.m.). Differences between individual groups were assessed by 1-

way ANOVA (followed by a Tukey’s post-hoc test if warranted). **: P<0.01, *: P<0.05 vs 

vehicle+saline group.
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Gene Official Name 
Gene 

Symbol 
GO Biological Processes

Brain 

Region 

Vehicle + Saline Vehicle + PTZ CBDV + Saline CBDV + PTZ
Fold change

(N=5) 

Fold change

(N=7) 

Fold change

(N=5) 

Fold change

(N=7) 

FBJ osteosarcoma oncogene Fos 
Cellular response to calcium ion, cellular response to 
extracellular stimulus, inflammatory response, nervous system 
development

HIP 1.0 ± 0.2  55.6 ± 22.2  0.8 ± 0.1  25.4 ± 15.0  
Nctx 1.0 ± 0.3  21.5 ± 3.5 ** 0.7 ± 0.1  13.2 ± 2.8 * 
PFC 1.0 ± 0.1  20.0 ± 3.8 ** 0.8 ± 0.1  13.5 ± 2.3 * 

Caspase 3 Casp3 Apoptosis, intracellular signal transduction
HIP 1.0 ± 0.1  0.9 ± 0.1  0.9 ± 0.1  0.9 ± 0.1  
Nctx 1.0 ± 0.1  1.1 ± 0.1  1.0 ± 0.1  1.1 ± 0.1  
PFC 1.0 ± 0.0  1.1 ± 0.1  0.9 ± 0.1  0.9 ± 0.1  

Early growth response 1 Egr1 
Cellular response to drug, cellular response to growth factor 
stimulus, cellular response to steroid hormone stimulus, 
circadian rhythm, interleukin-1-mediated signaling pathway 

HIP 1.0 ± 0.0  6.1 ± 1.5 * 0.8 ± 0.1  3.6 ± 1.1  
Nctx 1.0 ± 0.1  3.0 ± 0.4 ** 0.7 ± 0.1  2.5 ± 0.2  ** 
PFC 1.0 ± 0.1  2.7 ± 0.3 ** 0.8 ± 0.1  2.2 ± 0.2  ** 

Activity-regulated 
cytoskeleton-associated protein

Arc Regulation of neuronal synaptic plasticity, endocytosis 
HIP 1.0 ± 0.1  8.6 ± 2.5 * 0.8 ± 0.1  4.2 ± 1.7  

Nctx 1.0 ± 0.2  5.0 ± 1.1 ** 0.6 ± 0.1  3.4 ± 0.5  
PFC 1.0 ± 0.1  4.4 ± 0.9 ** 0.7 ± 0.1  3.0 ± 0.4  

Neuropeptide Y Npy 
Feeding behavior, negative regulation of blood pressure, 

synaptic transmission 

HIP 1.0 ± 0.1  0.9 ± 0.1  1.0 ± 0.1  1.0 ± 0.1  
Nctx 1.0 ± 0.1  1.0 ± 0.1  1.0 ± 0.1  1.1 ± 0.1  
PFC 1.0 ± 0.1  0.9 ± 0.0  1.0 ± 0.1  0.9 ± 0.0  

Chemokine (C-C motif) ligand 4 Ccl4 Chemotaxis, inflammatory response 
HIP 1.0 ± 0.1  16.7 ± 5.9  0.7 ± 0.2  7.9 ± 6.3  

Nctx 1.0 ± 0.3  36.0 ± 14.8  1.4 ± 0.3  15.4 ± 8.8  
PFC 1.0 ± 0.2  13.3 ± 3.4 * 1.0 ± 0.2  7.9 ± 3.0  

Chemokine (C-C motif) ligand 3 Ccl3 
Chemotaxis, elevation of cytosolic calcium ion concentration, 
inflammatory response 

HIP 1.0 ± 0.2  8.8 ± 3.7  1.1 ± 0.2  5.3 ± 3.7  
Nctx 1.0 ± 0.2  21.1 ± 10.5  1.6 ± 0.2  13.0 ± 6.2  
PFC 1.0 ± 0.1  16.4 ± 6.3  1.5 ± 0.1  13.5 ± 5.9  

