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ABSTRACT
Metabolomic profiling is an increasingly important method for identifying potential
biomarkers in cancer cells with a view towards improved diagnosis and treatment.
Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to
accurately characterize differences in the metabolomic profiles of cells. In this work, we
use 1HNMRtomeasure themetabolomic profiles ofwater solublemetabolites extracted
from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B
lung epithelial cells to determine the robustness of NMR metabolomic profiling in
detecting differences between the transformed cells and their untransformed counter-
parts as well as differences among the RAS-transformed cells. Unique metabolomic
signatures between control and RAS-transformed cell lines as well as among the three
RAS isoform-transformed lineswere foundby applying principal component analysis to
the NMRdata. This study provides a proof of principle demonstration that NMR-based
metabolomic profiling can robustly distinguish untransformed and RAS-transformed
cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data
may potentially provide new diagnostic signatures for RAS-transformed cells.

Subjects Biophysics, Metabolic Sciences
Keywords Oncogenic RAS, 1H NMRmetabolomics, 1D NOESY, Fieller’s method for unpaired
data

INTRODUCTION
It has long been appreciated that the metabolism of normal and malignant cells can
significantly differ (Warburg, 1956). Measuring the cellular metabolomic profiles can
therefore provide a ‘‘snapshot’’ of the degree of oncogenicmalignancy in cancer cells (Griffin
& Schockor, 2004). One particularly important technique that can measure metabolomic
profiles is nuclear magnetic resonance (NMR). NMR is a noninvasive method that can
provide highly reproducible and quantitative metabolomic information and has been
previously used to detect metabolic fingerprints from a variety of oncogenic pathways
(Morvan & Demidem, 2007; Southam et al., 2008).

One of the earliest applications of cellular NMR metabolomics has been to look for
biomarkers associated with activation of the RAS oncogene (Aboagye & Bhujwalla, 1999;
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Ronen et al., 2001). The RAS oncogene, which can exist in either of the HRAS, KRAS,
or NRAS isoforms, is found mutated in approximately 30% of all human cancers and
produces aggressive, treatment resistant tumors (Fernandez-Medarde & Santos, 2011). Of
the three major isoforms, KRAS is found to be the most commonly mutated in human
tumors. NRAS is also found activated in certain tumor types such as melanoma, whereas
HRASmutations are rarely found in human cancers (Bos, 1989). The three isoforms, which
differ in their membrane-targeting domain, were historically considered to be redundant
in their function (Castellano & Santos, 2011). However, a number of studies have shown
that the three isoforms are functionally different (Li, Zhu & Guan, 2004;Walsh & Bar-Sagi,
2001; Yan et al., 1998) with tumors sustaining distinct oncogenic versions of RAS showing
different progression characteristics (Parikh, Subrahmanyam & Ren, 2007; Whitwam et
al., 2007). Accordingly, high-throughput noninvasive means of detecting RAS signatures
from tumor cells are likely to aid in effective diagnosis and design of treatment regimens
that target RAS-specific pathways (Downward, 2003; Omerovic et al., 2008). However to
our knowledge, differences in the metabolomic profiles between normal cells and cells
transformed with either of oncogenic HRAS, KRAS, or NRAS have not been previously
investigated. Anticipating that there will be robust differences between untransformed and
RAS-transformed cells, we employed a cell culture system to validate theNMRmethodology
described in this study.

Specifically, we analyzed BEAS2B immortalized lung epithelial cells stably transformed
with either an empty retroviral vector or with either one of the activated versions of the RAS
isoforms, HRAS, KRAS and NRAS, as a proof-of-principle system to determine whether
1H NMR-based metabolomics could be used to identify unique metabolomic signatures
between the RAS-transformed and control cells as well as among the different RAS isoform-
transformed cell lines. The advantage of this cell culture system is the isogenic background
among the four cell lines as well as the ability to generate the requisite numbers of stably
transformed cells for consistent NMR characterization. Our NMR characterization of the
metabolomic profiles indicated that each RAS isoform possesses a distinct metabolomic
signature that has bearing on its observed cell-physiologic transformative effects.

MATERIALS AND METHODS
DNA constructs and viral transduction
The retroviral pBABE KRASV12, HRASV12 and NRASQ61 DNA constructs were obtained
fromAddgene. Stable transduction of the pBABE empty vector and the RAS constructs into
BEAS2B cells was performed as previously described (Patel et al., 2012). Transduced cells
were selected in 2.5 µg/ml puromycin-containing complete culture media for a minimum
period of 5–7 days (corresponding to the time taken for untransduced BEAS2B cells to die
completely in selection media). Oncoprotein overexpression relative to the control cells
was verified via Western blotting as previously described (Patel et al., 2012).

