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Abstract

Accurately estimating population sizes is often a critical component of fisheries research and
management. Although there is a growing appreciation of the importance of small-scale salmon
population dynamics to the stability of salmon stock-complexes, our understanding of these
populations is constrained by a lack of efficient and cost-effective monitoring tools for streams.
Weirs are expensive, labor intensive, and can disrupt natural fish movements. While
conventional video systems avoid some of these shortcomings, they are expensive and require
excessive amounts of labor to review footage for data collection. Here, we present a novel
method for quantifying salmon in small streams (<15m wide, <1m deep) that uses both time-
lapse photography and video in a model-based double sampling scheme. This method produces
an escapement estimate nearly as accurate as a video-only approach, but with substantially less
labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 hrs. /day,
costs less than $3000 per system, and produces escapement estimates with confidence intervals.
In addition to escapement estimation, we present a method for estimating in stream salmon
abundance across time, data needed by researchers interested in predator-prey interactions or
nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates
of daily mortality developed using previously published data. To demonstrate proof of concept
for these methods, we present results from two streams in southwest Kodiak Island, Alaska in

which high densities of sockeye salmon spawn.

Introduction

Accurately estimating population sizes is often a critical component of fisheries research and

management. Managers use salmon (Oncorhynchus spp.) escapement estimates (salmon
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remaining after harvest that enter freshwater to spawn) to develop stock-recruit curves and to
decide when to open and close fisheries. Researchers often need escapement data for studies
involving productivity, nutrient subsidies, and predator-prey dynamics. Although we have good
escapement data for many main-stem rivers used by migrating salmon, we have little escapement
data at smaller scales, including small streams where many salmon ultimately spawn. This is
regrettable given that large salmon stock-complexes are composed of dozens or hundreds of
distinct salmon populations, many of which spawn in first and second order streams. A
collection of small salmon populations spawning at different times and in different locations
tends to have more stable interannual abundance than a single homogenous population due to
“portfolio effects,” which results in more reliable returns and fewer closures for commercial
fisheries (Schindler et al. 2010). This stability arises from population diversity occurring at
small spatial scales (i.e. first and second order streams), so it is important that we have the tools
to investigate and understand these populations in order to effectively manage salmon for human

and wildlife consumers,

Watershed-scale escapement estimates do not effectively characterize the resources
available to wildlife consumers, because they do not tell us how long salmon are available to
consumers. In many watersheds, consumers cannot catch salmon while they migrate up the
relatively deep water of main-stem rivers; they must wait until salmon enter shallow spawning
streams where they are more easily caught. As a result, consumers interact with individual
salmon populations rather than entire stock complexes, and thus, watershed scale escapement can
be a poor estimate of the salmon available to consumers of conservation concern such as eagles,
bears and trout (Bentley et al. 2012, Schindler et al. 2013, Levi et al. 2015; Deacy et al. in press).

Also, consumers are easily satiated by even modest densities of spawning salmon, so the

Commented [MJ1]: For those not immersed in the world of
salmon fisheries here is quite a nice review here (I learned a lot
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46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

duration of spawning activity is likely just as important to consumers as the abundance of salmon
(Jeschke 2007). Despite the importance of small tributary salmon escapement to salmon
management, ecosystem function, and salmon conservation, existing methods of monitoring
salmon abundance do not perform well at these sites, because they are expensive, time

consuming, and alter salmon behavior.

Traditionally, anadromous salmonids (Oncorhynchus spp.) moving into large rivers or
streams have been counted by observers stationed at fish weirs, fences, and observation towers,
or by use of sonar stations (Table 1; Cousens et al. 1982). These methods can produce reliable
estimates; however, high labor and equipment costs make them too expensive for simultaneously
monitoring many streams. To fill this gap, researchers have experimented with systems that
record video of passing salmon using either under or above water cameras (Hatch et al. 1994,
Davies et al. 2007, Van Alen 2008). These video weir methods have three key advantages: 1)
footage can be counted long after the data are collected, allowing a small crew to monitor several
runs simultaneously; 2) periods with high salmon abundance can be counted more accurately by
reducing playback speed; and 3) fewer site visits reduce impacts on wildlife caused by human
presence. Although these benefits have made video enumeration an increasingly popular method
for counting salmonids, reviewing large amounts of video is required. The resulting personnel
costs make video weir methods impractical for many applications. A method is needed for
collecting escapement data that produces reliable estimates without thousands of hours of video
review or frequent site visits. Furthermore, some enumeration methods (i.e. weirs) can obstruct
natural movements of salmon and other fishes. This may not be a problem on main-stem rivers
if salmon tend to move consistently upstream, however, it is problematic in small streams where