Brain derived neurotrophic factor Bdnf 
Neuron differentiation, positive regulation of long-term 
neuronal synaptic plasticity, glutamate secretion  

HIP 1.0 ± 0.1  2.6 ± 0.6  0.9 ± 0.1  1.7 ± 0.3  
Nctx 1.0 ± 0.0  2.5 ± 0.4 * 0.9 ± 0.1  2.1 ± 0.4  
PFC 1.0 ± 0.1  2.1 ± 0.4 * 1.1 ± 0.2  1.9 ± 0.2  

Proenkephalin Penk Behavioral fear response, sensory perception of pain 

HIP 1.0 ± 0.1  1.2 ± 0.2  1.1 ± 0.1  1.1 ± 0.1  
Nctx 1.0 ± 0.2  1.1 ± 0.2  0.8 ± 0.1  1.1 ± 0.1  
PFC 1.0 ± 0.2  0.9 ± 0.2  1.1 ± 0.2  0.9 ± 0.2  

Calcium/calmodulin-dependent protein 
kinase II alpha

Camk2a Calcium ion transport, ionotropic glutamate receptor signaling 
pathway, protein phosphorylation, regulation of neuronal 

HIP 1.0 ± 0.1  0.9 ± 0.0  0.9 ± 0.1  0.9 ± 0.1  
Nctx 1.0 ± 0.1  0.9 ± 0.1  1.0 ± 0.1  1.0 ± 0.1  
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synaptic plasticity, regulation of neurotransmitter secretion 
PFC 1.0 ± 0.1  1.0 ± 0.1  1.1 ± 0.1  1.0 ± 0.1  
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Figure 1
Anticonvulsant effects of CBDV on PTZ-induced acute seizures.

A: Plot showing median seizure severity in the vehicle- and CBDV-treated groups following PTZ 
administration. B: Plot showing latency (seconds) to the first seizure sign in the vehicle- and CBDV-
treated groups. C: Seizure severity after sub-grouping CBDV treated group animals into CBDV 
non-responders and CBDV responders. D: Latency (seconds) to the first seizure sign after sub-
grouping CBDV treated group animals into CBDV non-responders and CBDV responders. In 
seizure severity plots, median seizure severity is represented by a thick horizontal line, the 25th 
and the 75th percentiles are represented by the box and maxima and minima are represented by 
‘whiskers’. Latency to the first seizure sign was presented as mean ± SEM. *: P<0.05 by Mann-
Whitney Test vs vehicle group. #: P<0.05 by t-test vs vehicle group.
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Figure 2

Correlation analysis between seizure severity and mRNA expression levels in the 

hippocampus.

Correlations between mRNA expression of Fos (A), Egr1 (B), Arc (C), Bdnf (D) and Ccl4 (E) 

and seizure severity were analysed using Spearman's rank correlation coefficient.
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Figure 3

Correlation analysis between seizure severity and mRNA expression levels in the 

neocortex.

Correlations between mRNA expression of Fos (A), Egr1 (B), Arc (C), Bdnf (D) and Ccl4 (E) 

and seizure severity were analysed using Spearman's rank correlation coefficient.
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Figure 4

Correlation analysis between seizure severity and mRNA expression levels in the 

prefrontal cortex.

Correlations between mRNA expression of Fos (A), Egr1 (B), Arc (C), Bdnf (D) and Ccl4 (E) 

and seizure severity were analysed using Spearman's rank correlation coefficient.
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Figure 5
Subgroup-analysis of mRNA levels of epilepsy-related genes in CBDV responders and non-
responders.

Subgrouping CBDV+PTZ treated animals into responders (criterion: seizure severity  3.25) and ≤
non-responders (criterion: seizure severity > 3.25) revealed that the PTZ-induced increases of 
mRNA expression of Fos (A), Egr1 (B), Arc (C), Bdnf (D) and Ccl4 (E) were significantly 
suppressed in brain regions examined from the CBDV responder subgroup . mRNA levels are 
presented as a fold change vs mean level of vehicle+saline treated group (data are expressed as 
mean ± s.e.m.). *: P<0.05 by t-test vs vehicle+PTZ group.
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