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Abstract 1 

Accurately estimating population sizes is often a critical component of fisheries research and 2 

management.  Although there is a growing appreciation of the importance of small-scale salmon 3 

population dynamics to the stability of salmon stock-complexes, our understanding of these 4 

populations is constrained by a lack of efficient and cost-effective monitoring tools for streams.  5 

Weirs are expensive, labor intensive, and can disrupt natural fish movements.  While 6 

conventional video systems avoid some of these shortcomings, they are expensive and require 7 

excessive amounts of labor to review footage for data collection.  Here, we present a novel 8 

method for quantifying salmon in small streams (<15m wide, <1m deep) that uses both time-9 

lapse photography and video in a model-based double sampling scheme.  This method produces 10 

an escapement estimate nearly as accurate as a video-only approach, but with substantially less 11 

labor, money, and effort.  It requires servicing only every 14 days, detects salmon 24 hrs. /day, 12 

costs less than $3000 per system, and produces escapement estimates with confidence intervals.   13 

In addition to escapement estimation, we present a method for estimating in stream salmon 14 

abundance across time, data needed by researchers interested in predator-prey interactions or 15 

nutrient subsidies.  We combined daily salmon passage estimates with stream specific estimates 16 

of daily mortality developed using previously published data.  To demonstrate proof of concept 17 

for these methods, we present results from two streams in southwest Kodiak Island, Alaska in 18 

which high densities of sockeye salmon spawn.  19 

Introduction 20 

Accurately estimating population sizes is often a critical component of fisheries research and 21 

management.  Managers use salmon (Oncorhynchus spp.) escapement estimates (salmon 22 



remaining after harvest that enter freshwater to spawn) to develop stock-recruit curves and to 23 

decide when to open and close fisheries.  Researchers often need escapement data for studies 24 

involving productivity, nutrient subsidies, and predator-prey dynamics.  Although we have good 25 

escapement data for many main-stem rivers used by migrating salmon, we have little escapement 26 

data at smaller scales, including small streams where many salmon ultimately spawn.  This is 27 

regrettable given that large salmon stock-complexes are composed of dozens or hundreds of 28 

distinct salmon populations, many of which spawn in first and second order streams.  A 29 

collection of small salmon populations spawning at different times and in different locations 30 

tends to have more stable interannual abundance than a single homogenous population due to 31 

“portfolio effects,” which results in more reliable returns and fewer closures for commercial 32 

fisheries (Schindler et al. 2010).  This stability arises from population diversity occurring at 33 

small spatial scales (i.e. first and second order streams), so it is important that we have the tools 34 

to investigate and understand these populations in order to effectively manage salmon for human 35 

and wildlife consumers. 36 

Watershed-scale escapement estimates do not effectively characterize the resources 37 

available to wildlife consumers, because they do not tell us how long salmon are available to 38 

consumers.  In many watersheds, consumers cannot catch salmon while they migrate up the 39 

relatively deep water of main-stem rivers; they must wait until salmon enter shallow spawning 40 

streams where they are more easily caught.  As a result, consumers interact with individual 41 

salmon populations rather than entire stock complexes, and thus, watershed scale escapement can 42 

be a poor estimate of the salmon available to consumers of conservation concern such as eagles, 43 

bears and trout (Bentley et al. 2012, Schindler et al. 2013, Levi et al. 2015; Deacy et al. in press).  44 

Also, consumers are easily satiated by even modest densities of spawning salmon, so the 45 
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duration of spawning activity is likely just as important to consumers as the abundance of salmon 46 

(Jeschke 2007).  Despite the importance of small tributary salmon escapement to salmon 47 

management, ecosystem function, and salmon conservation, existing methods of monitoring 48 

salmon abundance do not perform well at these sites, because they are expensive, time 49 

consuming, and alter salmon behavior.   50 

Traditionally, anadromous salmonids (Oncorhynchus spp.) moving into large rivers or 51 

streams have been counted by observers stationed at fish weirs, fences, and observation towers, 52 

or by use of sonar stations (Table 1; Cousens et al. 1982).  These methods can produce reliable 53 

estimates; however, high labor and equipment costs make them too expensive for simultaneously 54 

monitoring many streams.  To fill this gap, researchers have experimented with systems that 55 

record video of passing salmon using either under or above water cameras (Hatch et al. 1994, 56 

