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ABSTRACT
Multiple metrics have been developed to detect causality relations between data
describing the elements constituting complex systems, all of them considering their
evolution through time. Here we propose a metric able to detect causality within static
data sets, by analysing how extreme events in one element correspond to the appearance
of extreme events in a second one. The metric is able to detect non-linear causalities;
to analyse both cross-sectional and longitudinal data sets; and to discriminate between
real causalities and correlations caused by confounding factors. We validate the metric
through synthetic data, dynamical and chaotic systems, and data representing the
human brain activity in a cognitive task. We further show how the proposed metric
is able to outperform classical causality metrics, provided non-linear relationships are
present and large enough data sets are available.

Subjects Bioinformatics, Neuroscience, Statistics
Keywords Causality, Time series, Data analysis, Data mining

INTRODUCTION
Detecting causality relationships between the elements composing a complex system is
an old, though unsolved problem (Pearl, 2003; Pearl, 2009). The origin of the concept of
causality goes back to the ancientGreek phylosophy, according towhich causal investigation
was the search for an answer to the question ‘‘why?’’ (Evans, 1959; Hankinson, 1998); and
the debate was still hot in the late 18th century, in the work of David Hume (Hume, 1965)
and his argument that causality cannot be rationally demonstrated.

In the last few decades there has been an increasing interest for the creation of metrics
able to detect causality in real data, in order to improve our understanding of systems that
cannot directly be described. For instance, while one may suspect that the gross domestic
product of a country and its unemployment rate may be related, it is difficult to prove the
presence of this relationship, as economical models are neither perfect nor complete. The
same happens when one tries to infer if a gene is regulating a second one, in the absence
of a complete model of their dynamics, or of a pathway. The solution is thus to analyse if
the dynamics of these indicators are connected. Among the best known causality metrics,
examples include Granger causality, cointegration, or transfer entropy (Granger, 1988a;
Granger, 1988b; Schreiber, 2000; Staniek & Lehnertz, 2008; Verdes, 2005), to name a few.

All proposed causality metrics share a common characteristic: causality is defined as a
relation existing in the temporal domain, and thus require the study of pairs of time series.
For instance, for two processes X and Y , the transfer entropy is defined as the reduction
in the uncertainty about the future of Y when one includes information about the past of
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X (Schreiber, 2000). Similarly, the Granger causality involves estimating the reduction in
the error of an autoregressive linear model of Y given the history of X (Granger, 1988b).
Associating causality to the temporal domain is intuitive, due to the way the human
brain incorporates time into our perception of causality (Leslie & Keeble, 1987; Tanaka,
Balleine & O’Doherty, 2008). To exemplify, if we see a ball approaching a window, and just
after the window broken, we can safely conclude that the first event was the cause of the
second—and thus that causality is a relation between the past and the future. The need
of a time evolution is nevertheless an important limiting factor when studying systems
whose dynamics through time cannot easily be observed. Consider genetic analysis: one
single measurement is usually available per subject and gene, precluding the estimation of
gene–gene interactions through a causal analysis solely based on expression levels, as the
corresponding time evolution would not be accessible.

When only vectors of observations are available, i.e., vectors representing static
observations of different realisations of the same system, it is customary to resort to
statistics. This can be classical statistics, for then defining the relationship in terms of
linear or non-linear correlations; or Bayesian statistics and the vast field of statistical
learning and data mining (Vapnik, 2013; Zanin et al., 2016). Although correlation, and
statistical learning in general, appear prima facie as an interesting solution, they present
the important drawback of not being able of discriminating between real and spurious
causalities. Suppose one is studying a system composed of three interconnected elements,
as the one depicted in Fig. 1 (i), with the aim of detecting if the dynamics of element C is
caused byB. Additionally, no time series are available, and elements are described through
vectors of cross-sectional observations; in other words, multiple realisations of the same
system are available, but each one of them can only be observed at a single moment in
time. A statistically significant correlation between B and C may be found both when a
true causality is present (Fig. 1(iii)), and when both elements are driven by an unobserved
confounding elementA (Fig. 1(ii)).

