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Postcranial anatomy of Pissarrachampsa sera
(Crocodyliformes, Baurusuchidae) from the Late Cretaceous of
Brazil: insights on lifestyle and phylogenetic significance

Pedro L. Godoy, Mario Bronzati, Estevan Eltink, Julio C. de A. Marsola, Giovanne M. Cidade, Max C. Langer, Felipe C. Montefeltro

The postcranial anatomy of Crocodyliformes has been historically neglected, as most
descriptions are based solely on skulls. Yet, the significance of the postcranium in
crocodyliforms evolution is reflected on the great lifestyle diversity exhibited by the group,
with members ranging from terrestrial animals to semi-aquatic and fully marine forms.
Recently, studies had emphasized the importance of the postcranium. Following this trend,
here we present a detailed description of the postcranial elements of Pissarrachampsa
sera (Mesoeucrocodylia, Baurusuchidae), from the Adamantina Formation (Bauru Group,
Late Cretaceous of Brazil). The presented elements include dorsal vertebrae, partial
forelimb, pelvic girdle, and hindlimbs. Comparisons with the postcranial anatomy of
baurusuchids and other crocodyliforms, together with body-size and mass estimates, led to
a better understanding of the paleobiology of Pissarrachampsa sera, including its
terrestrial lifestyle and its role as a top predator. Furthermore, the complete absence of
osteoderms in P. sera, a condition previously known only in marine crocodylians, suggests
osteoderms very likely played a minor role in locomotion of baurusuchids, unlike other
groups of terrestrial crocodylomorphs. Finally, a phylogenetic analysis including the newly
recognized postcranial features was carried out, and exploratory analyses were performed
to investigate the influence of both cranial and postcranial characters in the phylogeny of
Crocodyliformes. Our results suggest that crocodyliform relationships are mainly
determined by cranial characters. However, this seems to be a consequence of the
reduced number of both postcranial characters and taxa scored (for these characters), and
not of the lack of potential (or synapomorphies) for this kind of data to reflect the
evolutionary history of Crocodyliformes.
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Abstract

The postcranial anatomy of Crocodyliformes has been historically neglected, as most descriptions
are based solely on skulls. Yet, the significance of the postcranium in crocodyliforms evolution is
reflected on the great lifestyle diversity exhibited by the group, with members ranging from
terrestrial animals to semi-aquatic and fully marine forms. Recently, studies had emphasized the
importance of the postcranium. Following this trend, here we present a detailed description of the
postcranial elements of Pissarrachampsa sera (Mesoeucrocodylia, Baurusuchidae), from the
Adamantina Formation (Bauru Group, Late Cretaceous of Brazil). The presented elements
include dorsal vertebrae, partial forelimb, pelvic girdle, and hindlimbs. Comparisons with the
postcranial anatomy of baurusuchids and other crocodyliforms, together with body-size and mass
estimates, led to a better understanding of the paleobiology of Pissarrachampsa sera, including
its terrestrial lifestyle and its role as a top predator. Furthermore, the complete absence of
osteoderms in P. sera, a condition previously known only in marine crocodylians, suggests
osteoderms very likely played a minor role in locomotion of baurusuchids, unlike other groups of
terrestrial crocodylomorphs. Finally, a phylogenetic analysis including the newly recognized
postcranial features was carried out, and exploratory analyses were performed to investigate the
influence of both cranial and postcranial characters in the phylogeny of Crocodyliformes. Our
results suggest that crocodyliform relationships are mainly determined by cranial characters.
However, this seems to be a consequence of the reduced number of both postcranial characters
and taxa scored (for these characters), and not of the lack of potential (or synapomorphies) for

this kind of data to reflect the evolutionary history of Crocodyliformes.

Introduction
Baurusuchids are important components of the Late Cretaceous crocodyliform faung

(Montefeltro et al., 2011; Godoy et al., 2014). Despite the uncertainties regarding its relation to
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Sebecidae, the presence of a monophyletic Baurusuchidae within Notosuchia (Mesoeucrocodylia)
is becoming consensual (e.g.: Sereno & Larsson, 2009; Bronzati et al., 2012; Montefeltro et al.,
2013; Pol et al., 2014). The group is restricted to South America, with one possible exception in
Pakistan (Wilson ef al., 2001; Montefeltro et al., 2011). The group exhibits a peculiar
morphology for crocodyliforms, including a dog-like skull with hypertrophied canines and
cursorial limb morphology, illustrating their role as top predator in the paleoenvironments they

=

Most of baurusuchid diversity (8 out of 10) comes from the Bauru Group, in Southern

occurred (Montefeltro et al., 2011; Godoy et al., 201%]

