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ABSTRACT
Computational protein design attempts to create protein sequences that fold stably
into pre-specified structures. Here we compare alignments of designed proteins to
alignments of natural proteins and assess how closely designed sequences recapit-
ulate patterns of sequence variation found in natural protein sequences. We design
proteins using RosettaDesign, and we evaluate both fixed-backbone designs and
variable-backbone designs with different amounts of backbone flexibility. We find
that proteins designed with a fixed backbone tend to underestimate the amount of
site variability observed in natural proteins while proteins designed with an interme-
diate amount of backbone flexibility result in more realistic site variability. Further,
the correlation between solvent exposure and site variability in designed proteins is
lower than that in natural proteins. This finding suggests that site variability is too
uniform across different solvent exposure states (i.e., buried residues are too variable
or exposed residues too conserved). When comparing the amino acid frequencies
in the designed proteins with those in natural proteins we find that in the designed
proteins hydrophobic residues are underrepresented in the core. From these results
we conclude that intermediate backbone flexibility during design results in more
accurate protein design and that either scoring functions or backbone sampling
methods require further improvement to accurately replicate structural constraints
on site variability.

Subjects Biochemistry, Computational Biology, Computational Science
Keywords Protein design, Fixed-backbone design, Flexible-backbone design, Sequence
alignments, Relative solvent accessibility, Site variability

INTRODUCTION
Computational protein design has made tremendous progress in recent years. For example,

computational design has been used successfully to engineer proteins that bind to an

influenza virus (Fleishman et al., 2011), to create enzymes (Röthlisberger et al., 2008), and

to develop novel protein folds not seen in nature (Kuhlman et al., 2003). All these examples

have in common that many different computational predictions were generated, and
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among the best were a few that worked experimentally. Thus, while computational design

can produce specific sequences that fold correctly and are functional, it is much less clear

how similar designed proteins are on average to natural proteins of a comparable fold.

There are several patterns of sequence variation that are consistently seen in natural

proteins. For example, amino acid frequencies follow characteristic distributions, and

these distributions differ for surfaces and cores of proteins (Overington et al., 1992; Porto et

al., 2004; Bastolla et al., 2005; Moelbert, Emberly & Tang, 2004). In particular, hydrophobic

residues tend to be more frequent in the core and polar residues tend to be more frequent

on the surface. Further, sites in the core of a protein tend to be more conserved and to

evolve slower than surface sites (Mirny & Shakhnovich, 1999; Goldman, Thorne & Jones,

1998; Bustamante, Townsend & Hartl, 2000; Conant & Stadler, 2009; Franzosa & Xia, 2009;

Ramsey et al., 2011; Scherrer, Meyer & Wilke, 2012; Meyer & Wilke, 2012). Presumably,

sites in the core tend to be conserved because mutations at these sites are more likely to

destabilize the protein fold, due to steric clashes (Chothia & Finkelstein, 1990).

However, protein properties also vary systematically with factors related to the cellular

environment in which proteins are expressed. For example, more highly expressed proteins

tend to be more soluble and have less-sticky surfaces (Tartaglia et al., 2007; Levy, De &

Teichmann, 2012). Current protein design algorithms optimize primarily for fold stability

(Kuhlman & Baker, 2000). Therefore, we would not expect them to reproduce any patterns

caused by the cellular expression environment. By contrast, any patterns that are driven

primarily by the requirement for sufficient fold stability, such as avoidance of steric clashes

in the core, should be reproduced in computationally designed proteins.

Here, we carried out a systematic comparison between alignments of natural sequences

and the corresponding alignments of designed sequences, for several different design

conditions. We considered two distinct data sets, one of whole protein structures and one

of individual protein domains. We analyzed which design conditions produced sequence

alignments that were most similar to natural sequence alignments. We also analyzed by

which parameters designed proteins differed the most from natural sequences. Overall,

we found that proteins designed with a flexible backbone and using an intermediate

amount of backbone flexibility were the most similar to natural proteins. However,

substantial differences between designed and natural proteins remained even under the

most advantageous design conditions. In particular, designed proteins tended to have too

many polar and too few hydrophobic residues in the core, and they also tended to have

cores that were too variable and/or surfaces that were too conserved. These trends were

exacerbated for longer proteins.

