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ABSTRACT
Background. Papillary thyroid carcinoma (PTC) is the commonest thyroidmalignancy
originating from the follicle cells in the thyroid. Despite a good overall prognosis,
certain high-risk cases as in those with lymph node metastasis (LNM) have progressive
disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19–24
nucleotides single-stranded RNAs which regulate gene expression and these molecules
have been shown to play a role in LNM. The integrated analysis of miRNAs and gene
expression profiles together with transcription factors (TFs) has been shown to improve
the identification of functional miRNA-target gene-TF relationships, providing a more
complete view of molecular events underlying metastasis process.
Objectives. We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to
identify differentially expressed miRNAs/genes in PTC patients with LNM-positive
(LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the
miRNA-gene-TF regulatory circuit that regulate LNM in PTC.
Results. PTC patients with LNM (PTC LNM-P) have a significantly shorter disease-free
survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel
Cox test, p= 0.0049). We identified 181 significantly differentially expressed miRNAs
in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated.
The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31,
hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed
between PTC LNM-P and normal thyroid while 400 miRNAs were differentially
expressed between PTC LNN and normal thyroid. We found four significant en-
richment pathways potentially involved in metastasis to the lymph nodes, namely
oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte
transendothelial migration and cytokine–cytokine receptor interaction. OxPhos was
the most significantly perturbed pathway (p= 4.70E−06) involving downregulation of
90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and
REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC
LNN.
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Conclusion. We found evidence of five miRNAs differentially expressed in PTC LNM-
P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph
node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM
in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge,
the roles of these TFs have been studied in PTC but the precise role of this miRNA with
these TFs in LNM in PTC has not been investigated.

Subjects Molecular Biology, Oncology
Keywords Papillary thyroid carcinoma, Lymph node, MicroRNA, Gene expression

INTRODUCTION
Papillary thyroid carcinoma (PTC) is the most common malignancy originating from the
thyroid. Although the prognosis of PTC is generally good with a high 5-year survival rate,
cases demonstrating certain clinicopathological parameters are progressive, have poorer
prognosis and are considered as high-risk (Ito et al., 2009). Numerous classification systems
for thyroid carcinoma have been established in order to classify high-risk cases such as
AMES (Cady & Rosai, 1988), AGES (Hay et al., 1987), MACIS (Hay et al., 1993) as well as
TNM (Sobin & Wittekind, 2002; AJCC, 2010). The TNM classification is the most recent
classification system and is based on size and extrathyroid extension (T), lymph node
involvement (N), distant metastasis (M) and patient’s age.

MicroRNAs (miRNAs), firstly identified in Caenorhabditis elegans, are a class of
endogenous (non-protein-coding), 19–24 nucleotides single-stranded RNAs that derive
from a stem-loop precursor to inhibit gene expression by binding primarily to the 3′-UTR
of specific ‘target’ messenger RNA (mRNAs). MiRNAs that bind with perfect or nearly
perfect complementarity to protein-coding mRNA sequences induce the RNA-mediated
interference (RNAi) pathway, resulting in the disruption of mRNA stability and/or
translation (Bartel, 2009). Dysregulation of miRNAs expression in human cancers have
been demonstrated by many studies (Iorio & Croce, 2012). Through expression profiling
studies, miRNAs were shown to be linked to tumor development, tumor progression,
and response to treatment, signifying their potential use as biomarkers for diagnosis and
prognosis (Iorio & Croce, 2012). MiRNAs have also been shown function as biomarkers in
predicting lymph node metastasis (LNM). There was a positive correlation between high
hsa-miR-21 expression with tumor stage and LNM in patients with breast cancer (Yan et
al., 2008), and the development of distant metastases in colorectal cancer patients (Slaby
et al., 2007). Most recently, hsa-miR-1207-5p was suggested as a useful biomarker in the
prediction of LNM in gastric cancer (Huang et al., 2015) and head and neck cancer (De
Carvalho et al., 2015).

The current approach of miRNA target gene prediction via in silico analysis is built upon
sequence similarity search and thermodynamic stability (Alexiou et al., 2009). Nevertheless,
it is acknowledged that the results of in silico target prediction algorithms suffer from very
low specificity (Alexiou et al., 2009). The combination of in silico target predictions with
miRNA and gene expression profiles has been proven to improve the identification of
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functional miRNA-target gene relationships (Nunez-Iglesias et al., 2010; Ma et al., 2011).
As miRNAs act prevalently through degradation of the target genes, expression profiles
of miRNA and target genes/transcripts are predicted to be inversely correlated (Bisognin
et al., 2012). Another regulatory component, the transcription factors (TF), has also been
shown to activate or repress miRNA expression level, further adding to the complexity
of gene regulation. Efforts have been made to comprehend the mechanism of miRNAs
in decreasing target genes expression; however the study of miRNA regulation by TFs
(TF–miRNA regulation) is rather limited (Wang et al., 2010a).