Cell culture
BEAS2B cells were obtained from the American Type Culture Collection. All cells were
grown at 37 ◦C in 21% oxygen and 5% CO2. BEAS2B cells and their derivative lines were
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maintained inDMEM:F12 complete basemedia supplementedwith 10% fetal bovine serum
and 100 units/ml penicillin-streptomycin. All cell culture reagents were obtained from Life
Technologies. For each cell line, ten biological replicates were generated by initially seeding
ten different 15 cm dishes (Nunclon) with an initial plating of approximately 1×106

cells for the control cells, 1.5×106 cells for the HRAS- and KRAS-transformed cells, and
2×106 for the NRAS-transformed cells (differences in the initial seedings were used to
compensate for differences in cellular growth rates so that by the end of the growth period,
approximately the same number of cells for each cell line was obtained). In total, all forty
plates were seeded at approximately the same time and were allowed to proliferate for
a period of four days with the media changed every 48 h. After four days, the cells were
trypsinized for approximately two minutes and counted using a Moxi automatic cell
counter (VWR) with size parameters adjusted to exclude apoptotic cells. The average final
cell counts were (1.107 ± 0.050)×107 cells per control sample, and (1.558 ± 0.291)×107,
(1.486 ± 0.124)×107, and (1.613 ± 0.156)×107 cells per HRAS-, KRAS-, and NRAS-
transformed sample, respectively. This corresponded to an average population doubling
time of 27.68 h for the control cells and 28.43 h, 29.02 h, and 31.89 h for the HRAS-,
KRAS-, and NRAS-transformed cells, respectively. After counting, the cells were pelleted
at 1,500 rpm for 5 min at 4 ◦C with the pellets immediately snap-frozen in liquid nitrogen
and stored at –80 ◦C.

Metabolite extraction
The extraction of hydrophilic metabolites from cell pellets was performed using previously
established procedures (Gottschalk et al., 2008). Briefly, cell pellets in a 1.5 ml Eppendorf
tubes were resuspended by adding 500 µl of a 2:1 (v/v) ice-cold solution of methanol
(Sigma-Aldrich) and chloroform (Sigma-Aldrich) followed by 3–5 min of vortexing and
manual mixing for at least 10 min until a clear solution was obtained. Next, 250 µl of
ice-cold chloroform and 250 µl of ice-cold water were each added to the sample, which was
then vortexed for 5–7 min to yield a cloudy solution. The sample was sonicated at room
temperature for ten minutes followed by centrifugation at 13,000 rpm for 5 min at 4 ◦C
in order to yield three layers. The hydrophilic layer was transferred to a fresh Eppendorf
tube followed by bubbling with nitrogen gas (Airgas) to remove any residual methanol.
The samples were placed under a high speed vacuum concentrator at room temperature
until dried, and the dried hydrophilic layer was stored in a –80 ◦C freezer until needed.

NMR sample preparation, acquisition, and processing
The dried hydrophilic layer was resuspended in 400 µl of deuterated PBS at pH = 7.6 that
was prepared as previously reported (Sambrook, Fritsch & Maniatis, 1989). The pH of each
sample was adjusted to 7.6 by the addition of either dilute HCl or NaOH as needed to
ensure that each metabolite appeared at the same chemical shift in all samples. In each
sample, 0.5 µl of a 0.1 M aqueous solution of DSS (Sigma Aldrich) was added for chemical
shift referencing. After vortexing, each sample was transferred into a 5 mm NMR tube.

The 1H NMR spectra were acquired on a 500 MHz Bruker Avance spectrometer
(operating at 500.13 MHz for 1H observation) equipped with a 5 mm TCI 500S2 H-C/N-
D-05 Z cryoprobe head at 298 K. Each sample was tuned andmatched, reshimmed, and the
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Figure 1 NOESY pulse sequence, Western Blots, and Representative Spectra. (A) The 1D NOESY with
presaturation pulse sequence. (B) Western blots depicting the control and oncogenic HRAS-, KRAS-, and
NRAS-transformed cells. (C) Representative spectra obtained from the 1D NOESY sequence applied to
samples made from the control and HRAS-, NRAS-, and KRAS-transformed cells. The spectra were nor-
malized so that the DSS resonance at δ = 0 ppm had the same intensity in all spectra for display purposes
only. The spectral region for the water resonance is not shown, and certain metabolite resonances are la-
beled using the codes 1–21 given in Table 1.

90◦ pulse length was recalibrated (90◦ pulse lengths ranged between 10 and 12 µs). The 1H
NMR spectra were acquired using a standard Bruker 1D NOESY pulse program with water
presaturation and spoiler gradients applied during the relaxation delay, ‘‘noesygppr1d.2’’
as shown in Fig. 1A. This pulse sequence provides good solvent suppression without rolling
baselines (Beckonert et al., 2007; Mckay, 2011). The following experimental parameters
were used in all measurements: sweep width of 10.33 kHz, 65 K acquisition points, a 2 s
recycle delay during which a 93 Hz water presaturation pulse was applied, τmix = 101.2 ms,
θ = 7.5◦–9◦, and 256 scans were acquired for each sample. Half-sine shaped pulsed field
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Table 1 Table of chemical shifts and splitting patterns for metabolites identified by NMR. List of iden-
tified metabolites from the hydrophilic layer, with their corresponding CHEBID, chemical shifts (ppm)
and splitting patterns (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets;
ddd, doublet of doublet of doublets; bs, broad singlet; bd, broad doublet; bt, broad triplet) used in the
Chenomx analysis of the 1H spectra. The labels 1–21 are for those metabolites that exhibited a signifi-
cant difference (adjusted p-values ≤ 0.01) between at least two cell types in either their ‘‘effective’’ NMR
metabolite fraction, xCell typemetabolite in Eq. (2), or their glutamate normalized signal, ξCell typeα,glutamate in Eq. (3).