METHODS
Data sets
We analyzed two data sets, one of whole yeast proteins and one of protein domains. The

yeast-proteins data set was taken from Ramsey et al. (2011) and comprised 38 protein

structures homologous to an open reading frame in Saccharomyces cerevisiae. For each of

those structures, we had at least 50 homologous natural sequences, also taken from Ramsey
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et al. (2011). The protein-domain data set was taken from Ollikainen & Kortemme (2013)

and comprised 40 protein domains. Only domains with at least one crystal structure in the

Protein Database (PDB) and at least 500 sequences in the Pfam Database were selected for

this data set. Domains were selected in order to represent several different types of protein

folds and domains were also restricted to a length less than or equal to 150 amino acids. For

each of these protein domains, we obtained alignments of homologous natural sequences

from the Pfam database (Punta et al., 2012), as described (Ollikainen & Kortemme, 2013).

Protein design
For each structure in both data sets, we computationally designed 500 variants each,

using multiple design methods. All design methods we used are implemented in

the protein-design software Rosetta (Leaver-Fay et al., 2011). First, we used standard

fixed-backbone design (Kuhlman et al., 2003). In this method, the protein backbone

remains fixed and only amino-acid side chains are allowed to move. Second, we used

the flexible-backbone method Backrub (Smith & Kortemme, 2008), which first generates

an ensemble of alternative backbones and then designs side chains onto these backbones

(Friedland et al., 2009; Smith & Kortemme, 2010). The Backrub method takes as input a

temperature parameter that determines the extent of backbone movements that occur

during design. Here, we used temperatures spanning from 0.03 to 2.4 corresponding

to increasing backbone movements. For the protein-domain data set, we also used one

additional design method, called “Soft”. This method keeps the backbone fixed but

the energy function used during sequence design dampens the weight of the repulsive

Lennard-Jones (LJ) potential term (Ollikainen & Kortemme, 2013). Protein designs for the

protein-domain data set have been previously published (Ollikainen & Kortemme, 2013),

while the designs for the yeast-proteins data set were newly generated for the present study.

All designs for the yeast-proteins data set were generated with Rosetta Revision 39284.

For fixed-backbone design, we used the following command:

./fixbb.linuxgccrelease -database rosetta_database \

-s input.pdb -resfile ALLAA.res -ex1 -ex2 \

-extrachi_cutoff 0 -nstruct 1 -linmem_ig 10

Flexible-backbone design was performed by generating a conformational ensemble of 500

structures and then using fixed-backbone design to predict a low energy sequence for each

structure in the ensemble. To generate structures for the conformational ensemble, we used

the following command:

./backrub.linuxgccrelease -database rosetta_database \

-s input.pdb -resfile NATAA.res -ex1 -ex2 \

-extrachi_cutoff 0 -backrub:mc_kt <T> \

-backrub:ntrials 10000 -nstruct 1 -backrub:initial_pack

where <T> has to be replaced by the desired design temperature.

The design details for the protein-domain data set can be found in Ollikainen &

Kortemme (2013).

Jackson et al. (2013), PeerJ, DOI 10.7717/peerj.211 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.211


Data analysis
We quantified the variability of sites in amino-acid alignments using site entropy Hi,

defined as Hi =
∑

j pij lnpij. Here, pij is frequency of amino acid j in alignment column i,

and the sum runs over all amino acids. We compared amino-acid distributions of designed

sequences to those of natural sequences using the Kullback-Leibler (KL) divergence. The

KL divergence DKL
i is defined as DKL

i =
∑

j pij ln(pij/qij), where qij is the frequency of

amino acid j in column i of the reference alignment, and pij is the corresponding frequency

in the alignment that is being compared to the reference alignment. The sum runs over

all amino acids. When calculating frequencies used for the KL divergence we corrected

for the presence of frequencies of zero by adding 1/20 to each amino acid count before

calculating the frequencies. The KL divergence is inherently an asymmetric distance

measure, comparing a probability distribution of interest to a reference distribution.