The Cancer Genome Atlas (TCGA) Research Network recently published a molecular
characterization of 507 PTCs and 59 matched normal adjacent tissues with respect to
genomic, transcriptomic and proteomic signatures togetherwithDNAmethylation profiles,
clinical and pathological features (Cancer Genome Atlas Research Network, 2014). Data were
collected through several studies across different institutions, thus creating a comprehensive
dataset of PTC samples. Through unsupervised clustering methods, TCGA yielded six
subtypes for miRNA expression and five for gene expression. However, miRNA and
gene expression profiles between PTC with and without LNM were not comprehensively
discussed. Here we reanalyzed these TCGA datasets on PTC with the aim of identifying
differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) as
compared to lymph node negative (LNN) PTC patients and to investigate the miRNA-
gene-TF regulatory circuit that governs LNM in PTC.

MATERIALS AND METHODS
TCGA papillary thyroid cancer dataset
We used the TCGA-generated microRNA sequencing (miRNAseq) and mRNAseq data for
495 tumors and 59 normal thyroid samples (Cancer Genome Atlas Research Network, 2014).
Metadata containing clinical information including BRAF V600E mutation status was
obtained from cBioPortal (http://www.cbioportal.org/study.do?cancer_study_id=thca_
tcga_pub#clinical) while miRNAseq and mRNAseq of 507 PTC patients were obtained
from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm)
(accessed from March 27, 2015 to May 25, 2015). Information were available for 507 PTC
patients. The list of patients from the metadata was then filtered for PTC patients with
N0, N1, N1a, and N1b, resulting in a total of 421 PTC patients out of the 507 patients (86
patients were excluded due to unavailability of node status). The clinical parameters are
presented in Table 1.

Only samples with paired miRNAseq and mRNAseq data were selected, resulting in
exclusion of additional three patients. In the end, we obtained a total of 418 patients’ dataset
which includes 213 patients with PTC LNN (N0) and 205 PTC LNM-P (53 patients with
N1, 86 patients with N1a, 66 patients with N1b) (Table S1). Combined with 59 normal
thyroid tissues, the total of datasets included in this study were 477. The miRNA and gene
expression datasets consisting of 1,046 human miRNAs and 20,531 genes, respectively,
were used for subsequent analysis.
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Table 1 Patient characteristics and integrated profiles in the TCGA PTC cohort.

Variables PTC LNN PTC LNM-P

N0 (n= 213) N1 (n= 53) N1a (n= 86) N1b (n= 66)

Age range (years) 15–85 19–83 18–83 19–89
Mean age 49.4 41.9 43.5 48.4

Gender (n)
Male 50 (23.5%) 14 (26.4%) 25 (29.1%) 27 (40.9%)
Female 163 (76.5%) 39 (73.6%) 61 (70.9%) 39 (59.1%)

Disease free status
Recurred/progressed 5 (2.3%) 7 (13.2%) 6 (7%) 6 (9.1%)
Disease free 178 (83.6%) 41 (77.4%) 75 (87.2%) 47 (71.2%)
Unknown 30 (14.1%) 5 (9.4%) 5 (5.8%) 13 (19.7%)

Disease free (range in months) 0.03–155 0–131 0–157 0.2 –46
Mean disease-free survival 23.6 (n= 183) 34.5 (n= 48) 21.5 (n= 81) 13.5 (n= 53)

Overall survival status
Deceased 35 (16.4%) 12 (22.6%) 11 (12.8%) 19 (28.8%)
Alive 178 (83.6%) 41 (77.6%) 75 (87.2%) 47 (71.2%)

Overall survival (range in months) 0.03–155 0–131 0–157 0.2 –97.7
Mean overall survival 24.3 (n= 182) 35.2 (n= 43) 21.4 (n= 75) 15.2 (n= 50)

Extrathyroidal extension
None 160 (75.1%) 31 (58.5%) 49 (57%) 37 (56.1%)
Minimal (T3) 42 (19.7%) 14 (26.4%) 33 (38.4%) 23 (34.8%)
Moderate/advanced (T4a) 3 (1.4%) 5 (9.4%) 1 (1.2%) 4 (6.1%)
Very advanced (T4b) 0 (0%) 1 (1.9%) 0 (0%) 0 (0%)
Unknown 8 (3.8%) 2 (3.8%) 3 (3.5%) 2 (3%)