Metabolite [CHEBI ID] 1H chemical shifts (ppm) andmultiplicity

Acetate [15366] 1.90(s)
Alanine, 1 [16977] 1.47(d), 3.77(q)
Beta-alanine, 2 [16958] 2.54(t), 3.16(t)
Arginine [16467] 1.64(m), 1.72(m), 1.88(m), 1.92(m), 3.42(t), 3.75(t)
AXP [15422, 16027, 16761] 4.22(m), 4.29(m), 4.39(m), 4.57(t), 4.8(m), 6.14(d), 8.26(s),

8.52(bs)
Aspartate, 3 [17053] 2.67(dd)a

Choline, 4 [15354] 3.19(s), 3.51(m), 4.06(m)
Choline alfoscerate, 5 [16870] 2.14(s), 3.22(bs), 3.75(m), 4.54(m)
Citrate [30769] 2.51(d)a, 2.68(d)a

Creatine, 6 [16919] 3.02(s), 3.92(s)
Creatine phosphate, 7 [17287] 3.03(s), 3.94(s)
Formate [30751] 8.44(s)
Fumarate, 8 [18012] 6.51(s)
Glutamate [16015] 2.04(dddd), 2.12(dddd), 2.31(ddd)a, 2.36(ddd)a, 3.74(dd)
Glutamine, 9 [18050] 2.10(m), 2.14(m), 2.42(m), 2.47(m), 3.76(t)
Glutathione [16856] 2.14(m), 2.17(m), 2.53(m), 2.57(m), 2.93(dd)a, 2.97(dd)a,

3.75(dd)a, 3.77(dd)a, 3.79(dd)a, 4.55(bt)
Glycine [15428] 3.55(s)
Isocitrate [151] 3.02(s), 3.94(s)
Isoleucine [17191] 0.93(t), 0.99(d), 1.25(m), 1.46(m), 1.97(m), 3.66(d)
Lactate, 10 [422] 1.32(d), 4.10(q)
Leucine, 11 [15603] 0.94(d), 0.96(d), 1.67(m), 1.70(m), 1.73(m), 3.70(m)
Malate [6650] 2.35(dd), 2.66(dd), 4.29(bd)
Myo-inositol, 12 [17268] 3.26(t), 3.52(dd), 3.61(dd)a, 4.05(t)
N-acetylaspartate, 13 [21547] 2.00(s), 2.48(dd), 2.68(dd), 4.38(ddd)
N-acetylcysteine, 14 [28939] 2.07(s), 2.90(dd)a, 2.93(dd)a, 4.37(m)
N-acetyYc [17533] 1.91(m), 2.03(s), 2.10(m), 2.30(m), 2.33(m), 4.15(m)
[NADZ]d [15846, 16908] 8.165(s), 8.41(s), 9.33(s)
[NADPZ]d [16474, 18009] 8.14(s), 8.41(s), 9.29(s)
Phenylalanine, 15 [17295] 3.11(dd), 3.37(dd), 3.98(dd), 7.31(d)a, 7.36(m), 7.41(m)
Phosphocholine, 16 [18132] 3.21(bs), 3.58(m), 4.15(m)
Proline, 17 [17203] 1.98(m), 2.03(m), 2.06(m), 2.34(m), 3.33(m), 3.41(m),

4.12(dd)
Pyruvate [32816] 2.36(s)
Succinate [15741] 2.39(s)
Taurine, 18 [15891] 3.25(t), 3.41(dd)

(continued on next page)
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Table 1 (continued)

Metabolite [CHEBI ID] 1H chemical shifts (ppm) andmultiplicity

Tyrosine, 19 [17895] 3.04(dd), 3.18(dd), 3.93(dd), 6.88(d)a, 7.18(d)a

UDP-Xb, 20[17200, 18066, 18307] 3.44(t), 3.53(td), 3.76(t), 3.78(dd), 3.86(m), 3.89(m),
4.19(ddd)a, 4.24(ddd)a, 4.27(m), 4.36(m), 4.37(m),
5.59(dd), 5.96(d), 5.98(bd), 7.94(d)

Valine, 21 [16414] 0.98(d), 1.03(d), 2.26(hd), 3.60(d)
DSS 0.00(s), 0.63(m), 1.76(m), 2.91(m)

Notes.
aMultiplet with second-order couplings.
bFor UDP-X can be UDP-galactose, UDP-glucose, or UDP-glucoranate.
cFor N-acetylY, the resonances used in the analysis stand for N-acetylglutamate, N-acetylglycine, and/or (and most likely) N-
acetylglutamine.

dOnly the listed resonances were used in the analysis of [NADZ] {[NADH] and/or [NAD+]}, and [NADPZ] {[NADPH] and/or
[NADP+]}.

gradients of duration 1 s with maximum gradient strengths of G1 = 24 G/cm and G2 =
–23.7 G/cm were used in Fig. 1A along with a 200 µs gradient stabilization delay placed
after each gradient pulse. After acquisition, all FIDs were imported into the Chenomx
NMR Suite Profiler (version 7.6., Chenomx Inc., Edmonton, Canada). The data were
Fourier transformed after multiplication by an exponential window function with a line
broadening of 0.5 Hz, and the spectra were manually phase corrected and baseline adjusted
using a cubic-spine function. From the initial set of ten biological replicates for each cell
line, only 8 of the control, 7 of the HRAS, 9 of the KRAS, and all 10 of the NRAS samples
provided measureable NMR signal from resonances other than the solvent peak. Therefore,
the results presented in this work represent data obtained from those NS = 8 biological
replicates of the control cells, and those NS= 7, NS= 9, and NS= 10 biological replicates
of the HRAS-, KRAS-, and NRAS-transformed cells.