Unless noted otherwise, we always used natural sequence alignments to calculate the

reference frequencies qij and designed sequence alignments to calculate the frequencies pij.

Throughout this work, we calculated DKL
i separately at each site i in a protein, and then

averaged the DKL
i values for all sites in a protein to obtain a mean KL divergence for that

protein.

To compare the shapes of amino-acid distributions while disregarding specific

amino-acid identities, we performed a second type of KL calculation where we ordered

amino-acids by their relative frequencies. Thus, instead of the frequencies pij and qij

we used pirj and qisj , where rj is the rank of the frequency of amino acid j in column i

of the alignment being compared to the reference, and sj is the rank of the frequency

of amino acid j in column i of the reference alignment. This way of calculating the KL

divergence compares the frequencies of amino acids at equal frequency rank, regardless

of which specific amino acids are the most frequent, second-most frequent, and so on in

each alignment. As an example, assume that at a given site there are only three different

amino acids in the natural alignment, I, L, and V, at frequencies 0.5, 0.35, and 0.15,

respectively. At the same site in the designed sequences, there are amino acids A, V, and

I, also at frequencies 0.5, 0.35, and 0.15, respectively. In our calculation of KL divergence

comparing amino acids at equal frequency rank, we would then compare the frequency

of I in the natural alignment with the frequency of A in the designed alignment (the two

most frequent amino acids in the two respective alignments) and similarly the frequency

of L with the frequency of V and the frequency of V with the frequency of I, respectively.

In this example, since the two sets of three frequencies are exactly the same if we disregard

amino-acid type, we would obtain a KL divergence of zero.

We calculated Relative Solvent Accessibility (RSA) of residues by first calculating the

absolute Solvent Accessibility (ASA) for each residue, using the software DSSP (Kabsch &

Sander, 1983). For each protein, we extracted the chain of interest from the PDB structure

and ran DSSP only on that chain. We calculated RSA by dividing the ASA value for each

residue by the maximum possible ASA value, as given by Tien et al. (2013). Throughout

this work, we only calculated RSA on the native PDB structure. We did not perform any

RSA calculations on designed structures.
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All our data and analysis scripts are available online at: https://github.com/clauswilke/

protein design and site variability.

RESULTS
We wanted to assess the extent to which the sequence space of computationally designed

proteins overlaps with the sequence space occupied by homologous natural proteins. Our

general approach was to compare alignments of designed protein sequences to alignments

of homologous natural sequences, for approximately 80 distinct protein structures. For

each structure, we considered several different design methods (see Methods for details),

and we designed 500 sequences for each structure and method. The protein structures

we considered were subdivided into two distinct data sets, a data set of 38 yeast protein

structures previously analyzed by Ramsey et al. (2011) and a data set of 40 protein

domains previously analyzed by Ollikainen & Kortemme (2013). Throughout this study,

we analyzed these two data sets separately, because they corresponded to structures of

substantially different sizes. The mean number of amino acids per structure was 215.4

in the yeast-proteins data set and 86.1 in the protein-domains data set. Also, the overall

sequence variability of the protein-domain data set was greater than the variability of the

yeast-proteins data set.

Overall site variability
We first compared overall amino-acid variability in designed and natural proteins. We

assessed amino-acid variability at individual sites by calculating the entropy Hi at each

site i in alignments of either designed or natural proteins. We then calculated the mean

entropy over all sites in each alignment and used that quantity as a measure of the overall

amino-acid variability in the alignment.

We found that protein design using a fixed backbone generally yielded insufficient

site variability compared to natural sequences (Fig. 1). This result was magnified in the

smaller protein domains. In fact, for the protein domains, the most variable proteins

under fixed-backbone design showed only about as much variability as the least variable

natural proteins. Overall, there was a significant shift towards higher variability in natural

proteins relative to proteins designed with fixed backbone (paired t test, P = 1.4× 10−10

for the yeast-proteins data set and P < 10−15 for the protein-domain data set). When

switching from fixed-backbone design to variable-backbone design, we found that overall

site variability increased. Further, site variability increased monotonously with the degree

of backbone flexibility allowed during design, as measured by the design temperature

(Fig. 1). At the highest temperatures, site variability in designed proteins consistently

exceeded that of natural proteins.