Davies et al. 2007, Van Alen 2008).  These video weir methods have three key advantages: 1) 57 

footage can be counted long after the data are collected, allowing a small crew to monitor several 58 

runs simultaneously; 2) periods with high salmon abundance can be counted more accurately by 59 

reducing playback speed; and 3) fewer site visits reduce impacts on wildlife caused by human 60 

presence.  Although these benefits have made video enumeration an increasingly popular method 61 

for counting salmonids, reviewing large amounts of video is required.  The resulting personnel 62 

costs make video weir methods impractical for many applications.  A method is needed for 63 

collecting escapement data that produces reliable estimates without thousands of hours of video 64 

review or frequent site visits.  Furthermore, some enumeration methods (i.e. weirs) can obstruct 65 

natural movements of salmon and other fishes.  This may not be a problem on main-stem rivers 66 

if salmon tend to move consistently upstream, however, it is problematic in small streams where 67 

diel movements into and out of streams is common (Bentley et al. 2014).  68 



In addition to total escapement, studies focused on consumer responses to availability of 69 

salmon need to know the number of living salmon in streams (hereafter in stream abundance) 70 

across time.  In stream abundance across time represents foraging opportunities better than gross 71 

escapement when consumers are swamped by a pulsed resource, which is often the case for 72 

consumers of spawning salmon (Armstrong and Schindler 2011).  Typically, in stream 73 

abundance data are collected using ground (Quinn et al. 2001) or aerial surveys (Neilson and 74 

Geen 1981) which are repeated several times during a salmon run.  Ground surveys work well on 75 

streams that are easy to access, small enough to survey in a reasonable amount of time, and 76 

where disturbing wildlife is not a concern.  Aerial surveys may work well for less accessible sites 77 

if visibility from the plane is not impeded by riparian vegetation or complex channel 78 

geomorphology. Moreover, because salmon abundance in streams tends to change rapidly, these 79 

methods only work well when the survey frequency is high.  Furthermore, to collect reliable data 80 

using aerial surveys, researchers need to correct for differences among observers (Bue et al. 81 

1998).  Here, we present an alternative method for estimating the number of living salmon in a 82 

stream through the full duration of the run.  The approach combines daily estimates of salmon 83 

passage, collected using our time-lapse camera system, with a model of spawning salmon 84 

mortality.   85 

Our system requires service only every 14 days, detects salmon 24 hrs. /day, costs less 86 

than US$3000 per system, and produces escapement estimates with confidence intervals.  This 87 

system works on rivers and streams up to ~15m wide and ~1m deep.  In addition, we present a 88 

method for estimating in stream salmon abundance, data which are important for studies focused 89 

on the response of wildlife consumers to salmon runs and nutrient subsidies.  To demonstrate 90 

proof of concept, we present results from two small streams with very high densities of salmon.   91 
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Methods 92 

Approach 93 

To harness the advantages of remote camera systems without time-consuming video 94 

enumeration, we utilized a “double sampling” scheme, which is often used when a variable of 95 

interest is costly to measure, but an auxiliary variable is more easily measured and has a 96 

predictable relationship to the variable of interest (Cochran 1977).  The cheaper variable can be 97 

measured for all of the sample units while the expensive variable is measured on a subsample of 98 

units in order to model the relationship between the variables.  Here, our variable of interest is 99 

the number of salmon that pass into and out of a stream each hour, which we can accurately 100 

quantify with an above-water video camera.  The related auxiliary variable is the number of 101 

salmon detected in time-lapse images each hour.  The total time required to review footage is 102 

low relative to video-only approaches because we only have to enumerate salmon in a subset of 103 

the hour long sample units.  We can determine the salmon passage for the remaining hours by 104 

modelling the relationship between the subsample of hourly video counts and photo counts and 105 

then using the model to predict salmon passage across the entire salmon run.   106 

Study Streams 107 

We developed this method on two streams used by spawning sockeye salmon: Meadow 108 

and Southeast Creeks (Fig. 1a) in southwest Kodiak Island, Alaska.  Meadow Creek is a second 109 

order tributary to Karluk Lake.  It has a mean width of 4.50 m and depth of 13 cm in the lower 110 

0.8 km used by spawning salmon.  Southeast Creek is a first order tributary to Red Lake that 111 

flows out of a small spring pond.  It has a mean width of 3.90 m and depth of 9.1 cm in the lower 112 