In order to tackle the scenario of Fig. 1, in this contribution we propose a novel metric
for detecting causality from observational data. It entails three innovative points. First,
it is defined on vectors of observation, which do not have to necessarily represent a
time evolution. In other words, input vectors may correspond to gene expression levels
measured in a population, i.e., to a cross-sectional study; or, but not necessarily, to
multiple observations of the same subject, i.e., to a longitudinal study. Second, the method
is based on the detection of extreme events, and on their appearance statistics. This is not
dissimilar to Granger causality, as the latter measures how shocks in one time series are
explained by a second one; but without the need of a time evolution. Third, it is optimised
for the detection of non-linear causal relations, which are common in many real-world
complex systems (Strogatz, 2014), but that may create problems in standard causality
metrics (Granger & Terasvirta, 1993).

METHODS
Suppose two vectors of elements B= {bi} and C= {ci} of equal size. The two elements of
each pair (bi,ci) must be related, e.g., they may correspond to the measurement of two
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Figure 1 Distinguishing causality from correlation. (i) General situation, in which three elementsA,B
and C interact in a simple triangular configuration. If one is interested in the relation betweenB and C,
two different scenarios may arise. (ii) WhenA is dominating the dynamics, any common dynamics be-
tweenB and C will be a correlation, generated by the external confounding factor. (iii) The situation cor-
responding to a real causality betweenB and C.

biomarkers in a same subject. In the case ofB and C being time series, clearly (bi,ci) would
correspond tomeasurements at time i; yet, as already introduced, such dynamical approach
is not required.

Starting from these vectors, some of their elements are labelled as extreme when they
exceed a threshold, i.e., bi > τb and ci > τc . If a causality relation is present between
them, such that B→ C, this should affect the way extreme events appear. First, under
non-extreme dynamics, the two systems B and C are loosely coupled. Especially when
the relation is of a non-linear nature, small values in the former system are dampened
during the transmission. Second, most of the extreme values of B should correspond to
extreme values of C, as extreme signals will be amplified from the former to the latter by
the non-linear coupling. Third, extreme values of C only partially correspond to extreme
values of B; due to its internal dynamics, C can display extreme events not triggered by
the other element. An example of these three rules is depicted in Fig. 2; note how extreme
events (red bars) inB always propagate to C, while the second extreme event of C is caused
by its internal dynamics and is not propagated.

Let us denote by p1 the probability that an extreme event in C also corresponds to an
extreme event in B, i.e., p1= P(bi>τb|ci>τc). Conversely, p2 will denote the probability
that an extreme event inB corresponds to an extreme event inC, i.e., p2= P(ci>τc |bi>τb).
In the case of a real causality, the second condition implies that p1≈ 1, the third one that
p2� 1. On the other hand, in the case of an external confounding effect, and if the two
thresholds are chosen such that the probability of finding extreme events is the same for
both elements, it is easy to see that p1 ≈ p2. Notice that the same is true if B and C are
bidirectionally interacting.
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Figure 2 Graphical representation of the proposed metric. A systemB is causing another system C
when extreme values in the former, represented by red bars, propagate to the second; the opposite may
nevertheless not happen, as C can also generate extreme values due to its own internal dynamics. The hor-
izontal axis represents sequences of observations, but not necessarily a time evolution.

The previous analysis suggests that the necessary condition for having aB→C causality
is p1> p2. The statistical significance can be quantified through a binomial two-proportion
z-test:

z =
p1−p2√

p̂(1− p̂)( 1
n1
+

1
n2
)
, (1)

with n1 and n2 the number of events associated to p1 and p2, and p̂= (n1p1+n2p2)/(n1+n2).
The corresponding p-value can be obtained through a Gaussian cumulative distribution
function.

Before demonstrating the effectiveness of the proposed causality metric, it is worth
discussing several aspects of the same.

First of all, the attentive reader will notice the similarity of this methodwith somemetrics
for assessing synchronisation in time series. For instance, local maxima and their statistics
were considered in Quiroga, Kreuz & Grassberger (2002), and event coincidences in Donges
et al. (2015). In both cases, an essential ingredient is the time evolution: extreme events in
one time series are identified and related to those appearing in a second time series, and
the delay required for their transmission assessed through a time shift optimisation. While
this yields an estimation of the direction of the information flow between two time series,
it cannot be applied to systems whose time evolutions are not accessible. The metric here
proposed has the advantage that can be applied to static data sets, in principle paving the
way to the construction of data mining algorithms based on causality. This applicability to
static data sets is also themain difference with respect to Gómez-Herrero et al. (2015), which
proposes a method for the detection of relations between large ensembles of short time
series. While Gómez-Herrero et al. (2015) allows analysing fast systems, described by time
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series comprising only a handful of values, it is still not applicable to static measurements,
as for instance those found in genetics.