The Chenomx NMR Suite Profiler was used to identify metabolites by fitting compound
signatures from the provided NMR spectral library. In total, 37 metabolites were identified
by NMR. The effective NMR metabolite concentration in each sample, Smetabolite , was
calculated using the Chenomx NMR Suite Profiler by determining the heights of the
compound signatures that best fit the sample spectra with the effective concentration
of the internal DSS standard being set to SDSS = 0.1248 mM, which was the actual DSS
concentration in each sample. The table of identified metabolites and their signals was then
exported and saved in an Excel worksheet.

Statistical analysis
The ‘‘effective’’ NMR cellular content for metabolite α (moles/cell) taken from the sth
biological replicate of a given cell type, C̃Cell type

α,s , was calculated by multiplying Sα by the
NMR sample volume (400.5 µl) and by dividing by the number of cells used to make
up each NMR sample. C̃Cell type

α,s is related to the actual cellular content for metabolite α,
CCell type
α,s , by the relationship

C̃Cell type
α,s =χ

Cell type
s fαC

Cell type
α,s (1)

where χCell type
s and fα are dimensionless proportionality factors. The sample- and

cell type-independent factor fα is taken to depend only upon the experimental NMR
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acquisition parameters (such as recycle delays, mixing times, magnetic field strength,
etc.) and metabolite α’s spin topology and relaxation properties. This contribution can in
principle be found by applying the 1D NOESY sequence in Fig. 1A to prepared standards.
The sample- and cell type-dependent factor χCell type

s in Eq. (1) is due to the overall
metabolite extraction efficiency, which can vary from sample to sample and depends quite
sensitively on cell handling (Duarte et al., 2009) and the particular metabolic quenching
and extraction method employed in the study.

The various C̃Cell type
α,s were used to calculate the ‘‘effective’’ NMR fraction of metabolite

α in each sample, xCell typeα , as follows:

xCell typeα =
C̃Cell type
α∑37

j=1 C̃
Cell type
j

=
fαC

Cell type
α∑37

j=1 fjC
Cell type
j

. (2)

As defined in Eq. (2), xCell typeα is dimensionless and independent of the number of cells in
a given biological replicate that were used to make the sample. More importantly, xCell typeα

is independent of the sample-dependent fluctuation factor, χCell type
s in Eq. (1). The total

intensity normalization in Eq. (2) is analogous to that used in spectral binning analysis
commonly employed in NMR metabolomic studies. Furthermore, if the various fα are
identical for each metabolite, i.e., fα = f for all metabolites, then xCell typeα in Eq. (2) is
simply the mole fraction of metabolite α for a given cell type (in general, this is not the
case, and fα 6= fβ).

An ANOVA test, implemented using the MATLAB function ‘‘anova1’’ available in
MATLAB’s Statistics toolbox, was first used to test the hypotheses that

〈
xHRASα

〉
=
〈
xKRASα

〉
=〈

xNRASα

〉
=
〈
xControlα

〉
for each metabolite α, where

〈
xCell type

〉
represents the average value

of x for a given cell type. The BY algorithm (Benjamini & Yekutieli, 2001) implemented
in MATLAB (Groppe, 2010) with the false discovery rate set to 0.01 was then applied
to the p-values from the ANOVA analysis to determine those metabolites where 〈xα〉
significantly differed (adjusted p-values with p≤ 0.01) between at least two cell types. For
those metabolites identified by the ANOVA test, further post-hoc/multiple comparison
testing using the BY algorithm was performed to identify which pair(s) of cell types 〈xα〉
significantly differed (adjusted p-values with p≤ 0.01, which are given in Table S1). Finally,
a PCA of the various xCell typeα was performed using the ‘‘pca’’ command in the Statistics
toolbox in MATLAB, which by default, centers the data before performing the PCA.

Due to the similar average values of the ‘‘effective’’ NMR glutamate content,
〈
xglutamate

〉
,

observed in both the control and RAS-transformed cells (Fig. S1) and the relatively
large glutamate signals observed in all cells lines (only the lactate signals were larger on
average), an alternative to the total intensity normalization scheme used in Eq. (2) was also
investigated whereby the metabolite signals were normalized by the observed glutamate
signal in each sample. In this case, the glutamate normalized signal for metabolite α is
given by:

ξ
Cell type
α,glutamate =

C̃Cell type
α

C̃Cell type
glutamate

=
xCell typeα

xCell typeglutamate

=
fα

fglutamate
×
CCell type
α

CCell type
glutamate

(3)
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ξ
Cell type
α,glutamate is directly proportional to the ratio of the actual cellular metabolite α to

glutamate content, and, like xCell typeα in Eq. (2), it is also independent of the sample-
dependent fluctuation factor, χCell type

s . A PCA of the various ξCell typeα,glutamate was also
performed, where in this case only 36 metabolites were considered in the analysis since
ξ
Cell type
glutamate,glutamate = 1 in each sample by definition (Eq. (3)).
One advantage of using glutamate normalization in Eq. (3) compared with using total

metabolite normalization in Eq. (2) is that the ratio of ξα,glutamate between different cell
types is independent of the fα factors and depends only on the actual cellular metabolite
contents:

ξ
Cell type 1
α,glutamate

ξ
Cell type 2
α,glutamate

=

 CCell type 1
α

CCell type 1
glutamate

/ CCell type 2
α

CCell type 2
glutamate

 . (4)

The ratio in Eq. (4) is equivalent to the relative fold change in the ratio of the actual
cellular metabolite α to glutamate content between different cell types. In those instances
where a significant difference in

〈
ξmetabolite,glutamate

〉
between at least two cell types was

identified by ANOVA and post-hoc/multiple comparison testing, quantitative confidence
intervals for the ratio in Eq. (4) were calculated using Fieller’s method for unpaired data
(Motulsky, 1995). In this case, the (100−α)% confidence range for ξCell type 1

metab., glut/ξ
Cell type 2
metab., glut .

in Eq. (4), which is denoted by ε(100−α)%

(
ξ
Cell type 1
metab., glut .

ξ
Cell type 2
metab., glut .

)
, is given by (Motulsky, 1995):

ε(100−α)%

ξCell type 1
metab., glut .

ξ
Cell type 2
metab., glut .


=

µ1

(1−g )µ2

1 ± t1− α2 ,N1+N2−2

√(
1−g

)( σ1

µ1
√
N1

)2

+

(
σ2

µ2
√
N2

)2
 (5)

where N1 and N2 are the number of biological replicates of cell types 1 and 2, respectively,
µ1 and σ1 are the average and standard deviations for ξCell type 1

metabolite,glutamate , respectively,

µ2 and σ2 are the average and standard deviations for ξCell type 2
metabolite,glutamate , respectively,

g =
(
σ2t 1− α2 ,N1+N2−2

µ2
√
N2

)2
, and t1− α2 , N1+N2−2 is the

(
1−α2

)
th quantile of the t -distribution

withN1+N2−2 degrees of freedom. If g ≥ 1, the relative fold change in cellular metabolite
to glutamate content cannot be calculated using Eq. (5). TheMATLAB files and commands
used in the statistical analysis of the metabolomics data is given as File S1.

RESULTS AND DISCUSSION
Generation of isogenic cell lines for the study
The results of immunoblotting total protein lysates from the four cell types against the
various RAS isoforms are shown in Fig. 1B. Western blotting with antibodies against
HRAS (first lane), KRAS (second lane) and NRAS (third lane) confirmed that the cells
expressed the appropriate RAS isoforms. Uniformity of loading was also confirmed by

Marks et al. (2016), PeerJ, DOI 10.7717/peerj.2104 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.2104/supp-5
http://dx.doi.org/10.7717/peerj.2104


P
C

2
 S

c
o

re
s 

(x
 1

00
)

PC1 Scores (x 100)
−15 −10 −5 0 5 10 15 20 25−15

−10

−5

0

5

10

15

Control
NRAS
KRAS
HRAS

12

16

20

(A)

(B)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

18

17
19

lo
a

d
in

g
 P

C
2

 (
1

6
.3

%
)

loading PC1  (75.1%)

23 1

2 1
3

12

19

16

17

18

20lo
a

d
in

g
 P

C
2

 (
1

7
.0

%
)

loading PC1  (77.9%)

glutamate
0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

Glutamate NormalizatonTotal Metabolite Normalizaton

P
C

2
 S

c
o

re
s 

(x
 1

0)

PC1 Scores (x 10)

−0.2

−0.1

20 25151050−5−10−15

8

4

0

−4

−8

Control
NRAS
KRAS
HRAS

99

(C)

(D)

10

6

7

6

7

10

Figure 2 Loadings and score plots for effective NMRmetabolite fractions. PCA of the effective NMR
metabolite fractions, xmetabolite in Eq. (2), and glutamate normalized signals, ξmetabolite,glutamate in Eq. (3), for
(asterisks) control and (diamonds) HRAS-, (circles) KRAS-, and (squares) NRAS-transformed cells. Load-
ing plots for xmetabolite[(A) PC1 (75.1%) and PC2 (16.3%)] and ξmetabolite,glutamate [(C) PC1 (77.9%) and PC2
(17.0%)] are shown. The identities of certain metabolites are denoted by the labels given in Table 1. Score
plots of PC2 versus PC1 of centered data with the corresponding 99% confidence ellipses (Hoover, 1984)
are shown for both the (B) xmetabolite and (D) ξmetabolite,glutamate data. The results in this figure are from NS =

8 biological replicates of the control cells and NS = 7,NS = 9, and NS = 10 biological replicates of the
HRAS-, KRAS-, and NRAS-transformed cells, respectively.

immunoblotting against GAPDH, a housekeeping gene, as shown in the bottom lane of
Fig. 1B. Previous characterizations of these cell lines have also confirmed that the introduc-
tion of the RAS oncogene confers soft agar colony growth in these cells, which is indicative
of oncogenic transformation (Rai et al., 2011; Patel et al., 2015; Giribaldi et al., 2015).