2.7 km used by spawning salmon.  Tens of thousands of salmon enter these streams annually to 113 



spawn and bidirectional movement and pre-spawn mortality is common owing to a large number 114 

of brown bears that prey on the salmon.  115 

Time lapse camera system  116 

To record time lapse images of passing salmon, we used a Reconyx® Hyperfire PC800 117 

camera, programmed to take 3 photos in rapid succession (<1 sec. between frames) each minute, 118 

24 hrs./day.  Each three frame burst allowed us to detect the number and direction of travel (up 119 

or downstream) of salmon passing the camera.  We suspended the time lapse camera above the 120 

stream using steel electrical conduit attached to a steel Big Game® Pursuit tripod tree stand 121 

positioned adjacent to the stream (Fig. 1b).  We attached the camera to the conduit with a 122 

Camlockbox® ball mount which allowed us to easily aim the camera.  To light the streambed at 123 

night we secured an LTS® IR50 850nm infrared (IR) light to the tripod platform.  Although 124 

visible light would have worked well, we used IR light to avoid changing the behavior of salmon 125 

and/or their predators with visible light.  The Reconyx camera and infrared light were powered 126 

by an 80 amp-hour deep-cycle battery charged by a 100W solar panel secured to the south side 127 

of the tower.   128 

To record video, we secured a video camera to the top of the tower.  The video footage 129 

was stored by a Digital Video Recorder (DVR) set to record D1 resolution, 30 frames per second 130 

video from 12pm-8pm, the periods with the best quality video (good light) and the majority of 131 

salmon movement activity.  The video camera and DVR were powered by its own battery/solar 132 

power system, identical to the one powering the Reconyx camera and IR light.  To make passing 133 

salmon easier to see, we secured 5.08 cm X 76.2 cm white High Density Polyethylene (HDPE) 134 

contrast panels to the bottom of the stream below the cameras by attaching them to a heavy chain 135 



(Alaska Department of Fish and Game Permit # FH-14-II-0076).  The HDPE panels are buoyant 136 

in water and the chain prevents the panels from floating off of the streambed.  Using stainless 137 

steel carabineers, we attached the chain to T-posts which we pounded into the margins of the 138 

streambed.  To prevent salmon from swimming under the panels, we pinned the chain to the 139 

stream bed using several steel stakes.   140 

We visited each camera system every two weeks from early June through early 141 

September to switch out data cards and remove algae and debris from the contrast panels.  Back 142 

at our field station, we separately counted the number of salmon moving up and downstream past 143 

the contrast panels during each three-photo burst.  We only counted a salmon as passing if it 144 

moved at least ½ the length of the panels; we did not count stationary fish.  Finally, we summed 145 

upstream and downstream counts separately for each hour of the monitoring season.  To ensure 146 

consistent counting technique, each stream was counted by the same person for the entire season.   147 

Modelling salmon escapement (abundance) 148 

We used a model-based double sampling approach to estimate salmon escapement.  We 149 

modelled the relationship between video salmon counts and photo salmon counts for a non-150 

random subsample of hours, and then used this model to predict salmon passage for the entire 151 

season.  This is different from the “sampling-design approach” more commonly used to double 152 

sample (Cochran 1977).  If we had used the sampling-design approach, we would have counted 153 

the salmon passing in a simple random subsample of video hours, and then calculated the total 154 

escapement by multiplying the time lapse salmon count by the ratio of video counts to photo 155 

counts in the subsample.  However, the sampling design-based approach has two requirements 156 

which are difficult to satisfy.  First, to be random, every hour of the salmon run must be available 157 



for sampling, meaning that video must be recorded throughout the entire run.  A single day of 158 

missed video (due to a power outage, insects sitting on the lens, etc.) could significantly bias the 159 

resulting abundance estimates if the outage occurred on a day with relatively few or many 160 

passing salmon.  Second, the video must be high enough quality to assume 100% salmon 161 

detection.  This requirement can be difficult to meet because of glare and poor night-time video 162 

quality.  Rather than attempt to design a system that meets these strict requirements, we used a 163 

model-based approach, where we model the relationship between video counts and time lapse 164 

counts (Stephens et al. 2012).  This framework allows us to select our sample of video-165 

enumerated hours non-randomly; our estimate of abundance is unbiased as long as the model is 166 

