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ABSTRACT
Salinity is one of the most important factors that affect the fish growth and survival.
Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role
in the process of preventing oxidative stress caused by excessive superoxide anion
(O−2 ) in living organisms. In the present study, we investigated the effects of salinity
on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in
gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata.
We found that the liver might possess stronger redox capacity compared with other
tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile
marbled eels could be effectively enhanced by low salinity but inhibited when the
salinity was higher than the body tolerance. Our findings indicated that MnSOD and
Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation,
which contributed to the elucidation of physiological adaptation and regulatory
mechanism of SODs in eels.

Subjects Aquaculture, Fisheries and Fish Science, Biochemistry, Environmental Sciences,
Molecular Biology
Keywords Anguilla marmorata, Salinity adaptation, Superoxide dismutases (SODs), Redox
response

INTRODUCTION
Salinity is one of the most important factors that affect fish growth and survival, since its
variation may cause a series of physiological stress responses in aquatic animals, leading
to imbalance of serum hormone levels, energy metabolism and electrolytes (Choi, An &
An, 2008). Recent studies have shown that stress responses caused by salinity variations are
closely associated with enhanced generation of reactive oxygen species (ROS) (Livingstone,
2001). However, excessive ROS can lead to oxidative stress and cell malfunction, finally
resulting in the apoptosis or necrosis (Hermes-Lima & Zenteno-Savin, 2002; Sun et al.,
2014). Organisms have developed defense mechanisms to shield themselves from such
oxidative damage (Marikovsky et al., 2003). Superoxide dismutase (SOD) is a key enzyme
that can prevent oxidative stress through catalyzing the dismutation reaction of superoxide
anion (O−2 ) into O2 and H2O2 in living organisms (H2O2 is subsequently transformed into
H2O by catalase) (Vaughan, 1997). SODs (EC 1.15.1.1) can be classified into four distinct
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groups based on their structures, cellular localizations and metal cofactors at their active
sites: copper/zinc SOD (Cu/ZnSOD), manganese SOD (MnSOD), iron SOD (FeSOD) and
nickel SOD (NiSOD) (Bannister, Bannister & Rotilio, 1987; Kim et al., 1998).

Each type of SODs shows distinct genomic- and proteomic-structural characteristics
and subcellular distributions. Usually, Cu/ZnSOD and MnSOD are localized in cytoplasm
and mitochondrial matrix, respectively. Cu/ZnSOD serves as a bulk scavenger of radicals
in the intracellular environment (Chakravarthy et al., 2012), and MnSOD (Tian et al.,
2011) plays a key antioxidant role in mitochondria (Cho et al., 2009). Previous studies
have demonstrated that SOD expression is modulated by endotoxins (Cho et al., 2009;
Sook Chung et al., 2012), pathogens (Tian et al., 2011; Yu et al., 2011) and environmental
pollution (Lopes et al., 2001), suggesting a critical role of SODs in antioxidant system.
In recent years, much attention has been paid to the connection between salinity and
antioxidant responses of fish (Ransberry et al., 2015; Yin et al., 2011). The study on marine
fish Pampus argenteus (Yin et al., 2011) showed that certain low salinity can activate SOD,
but its activity may be inhibited as the salinity drops below its tolerance range. Moreover,
in fish Pseudosciaena crocea (Wang et al., 2015), SOD activity in the kidney is increased with
reduction in salinity within a range from 7h to 28h. However, most investigations in fish
encountering salinity changes have focused on the changes in the activities of antioxidant
enzymes; nevertheless, less attention has been paid to the transcriptional level.

Marbled eel Anguilla marmorata belongs to Osteichthyes, and it is one of the
quintessential tropical catadromous fishes. This fish live widely across tropical and
subtropical oceans and are associated with fresh water (FW) systems. A. marmorata
has been on the International Union for Conservation of Nature Red List of Threatened
Species due to over fishing and environmental pollution, and it is regarded as species
under the second-class national protection in China (Wang et al., 2014). The life cycle
of A. marmorata includes five stages as follows: leptocephalus, glass eel, elver, yellow
eel and silver eel, while A. marmorata must migrate from sea water (SW) to FW for
growth and development from the stage of elver (Li et al., 2015; Lin et al., 2012). Although
previous studies have shown that the antioxidant enzyme activity can be altered by salinity
changes (Yin et al., 2011; Wang et al., 2015), the regulatory mechanism of SODs in salinity
adaptation of eels remains poorly understood.