diel movements into and out of streams is common (Bentley et al. 2014).
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In addition to total escapement, studies focused on consumer responses to availability of
salmon need to know the number of living salmon in streams (hereafter in stream abundance)
across time. In stream abundance across time represents foraging opportunities better than gross
escapement when consumers are swamped by a pulsed resource, which is often the case for
consumers of spawning salmon (Armstrong and Schindler 2011). Typically, in stream
abundance data are collected using ground (Quinn et al. 2001) or aerial surveys (Neilson and
Geen 1981) which are repeated several times during a salmon run. Ground surveys work well on
streams that are easy to access, small enough to survey in a reasonable amount of time, and
where disturbing wildlife is not a concern. Aerial surveys may work well for less accessible sites
if visibility from the plane is not impeded by riparian vegetation or complex channel
geomorphology. Moreover, because salmon abundance in streams tends to change rapidly, these
methods only work well when the survey frequency is high. Furthermore, to collect reliable data
using aerial surveys, researchers need to correct for differences among observers (Bue et al.
1998). Here, we present an alternative method for estimating the number of living salmon in a
stream through the full duration of the run. The approach combines daily estimates of salmon
passage, collected using our time-lapse camera system, with a model of spawning salmon

mortality.

Our system requires service only every 14 days, detects salmon 24 hrs. /day, costs less
than US$3000 per systeml, and produces escapement estimates with confidence intervals. This
system works on rivers and streams up to ~15m wide and ~1m deep. In addition, we present a
method for estimating in stream salmon abundance, data which are important for studies focused
on the response of wildlife consumers to salmon runs and nutrient subsidies. To demonstrate

proof of concept, we present results from two small streams with very high densities of salmon.

Commented [MJ2]: Would it be worth just saying “is cheap to
implement”. US$3000 may be nothing in 10 years time!
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Methods

Approach

To harness the advantages of remote camera systems without time-consuming video
enumeration, we utilized a “double sampling” scheme, which is often used when a variable of
interest is costly to measure, but an auxiliary variable is more easily measured and has a
predictable relationship to the variable of interest (Cochran 1977). The cheaper variable can be
measured for all of the sample units while the expensive variable is measured on a subsample of
units in order to model the relationship between the variables. Here, our variable of interest is
the number of salmon that pass into and out of a stream each hour, which we can accurately
quantify with an above-water video camera. The related auxiliary variable is the number of
salmon detected in time-lapse images each hour. The total time required to review footage is
low relative to video-only approaches because we only have to enumerate salmon in a subset of
the hour long sample units. We can determine the salmon passage for the remaining hours by
modelling the relationship between the subsample of hourly video counts and photo counts and

then using the model to predict salmon passage across the entire salmon run.

Study Streams

We developed this method on two streams used by spawning sockeye salmon: Meadow
and Southeast Creeks (Fig. 1a) in southwest Kodiak Island, Alaska. Meadow Creek is a second
order tributary to Karluk Lake. It has a mean width of 4.50 m and depth of 13 cm in the lower
0.8 km used by spawning salmon. Southeast Creek is a first order tributary to Red Lake that
flows out of a small spring pond. It has a mean width of 3.90 m and depth of 9.1 cm in the lower

2.7 km used by spawning salmon. Tens of thousands of salmon enter these streams annually to
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spawn and bidirectional movement and pre-spawn mortality is common owing to a large number

of brown bears that prey on the salmon.

Time lapse camera system

To record time lapse images of passing salmon, we used a Reconyx® Hyperfire PC800
camera, programmed to take 3 photos in rapid succession (<1 sec. between frames) each minute,
24 hrs./day. Each three frame burst allowed us to detect the number and direction of travel (up
or downstream) of salmon passing the camera. We suspended the time lapse camera above the
stream using steel electrical conduit attached to a steel Big Game® Pursuit tripod tree stand
positioned adjacent to the stream (Fig. 1b). We attached the camera to the conduit with a
Camlockbox® ball mount which allowed us to easily aim the camera. To light the streambed at
night we secured an LTS® IR50 850nm infrared (IR) light to the tripod platform. Although
visible light would have worked well, we used IR light to avoid changing the behavior of salmon
and/or their predators with visible light. The Reconyx camera and infrared light were powered
by an 80 amp-hour deep-cycle battery charged by a 100W solar panel secured to the south side

of the tower.