Second, the metric definition requires setting two thresholds, i.e., τb and τc . This can
be done using a priori information, e.g., when a level is accepted as abnormal for a given
biomarker; or by simply explore all the parameters space, in order to assess the values
of (τb,τc) corresponding to the lowest p-value. This may result especially useful in those
situations for which the input elements are not well characterised: beyond the identification
of causality relations, this method may also be used to define what an abnormal value is.
Additionally, the form of detecting extreme events through a threshold is different from
similar approached in the literature. For instance, Quiroga, Kreuz & Grassberger (2002)
defines the events of interest as local maxima, independently of their amplitude; some
of these events may not pass the threshold filtering here proposed, which only considers
extreme (in the sense of not normal or not expected, but not necessarily ofmaximal) values.

Third, we have previously stated that the presence of a confounding effect can be correctly
detected, and that in such situations the metric would not detect a statistically significant
causality. According to the Common Cause Principle (Pearl, 2003), two variables are
unconfounded iff they have no common ancestor in the causal diagram; and ensuring this
requires including the confounding effects in the analysis, i.e., detect if there are causalities
A→B and A→C in the diagram of Fig. 1. In the context here analysed, a confounding
effect would be detected as the presence of co-occurring extreme events, generated by the
confounding element, in both vectors of data. This requires the confounding element to
influence in the same way both analysed elements, or, in other words, to have the same
coupling strength between A→B and A→ C. Additionally, if the causality B→ C
is mixed with an external influence, the latter cannot be detected if the strength of the
former is greater—that is, a strong causality can mask a confounding effect. For all this,
the proposed method does not always allow to discriminate true causalities from spurious
relationships, although it provides important clues about which one of these two effects is
having the strongest impact.

RESULTS
We first test the proposed metric with synthetic data. Figure 3 presents the evolution of
the p-value for two vectors B and C, whose values are drawn from different distributions.
Two situations are compared. First, a real B→C causality, such that ci= ci+γ bni (n being
the order of the coupling)—solid lines in Fig. 3. Second, a confounding effect in which
bi= bi+γ ani and ci= ci+γ ani —dashed lines in Fig. 3. It can be appreciated that the p-values
of real causalities drop to zero with small values of coupling constants; and that non-linear
couplings perform better than linear ones. When the same analysis is performed using
other causality standard metrics, such clear behaviour is not observed. Specifically, Fig. 4
presents the evolution of the p-value, as obtained for Gaussian distributions by the Granger
Causality and the Transfer Entropy. The former metric rejects, for all coupling constants,
the presence of a causality. As for the Transfer Entropy, it correctly detects the presence of a
relationship, but only for very high coupling constants; additionally, it is not able to detect
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Figure 3 p-value obtained by the proposed causality metric, for vectors of synthetic data drawn from
six different distributions, as a function of the coupling constant γ—seemain text for details. Black,
red and green lines respectively correspond to linear, quadratic and cubic couplings; solid lines depict true
causalities (as in Fig. 1(ii)), dashed lines spurious ones (Fig. 1(iii)). Each point corresponds to 10,000 real-
isations.

Figure 4 p-value obtained by two standard causality metrics, for vectors of synthetic data drawn
fromGaussian distributions, as a function of the coupling constant γ . (A) Corresponds to the Granger
Causality, (B) to the Transfer Entropy. Black, red and green lines respectively correspond to linear,
quadratic and cubic couplings; solid lines depict true causalities (as in Fig. 1(iii)), dashed lines spurious
ones (Fig. 1(ii)).