BRAF status
Mutated 94 (44.1%) 25 (47.2%) 53 (61.6%) 32 (48.9%)
Wild type 119 (55.9%) 28 (52.8%) 33 (38.4%) 34 (51.5%)

Survival analyses
Kaplan–Meier survival analysis was carried out on disease-free and overall survival duration
of TCGAPTCpatients for whom follow-up details were available. Overall survival is defined
as the duration from the date of diagnosis to death (due to all causes) while disease-free
survival is defined as the duration from the date of the diagnosis to the date of recurrence,
second cancer, or death due to all causes (whichever occurred first) (Schvartz et al., 2012).
Curves were compared by univariate (log-rank) analysis. Statistical analyses were performed
using GraphPad Prism version 6 (GraphPad, San Diego, CA, USA). P values ≤ 0.05 were
considered significant.

Clinical specimen and total RNA isolation
Ten fresh frozen tumour-adjacent normal PTC tissues specimens from UKMMC-UMBI
Biobank were subjected to cryosectioning and Haematoxylin and Eosin (H&E) staining.
This part of research was approved by the Universiti Kebangsaan Malaysia Research
Ethics Committee (UKMREC) (reference: UKM 1.5.3.5/244/UMBI-2015-002). A written
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informed consent had been signed by these 10 subjects included in validation phase
according to institution’s rules and regulations. All the slides were reviewed by the
pathologist to assess the percentage of tumour cells and normal cells. Only tumour
tissues which contain >80% cancer cells and normal tissues with <20% necrosis were
subjected to nucleic acid extraction. Total RNA including miRNA was isolated from the
frozen samples using AllPrep DNA/RNA/miRNA Isolation Kit (Qiagen, Hilden, Germany)
according to themanufacturer’s protocol. The total RNA quality and quantity were assessed
via absorbance spectrophotometry on a Nanodrop 1000 instrument (Thermo Scientific,
Wilmington, DE, USA) and QubitTM fluorometer (Invitrogen, USA). Integrity of RNA was
assessed using Eukaryote Total RNANano chip on Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, USA). Only total RNA with RNA Integrity Number (RIN) of at least 6 were
used for subsequent steps. Eukaryote Small RNA chip (Agilent Technologies, Santa Clara,
USA) was used for determination of concentration and percentage of small RNA.

Library preparation and next generation sequencing
MiRNA libraries were prepared using Illumina Truseq Small RNA library preparation kit
(Illumina, SanDiego, USA) following manufacturer’s protocol. Briefly, 3′ and 5′ adapters
were sequentially ligated to the ends of small RNAs fractionated from 1µg of total RNA, and
reverse transcribed to generate cDNA. The cDNA was amplified using a common primer
complementary to the 3′ adapter, and a primer containing 1 of 48 index sequences. Samples
were size-selected (145–160 bp fragments) on a 6% polyacrylamide gel, purified, quantified
and pooled for multiplexed sequencing. The resulting pooled libraries were normalized
to 2 nM and were hybridized to oligonucleotide-coated single-read flow cells for cluster
generation usingHiSeq R© Rapid SRCluster Kit v2 onHiseq 2500. Subsequently the clustered
pooled microRNA libraries were sequenced on the HiSeq 2500 for 50 sequencing cycles
using HiSeq R© Rapid SBS Kit v2 (50 Cycle). Base calling was performed using CASAVA
(v.1.8.2) (Illumina, San Diego, CA, USA) and short-read sequences in FASTQ format were
used for downstream analysis.

Bioinformatics analyses
The miRNASeq and RNASeq V2 level 3 data from TCGA were used exclusively. The
normalised expression (reads permillion or RPM) of all miRNAs was log2-transformed and
used for fold change calculation. The RNAseq by Expectation-Maximization (RSEM) values
(from files with the extension .rsem.genes.results) were used to quantify messenger RNA
(mRNA) expression levels. The RSEM algorithm is a statistical model that estimates RNA
expression levels from RNA sequencing counts (Li & Dewey, 2011). We then performed
the Students’ unpaired t -test with a Benjamini Hochberg false discovery rate (FDR)
multiple testing correction and log2 fold change calculation using Bioconductor version
3.1 (BiocInstaller 1.18.2) (Gentleman et al., 2004) in R version 3.2.0 (R Development
Core Team, 2008) (Files S1 and S2). Downregulated genes will have negative log2
values while upregulated genes will have positive log2 values. Statistical significance
is denoted as p≤ 0.05. Heatmaps were created using GeneE from the Broad Institute
(http://www.broadinstitute.org/cancer/software/GENE-E) while Venn diagrams were
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created using Venn online tool (http://bioinformatics.psb.ugent.be/webtools/Venn). All
other figures were created or labelled using Adobe Photoshop.