correctly specified (Hansen et al. 1983, Gregoire 1998).   167 

We selected 70 hours that spanned the full range of hourly time-lapse salmon counts, 168 

from the hours with many salmon swimming downstream to hours with strong upstream 169 

movement.  Also, we selected hours where we were confident of nearly 100% detection, 170 

excluding hours with bad glare or poor lighting.  In total, we watched 70 hours of video for each 171 

stream, however, because we considered up and downstream salmon movement independently, 172 

this gave us a sub-sample of 140 values for each stream (70 upstream counts and 70 downstream 173 

counts).   174 

Next, we modelled video counts as a function of time-lapse photo counts for the 175 

subsample.  We compared four different models for each stream: first and second order linear 176 

regressions and first and second order segmented or “split-point” linear regressions (Table 2).  177 

The segmented regression allows the slope to differ across ranges of the predictor variable.  This 178 

makes sense for salmon swimming in a stream; salmon swimming upstream (positive values) 179 

might move slower, and thus have a greater chance of being detected in a time-lapse burst.  In 180 



contrast, salmon swimming downstream (negative values) might move faster and have a lower 181 

likelihood of detection.  To address this possibility, we including segmented regression models 182 

with the split-point (slope inflection point) constrained to zero.  To assess relative model fit, we 183 

compared Akaike’s Information Criterion values (AICc; Akaike 1974).  To validate models and 184 

test for over-fitting, we performed leave one out cross validation (LOOCV; Kohavi 1995), and 185 

used the resulting predictions to calculate the precision (mean squared error, MSE) and accuracy 186 

(the percent difference between the predicted and actual escapement of the 70 hours for which 187 

we watched video).  Based on these metrics, we selected a top model for each stream.   188 

Using the top model for each stream, we predicted the salmon passage for all of the hours 189 

of the monitoring period.  The sum of these predictions is the estimated escapement.  Because we 190 

did not use random sampling to select our modelling subsample, it is inappropriate to use the 191 

model variance to calculate confidence intervals for total escapement.  Instead, we bootstrapped 192 

our subsample with replacement (140 values to match our original subsample), refit our model 193 

using the top model structure, and re-predicted the total escapement (Efron and Tibshirani 2003).  194 

We repeated this 10,000 times and used the 2.5 and 97.5 percentile values as upper and lower 195 

95% confidence intervals of total escapement.   196 

Modelling number of living salmon in streams 197 

 To model in stream abundance across time, we took daily escapement estimates 198 

(upstream moving salmon minus downstream moving salmon), and applied mortality estimates 199 

from the literature.  Carlson et al. (2007) investigated the relationship between stream 200 

width/depth and stream life (number of days from salmon stream entry to death) on a range of 201 

tributaries to Nerka and Aleknagik Lakes, Alaska which are morphologically similar to our focal 202 
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streams.  The three main sources of mortality for spawning sockeye salmon were senescent 203 

death, predation (mostly by bears), and stranding.  They found that salmon spawning in 204 

wider/deeper streams tended to have longer stream lives.  The authors’ explanation was that 205 

salmon in shallow/narrow streams experienced higher predation rates which selects for more 206 

rapid reproductive cycles and consequently earlier deaths.  Because of this interaction between 207 

stream morphology and salmon stream life, it is probably inappropriate to use a single estimate 208 

of stream life across streams with varying morphology.  We used the results of Carlson et al. 209 

(2007) to create a model of stream life as a function of stream morphology. 210 

Assuming salmon in our streams were equally likely to die by stranding, predation, and 211 

senescence as they were in the Carlson study, we calculated a weighted average of the mean 212 

stream life for each of the Carlson et al. (2007) streams.  We then used this weighted average 213 

stream life as the response variable and stream width and depth as predictor variables in a simple 214 

linear regression model.  Because stream depth and width were strongly correlated (r =0.90), 215 

including both variables in the model resulted in collinearity.  We thus selected between depth-216 

only and width-only models by comparing AICc scores.  We then used the top model to predict 217 

the mean stream life of sockeye salmon in Meadow and Southeast Creek, using field 218 

measurements of stream morphology measured in 2014 as predictors.  There was a strong 219 

positive correlation between the mean and pooled standard deviation (Hedges 1981) of stream 220 

life in the Carlson data (r =0.95, p=0.004); therefore, rather than model the standard deviation 221 