the presence of confounding effects—note that the three dashed lines in Fig. 4B are almost
always below the corresponding solid ones. In some cases, a confounding effect, especially
when highly non-linear, can foul the proposed metric and yield a low p-value—see, for
instance, the cubic confounding coupling for a gamma distribution in Fig. 3. Such situations
can easily be identified by comparing the p-values for B→C and C→B: in the case of a
true causality, which is by definition directed, the p-value should be small only for one of
them. An example of this is depicted in Fig. 5, which shows the evolution of the p-values for
a confounding effect (Fig. 5A) and a causality (Fig. 5B), for vectors of Gamma distributed
values. Once the limitations and requirements about confounding effects, as defined in
the previous section, are taken into account, discriminating between true and spurious
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Figure 5 Evolution of the p-value of the causality, when considering bothB → C and C → B tests for
a cubic coupling and for data drawn from a Gamma distribution (as in green lines of the first panel of
Fig. 3. (A) Reports the results for a confounding effect, (B) for a true causality betweenB and C.

causalities only requires calculating the two opposite p-values, and checking whether they
are both small.

The necessity of detecting extreme events introduces a drawback in the method, i.e.,
the need of having a large set of input values to reach a stable statistics. This problem is
explored in Fig. 6, which depicts the p-value obtained as a function of the number of input
values. Depending on the kind of relation to be detected, between 2 and 4 thousand values
are required.

One of the advantages of the proposed metric is that it can be applied both to cross-
sectional and longitudinal data. In other words, the metric can be used to study both those
systems that do not present a temporal evolution, but for which information corresponding
to different instances is available; and those systems whose evolution through time can be
observed. Here we show such flexibility in the detection of the causality between two noisy
Kuramoto oscillators (Kuramoto, 2012; Rodrigues et al., 2016). Suppose two oscillators
whose phases are defined as:

φ̇B= κB+ξ (2)

φ̇C = κC+γ sin(φB−φC)+ξ . (3)

κ is the natural frequency of each oscillator (κB 6= κC), and ξ an external uniform
noise source. The coupling constant γ defines the way the two oscillators interact, with
independent dynamics for γ ≈ 0, and a causality φB→ φC for γ > 0. The longitudinal
causality can be detected by considering the time series created by φ̇B and φ̇C , thus focusing
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Figure 6 Evolution of the p-value of the causality, for a triangular distribution, as a function of the
number of values included in the input vectors. Black, red and green lines respectively correspond to lin-
ear, quadratic and cubic couplings.

Figure 7 (A) Evolution of the p-value of the causality test between two Kuramoto oscillators, for
different values of the coupling constant γ . Solid and dashed lines respectively correspond to a cross-
sectional and longitudinal study—see main text for details. Black lines correspond to the proposed metric,
red ones to Granger Causality. (B) p-value for two coupled Rössler oscillators as a function of the coupling
constant γ , for a linear and cubic coupling.

on how abnormal jumps in the phase of the oscillators is transmitted from the former to
the latter. The p-value of the metric is represented in Fig. 7A by the black dashed line. The
equivalent cross-sectional analysis requires multiple realisations of the previous dynamics;
for each one of them, one single pair of values (φ̇B,φ̇C) is extracted, corresponding to
the largest variation of φB, and thus to the most extreme jump in the phase of the first
oscillator. The evolution of the corresponding p-value is shown in Fig. 7A by the black
solid line.
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Both the longitudinal and cross-sectional analyses yield similar results, suggesting that
dynamical and static causalities are equivalent under the proposed metric. Only when
the coupling is large, i.e., above 0.5, the longitudinal (i.e., time based) analysis yields
better p-values than the cross-sectional one, as the latter is probably confounded by the
presence of a strong correlation. Figure 7A further depicts the behaviour of the p-value
when calculated using the Granger Causality metric; it can be appreciated that the proposed
causality metric is more sensitive, especially for small coupling constants.

An important characteristic of complex systems is that their constituting elements
usually have a chaotic dynamics (Strogatz, 2014), making more complicated the task of
detecting causality between them. We here test the proposed metrics by considering two
unidirectionally coupled Rössler oscillators (B→C) in their chaotic regime—see (Rulkov
et al. (1995) for details. We consider both linear and cubic couplings; following the notation
in Rulkov et al. (1995), this means:

ẏ1=−(y2+y3)−γ (y1−x1), and (4)

ẏ1=−(y2+y3)−γ (y1−x1)3. (5)

Time series are created by sampling the second dimension of each oscillator (i.e., x2 and
y2) with a resolution lower than the intrinsic frequency. Figure 7B depicts the evolution
of the p-value for low coupling strengths γ , thus ensuring that the system is generalised
synchronised. For γ ≈ 0.01 (γ ≈ 2 ·10−4 for cubic coupling), a true causality is detected,
while for γ > 0.015 (γ > 4 ·10−4) the two oscillators start to synchronise.