Proteins designed at intermediate temperatures had site variabilities that most closely

resembled that of natural proteins. For the yeast-proteins data set, the temperature that

provided the closest match was T = 0.03, even though the variability of sequences

designed at that temperature still exceeded the variability in natural sequences (paired

t test, P = 0.0006). For the protein-domains data set, the temperature that provided the

closest match was T = 0.9, for which variability was statistically indistinguishable from
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Figure 1 Mean site entropy for designed and natural proteins. Each boxplot represents the distribution
of mean site entropies within the respective dataset ((A) yeast proteins; (B) protein domains). “FB”
refers to fixed-backbone design. Temperature values refer to the design temperature used during the
Backrub design method. “NS” refers to natural sequences. “Soft” refers to the Soft design method. We find
generally that increased backbone flexibility allows for more site variability. Intermediate temperatures
produce site variabilities most similar to those seen in natural sequences. Overall, natural sequences in
the protein-domains data set are more variable than are those in the yeast-proteins data set.

that found in natural sequence alignments (paired t test, P = 0.353). However, for both

data sets, natural sequences generally showed a larger spread in variabilities than did the

designed sequences at the closest-matching temperatures (Brown-Forsythe test for equal

variances, P = 0.0003 for the yeast-proteins data set at T = 0.03 and P = 7.3× 10−6 for the

protein-domain data set at T = 0.9).

Amino-acid distributions
We next compared amino-acid distributions between designed and natural sequences.

First we looked at overall amino acid frequencies. We found that by-and-large, amino

acid frequencies in designed proteins mirrored those in natural proteins (Fig. 2 and Figs.

S1–S5). The biggest differences arose in Pro, His, Trp, Phe, and Ala. (We ignore Cys

here because Cys is never used in the design algorithm and thus always at frequency 0.)

Overall, we observed that hydrophobic residues tended to be under-represented in

designed proteins whereas hydrophilic residues tended to be over-represented. This trend

was stronger in the protein core than on the surface. We also observed that the longer

proteins in the yeast-proteins data set showed larger deviations between designed and

natural sequences than the shorter proteins in the protein-domains data set. Finally, when

comparing different design methods and design temperatures, we found that differences in

amino-acid distributions were relatively minor, see Fig. 2 and Figs. S1–S5.

Even if overall amino-acid distributions are approximately correct, the amino-acid

distributions at individual sites can be poorly predicted (Ramsey et al., 2011). Therefore,

we next compared, separately at each site, the similarity between amino-acid distributions

in natural proteins and those in designed proteins. To carry out this comparison, we

employed the Kullback-Leibler (KL) divergence (Wasserman, 2004), which measures how

similar one probability distribution is to a reference distribution. A KL divergence of

zero implies that the distributions are identical. The higher the KL divergence, the more
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Figure 2 Amino-acid frequencies in designed and natural proteins. Frequencies were calculated over all sites in all proteins belonging to the
yeast-proteins data set. For designed proteins, only flexible-backbone designs with design temperature 0.6 were considered. (A) Overall frequencies.
(B) frequencies at exposed sites (defined as sites with RSA > 0.05). (C) frequencies at buried sites (defined as sites with RSA≤ 0.05).

dissimilar the focal distribution is to the reference distribution. (Note that KL divergence

is not symmetric: if we swap the focal and the reference distribution, we will generally

obtain a different KL divergence value.) We calculated the KL divergence at each site in each

protein, and then averaged over sites within a protein to obtain a mean similarity score for

each protein. As a control, we also randomly split the alignment of natural sequences for

each protein structure into two halves and calculated the mean KL divergence of natural

sequences against themselves.