NMR-based characterization and PCA of metabolomic profiles
Representative spectra taken from a single biological replicate of the control and HRAS-,
KRAS-, and NRAS-transformed cells are shown in Fig. 1C, where the spectra were
normalized so that the DSS resonance at δ= 0 ppm had the same intensity in all spectra
for display purposes only. Certain key metabolites are labeled using the codes, 1–21, given
in Table 1.

The loadings of PC1 (score of 75.1%) and PC2 (score of 16.3%) from a PCA of xCell typemetabolite
are shown in Fig. 2A, where some of the components of both PC1 and PC2 are labeled using
the codes given in Table 1. In Fig. 2B, a score plot of PC1 vs. PC2, with the corresponding
99% confidence ellipses (Hoover, 1984) drawn for convenience, shows non-overlapping
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grouping between the control and the RAS-transformed cells. Similar results were also
observed when performing a PCA of ξCell typemetabolite,glutamate as shown in Figs. 2C and 2D.

Non-overlapping groupings at the 99% confidence level between all cell lines were found
by plotting xCell typelactate vs. xCell typephosphocholine as shown in Fig. 3A, which were mainly due to differ-
ences in the phosphocholine levels between cell types (Fig. 4). Likewise, non-overlapping
groupings between all cell lines, this time at a slightly lower confidence level of 97.5%,
were also found by plotting ξCell typelactate,glutamate vs. ξ

Cell type
phosphocholine,glutamate as shown in Fig. 3B.

Of the 37 metabolites identified by NMR, an ANOVA analysis indicated that 18
metabolites had a significant (adjusted p-values with p≤ 0.01) difference in their ‘‘effective’’
NMR metabolite fraction (xα in Eq. (2)) between at least two of the four cell types. Box
plots of xCell typemetabolite for these 18 metabolites are given in Fig. 4. Of these 18 metabolites,
post-hoc/multiple comparison testing using the BY algorithm found that xCell typemetabolite for 17
metabolites was significantly different between the control cells and at least one of the
RAS-transformed cell types whereas the ‘‘effective’’ NMR cellular content for 6 metabolites
significantly differed in at least two of the three RAS-transformed cell lines (adjusted
p-values ≤ 0.01, which are given in Table S1). It should be noted that while the ANOVA
analysis indicated that 〈xvaline〉 was unequal between at least two of the four cell types,
post-hoc/multiple comparison testing could not identify any significant difference in
〈xvaline〉 between cell lines.

Similarly, an ANOVA analysis of the glutamate normalized metabolite content indicated
that 16 metabolites had a significant (adjusted p-values with p≤ 0.01) difference in
ξ
Cell type
metabolite,glutamate (Eq. (3)) between at least two of the four cell types, and box plots of

ξ
Cell type
metabolite,glutamate for those 16metabolites are shown in Fig. 5. Post-hoc/multiple comparison

testing indicated that ξCell typemetabolite,glutamate significantly differed between the control cells and

at least one of the RAS-transformed cell types for 13 metabolites whereas ξCell typemetabolite,glutamate
significantly differed between at least two of the three RAS-transformed cell lines for only 6
metabolites (adjusted p−values≤ 0.01, which are given in Table S2). It should also be noted
that while the ANOVA analysis indicated that

〈
ξCP,glutamate

〉
and

〈
ξglutamine,glutamate

〉
were

unequal between at least two of the four cell types, post-hoc/multiple comparison testing
could not identify any significant difference in either

〈
ξCP,glutamate

〉
or
〈
ξglutamine,glutamate

〉
between the cell lines. In those instances where a significant difference in

〈
ξmetabolite,glutamate

〉
between two cell typeswas identified byANOVAandpost-hoc/multiple comparison testing,
the 99% confidence intervals for the relative fold change in the actual cellular metabolite to

glutamate content between those cell types, ε99%

(
ξ
Cell type 1
metab., glut .

ξ
Cell type 2
metab., glut .

)
, were calculated using Fieller’s

method (Eq. (5)) and are given in Table 2. However, even though significant differences
between the RAS-transformed and control cells for

〈
ξfumarate,glutamate

〉
and between the

HRAS-transformed and control cells for
〈
ξtyrosine,glutamate

〉
were observed (Fig. 5 and Table

S2), the 99% CIs for the relative fold change in the cellular fumarate to glutamate content
and the cellular tyrosine to glutamate content could not be calculated due to the small
signals and large scatter observed for both tyrosine and fumarate in the control cells (which
gave g > 1 in Eq. (5)).
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Figure 3 Groupings observed for both the lactate vs. phosphocholine NMRmetabolite fractions and
glutamate normalized signals. Scatter plots of both (A) the NMR metabolite fractions for lactate, xCell typelactate ,
versus phosphocholine, xCell typephosphocholine and (B) the glutamate normalized lactate, ξCell typelactate, glutamate , versus phos-
phocholine, ξCell typephosphocholine,glutamate , found in the (asterisks) control and (diamonds) HRAS-, (circles) KRAS-,
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NS = 8 biological replicates of the control cells and NS = 7, NS = 9, and NS = 10 biological replicates of the
HRAS-, KRAS-, and NRAS-transformed cells, respectively, are shown.
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Figure 4 Box plots of the NMRmetabolite fractions identified by ANOVA analysis. Box plots of
xCell typemetabolite for those 18 metabolites identified by an ANOVA analysis which indicated 〈xmetabolite〉 was
unequal between at least two of the four cell types. While the ANOVA analysis identified 〈xvaline〉,
post-hoc/multiple comparison testing could not identify any significant differences in 〈xvaline〉 between the
cell lines, which is denoted by the superscript ‘##’.