The possibility of combining a cross-sectional analysis of extreme values with a
longitudinal analysis opens new doors towards the understanding of systems for which both
aspects can be studied at the same time. Here we show how this can be achieved in the anal-
ysis of functional networks representing the structure of brain activity in healthy subjects
(Bullmore & Sporns, 2009; Rubinov & Sporns, 2010). The data set corresponds to electroen-
cephalographic (EEG) recordings of 40 subjects during 50 trials of an object recognition
task (details can be found in Zhang et al. (1995) and references within), obtained through
the UCI KDD archive (Bay et al., 2000). For each trial and subject, 19 time series of 256
samples were available, corresponding to one second of recording of 19 EEG channels in the
10–20 configuration. The longitudinal analysis was performed by calculating the causality
using the raw time series. On the other hand, the cross-sectional analysis relies on identifying
the propagation of extreme events, as in the case of the Kuramoto oscillators. Extreme
events are defined as those for which the energy of the signal is maximum in a given time
series; the energy is defined, at each time point, as the deviation with respect to the mean,
normalised by the standard deviation of the signal—i.e., as the absolute value of the Z-Score.

Figure 8A depicts a box plot of the proportion of significant pairs of channels (i.e.,
pairs of channels for which a causality was detected), in both the cross-sectional (blue)
and longitudinal (red) analyses, for different significance levels α. In the case of the
cross-sectional analysis, each value corresponds to the results for a single subject. Results
are qualitatively equivalent, with the longitudinal analysis detecting slightly less links
than the cross-sectional one for small values of α. Figures 8B and 8C depict the 10 most
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Figure 8 Analysis of causality in EEG data. (A) Proportion of pairs of channels in which causality has
been detected, for cross-sectional (blue) and longitudinal (red) analyses, as a function of the significance
level α. (B) Top-10 causality links in the cross-sectional analysis. (C) Top-10 causality links in the longitu-
dinal analysis. In (B) and (C), the size of each node is proportional to its number of connections (i.e., its
degree of participation in the cognitive task).

significant links, as detected by both analyses.While not completely equivalent, both graphs
suggest that some areas are identified as active by both methods, e.g., the frontal lobe on
the top and the visual and somatosensory integration area in the bottom. Remarkably,
these two regions are expected to be relevant for the task studied, i.e., object identification:
the former for higher function planning, i.e., react to the image shown, the latter in the
processing of visual inputs.

CONCLUSIONS AND DISCUSSION
In conclusion, we presented a novel metric able to detect causality relationships both in
static and time-evolving data sets, thus overcoming the limitation of existing metrics that
rely on time series analysis. The proposed metric is designed to detect the propagation
of extreme events, or shocks, and as such is more efficient when non-linear relations are
present; it is further able to discriminate real from spurious causalities, thus enabling the
detection of confounding effects. The effectiveness of the metric has been tested through
synthetic data; data obtained from simple and chaotic dynamical systems, i.e., Kuramoto
and Rössler oscillators; and through EEG data representing the activity of the human brain
during an object recognition task.

In spite of the advantages that the proposedmetric presents, and that have been described
throughout the text, two limitations have to be highlighted. First, the reduced sensitivity
of the metric to linear causality relationships, and in the analysis of data without long tail
distributions, i.e., without clear extreme events—see Fig. 3 for further details. Second, the
need of large quantities of data, in the order of several thousands of observations, to reach
statistically significant results (Fig. 6).