To record video, we secured a video camera to the top of the tower. The video footage
was stored by a Digital Video Recorder (DVR) set to record D1 resolution, 30 frames per second
video from 12pm-8pm, the periods with the best quality video (good light) and the majority of
salmon movement activity. The video camera and DVR were powered by its own battery/solar
power system, identical to the one powering the Reconyx camera and IR light. To make passing
salmon easier to see, we secured 5.08 cm X 76.2 cm white High Density Polyethylene (HDPE)

contrast panels to the bottom of the stream below the cameras by attaching them to a heavy chain
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(Alaska Department of Fish and Game Permit # FH-14-11-0076). The HDPE panels are buoyant
in water and the chain prevents the panels from floating off of the streambed. Using stainless
steel carabineers, we attached the chain to T-posts which we pounded into the margins of the
streambed. To prevent salmon from swimming under the panels, we pinned the chain to the

stream bed using several steel stakes.

We visited each camera system every two weeks from early June through early
September to switch out data cards and remove algae and debris from the contrast panels. Back
at our field station, we separately counted the number of salmon moving up and downstream past
the contrast panels during each three-photo burst. We only counted a salmon as passing if it
moved at least ¥ the length of the panels; we did not count stationary fish. Finally, we summed
upstream and downstream counts separately for each hour of the monitoring season. To ensure

consistent counting technique, each stream was counted by the same person for the entire season.

Modelling salmon escapement (abundance)

We used a model-based double sampling approach to estimate salmon escapement. We
modelled the relationship between video salmon counts and photo salmon counts for a non-
random subsample of hours, and then used this model to predict salmon passage for the entire
season. This is different from the “sampling-design approach” more commonly used to double
sample (Cochran 1977). If we had used the sampling-design approach, we would have counted
the salmon passing in a simple random subsample of video hours, and then calculated the total
escapement by multiplying the time lapse salmon count by the ratio of video counts to photo
counts in the subsample. However, the sampling design-based approach has two requirements

which are difficult to satisfy. First, to be random, every hour of the salmon run must be available
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for sampling, meaning that video must be recorded throughout the entire run. A single day of
missed video (due to a power outage, insects sitting on the lens, etc.) could significantly bias the
resulting abundance estimates if the outage occurred on a day with relatively few or many
passing salmon. Second, the video must be high enough quality to assume 100% salmon
detection. This requirement can be difficult to meet because of glare and poor night-time video
quality. Rather than attempt to design a system that meets these strict requirements, we used a
model-based approach, where we model the relationship between video counts and time lapse
counts (Stephens et al. 2012). This framework allows us to select our sample of video-
enumerated hours non-randomly; our estimate of abundance is unbiased as long as the model is

correctly specified (Hansen et al. 1983, Gregoire 1998).

We selected 70 hours that spanned the full range of hourly time-lapse salmon counts,
from the hours with many salmon swimming downstream to hours with strong upstream
movement. Also, we selected hours where we were confident of nearly 100% detection,
excluding hours with bad glare or poor lighting. In total, we watched 70 hours of video for each
stream, however, because we considered up and downstream salmon movement independently,
this gave us a sub-sample of 140 values for each stream (70 upstream counts and 70 downstream

counts).

Next, we modelled video counts as a function of time-lapse photo counts for the
subsample. We compared four different models for each stream: first and second order linear
regressions and first and second order segmented or “split-point” linear regressions (Table 2).
The segmented regression allows the slope to differ across ranges of the predictor variable. This
makes sense for salmon swimming in a stream; salmon swimming upstream (positive values)

might move slower, and thus have a greater chance of being detected in a time-lapse burst. In



181  contrast, salmon swimming downstream (negative values) might move faster and have a lower
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196  95% confidence intervals of total escapement.