First, in all comparisons, we found that the KL divergence of designed relative to

natural sequences was much bigger than the KL divergence of natural sequences relative to

themselves (Fig. 3 and Fig. S6). This finding indicates a substantial discrepancy between
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designed and natural sequences at individual sites. Second, we found that the mean KL

divergence decreased with increasing design temperature (Fig. 3A and Fig. S6A). Thus,

according to the KL divergence measure, structures designed with the most flexible

backbones had the most similar amino-acid distributions to those found in natural

sequences.

However, the result that sequences designed at the highest temperatures are the

most similar to natural sequences may be an artifact of the KL divergence measure.

As design temperature increases, amino-acid variability increases, and amino-acid

distributions become more uniform. A more uniform distribution is generally going

to display more overlap with any given distribution than a more localized distribution,

if the localized distribution is not correct. Thus, the decrease in KL divergence with

increasing temperature may simply reflect the broadening of the distribution, not an

actual improvement in reproducing natural amino-acid distributions. To assess whether

amino-acid distributions in designed sequences were simply broadening with increasing

temperature, or whether they were actually converging on the natural distributions, we

carried out a second set of comparisons. We rank-ordered amino acids by frequency

at each site in each protein, and then calculated the KL divergence of the rank-ordered

distributions.

This comparison considers only the shape of the distribution and does not assess

whether the correct amino acids are present at individual sites. This second comparison

generally found much lower KL divergence levels, even though still not as low as what

was found for the control comparison of natural sequences with themselves (Fig. 3B

and Fig. S6B). More importantly, now KL divergence reached a minimum around a

temperature of 0.3 (yeast proteins, Fig. 3B) to 1.2 (protein domains, Fig. S6B) and rose

again beyond that value. This finding indicates that higher design temperatures do

not unequivocally produce more natural amino-acid distributions. Instead, there is an

intermediate temperature, approximately coinciding with the temperature at which overall

sequence variability matches best, at which amino acid distributions also are most similar.

Site variability and solvent accessibility
The previous analyses demonstrated that while designed proteins overall look similar to

natural proteins, there are also important differences. We next wanted to identify whether

these differences were present uniformly throughout the structure or could be located to

specific structural regions. In our analysis of amino-acid distributions, we had already seen

that amino-acid distributions seemed to deviate more at buried sites than at exposed sites

(Fig. 2 and Fig. S4).

We first plotted site variability against relative solvent accessibility (RSA, a dimension-

less number from 0 to 1 measuring the relative solvent exposure of individual residues) for

individual proteins. See Fig. S7 for one example. We generally found that site variability

displayed a substantial spread even for sites of very similar RSA. At the same time, there was

an overall trend for sites with higher RSA to be more variable than sites with lower RSA.

This trend was generally stronger in flexible backbone designs than in fixed backbone
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Figure 3 Mean Kullback-Leibler (KL) divergence for designed and natural proteins, shown for the
protein-domain data set. A higher KL divergence indicates that the amino-acid distributions at sites in
designed proteins are less similar to the corresponding distributions in the natural proteins. “FB” refers
to fixed backbone design and “NS” refers to the control case where natural sequences are compared to
themselves. (A) KL divergence calculated from the relative frequencies of the 20 amino acids. (B) KL
divergence calculated from rank-ordered frequency distributions. The most common amino acid in the
reference distribution is compared to the most common amino acid in the focal distribution, the same is
done for the second-most common amino acid, and so on, irrespective of the type of amino acids.

Figure 4 Distributions of correlation coefficients between site entropy and RSA, for the protein-
domain data set. “FB” indicates fixed-backbone design and “NS” indicates natural sequences. (A)
Distributions represented as boxplots. (B) Correlation coefficients for individual proteins. Lines connect
identical structures in the different design conditions. The color shading represents the strength of the
correlation for the natural sequence alignment. In general, natural proteins display a stronger correlation
between site entropy and RSA than designed proteins.

designs (Fig. S7). To analyze the relationship between site variability and RSA more

systematically, we calculated the correlation between these two quantities for all proteins