Analysis of the miRNAseq data from our in house experiment were performed using
BaseSpace miRNA Analysis app version 1.0.0 (Illumina, San Diego, CA, USA) using the
default setting. Briefly, adapters were trimmed using cutadapt, the trimmed reads were
mapped on miRNA precursors using SHRiMPS aligner, the reads associated to mature
miRNAs were counted and differential expression between experimental conditions were
analysed using DESeq2 (Cordero et al., 2012). The expression, log2 fold change and adjusted
p-value of hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204 were
then extracted from the overall results.

Pathway enrichment analysis and integrated analysis of miRNA and
gene expression
The functions and pathways of the differentially expressed genes were annotated and
analysed using the annotation tools from the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Huang, Sherman & Lempicki, 2009a; Huang, Sherman &
Lempicki, 2009b) according to the steps described in these publications. The identified genes
were also jointly annotated against the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa & Goto, 2000). The genes that were annotated in the KEGG database
as being involved in signaling pathways were subjected to further analysis. Pathways with
Benjamini-adjusted p value ≤ 0.05 were considered to be statistically significant.

Integration of the miRNAs dataset with gene expression dataset and calculation of
correlation were performed inMAGIA2, a web tool for the integrated analysis of target pre-
dictions,miRNA and gene expression data (Bisognin et al., 2012).MiRNA target predictions
include transcription factor binding sites (TFBS) within miRNA and gene promoters. In
this analysis, matched expression data matrices of significantly dysregulated miRNAs and
genes (BH adjusted p value ≤ 0.05) were uploaded for integrated analysis. EntrezGene IDs
and DIANA-microT (Maragkakis et al., 2009) target prediction algorithms were selected.
Anticorrelated expressions were investigated between miRNA and their putative target
genes using Pearson correlation measure.

RESULTS
The effect of lymph node status on survival duration of TCGA
PTC patients
Overall survival in PTC patients was not influenced by LNM status (Fig. 1A); however,
PTC patients with LNM has significantly shorter disease-free survival rate compared to
PTC patients without LNM (Log-rank Mantel Cox test, p= 0.0049; Fig. 1B).

Differentially expressed miRNAs
We identified 181 miRNAs which were significantly differentially expressed in PTC
LNM-P versus PTC LNN (BH corrected p value ≤ 0.05). Among the 181 miRNAs
significantly expressed in PTC LNM-P versus PTC LNN, 110 were upregulated and 71 were
downregulated (Table S2). Figure2 illustrates a heatmap representing the expression levels
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Figure 1 Survival analysis of PTC with LNM and PTC without LNM.

Figure 2 Heat map of the 181 differentially expressed miRNAs in PTC LNM-P and LNN (Student’s T -test with BH corrected p value≤ 0.05).

of 181 deregulated miRNAs in PTC LNM-P versus PTC LNN. The list of top deregulated
miRNAs includes hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204
(log2 fold change 1.7, 1.3, 1, −1.1 and −1.3, respectively, Fig. 3). On the other hand, 395
miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400
miRNAs were differentially expressed between PTC LNN and normal thyroid (Figs. S1 and
S2, respectively). The list of miRNAs significantly deregulated in PTC LNM-P and PTC
LNN compared to normal thyroid is included in Table S3.
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Figure 3 Expression levels of five selected miRNAs deregulated in PTC. Boxplots (A) illustrate log2 normalized miRNA reads in PTC LNM-P,
PTC LNN and normal thyroid. Table (B) showing log2 fold change and p value of selected miRNAs in PTC LNM-P compared to PTC LNN.

We then determine the expression of these top deregulated miRNAs in a small set
of validation experiment consisted of five pairs of tumour-adjacent normal from each
PTC LNM-P and PTC LNN cases (total of 20 samples comprised of five PTC LNM-P,
five PTC LNN and 10 adjacent normal thyroid tissues from each patient). As illustrated
in Fig. 3B, hsa-miR-146b was significantly upregulated in PTC LNM-P versus adjacent
normal thyroid (log2 fold change 6.0) and in PTC LNN versus adjacent normal thyroid
(log2 fold change 4.7). Similar trends were observed for hsa-miR-375, hsa-miR-31 and
hsa-miR-204 in PTC LNM-P versus adjacent normal thyroid (log2 fold change 3.6, 3.1
and−3.4, respectively, Fig. 3B). However, downregulation of hsa-miR-7-2 in PTC LNM-P
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versus adjacent normal thyroid did not reach statistical significance. On the other hand,
expression of hsa-miR-375, hsa-miR-7-2 and hsa-miR-204 in PTC LNN versus adjacent
normal thyroid were in concordance with our analysis using the TCGA data (log2 fold
change 3.6, −2.3 and −2.7, Fig. 3B).