197  Modelling number of living salmon in streams

198 To model in stream abundance across time, we took daily escapement estimates

199  (upstream moving salmon minus downstream moving salmon), and applied mortality estimates
200 from the literature. Carlson et al. (2007) investigated the relationship between stream

201  width/depth and stream life (number of days from salmon stream entry to death) on a range of

202 tributaries to Nerka and Aleknagik Lakes, Alaska which are morphologically similar to our focal
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streams. The three main sources of mortality for spawning sockeye salmon were senescent
death, predation (mostly by bears), and stranding. They found that salmon spawning in
wider/deeper streams tended to have longer stream lives. The authors’ explanation was that
salmon in shallow/narrow streams experienced higher predation rates which selects for more
rapid reproductive cycles and consequently earlier deaths. Because of this interaction between
stream morphology and salmon stream life, it is probably inappropriate to use a single estimate
of stream life across streams with varying morphology. We used the results of Carlson et al.

(2007) to create a model of stream life as a function of stream morphology.

Assuming salmon in our streams were equally likely to die by stranding, predation, and
senescence as they were in the Carlson study, we calculated a Nveighted\ average of the mean
stream life for each of the Carlson et al. (2007) streams. We then used this weighted average
stream life as the response variable and stream width and depth as predictor variables in a simple
linear regression model. Because stream depth and width were strongly correlated (r =0.90),
including both variables in the model resulted in collinearity. We thus selected between depth-
only and width-only models by comparing AIC. scores. We then used the top model to predict
the mean stream life of sockeye salmon in Meadow and Southeast Creek, using field
measurements of stream morphology measured in 2014 as predictors. There was a strong
positive correlation between the mean and pooled standard deviation (Hedges 1981) of stream
life in the Carlson data (r =0.95, p=0.004); therefore, rather than model the standard deviation
(SD) of stream life separately from the mean, we assumed stream life SD was proportional to the

mean (SD=0.499 * mean stream life).

To calculate jn-stream abundance each day, we summed the number of salmon that

entered on that day with the predicted number of surviving salmon from the previous days:

[Commented [MJ6]: Equation 1?
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N
Living Salmon On Day x = Z P+ PS5t

t=1

where Py is the number of salmon that passed into the stream on day X, Px. is the number of
salmon that passed into the stream t days before day x, St is the proportion of those salmon
surviving to day x, and t is an index of days. The values of S; are from the cumulative
distribution function of survival which we modelled above. N is the number of days it takes for
survival (St) to reach zero, which varies based on the survival model (it will be larger on deeper

streams where stream life is greater).

To understand the sensitivity of in-stream abundance models to changes in stream life
estimates, we calculated jn-stream abundance for each stream across a range of stream life
values. We then used percent change in maximum abundance to assess the impact of changing
stream life. Because the amount of time consumers have access to salmon is at least as important
as peak abundance, we also calculated the duration of the salmon run, defined as the number of
days where abundance was at least ten percent of the maximum in stream estimate from the un-
altered model. This (admittedly arbitrary) ten percent threshold was an attempt to set a lower

limit on the salmon density below which benefits to consumers declinel.
Results
Salmon Escapement

Of the suite of models relating video counts to time lapse counts for Meadow Creek, the
top model was the segmented first order model (Table 2, Fig. 2). It had the lowest AIC.
(1534.3), best precision (MSE=3556), and best accuracy (+3.0%). The segmented models likely

explained more variation than the unsegmented models because salmon had different detection

( Deleted: in
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rates while swimming upstream versus downstream (salmon swim slower against the current), in
the relatively steep gradient of Meadow Creek. Using the top model, the predicted escapement

for Meadow Creek was 30,509 + 9,494 (95% confidence intervals).

The top model for Southeast Creek was the first order regression which had the lowest
AICc (1732.2), best precision (MSE=14167), and best accuracy (+3.1%). In contrast to Meadow
Creek, the segmented model only explained slightly more variation than the first order model,
but required an additional parameter. This suggests salmon in Southeast Creek have a similar
detection rate whether they are swimming up or downstream, which is likely because Southeast
Creek has a relatively flat gradient and low velocity. The total escapement for Southeast Creek
was 65,355 + 4,305 (95% confidence intervals). For Southeast Creek, the escapement estimates
were not very sensitive to the model selected (maximum difference of only 4.4%) (Fig. 3). This

contrasts with Meadow, where the difference between the highest and lowest estimate was 38%.
Modelling number of living salmon in streams