(Fig. 4 and Fig. S8). On average, natural sequence alignments showed a higher correlation

than alignments of designed sequences, regardless of design method.
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Figure 5 Median of the distribution of mean sequence entropies for designed and natural sequences,
calculated separately for buried (black), partially buried (blue), and exposed (red) residues. We de-
fined buried sites as those with RSA ≤ 0.05, partially buried as those with 0.05 < RSA ≤ 0.25, and
exposed as those with RSA > 0.25. Dashed lines indicate the corresponding median for natural sequence
alignments. Note that for buried (black) and partially buried (blue) residues, the temperatures at which
natural site variability and design variability match are comparable. By contrast, for exposed residues, a
higher design temperature is required for the design variability to match the natural site variability. (A)
yeast proteins; (B) protein domains.

Intermediate design temperatures showed the highest correlations, but correlations

were nevertheless significantly lower in designed proteins than in natural proteins (paired

t test, P = 2.96 × 10−10 [T = 0.3, yeast proteins] and P = 1.75 × 10−5 [T = 0.3,

protein domains]). We also investigated whether the designed proteins with the highest

correlations corresponded to the natural proteins with the highest correlations, and found

this generally to be the case (Fig. 4B and Fig. S8B).

Our finding that correlations between site entropy and RSA are lower in designed

proteins than in natural proteins indicates that, in designed proteins, site variability is too

uniform across different solvent exposure states. In short, designed proteins are either

too variable in the core or too conserved on the surface. To obtain a clearer picture of

how exactly designed proteins differed from natural proteins, we once more considered

the distributions of mean site entropies, but now calculated separately for buried sites

(RSA ≤ 0.05), for partially buried sites (0.05 < RSA ≤ 0.25), and for exposed sites

(RSA > 0.25). Figure 5 shows the medians of these distributions. For designed proteins,

the mean site variabilities of exposed and of partially buried sites are close in magnitude

while the mean site variabilities of buried sites are generally consistently lower. By contrast,

in natural sequences exposed sites show much more variability than partially buried sites.

If buried sites are too variable or exposed sites too conserved in designed proteins, we

reasoned that hybrid designs, in which buried sites were taken from sequences designed at

a lower temperature and exposed sites from sequences designed at a higher temperature,

should display correlations more similar to those seen in natural proteins.

According to Fig. 5, for the yeast proteins buried and partially buried sites in designed

proteins had site variability most similar to that of natural sequences in proteins designed

with a fixed backbone or in proteins with a design temperature of T = 0.03. In the

protein-domains data set, that temperature was T = 0.3 to T = 0.6. By contrast, for
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Figure 6 Distribution of correlation coefficients between RSA and site entropy for hybrid designs
and for natural proteins. “FB” indicates fixed-backbone design and “NS” indicates natural sequences.
For the hybrid designs, buried and partially buried sites were taken from sequences designed at one
temperature, and exposed sites were taken from sequences designed at a different temperature. For the
hybrid designs, the correlation coefficients were similar to those of natural sequences (paired t test,
P = 0.517 [T = FB,0.1] and P = 6.78× 10−8 [T = 0.03,0.1], yeast proteins, and P = 5.19× 10−5

[T = 0.3,1.8] and P = 0.118 [T = 0.6,1.8], protein domains). (A) yeast proteins; (B) protein domains.

exposed sites the site variability in designed proteins was most similar to that of natural

sequences at a design temperature of T = 0.1 (yeast proteins) and T = 1.2 (protein

domains). We thus built our hybrid designs by combining sites from these temperatures.

We found that the distribution of the site-entropy–RSA correlations in hybrid designs was

comparable to that in natural sequences (Fig. 6). However, predictions for specific proteins

lacked accuracy (Fig. S9).

DISCUSSION
We have compared site variability and amino-acid distributions in designed and natural

proteins, for two distinct data sets. One data set consisted of 38 yeast proteins and

the other consisted of 40 protein domains. Structures in the yeast-proteins data set

were, on average, much larger than structures in the protein-domain data set, while

natural sequences in the protein-domain data set were more variable than those in the

yeast-proteins data set. We have found that proteins designed with a flexible backbone,

using an intermediate design temperature, were generally the most similar to natural

proteins. Overall amino-acid frequencies in designed proteins were similar, though not

identical, to those in natural proteins. However, amino-acid frequencies at individual sites

showed substantial deviations. Finally, we have found that site variabilities in designed

proteins are too uniform across different solvent exposure states of residues. Designed

proteins have either cores that are too variable or surfaces that are too conserved.