In this study, we identified two SODs, denoted as AmMnSOD and AmCu/ZnSOD.
Moreover, we assessed their mRNA expression levels in eels in FW and analyzed the
temporal mRNA expression profiles and enzymatic activity in vivo after they were
transferred to brackish water (BW) and SW. Our results provided comparative perspectives
into the two widespread and functional diverse enzymes, and offered important evidence
to clarify the physiological adaptation and regulatory mechanism of SODs in eels.

MATERIALS AND METHODS
Juvenile A. marmorata (18± 0.81 cm in length, 18± 0.77 g in weight) from FW were
collected from Wenchang, Hainan Province, China by Hainan Wenchang Jinshan Eel
Technology Co., Ltd. This company has obtained the People’s Republic of China aquatic
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wild animal catching permit fromMinistry of Agriculture of The People’s Republic of China
since 2004 (Approval number: National Fishery Resources and Environmental Protection
2004; 13). This study was also approved by the Ethics Committee of Experimental Animals
at Nanjing Normal University (Research permit number: NNU20120301). All the eels were
transferred to the tanks filled with filtered FW in the laboratory and fed to satiation with
a commercial feed for eels every day. After acclimation at 25–26 ◦C for 1 week, they were
used for the challenge experiments.

Salinity treatment and tissue sampling
The eels were divided into a control group and two experimental groups. The experimental
groups consisted of BW (salinity of 10h) and SW (salinity of 25h) groups. In the control
group, eels were reared in FW (salinity of 0h). In BW and SW groups (n= 72 for each
group), the eels were primarily placed in FW, and then the salinity was gradually increased
by 3h every day until it reached BW or SW. To evaluate the mRNA expression of two
AmSODs under normal physiological condition, multiple tissues, including brain, gill,
spleen, intestine, liver, kidney, muscle and heart, were collected from six eels in the control
group. In order to determine the defense responses of AmSODs in these salinity adapted
groups, multiple tissues, including gill, intestine, liver, kidney and muscle, were collected
from six eels in the experimental groups at 1 h, 3 h, 6 h, 12 h, 1 and 2 d after the desired
salinity was established. During the sampling process, experimental eels were anaesthetized
with a solution of 0.05% MS-222 (Sigma, USA). In addition, the collected samples were
also used to determine enzymatic activity of SODs. During the experimental period, salinity
and pH (6.5–7.5) were monitored daily.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from above-mentioned tissues using High Purity RNA Fast
Extract Reagent (BioTeke, Beijing, China) according to the manufacturer’s instructions,
and extracted RNA was stored at −80 ◦C before further analysis. The RNA concentration
was determined using NanoDrop 2000 (Thermo, Wilmington, DE, USA), and its integrity
was examined on 1.0% agarose gel. The single-strand cDNA was synthesized using
HiScriptTM QRT SuperMix (Vazyme, Piscataway, NJ, USA) for subsequent quantitative
real-time PCR (qRT-PCR).

Analysis of AmSOD expression
In our previous study, the full-length AmMnSODs and AmCu/ZnSOD have been cloned
using the 3′ and 5′ rapid amplification cDNA end (RACE) method, and their NCBI
accession numbers are KR350467 and KR350468, respectively (Wang et al., 2016). Tissue
distribution and temporal expression profiles of AmMnSOD and AmCu/ZnSOD in
eels under normal conditions (FW group) and eels with salinity treatment (BW and
SW groups) were investigated by qRT-PCR. Table 1 lists all the gene-specific primers
for AmMnSOD, AmCu/ZnSOD and Amβ-actin used in this study. The experiments
were performed in a 20-µL reaction system consisting of 4 µL of diluted cDNA
template, 10 µL of Faststart Universal SYBR Green Master (Roche, Basel, Switzerland),
1 µL of each primer (6 mmol/µL) and 4 µL ddH2O, and each experiment was performed in
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Table 1 List of primers used in this study.

Primer name Purpose Primer sequence (5′-3′)

CuZnSOD-F qRT-PCR amplification CTTCAACCCGCACAACAAGA
CuZnSOD-R qRT-PCR amplification TGCCGGTTTTCAAGCTTTCA
MnSOD-F qRT-PCR amplification CACAGCAAACACCACGCC
MnSOD-R qRT-PCR amplification TGGACATCTTCTCCCTCAGC
Amβ-actin-F qRT-PCR internal reference GCAGATGTGGATCAGCAAGC
Amβ-actin-R qRT-PCR internal reference ACATTGCCGTCACCTTCATGC

triplicate. Briefly, after a denaturation step at 94 ◦C for 10min, the amplification was carried
out with 40 cycles at a melting temperature of 94 ◦C for 10 s, an annealing temperature
of 55 ◦C for 30 s, and an extension temperature of 72 ◦C for 60 s. A melting curve was
generated after each reaction to confirm the efficiency of qRT-PCR, and absence of primer
dimers or other non-specific products was also verified based on the analysis of the melting
curve. The relative expression level of AmSOD transcripts was determined by the 2−11Ct

comparative Ct method using β-actin as an internal control (Livak & Schmittgen, 2001).
The calculated relative expression level of AmSODs in each tissue was compared with
its respective level in spleen in the tissue-specific expression analysis. In the time-course
analysis, the fold-change post salinity treatment was determined by comparing with the
expression level in FW group.