The model with depth as a predictor (AIC. = 27.5) explained more variation than the
width model (AIC. = 31.9), so we used this model to predict mean stream life for our two
streams. Meadow Creek had a predicted mean stream life of 7.1 days (SE=3.5) while Southeast
Creek (which is shallower), had a predicted stream life of 5.9 days (SE=3.0). Using these values,
we found the predicted salmon abundance over time in each stream were quite different;
abundance peaked at just over 11,000 sockeye on July 11" in Meadow Creek and the run was
finished around August 16" (Fig. 4). In contrast, Southeast Creek had two distinct peaks in

abundance: the first on July 21% with just over 15,000 sockeye and the second peaking at 4,645
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on August 29", Thus, although the total escapement in Southeast Creek was more than double

that of Meadow Creek, the peak salmon abundance was only 29% higher in Southeast.

In general, the in stream abundance models were quite sensitive to changes in stream life
estimates. Increasing mean stream life in Meadow Creek by 2 days, from 7.1 to 9.1 days,
increased the estimated maximum abundance by 14% (Fig. 5). The effect was even greater on
Southeast Creek, with a 22% increase in abundance from a 2 day increase in mean stream life.
Increasing the standard deviation had the opposite effect: a 1 day increase in SD of stream life
decreased the maximum abundance by 5% and 3% on Meadow and Southeast Creeks,
respectively. The sensitivity of salmon run duration (defined as the number of days with at least
10% of the maximum salmon abundance), to changes in mean and SD of stream life was less
clear. On Meadow Creek, increasing mean stream life by 2 days increased the salmon run
duration by 2 days (from 40 to 42 days) and increasing stream life SD by 1 day resulted in no
measurable increase in salmon run duration. In contrast, the same changes on Southeast Creek
resulted in an 5 day and 2 day increase in salmon run duration for changes to the mean and SD of
stream life, respectively. This difference is likely because Southeast Creek has two distinct
peaks in salmon abundance, and a 2 day increase in stream life is a larger proportional change

compared to Meadow creek.
Discussion

Researchers and managers increasingly acknowledge the important role of small salmon
populations in generating stable returns for commercial fisheries and for supporting wildlife of
high economic and commercial value (Schindler et al. 2010, Beacham et al. 2014). Many

existing salmon monitoring tools were designed primarily for large streams and rivers and are
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ineffective or too expensive for monitoring the salmon populations that use small streams for
spawning. The time-lapse salmon counting system presented here proved to be a low-cost, time-
efficient, and accurate method for counting salmon in streams less than 15m wide. This method
only required bi-weekly site visits, which is ideal for remotely monitored sites and studies
involving the response of wildlife to spawning salmon. These benefits will allow managers and
researchers to quantify salmon in streams where it was previously too difficult or expensive. In
addition, we presented a method for estimating the number of living salmon in a stream across

the run, data which are particularly important for consumer-resource studies.

To estimate in stream salmon abundance, we developed a model of salmon stream life
(number of days a salmon survives following spawning stream entry) based upon data collected
in the Wood River system, Alaska (Carlson et al. 2007). These data are specific to the sites and
years where they were collected; differences in water level, intensity of predation, and salmon
abundance are all likely to change these values. For these reasons, future users of the method we
demonstrated here should estimate stream life in their own systems, rather than relying on the
model developed using the Carlson et al. (2007) data. This is particularly important because a
sensitivity analysis showed our in stream salmon estimates were quite sensitive to changes in
estimated stream life (Fig. 5); a two day increase in stream life increased the estimated maximum

abundance by 14% on Meadow Creek and 22% on Southeast Creek.

Similarly, a good escapement estimate is only possible if users accurately model the
relationship between time lapse and video counts (Hansen et al. 1983). This is critical given the
large differences in abundance estimates resulting from small differences in model structure or
fit (Table 2, Fig. 4). It is important to consider multiple model shapes; different stream

morphologies or salmon species may produce different salmon run patterns. For example, steep
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streams are likely to produce models with different slopes for salmon swimming upstream and
downstream. The segmented model structure can account for this pattern, and thus should
always be included in the candidate model set. Also, a polynomial model might be appropriate
for streams that experience high densities of spawners. In general, a polynomial model is needed
if time-lapse detection of passing salmon changes with salmon run intensity. For example, as
salmon reach high densities, they may not be able to move upstream very quickly because of
crowding. This could result in relatively higher detection at high run intensities. In this case, a
polynomial model would likely model the relationship better than a first order model.