(SD) of stream life separately from the mean, we assumed stream life SD was proportional to the 222 

mean (SD=0.499 * mean stream life).   223 

To calculate in-stream abundance each day, we summed the number of salmon that 224 

entered on that day with the predicted number of surviving salmon from the previous days:  225 
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𝐿𝑖𝑣𝑖𝑛𝑔 𝑆𝑎𝑙𝑚𝑜𝑛 𝑂𝑛 𝐷𝑎𝑦 𝑥 =  ∑ 𝑃𝑥

𝑁

𝑡=1

+ 𝑃𝑥−𝑡𝑆𝑡    227 

where Px is the number of salmon that passed into the stream on day x, Px-t is the number of 228 

salmon that passed into the stream t days before day x, St is the proportion of those salmon 229 

surviving to day x, and t is an index of days.  The values of St are from the cumulative 230 

distribution function of survival which we modelled above.  N is the number of days it takes for 231 

survival (St) to reach zero, which varies based on the survival model (it will be larger on deeper 232 

streams where stream life is greater).   233 

 To understand the sensitivity of in-stream abundance models to changes in stream life 234 

estimates, we calculated in-stream abundance for each stream across a range of stream life 235 

values.  We then used percent change in maximum abundance to assess the impact of changing 236 

stream life.  Because the amount of time consumers have access to salmon is at least as important 237 

as peak abundance, we also calculated the duration of the salmon run, defined as the number of 238 

days where abundance was at least ten percent of the maximum in stream estimate from the un-239 

altered model.  This (admittedly arbitrary) ten percent threshold was an attempt to set a lower 240 

limit on the salmon density below which benefits to consumers decline.   241 

Results 242 

Salmon Escapement 243 

Of the suite of models relating video counts to time lapse counts for Meadow Creek, the 244 

top model was the segmented first order model (Table 2, Fig. 2).  It had the lowest AICc 245 

(1534.3), best precision (MSE=3556), and best accuracy (+3.0%).  The segmented models likely 246 

explained more variation than the unsegmented models because salmon had different detection 247 
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rates while swimming upstream versus downstream (salmon swim slower against the current), in 250 

the relatively steep gradient of Meadow Creek.  Using the top model, the predicted escapement 251 

for Meadow Creek was 30,509 ± 9,494 (95% confidence intervals).   252 

The top model for Southeast Creek was the first order regression which had the lowest 253 

AICc (1732.2), best precision (MSE=14167), and best accuracy (+3.1%).  In contrast to Meadow 254 

Creek, the segmented model only explained slightly more variation than the first order model, 255 

but required an additional parameter.  This suggests salmon in Southeast Creek have a similar 256 

detection rate whether they are swimming up or downstream, which is likely because Southeast 257 

Creek has a relatively flat gradient and low velocity.  The total escapement for Southeast Creek 258 

was 65,355 ± 4,305 (95% confidence intervals).  For Southeast Creek, the escapement estimates 259 

were not very sensitive to the model selected (maximum difference of only 4.4%) (Fig. 3). This 260 

contrasts with Meadow, where the difference between the highest and lowest estimate was 38%.   261 

Modelling number of living salmon in streams 262 

The model with depth as a predictor (AICc = 27.5) explained more variation than the 263 

width model (AICc = 31.9), so we used this model to predict mean stream life for our two 264 

streams.  Meadow Creek had a predicted mean stream life of 7.1 days (SE=3.5) while Southeast 265 

Creek (which is shallower), had a predicted stream life of 5.9 days (SE=3.0).  Using these values, 266 

we found the predicted salmon abundance over time in each stream were quite different; 267 

abundance peaked at just over 11,000 sockeye on July 11th in Meadow Creek and the run was 268 

finished around August 16th (Fig. 4).  In contrast, Southeast Creek had two distinct peaks in 269 

abundance: the first on July 21st with just over 15,000 sockeye and the second peaking at 4,645 270 



on August 29th.  Thus, although the total escapement in Southeast Creek was more than double 271 

that of Meadow Creek, the peak salmon abundance was only 29% higher in Southeast.   272 

In general, the in stream abundance models were quite sensitive to changes in stream life 273 

estimates.  Increasing mean stream life in Meadow Creek by 2 days, from 7.1 to 9.1 days, 274 

increased the estimated maximum abundance by 14% (Fig. 5).  The effect was even greater on 275 