Measurement of SOD enzymatic activities
The SOD enzymatic activity in the above-mentioned tissues was determined using the
SOD Typing Testing Kit (Jiancheng Bioengineering, Nanjing, China) after the salinity
reached the target salinity. The experimental tissues were homogenized in normal saline
(0.85% (w/v) of NaCl, denoted as NS) by an electric homogenizer. Coomassie Brilliant
Blue was used to determine the protein concentration in the crude extract according to
the manufacturer’s protocol (Jiancheng Bioengineering, Nanjing, China). The total SOD
enzymatic activity and Cu/ZnSOD activity were determined following the manufacturer’s
instructions. Each sample was measured in triplicate.

Statistical analysis
All data were expressed as mean ± SD of triplicates, and the results were subjected to
one-way analysis of variance (one-way ANOVA) and two-tailed paired t test with SPSS
v17.0 software. A difference was considered to be statistically significant at P < 0.05 and
extremely significant at P < 0.01.

RESULTS
Spatial expression and tissue distribution of AmSODs
Figure 1 shows that themRNA expression levels of both SODswere detectable in all the eight
tissues examined by qRT-PCR assay, but their relative baseline expression levels varied.
Predominant expression of AmMnSOD was detected in liver, muscle and heart tissues

Wang et al. (2016), PeerJ, DOI 10.7717/peerj.2149 4/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.2149


Figure 1 Tissue distribution analysis of AmMnSOD and AmCu/ZnSOD at the mRNA level of
A. marmorata. The relative mRNA expression levels of AmSODs in each tissue were calculated by the
2−11Ct method using A. marmorata β-actin as an internal reference gene. Vertical bars represent the
S.D. (n = 3). Data indicated with asterisk symbol (*) are significantly different from the spleen tissue,
* at P < 0.05, ** at P < 0.01 and *** at P < 0.001.

(P < 0.001; 11.6-fold, 26.3-fold and 10.3-fold, respectively). In contrast, AmCu/ZnSOD
was highly expressed in liver (P < 0.001; 48.4-fold). Moreover, the mRNA abundance of
AmSODs was low in other tissues.

Temporal transcriptional regulation of the two AmSODs
Although no mortality or pathologies during the experiment, our results clearly revealed
that the salinity variation significantly altered the expressions of AmSODs. In gill, kidney,
liver and muscle tissues (Figs. 2, 3A and 3C–3E), the expression levels of AmMnSOD
and AmCu/ZnSOD showed a trend of rising at first and then reducing with prolonged
time in BW. However, the expression levels of AmMnSOD and AmCu/ZnSOD were
first decreased and then exhibited an upward trend in gill, liver and muscle tissues in
SW. However, the expression level of AmCu/ZnSOD was first increased and decreased
afterwards in kidney in SW. In contrast, the expression level of AmMnSODwas significantly
greater than that of the control group at 12 h and 2 d (P < 0.001) merely. In the intestine
(Figs. 2B and 3B), the mRNA levels of AmMnSOD and AmCu/ZnSODwere barely changed
within 6 h in both BW and SW, and then both reached their peak levels at 12 h in SW
(P < 0.001). However, the expressions of AmMnSOD and AmCu/ZnSOD peaked at 1 d
and 12 h (P < 0.01) in BW, respectively. In addition, the expression levels of AmMnSOD in
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Figure 2 Temporal mRNA expression analysis of AmMnSOD in gill (A), intestine (B), kidney (C), liver (D) andmuscle tissues (E) of juvenile
eels due to the change of salinity. The relative mRNA expression level of AmMnSOD in each tissue was determined using A. marmorata β-actin as
an internal reference gene. Then the expression levels of AmMnSOD were presented as fold-change relative to FW. Vertical bars represent the S.D.
(n= 3). Data indicated with asterisk symbol (*) are significantly different from the corresponding FW control and data with asterisk symbol (*) on
the box indicated significant difference between BW and SW, * at P < 0.05, ** at P < 0.01 and *** at P < 0.001.

intestine and AmCu/ZnSOD in kidney were significant higher in SW compared with BW.
In comparison, the expression levels of AmMnSOD in gill and AmCu/ZnSOD in muscle
were significant higher at 6 h and 2 d in SW compared with BW, respectively. However,
their expression levels were significant lower at 1 d in SW compared with BW. Moreover,
the expression levels of AmMnSOD (kidney, liver and muscle) and AmCu/ZnSOD (gill,
intestine and liver) were significant higher in BW compared with SW.