The possibility of detecting causality in static data sets is expected to be of increasing
importance in those research fields in which time dynamics are not available, and that
require ensuring that a causality is not just the result of the presence of a confounding factor.
For instance, one may considering the raising field of biomedical data analysis (Prather et
al., 1997; Cios & Moore, 2002; Han, 2002). The custom solution is to resort to data mining
algorithms, which allow to detect and make explicit patterns in the input data, with the
final objective of using such patterns in diagnostic and prognostic models (Vapnik, 2013).
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Nevertheless, data mining (andmachine learning in general) is based on the Bayes theorem,
a form of statistics of co-occurrences, and thus on a generalised concept of correlation.
These methods are thus sensitive to the confounding effects that are frequently in place,
as genes and metabolites create an intricate network of interactions. Resorting to classical
causality metrics, like Granger’s one, is not possible, as time series are seldom available—
measuring gene expression or metabolite levels is an expensive and slow process. In spite
of this, causality is an essential element to be detected: if one only focuses on correlations,
there is a risk of detecting elements whose manipulation does not guarantee the expected
results on the system (Salmon et al., 2000; Cardon & Palmer, 2003; Vakorin, Krakovska &
McIntosh, 2009). We foresee that the proposed causality metric can be an initial solution to
this problem, by providing a causality test that can be applied to static data, and that could
be used as the foundation of a new class of data mining algorithms.

A Python implementation of the proposed causality metric is freely available at
www.mzanin.com/Causality.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
Massimiliano Zanin is an Academic Editor for PeerJ and PeerJ Computer Science.

Author Contributions
• Massimiliano Zanin conceived and designed the experiments, performed the
experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed
drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The data set used was downloaded from the UCI KDD archive at:
https://archive.ics.uci.edu/ml/datasets/EEG+Database.
Additionally, the source code for calculating the metrics can be downloaded from:
http://www.mzanin.com/Causality/.

REFERENCES
Bay SD, Kibler D, Pazzani MJ, Smyth P. 2000. The UCI KDD archive of large data

sets for data mining research and experimentation. ACM SIGKDD Explorations
Newsletter 2:81–85 DOI 10.1145/380995.381030.

Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature Reviews Neuroscience 10:186–198
DOI 10.1038/nrn2575.

Zanin (2016), PeerJ, DOI 10.7717/peerj.2111 11/13

https://peerj.com
http://www.mzanin.com/Causality
https://archive.ics.uci.edu/ml/datasets/EEG+Database
http://www.mzanin.com/Causality/
http://dx.doi.org/10.1145/380995.381030
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.7717/peerj.2111


Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic association.
The Lancet 361:598–604 DOI 10.1016/S0140-6736(03)12520-2.

Cios KJ, Moore GW. 2002. Uniqueness of medical data mining. Artificial Intelligence in
Medicine 26:1–24 DOI 10.1016/S0933-3657(02)00049-0.

Donges JF, Schleussner C-F, Siegmund JF, Donner RV. 2015. Coincidence analysis
for quantifying statistical interrelationships between event time series: on the
role of flood events as possible drivers of epidemic outbreaks. ArXiv preprint.
arXiv:1508.03534.

EvansMG. 1959. Causality and explanation in the logic of Aristotle. Philosophy and
Phenomenological Research 19:466–485.

Gómez-Herrero G,WuW, Rutanen K, SorianoMC, Pipa G, Vicente R. 2015. Assessing
coupling dynamics from an ensemble of time series. Entropy 17:1958–1970
DOI 10.3390/e17041958.

Granger CWJ. 1988a. Causality, cointegration, and control. Journal of Economic Dynam-
ics and Control 12:551–559 DOI 10.1016/0165-1889(88)90055-3.

Granger CWJ. 1988b. Some recent development in a concept of causality. Journal of
Econometrics 39:199–211.

Granger CWJ, Terasvirta T. 1993.Modelling non-linear economic relationships. OUP
Catalogue.

Han J. 2002.How can data mining help bio-data analysis? In: Proceedings of the 2nd ACM
SIGKDD workshop on data mining in bioinformatics (BIOKDD 2002), 1–2.

Hankinson RJ. 1998. Cause and explanation in ancient Greek thought . Oxford: Clarendon
Press.

HumeD. 1965. An enquiry concerning human understanding . Alex Catalogue.
Kuramoto Y. 2012. Chemical oscillations, waves, and turbulence.
Leslie AM, Keeble S. 1987. Do six-month-old infants perceive causality? Cognition

25:265–288 DOI 10.1016/S0010-0277(87)80006-9.
Pearl J. 2003. Causality: models, reasoning, and inference. Econometric Theory

19:675–685.
Pearl J. 2009. Causality . Cambridge: Cambridge University Press.
Prather JC, Lobach DF, Goodwin LK, Hales JW, HageML, HammondWE. 1997.