These findings did not deviate much from our analysis using the TCGA PTC data
with the exception to hsa-miR-7-2 in PTC LNM-P versus adjacent normal thyroid and
hsa-miR-31 in PTC LNN versus adjacent normal thyroid which failed to reach statistical
significance (Table S2). This could be explained due to the fact that our validation samples
were tumour-adjacent normal tissues while TCGA PTC specimens were of unpaired
normal tissues. However, the differential expression of these five top deregulated miRNAs
did not reach statistical significant when we compared between PTC LNM-P and PTC
LNN (Fig. 3B). This might be due to small sample size in our validation study.

Differentially expressed genes
Initial filtering revealed 8,611 significantly deregulated genes in PTC LNM-P versus PTC
LNN, 14,192 genes in PTC LNM-P versus normal thyroid and 13,392 genes in PTC LNN
versus normal thyroid. There were 4,135 upregulated and 4,476 downregulated genes
in PTC LNM-P relative to PTC LNN. By increasing the stringency of selection to genes
with log2 fold change ≥ 1 or ≤−1, 407 genes were identified as strongly deregulated.
Among the strongly deregulated genes were SFTPB, CLDN10, DIO1 and MT1G (log2 fold
change 3.1, 2.9, −2.2 and −2.5 respectively, Table S4). Various cancer-related genes were
also differentially expressed significantly, including BRAF, BRCA2, VEGFA, VEGFB, RET,
PIK3CA, CTNNB1 and GNAS (Table S4).

Enriched pathways in PTC LNM-P
The significantly dysregulated genes in PTC LNM-P versus PTC LNN were mainly
enriched in 12KEGGpathways including oxidative phosphorylation (OxPhos), Parkinson’s
disease, focal adhesion, Alzheimer’s disease, valine, leucine and isoleucine degradation,
pathways in cancer, cell adhesionmolecules (CAMs), leukocyte transendothelial migration,
cytokine–cytokine receptor interaction, small cell lung cancer, Huntington’s disease and
extracellular matrix receptor interaction (Fig. 4A). When we overlapped the results from
the three comparison groups (PTC LNM-P versus PTC LNN, PTC LNM-P versus
normal thyroid and PTC LNN versus normal thyroid), four unique pathways potentially
involved in metastasis to the lymph nodes were significantly enriched, namely, oxidative
phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial
migration and cytokine–cytokine receptor interaction pathways (Fig. 4A). The oxidative
phosphorylation pathwaywas themost significantly perturbed (p= 4.70E−06)with general
downregulation of 90 OxPhos-related genes (Fig. 5). Focal adhesion and pathways in
cancer were commonly enriched in all the three group comparisons. Pathways in cancer
is a collection of general cancer-related pathways and is an indication that many essential
carcinogenic processes may be under the influence of dysregulated miRNAs (Pizzini et al.,
2013). On the other hand, ECM-receptor interaction pathway and the valine, leucine and
isoleucine degradation pathway were commonly enriched only in PTC LNM-P versus PTC
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Figure 4 Significantly enriched pathways in PTCs. Significant KEGG pathway associations to 8611 significantly deregulated genes in PTC LNM-P
versus PTC LNN, 14,192 genes in PTC LNM-P versus normal thyroid and 13,392 genes in PTC LNN versus normal thyroid.

LNN and PTC LNM-P versus normal thyroid but were not enriched in PTC LNN versus
normal thyroid (Fig. 4B).

Integrated mixed regulatory circuits, involving miRNAs, genes and
TFs in PTC LNM-P
To obtain a more comprehensive insight into the molecular circuits behind LNM in PTC,
we focused on functional miRNA-target relationships by performing an in silico integration
between differentially expressed miRNAs and genes using MAGIA2. Transcription factors-
miRNA (TF-miRNA) prediction was based on mirGen2.0 database (Friard et al., 2010)
and TransmiR (Wang et al., 2010a), whereas the TF–gene interactions were acquired from
the ‘TFBS conserved’ track of the University of California Santa Cruz (UCSC) genome
annotation for humans (version hg19) (Bisognin et al., 2012). Our results show that 12
miRNAs are involved in the strongest 200 interactions and theywere identified as significant
by MAGIA2. Hsa-miR-147b, hsa-miR-301b, hsa-miR-375, hsa-miR-496, hsa-miR-543,
hsa-miR-577, hsa-miR-765, hsa-miR-892a, hsa-miR-934, hsa-miR-935, hsa-miR-940 and
hsa-miR-944 were predicted to activate or inhibit 3,746 genes and 1,987 TFs (Fig. 6).
Hsa-miR-577 and hsa-miR-147b consistently appeared in the top 20 regulatory circuits
across all group comparisons. Interestingly, hsa-miR-301b appeared in both of the top 20
circuits in PTC LNM-P versus PTC LNN or normal thyroid but was absent in PTC LNN
versus normal thyroid (Fig. S3).