Southeast Creek, with a 22% increase in abundance from a 2 day increase in mean stream life.  276 

Increasing the standard deviation had the opposite effect: a 1 day increase in SD of stream life 277 

decreased the maximum abundance by 5% and 3% on Meadow and Southeast Creeks, 278 

respectively.  The sensitivity of salmon run duration (defined as the number of days with at least 279 

10% of the maximum salmon abundance), to changes in mean and SD of stream life was less 280 

clear.  On Meadow Creek, increasing mean stream life by 2 days increased the salmon run 281 

duration by 2 days (from 40 to 42 days) and increasing stream life SD by 1 day resulted in no 282 

measurable increase in salmon run duration.  In contrast, the same changes on Southeast Creek 283 

resulted in an 5 day and 2 day increase in salmon run duration for changes to the mean and SD of 284 

stream life, respectively.  This difference is likely because Southeast Creek has two distinct 285 

peaks in salmon abundance, and a 2 day increase in stream life is a larger proportional change 286 

compared to Meadow creek.   287 

Discussion 288 

Researchers and managers increasingly acknowledge the important role of small salmon 289 

populations in generating stable returns for commercial fisheries and for supporting wildlife of 290 

high economic and commercial value (Schindler et al. 2010, Beacham et al. 2014).  Many 291 

existing salmon monitoring tools were designed primarily for large streams and rivers and are 292 



ineffective or too expensive for monitoring the salmon populations that use small streams for 293 

spawning.  The time-lapse salmon counting system presented here proved to be a low-cost, time-294 

efficient, and accurate method for counting salmon in streams less than 15m wide.  This method 295 

only required bi-weekly site visits, which is ideal for remotely monitored sites and studies 296 

involving the response of wildlife to spawning salmon.  These benefits will allow managers and 297 

researchers to quantify salmon in streams where it was previously too difficult or expensive.  In 298 

addition, we presented a method for estimating the number of living salmon in a stream across 299 

the run, data which are particularly important for consumer-resource studies. 300 

To estimate in stream salmon abundance, we developed a model of salmon stream life 301 

(number of days a salmon survives following spawning stream entry) based upon data collected 302 

in the Wood River system, Alaska (Carlson et al. 2007).  These data are specific to the sites and 303 

years where they were collected; differences in water level, intensity of predation, and salmon 304 

abundance are all likely to change these values.  For these reasons, future users of the method we 305 

demonstrated here should estimate stream life in their own systems, rather than relying on the 306 

model developed using the Carlson et al. (2007) data.  This is particularly important because a 307 

sensitivity analysis showed our in stream salmon estimates were quite sensitive to changes in 308 

estimated stream life (Fig. 5); a two day increase in stream life increased the estimated maximum 309 

abundance by 14% on Meadow Creek and 22% on Southeast Creek.   310 

 Similarly, a good escapement estimate is only possible if users accurately model the 311 

relationship between time lapse and video counts (Hansen et al. 1983).  This is critical given the 312 

large differences in abundance estimates resulting from small differences in model structure or 313 

fit (Table 2, Fig. 4).  It is important to consider multiple model shapes; different stream 314 

morphologies or salmon species may produce different salmon run patterns.  For example, steep 315 



streams are likely to produce models with different slopes for salmon swimming upstream and 316 

downstream.  The segmented model structure can account for this pattern, and thus should 317 

always be included in the candidate model set.  Also, a polynomial model might be appropriate 318 

for streams that experience high densities of spawners.  In general, a polynomial model is needed 319 

if time-lapse detection of passing salmon changes with salmon run intensity.  For example, as 320 

salmon reach high densities, they may not be able to move upstream very quickly because of 321 

crowding.  This could result in relatively higher detection at high run intensities.  In this case, a 322 

polynomial model would likely model the relationship better than a first order model.  323 

Regardless of the model shape, it is important that users use standard model diagnostics and 324 

good sense to fit the best model possible. 325 

From four years of testing this method on different streams and different sites within 326 

streams we have learned several important lessons.  First, this counting system is most accurate 327 

and requires the least effort when located where flow is rapid but the water surface is smooth. 328 