Marks et al. (2016), PeerJ, DOI 10.7717/peerj.2104 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.2104


alanine

P N K Hξ ala
nin

e,g
lut

am
ate

 (x
 1

0-2
)

6

10
14

18

β-alanine

P N K Hξ β
-a

lan
ine

,gl
uta

ma
te 

(x
 1

0-2
)

0

4

8

12
choline

P N K Hξ ch
oli

ne
,gl

uta
ma

te 
(x

 1
0-2

)

4
6

10
12

8

alpha-GPC

ξ alp
ha

-G
PC

,gl
uta

ma
te 

(x
 1

0-2
)

0

1

2

P N K H

3
fumarate

P N K Hξ fum
ar

ate
,gl

uta
ma

te 
(x

 1
0-2

)

0

1

2

glutamine##

P N K Hξ glu
tam

ine
,gl

uta
ma

te 
(x

 1
0-2

)

15

25

35

NAC

P N K Hξ NA
C,

glu
tam

ate
 (x

 1
0-2

)

2
6

10
14

proline

P N K Hξ pr
oli

ne
,gl

uta
ma

te 
(x

 1
0-2

)

15

25

35
tyrosine

P N K Hξ tyr
os

ine
,gl

uta
ma

te 
(x

 1
0-2

)
0
2
4

6
UDP-X

P N K Hξ UD
P-

X,
glu

tam
ate

 (x
 1

0-2
)

6
10
14
18
22

aspartate

P N K Hξ as
pa

rta
te,

glu
tam

ate
 (x

 1
0-2

)

2

6

10

myoinositol

P N K H

ξ my
oin

os
ito

l,g
lut

am
ate

 

0.6
0.8
1.0
1.2

NAA

P N K Hξ NA
G,

glu
tam

ate
 (x

 1
0-2

)
1
2
3

0

PC

P N K Hξ PC
,gl

uta
ma

te 
(x

 1
0-2

)

10
20
30
40
50
60

taurine

P N K Hξ tau
rin

e,g
lut

am
ate

 (x
 1

0-2
)

15
25
35
45
55

CP##

P N K Hξ CP
,gl

uta
ma

te 
(x

 1
0-2

)

2
6

14
18

10

Figure 5 Box plots of the glutamate normalized signals identified by ANOVA analysis. Box plots
of ξCell typemetabolite,glutamate for those 16 metabolites that were identified by an ANOVA analysis that indicated〈
ξmetabolite,glutamate

〉
was unequal between at least two of the four cell types. While the ANOVA analysis

identified both
〈
ξCP,glutamate

〉
and

〈
ξglutamine,glutamate

〉
, post-hoc/multiple comparison testing could not

identify any significant differences in either
〈
ξCP,glutamate

〉
and

〈
ξglutamine,glutamate

〉
between the cell lines, which

is denoted by the superscript ‘##’.

NMR-based identification of metabolite differences among the
transformed and control cell lines reflect RAS-driven physiologic
alterations
Due to the Warburg effect (Warburg, 1956), it is well known that oncogenic transformed
cells undergo aerobic glycolysis as opposed to oxidative phosphorylation (Dang, 2012).
To establish the validity of our data against known metabolic changes, we assessed how
differences in the NMR signals from lactate and alanine, twomajor byproducts of glycolytic
metabolism (DeBerardinis et al., 2007), varied among the different cell lines. The lactate
NMR signal was the largest NMR signal observed in all cell lines (Fig. 4), and lactate was also
the largest component to PC1 in the PCA analyses of both xmetabolite and ξmetabolite,glutamate

in Fig. 2. In fact, xHRASlactate and xKRASlactate were found to be statistically larger than xControllactate (Fig. 4
and Table S1). The cellular alanine to glutamate content was found to be elevated between
50%–75% in KRAS- and NRAS-transformed cells relative to the control cells (Table 2),
which is consistent with the reported phenotype of increased aerobic glycolysis in oncogenic
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Table 2 99% confidence intervals for relative fold change in the ratio of actual cellular metabolite to
glutamate content between cell types. 99% confidence intervals (CIs) for the relative fold change in glut-
mate normalized signals between cell lines calculated using Fieller’s method (Motulsky, 1995) in Eq. (5).
The lower and upper limits of the 99% CIs are denoted by subscripts that bracket the middle of the CI in-
terval (Louis & Zeger, 2009). The abbreviation, n.s., indicates those cases when there was no significant
statistical difference in

〈
ξmetabolite,glutamate

〉
found between cell lines from post-hoc testing using the BY al-

gorithm (Benjamini & Yekutieli, 2001) at a false discovery rate of 0.01. The 99% CIs for the relative fold
changes in the cellular fumarate to glutamate content in all RAS-transformed cells relative to control cells
and in the cellular tyrosine to glutamate content in HRAS-transformed cells relative to control cells could
not be calculated due to the small signals and large scatter of fumarate and tyrosine observed in the con-
trol cells (which gave g > 1 in Eq. (5)).