DISCUSSION
In this study, we explored the landscape ofmiRNA andmRNA expression of PTCusing data
obtained from the TCGA THCA project aiming to identify key pathways involved in lymph
node metastasis. Our analysis revealed 110 upregulated miRNAs and 71 downregulated
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Figure 5 KEGG pathwaymap illustrating oxidative phosphorylation in human. The OxPhos-related genes significantly altered in PTC LNM-P
compared to PTC LNN were depicted with red star. Pathway figure was obtained from KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kane-
hisa & Goto, 2000; Kanehisa et al., 2016) in DAVID analysis.

miRNAs in PTC LNM-P versus PTC LNN. The top deregulated miRNAs includes hsa-
miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. Our findings are
supported by several other similar studies, and in particular hsa-miR-146b, which was
reported to be upregulated in PTC LNM-P versus PTC LNN (Lee et al., 2013; Yang et al.,
2013; Acibucu et al., 2014; Deng et al., 2015).

Hsa-miR-146 is one of the widely studied miRNAs in thyroid cancers and has been
shown to be frequently upregulated in PTC (He et al., 2005; Pallante et al., 2006; Tetzlaff
et al., 2007; Chen et al., 2008; Yip et al., 2011; Chou et al., 2010; Chou et al., 2013; Sun et
al., 2013), anaplastic thyroid cancer (Fassina et al., 2014) and follicular thyroid cancer
(FTC) (Wojtas et al., 2014). Functional analyses of hsa-miR-146 revealed its involvement
in various cellular functions including migration, invasion, proliferation, colony-forming
ability, cell cycle, and resistance to chemotherapy-induced apoptosis in BRAF-mutated
cell lines (Chou et al., 2013; Deng et al., 2015; Geraldo, Yamashita & Kimura, 2012). Using
multivariate logistic regression analysis, Chou and colleagues, (2013) demonstrated that
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Figure 6 Grand view of top 200 regulatory circuits constructed using significantly dysregulated miRNAs and genes in PTC LNM-P compared to
PTC LNN.

increased hsa-miR-146b expression is one of the independent risk factors for poor prognosis
in PTC, implicating the potential of this miRNA as a prognostic marker.

The genes targeted by hsa-miR-146b are mostly unknown, and to date there are
only two genes which has been reported as the direct targets of this miRNA in PTC.
Geraldo, Yamashita & Kimura (2012) reported SMAD4, an important member of the
transforming growth factor β (TGF-β) signaling pathway, as the target of hsa-miR-
146b-5p. The direct binding of hsa-miR-146b-5p on the SMAD4 UTR was confirmed via
a luciferase reporter assay and the inhibition of hsa-miR-146b-5p expression resulted
in significantly increased SMAD4 gene and protein expression levels in the human
PTC cell lines. Furthermore, the inhibition of hsa-miR-146b-5p increased the cellular
response to the TGF-β anti-proliferative signal, leading to significant reduction of cell
proliferation (Geraldo, Yamashita & Kimura, 2012). In a more recent study, the Zinc
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Ring Finger 3 (ZNRF3) gene was revealed as a direct target of hsa-miR-146b-5p and this
miRNA was shown to stimulate cell migration, invasion and epithelial-to-mesenchymal
transition (EMT) by downregulating ZNRF3 (Deng et al., 2015). Another study showed
that ZNRF3 inhibits Wnt signaling by interacting with FZD and LRP 5/6 complexes, hence
promoting Wnt receptor ubiquitination and degradation (Hao et al., 2012). Hsa-miR-
146b-5p increases the cell surface levels of FZD6 and LRP6 via suppression of ZNRF3,
causing enhanced Wnt/β-catenin signaling. These findings revealed a novel mechanism of
hsa-miR-146b-5p in mediating the induction of EMT and implied the role of ZNRF3 as a
tumor suppressor in PTC (Deng et al., 2015). Additional efforts to identify genes controlled
by hsa-miR-146b associated with LNM will eventually revealed new biomarkers that can
be utilized to correlate with disease outcome in PTC patients.