Medical data mining: knowledge discovery in a clinical data warehouse. In: Proceed-
ings of the AMIA annual fall symposium. Bethesda: American Medical Informatics
Association, 101–105.

Quiroga RQ, Kreuz T, Grassberger P. 2002. Event synchronization: a simple and fast
method to measure synchronicity and time delay patterns. Physical Review E 66:
041904 DOI 10.1103/PhysRevE.66.041904.

RubinovM, Sporns O. 2010. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 52:1059–1069 DOI 10.1016/j.neuroimage.2009.10.003.

Rodrigues FA, Peron TJ, Ji P, Kurths J. 2016. The Kuramoto model in complex net-
works. Physics Reports 610:1–98.

Zanin (2016), PeerJ, DOI 10.7717/peerj.2111 12/13

https://peerj.com
http://dx.doi.org/10.1016/S0140-6736(03)12520-2
http://dx.doi.org/10.1016/S0933-3657(02)00049-0
http://arXiv.org/abs/1508.03534
http://arXiv.org/abs/1508.03534
http://dx.doi.org/10.3390/e17041958
http://dx.doi.org/10.3390/e17041958
http://dx.doi.org/10.1016/0165-1889(88)90055-3
http://dx.doi.org/10.1016/S0010-0277(87)80006-9
http://dx.doi.org/10.1103/PhysRevE.66.041904
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.7717/peerj.2111


Rulkov NF, SushchikMM, Tsimring LS, Abarbanel HDI. 1995. Generalized syn-
chronization of chaos in directionally coupled chaotic systems. Physical Review E
51:980–994 DOI 10.1103/PhysRevE.51.980.

Salmon E, Collette F, Degueldre C, Lemaire C, Franck G. 2000. Voxel-based analysis
of confounding effects of age and dementia severity on cerebral metabolism in
Alzheimer’s disease. Human Brain Mapping 10:39–48
DOI 10.1002/(SICI)1097-0193(200005)10:1<39::AID-HBM50>3.0.CO;2-B.

Schreiber T. 2000.Measuring information transfer. Physical Review Letters 85:461–464.
StaniekM, Lehnertz K. 2008. Symbolic transfer entropy. Physical Review Letters 100:

158101 DOI 10.1103/PhysRevLett.100.158101.
Strogatz SH. 2014.Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry, and engineering . Boulder: Westview Press.
Tanaka SC, Balleine BW, O’Doherty JP. 2008. Calculating consequences: brain systems

that encode the causal effects of actions. The Journal of Neuroscience 28:6750–6755
DOI 10.1523/JNEUROSCI.1808-08.2008.

Vakorin VA, Krakovska OA, McIntosh AR. 2009. Confounding effects of indirect
connections on causality estimation. Journal of Neuroscience Methods 184:152–160
DOI 10.1016/j.jneumeth.2009.07.014.

Vapnik V. 2013. The nature of statistical learning theory . Berlin, Heidelberg: Springer
Science & Business Media.

Verdes PF. 2005. Assessing causality from multivariate time series. Physical Review E 72:
026222 DOI 10.1103/PhysRevE.72.026222.

ZaninM, Papo D, Sousa PA, Menasalvas E, Nicchi A, Kubik E, Boccaletti S. 2016.
Combining complex networks and data mining: why and how. Physics Reports
635:1–44.

Zhang XL, Begleiter H, Porjesz B,WangW, Litke A. 1995. Event related potentials
during object recognition tasks. Brain Research Bulletin 38:531–538
DOI 10.1016/0361-9230(95)02023-5.

Zanin (2016), PeerJ, DOI 10.7717/peerj.2111 13/13

https://peerj.com
http://dx.doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/10.1002/(SICI)1097-0193(200005)10:1<39::AID-HBM50>3.0.CO;2-B
http://dx.doi.org/10.1103/PhysRevLett.100.158101
http://dx.doi.org/10.1523/JNEUROSCI.1808-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.1808-08.2008
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
http://dx.doi.org/10.1016/j.jneumeth.2009.07.014
http://dx.doi.org/10.1103/PhysRevE.72.026222
http://dx.doi.org/10.1016/0361-9230(95)02023-5
http://dx.doi.org/10.7717/peerj.2111