In previous studies, native sequence recovery has been used to assess design accuracy.

(Gainza, Roberts & Donald, 2012; Kuhlman & Baker, 2000). Native sequence recovery

is defined as the mean percent of native amino acid identities that are observed in the

designed proteins. Despite its widespread use, native sequence recovery may not always be

a sufficient indicator of design accuracy, especially when examining different sequences
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that are compatible with one specific structure. A major goal of design is to find sequences

that fold into a specific structure. For this goal, one typically models a series of structures

that are similar to the native structure and then identifies low energy sequences for each

of these modeled structures. Even if all designed sequences fold into the desired structure,

they may not necessarily have a high sequence similarity with the sequence of the native

structure. For this reason, we believe that it is important to assess design accuracy by

multiple different methods, and also against an ensemble of native sequences or structures.

A previous study, the source of the protein-domains data set we analyzed here, has

similarly compared designed proteins against ensembles of natural sequences (Ollikainen

& Kortemme, 2013). That study and our present study complement each other. Ollikainen

& Kortemme (2013) were primarily interested in amino-acid covariation, and they

also considered sequence entropy and profile similarity (Yona & Levitt, 2002). Here,

we were primarily interested in the effects of solvent occlusion on site variability and

amino-acid choice, and we also considered two distinct sets of natural reference structures

(protein domains and whole proteins). In both studies, an intermediate amount of

backbone flexibility was found to be optimal for recapitulating characteristics of natural

protein sequences. Both studies also identify similar inaccuracies in the designed protein

sequences. Ollikainen & Kortemme (2013) observed that covarying pairs in designed

protein cores were more likely to be hydrogen bonding pairs that in natural cores, and here

we found that polar residues are over-represented in the designed protein cores compared

to natural cores.

Our analysis compared two distinct datasets. The first was comprised of 40 protein

domains, chosen to be less than 150 amino acids in length and with a mean length of 86.1

amino acids. The second was comprised of 38 whole yeast proteins, with a mean length

of 215.4 amino acids. For each structure in each data set, we had an associated alignment

of natural sequences to assess natural variability for that structure. (Note that sequences

homologous to the yeast proteins were not constrained to be fungal sequences.) Sequence

in the protein-domain data set were more variable than sequences in the yeast-protein

data set. We found that optimal design temperatures were lower for the yeast-protein data

set than for the protein-domains data set. This finding is consistent with both increased

mean length and reduced mean variability in the yeast-protein data set relative to the

protein-domains data set. In particular, large cores in the larger proteins may lead to larger

conserved regions whose site variability patterns are better recaptured at lower design

temperatures.

We found that the characteristics of designed protein sequences are generally similar

but by no means identical to natural sequences. To some extent, this discrepancy is

to be expected. Designed protein sequences are optimized entirely for thermodynamic

stability as estimated by the design energy function. Natural proteins experience a variety

of selective pressures, stability being only one of them. For example, natural proteins

experience selection pressures for native protein–protein interactions, against non-specific

protein–protein interactions, and against misfolding and aggregation (Fraser et al., 2002;

Zarrinpar, Park & Lim, 2003; Drummond & Wilke, 2008; Levy, De & Teichmann, 2012).
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If they are enzymes, natural proteins also require the appropriate mutations that enable

enzymatic activity, even if those mutations are thermodynamically destabilizing (Bloom

et al., 2006; Elcock, 2001). While selection for enzymatic activity will likely affect only

a few sites in a protein, the other selective forces (misfolding, aggregation, native and

non-specific interactions) have the potential to exert much broader selection pressures

across many sites in a protein. As long as design algorithms do not take these selection

pressures into account, we cannot expect design algorithms to reproduce natural sequence

variation exactly.