Hsa-miR-204 expression in PTC LNM-P is significantly lower than in PTC LNN. This
is the first report showing the downregulation of hsa-miR-204 in PTC LNM-P. This
miRNA was also downregulated in PTC compared to adjacent normal thyroid tissue and
noncancerous thyroid (Swierniak et al., 2013). It is likely that hsa-miR-204 is downregulated
in PTC compared to normal or benign thyroid disease and is further supressed when
lymph node metastasis occurs. This miRNA is known as a tumor suppressor miRNA and is
downregulated in various cancers including renal clear cell carcinoma (Gowrishankar et al.,
2014), minimal deviation adenocarcinoma (MDA) of uterine cervix (Lee et al., 2014) and
breast cancer (Li et al., 2014). This miRNA has also been shown to have a prognostic value;
low level of hsa-miR-204-5p expression was correlated with LNM, advanced stage and low
survival rate in endometrial cancer (Bao et al., 2013), and also poor prognosis in colorectal
cancer (Yin et al., 2014). In vitro functional analyses revealed the involvement of hsa-miR-
204 in inhibiting the clonogenic growth, migration and invasion of endometrial carcinoma
cells (Bao et al., 2013). In addition, restoration of hsa-miR-204-5p expression supressed cell
proliferation, migration, invasion and induced apoptosis and chemotherapeutic sensitivity
in colorectal cancer cell (Yin et al., 2014).

The validated targets for hsa-miR-204 in PTC are also not well-characterized. To date
there is only one study investigating the functional role of hsa-miR-204 in PTC (Liu et al.,
2015). Enforced expression of hsa-miR-204-5p inhibited cell proliferation and induced
apoptosis and cell cycle arrest in PTC cell lines (TCP-1 and BCPAP). In addition, hsa-
miR-204-5p also inhibits PTC cell tumorigenicity in vivo (Liu et al., 2015). Bioinformatics
prediction analyses using three algorithms (miRanda, Pictar, and TargetScan) revealed the
insulin-like growth factor-binding protein 5 (IGFBP5), a gene playing an essential role
in carcinogenesis (Beattie et al., 2006), as a potential target of hsa-miR-204-5p. Luciferase
reporter assay confirmed the direct binding of hsa-miR-204-5p to the 3′ UTR of IGFBP5
(Liu et al., 2015). In the same study, hsa-miR-204-5p and IGFBP5 expression were also
shown to be inversely correlated. Their findings confirmed the role of hsa-miR-204-5p as
a tumor suppressor in PTC and revealed the potential use of this miRNA as a therapeutic
agent in the treatment of PTC.

In an attempt to identify genes and pathways associated with mortality in PTC, Nilubol
et al. (2011) performed genome-wide expression (GWE) analysis in 64 PTC patients and
identified the oxidative phosphorylation pathway as one of the significantly perturbed
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pathways. In addition, Lee and colleagues, (2015a) also showed that the expression
of OxPhos gene sets was significantly lower in primary PTC than in matched normal
thyroid tissue. Our findings revealed a similar trend with OxPhos genes being significantly
downregulated in PTCs versus normal thyroid tissues as well as in PTC LNM-P versus
PTC LNN. However, significant enrichment of OxPhos pathway was only observed in PTC
LNM-P compared to PTC LNN. Alteration in metabolic processes has been considered
as an indispensable component of malignant transformation (Lee et al., 2015a) thus the
involvement of oxidative phosphorylation in LNMinPTCnecessitates further investigation.

Oxidative phosphorylation is a process whereby an adenosine triphosphate (ATP) is
produced as a result of electrons transfer from nicotinamide adenine dinucleotide (NADH)
or flavin-adenine dinucleotide (FADH2) to oxygen by a series of electron carriers (Berg,
Tymoczko & Stryer, 2002). The thyroid gland is an endocrine organ with a high energy
consumption and oxidative processes are crucial for thyroid hormone synthesis (Lee et al.,
2015b). The mitochondria is responsible for providing 90% of the cellular energy necessary
for various biological functions through oxidative phosphorylation and plays an important
role in energy metabolism in the normal thyroid gland and in thyroid tumors (Kim et al.,
2012). Themitochondria is involved inmany cell signaling pathways by playing crucial roles
in apoptosis, cell proliferation and cellular Ca2+ homeostasis (Rustin, 2002). Mitochondrial
DNA (mtDNA) content was shown to be higher in PTC compared to the paired normal
DNA and in normal controls (Mambo et al., 2005). Despite advancement in the elucidation
of molecular events underlying thyroid carcinogenesis in the last decade, the function
and nature of energy metabolism in thyroid cancer remain unclear (Lee et al., 2015b).