The rapid flow prevents salmon from loitering above the contrast panels (which can introduce 329 

noise into the time-lapse counts), while the smooth water surface makes it easy to see passing 330 

salmon.  Second, this system works best in shallow streams. Deep streams (>1 m) were 331 

problematic because salmon were more likely to swim at different depths, which caused their 332 

outlines to overlap and made counting more difficult.  It was also more difficult to light deep 333 

streams at night.  We found that our infrared lights did not light passing salmon adequately if 334 

streams were more than one meter deep.  Using conventional flood lights (visible light) solves 335 

this problem; however, it negates the advantages of using IR lights, which is invisible to humans, 336 

fishes, and most wildlife.  Third, it is important to orient the camera away from the sun 337 
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(northward in the northern hemisphere), because otherwise the surface of the water reflects glare 338 

towards the camera. 339 

Although this new method increases the breadth of sites that can be monitored, it has 340 

some limitations.  As with other methods, the turbidity associated with high flow events can 341 

make seeing passing salmon difficult or impossible.  Fortunately, these events tend to be brief in 342 

the small streams for which we designed this system.  Also, it can be difficult to distinguish 343 

among species if a site has multiple species migrating at the same time.  Finally, this system can 344 

only monitor streams up to 15 m wide.  Beyond this width, counting accuracy is likely to 345 

decrease as the salmon in the images become more distant.  One potential solution is to use two 346 

camera towers on opposite banks, each viewing one half of the stream.    347 

Using this system, it can be difficult to accurately model the relationship between time-348 

lapse counts and salmon passage if escapement is less than two or three thousand salmon.  This 349 

is because at low escapement, hourly time-lapse counts tend to vary little, regardless of the 350 

relative intensity of the run.  This makes it difficult to effectively model the relationship between 351 

time-lapse photo counts and video counts.  One solution to this problem is to increase observer 352 

effort by either increasing the length of the sampling unit (e.g. from one to two hours) or by 353 

increasing the sampling frequency (e.g. 3-photo burst every 30 seconds).  This would increase 354 

the contrast between weak and strong runs, but also increase the time required to review photos 355 

and/or video.  Another solution is to use a model from a stream with similar features (width, 356 

depth, velocity, etc.), although we know from the data presented here that models can differ 357 

greatly among streams (Table 2).  For example, if we had used the Southeast Creek model to 358 

estimate Meadow Creek escapement, we would have overestimated by 89% compared to the 359 

Meadow Creek top model.   360 



In general, salmon researchers should strive to minimize their impact on natural salmon 361 

behavior.  In small streams such as those monitored here, spawning salmon tend to move up and 362 

downstream frequently (Fig. 4, top), a behavior that may be a strategy for avoiding predators 363 

(Bentley et al. 2014).  Salmon monitoring methods such as weirs have the potential to limit these 364 

movements.  This could allow predators such as bears to catch salmon more easily, which could 365 

decrease salmon spawning success rates and alter trophic interactions with salmon consumers.  A 366 

key strength of the method presented here is that it allows salmon to move freely and allows 367 

natural interactions with salmon consumers.  368 

 As with many resources used by wildlife, salmon availability is very patchy in space and 369 

time (Armstrong and Schindler 2011).  This presents a challenge for researchers and managers 370 

interested in using sampling to estimate their abundance; the more patchy or pulsed the salmon 371 

run, the less accurate a random sampling method will be without large amounts of effort.  Here, 372 

we overcame this challenge by using a model-based design instead of a random sampling-based 373 

design.  This allowed us to relax the demands on our camera system; rather than requiring 374 

complete video coverage, we merely needed hours of video that represented the full range of 375 

salmon run intensities.  Given the ubiquity of patchy (in space) or pulsed (in time) resource 376 

availability, we suspect that this approach to double sampling could be usefully employed in a 377 

variety of natural resources applications.   378 

 The salmon counting method that we present here expands the range of salmon spawning 379 

habitats that can be realistically monitored.  Compared to existing methods, our solution is less 380 

expensive, less time consuming, and less detrimental to salmon and the wildlife that use them.  381 

The data produced can help improve our understanding of how population dynamics at small 382 

scales creates stability at the watershed scale.  Lastly, due to their low cost and relative 383 



portability, these systems would be ideal for monitoring salmon populations of conservation 384 

concern.  For example, they could produce baseline and ongoing data on the abundance of 385 

salmon spawning downstream of mines or other resource development projects.  386 
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