Regardless of the model shape, it is important that users use standard model diagnostics and

good sense to fit the best model possible.

From four years of testing this method on different streams and different sites within
streams we have learned several important lessons. First, this counting system is most accurate
and requires the least effort when located where flow is rapid but the water surface is smooth.
The rapid flow prevents salmon from loitering above the contrast panels (which can introduce
noise into the time-lapse counts), while the smooth water surface makes it easy to see passing
salmon. Second, this system works best in shallow streams. Deep streams (>1 m) were
problematic because salmon were more likely to swim at different depths, which caused their
outlines to overlap and made counting more difficult. It was also more difficult to light deep
streams at night. We found that our infrared lights did not light passing salmon adequately if
streams were more than one meter [deep. Using conventional flood lights (visible light) solves
this problem; however, it negates the advantages of using IR lights, which is invisible to humans,

fishes, and most wildlife. Third, it is important to orient the camera away from the sun

Commented [MJ9]: It would be interesting to know whether
light does affect passage of salmon.
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(northward in the northern hemisphere), because otherwise the surface of the water reflects glare

towards the camera.

Although this new method increases the breadth of sites that can be monitored, it has
some limitations. As with other methods, the turbidity associated with high flow events can
make seeing passing salmon difficult or impossible. Fortunately, these events tend to be brief in
the small streams for which we designed this system. Also, it can be difficult to distinguish
among species if a site has multiple species migrating at the same time. Finally, this system can
only monitor streams up to 15 m wide. Beyond this width, counting accuracy is likely to
decrease as the salmon in the images become more distant. One potential solution is to use two

camera towers on opposite banks, each viewing one half of the stream.

Using this system, it can be difficult to accurately model the relationship between time-
lapse counts and salmon passage if escapement is less than two or three thousand salmon. This
is because at low escapement, hourly time-lapse counts tend to vary little, regardless of the
relative intensity of the run. This makes it difficult to effectively model the relationship between
time-lapse photo counts and video counts. One solution to this problem is to increase observer
effort by either increasing the length of the sampling unit (e.g. from one to two hours) or by
increasing the sampling frequency (e.g. 3-photo burst every 30 seconds). This would increase
the contrast between weak and strong runs, but also increase the time required to review photos
and/or video. Another solution is to use a model from a stream with similar features (width,
depth, velocity, etc.), although we know from the data presented here that models can differ
greatly among streams (Table 2). For example, if we had used the Southeast Creek model to
estimate Meadow Creek escapement, we would have overestimated by 89% compared to the

Meadow Creek top model.
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In general, salmon researchers should strive to minimize their impact on natural salmon
behavior. In small streams such as those monitored here, spawning salmon tend to move up and
downstream frequently (Fig. 4, top), a behavior that may be a strategy for avoiding predators
(Bentley et al. 2014). Salmon monitoring methods such as weirs have the potential to limit these
movements. This could allow predators such as bears to catch salmon more easily, which could
decrease salmon spawning success rates and alter trophic interactions with salmon consumers. A
key strength of the method presented here is that it allows salmon to move freely and allows

natural interactions with salmon consumers.

As with many resources used by wildlife, salmon availability is very patchy in space and
time (Armstrong and Schindler 2011). This presents a challenge for researchers and managers
interested in using sampling to estimate their abundance; the more patchy or pulsed the salmon
run, the less accurate a random sampling method will be without large amounts of effort. Here,
we overcame this challenge by using a model-based design instead of a random sampling-based
design. This allowed us to relax the demands on our camera system; rather than requiring
complete video coverage, we merely needed hours of video that represented the full range of
salmon run intensities. Given the ubiquity of patchy (in space) or pulsed (in time) resource
availability, we suspect that this approach to double sampling could be usefully employed in a

variety of natural resources applications.

The salmon counting method that we present here expands the range of salmon spawning
habitats that can be realistically monitored. Compared to existing methods, our solution is less
expensive, less time consuming, and less detrimental to salmon and the wildlife that use them.
The data produced can help improve our understanding of how population dynamics at small

scales creates stability at the watershed scale. Lastly, due to their low cost and relative



384  portability, these systems would be ideal for monitoring salmon populations of conservation
385 concern. For example, they could produce baseline and ongoing data on the abundance of

386  salmon spawning downstream of mines or other resource development projects.
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