In addition to oxidative phosphorylation, we also identified significant enrichment
of other cancer-related pathways such as cell adhesion molecules (CAMs), leukocyte
transendothelial migration and cytokine–cytokine receptor interaction pathways which
were unique to PTC LNM-P versus PTC LNN. Interestingly, these pathways were not
significantly enriched when PTCs (LNM-P and LNN) were compared to normal thyroid
tissues. Taken together, it could be hypothesized that metastasis to the lymph node in PTC
occurred via changes in the aforementioned pathways. However, some pathways in our
analysis, such as valine, leucine and isoleucine degradation, could not be associated with
oncogenesis or metastasis and may need further investigation.

Our integrated analysis revealed hsa-miR-301b’s presence in the top 20 circuits in both
PTC LNM-P versus PTC LNN and PTC LNM-P versus normal thyroid but was absent
in PTC LNN versus normal thyroid despite significant downregulation with modest fold
change (log2 fold change of −0.3). Hsa-miR-301 is located in the intronic region of SKA2
(spindle and kinetochore associated complex subunit 2) and belongs to the hsa-miR-130
microRNA precursor family (Cao et al., 2010). In contrast to our findings, hsa-miR-301
upregulation has been reported in various cancers of non-thyroid origins and given that
a miRNA can act either as an oncomiR or tumor suppressor depending on the cellular
context and tissue type (Garzon, Calin & Croce, 2009), this observation is not unexpected.
There is no evidence of hsa-miR-301b dysregulation in PTC so far, but it was reported to
be upregulated in follicular thyroid adenoma compared to normal thyroid tissue (Rossing
et al., 2012). It is also upregulated in CRC without LNM in comparison to paracancerous
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control (Wang et al., 2010b). The inhibition of hsa-miR-301 decreased breast cancer cell
proliferation, clonogenicity, migration, invasion, tamoxifen resistance, tumor growth and
microvessel density, further establishing this miRNA as an oncomiR (Shi et al., 2011).
FOXF2, BBC3, PTEN, and COL2A1 were confirmed as its direct targets through luciferase
reporter assays (Shi et al., 2011).

Transcription factors (TFs) are a group of proteins involved in the initiation of
transcription and are important for the regulation of genes. Majority of oncogenes and
tumor suppressor genes encode the TFs (Ell & Kang, 2013). Dysregulation of oncogenic or
tumor suppressive TFs could influence multiple steps of the metastasis cascade, leading to
cancer progression (Ell & Kang, 2013). The involvement of TFs in PTChas been investigated
since decades ago and several thyroid-specific TFs have been identified (Guazzi et al., 1990;
Fabbro et al., 1994). Most recently, the glioma-associated oncogene homolog 1 (GLI1) has
been identified as a TF marker for LNM in PTC and it increases tumor aggressiveness via
the Hedgehog signaling pathway (Lee et al., 2015c). The hepatic leukemia factor (HLF) is
the only TF which appeared in the top 20 circuits of PTCs with or without LNM versus
normal thyroid from our integrated analysis. On the other hand, REL was identified in
the top 20 circuits only in PTC LNM-P in comparison to PTC LNN and will be discussed
further in the following section.

The HLF is a transcription factor that facilitates thyroid hormone activation from the
thyroid hormone receptor/retinoid X receptor heterodimer to hypoxia-inducible factor
(HIF-1α) (Otto & Fandrey, 2008). Triiodothyronine (T3) indirectly increases HIF-1α
mRNA by increasing the expression of HLF, subsequently initiating the transcription of
HIF-1α transcription factor (Burrows et al., 2011). HIF is another transcription factor
which acts under hypoxia and thus is active in a number of diseases associated with low
oxygen environment including cancer (Burrows et al., 2011). In fact, the HIF-1α protein
was differentially expressed in primary thyroid cancers associated with advanced stage; its
expression was supressed in normal thyroid tissue and was highest in the most aggressive
dedifferentiated anaplastic thyroid carcinomas (ATCs) (Hanada, Feng & Hemmings, 2004),
supporting its role for thyroid tumor aggressiveness, progression as well as metastasis.
In addition, we also identified a significant involvement of REL/NFkB in lymph node
metastasis of PTC which is in concordance with previously published data (Du et al., 2006).

In summary, we found evidence of five miRNAs differentially expressed in PTC
LNM-P. Enrichment analysis revealed that alteration in oxidative phosphorylation
pathway could be a key event involved in the lymph node metastasis of PTC suggesting
that manipulation of the energy metabolism processes may provide an alternative
therapeutic target for tackling metastasis or recurrence. In addition, via the integrated
analysis we discovered that hsa-miR-301b might be involved in promoting LNM in
PTC via activation of HLF, HIF and REL/NFkB. As far as we know, the roles of these
TFs have been explored in PTC; however the exact roles of this miRNA with these
TFs in LNM in PTC have not been studied. Hence, further investigation is necessary
for future research in order to completely unravel the mechanism of LNM in PTC.
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