To identify at which sites discrepancies between natural and designed proteins arose,

we explicitly examined the relationship between structure and sequence variability. In

particular, we analyzed the correlation between RSA and site entropy, which reflects the

well-known observation that proteins are more variable on the surface than in the core. We

found that the difference between surface and core variability was much more pronounced

in natural proteins than in designed proteins. Designed proteins either have cores that are

too variable or surfaces that are too conserved. We created hybrid designs, taking core sites

from one set of designed proteins and surface site from another set, designed with more

backbone movement, and tested whether these hybrid designs showed the appropriate

differential in variability between core and surface sites. We found that they did so as a

population (Fig. 6) but not individually (Fig. S9). This observation indicates that there is

some aspect of protein fold stability that differentially affects surface and core residues and

that is not yet properly incorporated into current design algorithms. Simply raising the

design temperature on the surface but not in the core is not sufficient to capture this effect.

Note that we do not expect our hybrid design approach to yield realistic, stable protein

sequences. It is merely meant as an illustration of the extent to which surface sites would

have to be more variable relative to core sites to yield entropy-RSA correlations comparable

to those found in natural sequences.

For both data sets, the designed proteins had fewer hydrophobic residues and

more polar residues than expected from natural sequence alignments. This trend was

particularly apparent in the protein core, and it was more extreme for larger proteins.

These discrepancies suggest a need for further improvement of the design algorithm,

most likely the energy function. Rosetta uses a scoring function that predicts the energy

of a given sequence folded into a particular target structure (Kuhlman et al., 2003). As a

component of this scoring function, Rosetta uses the Lazaridis-Karplus implicit solvation

model to estimate the energy of desolvation of each residue (Lazaridis & Karplus, 1999).

The over-representation of polar residues in protein cores that we observed suggests that

this solvation model is either insufficiently penalizing for the burial of polar groups

or insufficiently rewarding the burial of hydrophobic residues. Improvements to the

solvation model used in design may result in more stable designed proteins with amino

acid distributions more similar to those of natural proteins, especially in protein cores.

While protein cores are more variable in designed proteins compared to natural

proteins, the surfaces of designed proteins are too conserved. This discrepancy is somewhat

expected. We would only expect close agreement between designed and natural proteins
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if the sequences are under the same constraints (and provided the energy function could

accurately capture these). Computational design optimizes sequences primarily for protein

stability, which, in natural proteins, is more likely to be a dominant constraint in protein

cores than on surfaces. Surfaces of natural proteins may also be under other important

pressures, such as to make desired and avoid unwanted interactions and to keep proteins

soluble. All of these pressures could act to diversify protein surfaces away from sequence

choices that would maximize stability. In addition, there are of course also inaccuracies in

the design energy function, including difficulties in accurately modeling electrostatics and

solvation at surfaces, and contributions of conformational entropy of surface side chains

that are not taken into account in most design energy functions.

In our analysis of approximately 80 protein structures total, we found that proteins

designed with an intermediate amount of backbone flexibility exhibited site-variability

patterns most closely resembling that of natural proteins. However, the optimal range

of backbone flexibility was different in the two data sets. Further, even when the overall

site variability matched that of natural sequences, the specific amino-acid distributions

at individual sites did not match that well, as quantified by the relatively large KL

divergence values between natural and designed alignments. Similarly, intermediate

design temperatures showed the highest correlation between RSA and site variability

(as measured by entropy). However, even at the optimal design temperature (T ∼ 0.3

for both data sets), the designed proteins exhibited systematically lower correlations than

did the natural proteins. Consequently, using current state-of-the-art design algorithms,

designed proteins have either surfaces that are too conserved or cores that too variable. We

suspect that changes in the design energy function, in particular more accurate estimation

of the balance between electrostatics and desolation, will be needed to address this issue.

We also see a need for improved flexible-backbone design algorithms that can model larger

backbone movements on the surface without disturbing the core backbone as much. As

alternative and improved algorithms design algorithms become available, they should be

subjected to similar tests as we have done here, to assess to what extent different algorithms

reproduce natural amino-acid frequency and site-variability differences in core versus

surface.
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