Changes in SOD enzymatic activities
In order to examine the antioxidant status in A. marmorata in response to different salinity
levels, we determined the AmSOD enzymatic activities in different treatment groups.

Figures 4 and 5 show that the variation trend of total SOD activity was similar to that
of Cu/ZnSOD activity in intestine, kidney and muscle tissues. However, a significantly
different variation trend was observed between the total SOD activity and Cu/ZnSOD
activity at 2 d in gill and liver tissues of BW group (Figs. 4, 5A and 5D). Moreover, the
Cu/ZnSOD activity in gill was significantly decreased at first and then increased in BW,
while the Cu/ZnSOD activity in intestine, kidney, liver andmuscle tissues was first increased
and then decreased. Figures 5A, 5C and 5E show that the changes of Cu/ZnSOD activities
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Figure 3 Temporal mRNA expression analysis of AmCu/ZnSOD in gill (A), intestine (B), kidney (C), liver (D) andmuscle tissues (E) of juvenile
eels due to the change of salinity. The relative mRNA expression level of AmCu/ZnSOD in each tissue was determined using A. marmorata β-actin
as an internal reference gene. Then the expression levels of AmCu/ZnSOD were presented as fold-change relative to FW. Vertical bars represent the
S.D. (n= 3). Data indicated with asterisk symbol (*) are significantly different from the corresponding FW control and data with asterisk symbol (*)
on the box indicated significant difference between BW and SW, * at P < 0.05, ** at P < 0.01 and *** at P < 0.001.

were similar in gill, kidney and muscle tissues in SW, exhibiting an overall decreasing trend
within 2 d. Figure 5B shows that the Cu/ZnSOD activity in intestine was maintained at
the basal level (P < 0.05). Conversely, the Cu/ZnSOD activity was distinctively altered in
liver, showing a significant up-regulation from 1 h to 1 d (P < 0.05) in SW (Fig. 5D). In
addition, the total SOD and Cu/ZnSOD activities in kidney and muscle tissues exhibited
an overall higher level within 2 d in BW compared with SW. In contrast, the total SOD
and Cu/ZnSOD activities in other tissues in BW were only higher at several time points
compared with SW, such as in gill and intestine tissues. Moreover, the total SOD activity
in liver showed a lower level within 2 d in BW compared with SW.

DISCUSSION
All the experimental fish were denoted as juvenile eel by measuring their body weight and
length. Therefore, they should be more easily threatened by salinity pressure compared
with adult A. marmorata. In addition, our preliminary experiment also revealed the rapid
salinity increase of water environment may lead to death of experimental fish, and the
similar results have been reported in other fish species, such as Oreochromis mossambicus
(Li et al., 2014). Previous study has indicated that A. marmorata must adapt to three types
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Figure 4 The total SOD enzymatic activity (U/mg protein) analysis of A. marmorata in gill (A), intestine (B), kidney (C), liver (D) andmuscle
tissues (E) of juvenile eels in response to BW and SW adaptation. Vertical bars represent the S.D. (n= 3). Data indicated with asterisk symbol (*)
are significantly different from corresponding FW group and data with asterisk symbol (*) on the box indicated significant difference between BW
and SW, * at P < 0.05.

of water environment during migration process, namely Freshwater, Brackish water and
Seawater (Lin et al., 2012). Therefore, we chose three special salinity of 0h, 10h and
25h as the representation of the FW, BW and SW respectively, and we used the oxidative
and antioxidant relative tissues, such as liver, kidney, gill, intestine andmuscle, to investigate
the redox capacity of MnSOD and Cu/ZnSOD of marbled eels in three different salinity
range of water environment.