Metabolite α ε99%

(
ξHRAS
α,glutamate

ξControl
α,glutamate

)
ε99%

(
ξKRAS
α,glutamate

ξControl
α,glutamate

)
ε99%

(
ξNRAS
α,glutamate

ξControl
α,glutamate

)
Alanine n.s. 1.191.51.81 1.371.752.13
β-alanine n.s. 2.076.3410.61 n.s.
Choline n.s. 1.401.792.18 1.281.782.28
N-acetylcysteine n.s. 1.864.116.37 2.685.348.01
Proline n.s. 1.391.792.20 1.311.722.13
UDP-X 1.241.692.15 1.482.253.03 2.282.943.60
Aspartate n.s. 0.140.330.52 n.s.
Myo-inositol 0.450.550.65 0.580.680.77 0.440.510.58
N-acetylaspartate n.s. n.s. 0.220.470.72
Phosphocholine 0.240.280.31 0.360.400.45 0.160.180.20
Taurine 0.260.340.42 0.420.520.62 0.280.340.40

Metabolite α ε99%

(
ξNRAS
α,glutamate

ξHRAS
α,glutamate

)
ε99%

(
ξKRAS
α,glutamate

ξNRAS
α,glutamate

)
ε99%

(
ξKRAS
α,glutamate

ξHRAS
α,glutamate

)
Aspartate n.s. 0.150.360.56 n.s.
Choline alfoscerate n.s. 0.220.440.65 n.s.
Myo-inositol n.s. 1.141.341.55 n.s.
Phosphocholine 0.580.670.76 1.992.232.47 1.271.481.69
Taurine n.s. 1.231.571.91 1.191.612.04
UDP-X 1.441.802.16 n.s. n.s.

RAS-transformed cells (Hahn &Weinberg, 2002), although we should point out that our
study provides only a steady-state snapshot of the metabolic profile.

The cellular UDP-X (i.e., UDP-glucose, UDP-galactose, and/or UDP-glucourinate),
which are important molecules in glucose metabolism and in the formation of cellular
polysaccharides (Berg, Tymoczko & Stryer, 2002), to glutamate content was elevated
between a factor of 1.69–2.94 in the RAS-transformed cells lines relative to the control
cells (Table 2). Likewise, the cellular N-acetylcysteine, a thiolic antioxidant (Oikawa et
al., 1999), to glutamate content was also elevated in all RAS-transformed cells relative to
control cells (Fig. 5) with statistically significant differences occurring for the KRAS- and
NRAS-transformed cells, where CNAC

Cglutamate
was 4.11 and 5.34 times larger relative to control

cells, respectively (Table 2). The elevated levels of N-acetylcysteine in RAS-transformed
cells is a significant finding given that RAS-transformed cells are known to exhibit elevated
redox protective mechanisms (Young et al., 2004).
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The metabolomic signatures of two cellular osmolytes, taurine and myo-inositol, also
showed significant differences between the RAS-transformed and control cells. The cellular
taurine to glutamate content and the cellular myo-inositol to glutamate content were
between 50–66% and 32–45% smaller in all RAS-transformed cells relative to the control
cells, respectively (Table 2). As osmolytes regulate the apoptotic cell death pathway (Lang
et al., 2005), the functional relevance of the lower values of Cmyo−inositol

Cglutamate
and Ctaurine

Cglutamate
observed

in RAS-transformed cells may be related to their relative resistance to stress-induced
programmed cell death.

An unexpected result fromour studywas the cellular phosphocholine to glutamate levels.
Choline metabolism is an important component in lipid biogenesis (Glunde, Bhujwalla &
Ronen, 2011). The cellular phosphocholine to glutamate content in our study was between
60–82% smaller in the RAS-transformed cells relative to the control cells, and statistically
significant differences among the RAS-transformed cells were also observed (Fig. 5 and
Table S2). Similarly, the cellular choline to glutamate content was around 1.78 times larger
in the KRAS- and NRAS-transformed cells relative to the control cells (Table 2). Although
there are reports indicating phosphocholine levels correlate with elevated malignancy
(Aboagye & Bhujwalla, 1999; Ronen et al., 2001), exceptions in the published literature
suggest that this conclusion may be specific to the RAS isoform and cell type being studied
(Eliyahu, Kreizman & Degani, 2007).

We have demonstrated in this work that 1H NMR can be used to identify unique
metabolomic signatures between BEAS-2B immortalized lung epithelial cells and those
transformed with the isoforms of the RAS oncogene as well as among the three RAS
isoforms. Collectively, our results suggest that measuring cellular metabolomic profiles can
help in distinguishing between normal and RAS-transformed cells along with potentially
distinguishing among cancer cells expressing different RAS isoforms. In the future, these
resultsmay aid in the development of potential screening technology to determine particular
cancer treatment regimens.
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