Liver, kidney and intestine have high metabolic rate, which is important to maintain
steady-state and normal physiological function for fish, and liver is a vital organ for
detoxification and xenobioticmetabolism (Lushchak, 2015; Sun et al., 2014). Some previous
studies suggest that multiple oxidative reactions and antioxidant defenses also occur in
gill and muscle tissues (Ahmad et al., 2006; Yin et al., 2011). A similar tissue distribution
profile of AmMnSOD has been reported for theMnSOD in fishMegalobrama amblycephala
(Yih 1955) (Sun et al., 2014) and mollusc Mytilus galloprovincialis (Lamarck 1819)
(Wang et al., 2013), in which a higher expression level is observed in liver and muscle.
In addition, the spatial expression pattern of AmCu/ZnSOD was similar to that of
Cu/ZnSOD in fish Pseudosciaena crocea (Richardson 1846) (Liu et al., 2015) and fish
Hypophthalmichthys molitrix (Valenciennes 1844) (Zhang et al., 2011). Therefore, the
differential expressions of AmSODs in gill, intestine, kidney, liver and muscle tissues
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Figure 5 The CuZnSOD enzymatic activity (U/mg protein) analysis of A. marmorata in gill (A), intestine (B), kidney (C), liver (D) andmuscle
tissues (E) of juvenile eels in response to BW and SW adaptation. Vertical bars represent the S.D. (n= 3). Data indicated with asterisk symbol (*)
are significantly different from corresponding FW group and data with asterisk symbol (*) on the box indicated significant difference between BW
and SW, * at P < 0.05.

clearly suggested that the expression level of AmSODs was closely related to the antioxidant
responses of marbled eels in comparative perspective.

To the best of our knowledge, this is the first report systemically investigating the mRNA
expression changes of the two SODs in different tissues following the environment transfer
from FW to BW and then to SW. Our results clearly revealed that the salinity variation
significantly altered the expressions of AmSODs. Figures 2 and 3 show that both AmSODs
were significantly up-regulated in gill, kidney, liver and muscle tissues at early-phases in
BW, indicating that these tissues were more sensitive to salt-induced alterations in low
level than intestine. Previous study has also shown that liver, kidney and muscle tissues
are considered highly susceptible to salinity changes (Zhao et al., 2008). However, the
expression levels of AmSODs in gill, liver and muscle tissues were inhibited at early-phase
in SW, and the AmSOD expression reached its peak at late-phase after acclimatization of
12 h to 1 d. These results suggested that the antioxidant response susceptibility of marbled
eels was different when exposed to different salinity stresses. Furthermore, low salinity
might stimulate the mRNA expression levels of MnSOD and Cu/ZnSOD, while the high
salinity might inhibit their expressions.

Consistent with the changes of AmSODs at the mRNA level in BW, their expressions
at the enzymatic activity level appeared to be significantly elevated with the prolonged
induction time at the early phase. However, Cu/ZnSOD in liver peaked at 6 h in BW at
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the enzymatic activity level, while its mRNA level peaked at 1 h after salinity exposure,
suggesting that the relation between enzymatic activity and mRNA expression was not
strictly linear, and enzymatic activity is controlled by gene expression as well as enzyme
activation (Chambers & Matrisian, 1997). The observed lag between the two molecules was
probably due to the time difference for de novo synthesis of SOD proteins. Previous study
has also shown that SOD enzymatic activity is lagged compared with its expression at the
mRNA level (Wang et al., 2016). Interestingly, the Cu/ZnSOD activity in gill, kidney and
muscle tissues was significantly up-regulated in BW, while it was down-regulated in SW
compared with FW. These results could be explained by that low salinity stimulates SODs
to defend against excessive ROS-induced damage, but their activities may be inhibited once
the salinity is above their tolerance range (Yin et al., 2011), which partly explains the fatality
occurring in juvenile fish Pampus argenteus (Yin et al., 2010). In addition, in intestine of
treated eels, the expression levels of two AmSODs peaked at 12 h in BW and SW, while the
total SOD activity was significantly up-regulated at early-phase in BW and SW, indicating
the strong antioxidant responses in intestine of eels when exposed to different salinities.

In conclusion, based on the expression profiles of AmSODs at the mRNA and enzymatic
activity levels after salinity exposure, we supposed that SODs in juvenile marbled eels
could be effectively enhanced by low salinity but inhibited when the salinity was higher
than the body tolerance. Also, in the total SOD enzymatic activity and Cu/ZnSOD activity
levels, only the SOD activities in liver could keep an up-regulated trend within 2 d in SW,
while those in gill, kidney, intestine and muscle tissues were inhibited in varying degrees.
Therefore, we inferred that liver might possess stronger redox capacity compared with
other tissues.

In the present study, we identified two SODs, denoted as AmMnSOD and
AmCu/ZnSOD. Moreover, we assessed their mRNA expression levels in eels in FW
and analyzed the temporal mRNA expression profiles and enzymatic activity in vivo after
they were transferred to BW and SW. All these results indicated that AmMnSOD and
AmCu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation.
Moreover, our findings provided new and valuable evidence to further clarify the
physiological adaptation and regulatory mechanism of SODs in eels.
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