Brazil, including Pissarrachampsa sera, from the Adamantina Formation (Montefeltro et al.,
2011). As typical for descriptive works on crocodyliforms (e.g.: Wu et al., 1995; Buckley et al.
2000; Gasparini et al., 2006; Novas et al., 2009; O'Connor et al., 2010; Iori & Carvalho, 2011)
the original description of Pissarrachampsa sera was exclusively based on its skull morphology.
This practice does not seem to be related to the nature of the findings itself, as fossil
crocodyliforms are typically found with associated postcranium, as in the case of P. sera. Two
partially preserved skulls, including the holotype (Montefeltro et al., 2011), were collected in
2008. Later expeditions to the type locality, between 2008 and 2010, recovered additional

material, including the postcranial elements described here.@

Systematic paleontology

Crocodyliformes Benton & Clark, 1988

Mesoeucrocodylia Whetstone & Whybrow, 1983 sensu Benton & Clark, 1988
Baurusuchidae Price, 1945

Pissarrachampsa Montefeltro et al., 2011

Pissarrachampsa sera Montefeltro et al., 2011
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Holotype. LPRP/USP 0019, nearly complete skull and mandibles lacking the cranialmost portion

of the rostrumyFhe-posteranim-of-which-is-here-deseribed; including dorsal vertebrae, partial

forelimb, pelvic girdle, and hindlimbs.

Previously referred specimens. LPRP/USP 0018, partial rostrum with articulated mandibles.

Additional referred specimens. LPRP/USP 0739, an isolated left pes; LPRP/USP 0740, an
isolated right ulna; LPRP/USP 0741, an isolated right tibia; LPRP/USP 0742, an isolated left
ilium; LPRP/USP 0743, a partial isolated left femur; LPRP/USP 0744, articulated right femur,

tibia and fibula; LPRP/USP 0745, an isolated right manus; LPRP/USP 0746, an isolated right pes.

Type locality. Inhaimas-Arantes Farm, Gurinhata (Martinelli & Teixeira, 2015), Minas Gerais
state, Brazil (19°20° 41.8°°S; 49°55° 12,9°W). The original description indicated the type locality
in the municipality of Campina Verde. However, new information using Global Positioning

System (GPS) data show it within the eity-ef-Gurinhatg,

Age and horizon. Adamantina Formation, Bauru Group, Bauru Basin; Late Cretaceous,
Campanian-Maastrichtian (Batezelli, 2015). Note, however, that the stratigraphic nomenclature
of the regionyis still under debate (see also Fernandes & Coimbra, 1996; 2000; Fernandes, 2004;
Batezelli, 2010, 2015; Fernandes & Magalhaes Ribeiro, 2014), and the original description of
Pissarrachampsa sera (Montefeltro et al., 2011) considered the type locality as belonging to the

Vale do Rio do Peixe Formation.

Diagnosis. Baurusuchid with four maxillary teeth; a longitudinal depression on the rostral portion

of frontal; frontal longitudinal ridge extending rostrally overcoming the frontal midlength;
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supratemporal fenestra with equally developed medial and rostral rims; lacrimal duct at the
corner formed by the dorsal (support for anterior palpebral) and lateral lacrimal surfaces; well
developed rounded foramen between the palpebrals; quadratojugal and jugal do not form a
continuous ventral border (a notch is present due to the ventral displacement of the
quadratojugal); four quadrate fenestrae visible laterally; quadrate lateral depression with
rostrocaudally directed major axis; sigmoidal muscle scar in the medial surface of the quadrate;
ectopterygoid almost reaching the caudal margin of the pterygoid wings; a single ventral
parachoanal fenestra and one ventral parachoanal fossa (divided into medial and lateral
parachoanal subfossae); lateral Eustachian foramina larger than the medial one; a deep depression

on the caudodorsal surface of the pterygoid wings (Montefeltro et al., 2011).

Appended Diagnosis. plnar shaft subtriangular in cross-section and strongly bowed laterally;

large lateral projection of the supraacetabular crest of the ilium; femur with caudally pointed
margin of the medial proximal crest; well-developed femoral "femorotibialis ridge"; short and
sharp crest at the craniolateral margin of the distal tibia, ending caudally to the fibular contact of
the distal hook; lateral iliofibularis trochanter sharply raised and proximodistally elongated;
fibular distal hook contacts with tibia placed more proximally relative to the distal articulation of
the latter bone; absence of astragalar fossa; restricted anterior hollow on the cranial surface of the
astragalus; lateral tubercle at the lateral ridge of calcaneal tuber; complete absence of postcranial

osteoderms.

Description
The description is based on nine specimens, including materials associated to the holotype
(LPRP/USP 0019), all collected in expeditions to the type locality between 2008 and 2010. The

postcranial bones referred to the holotype were not collected at the same time as the skull
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110 (Montefeltro et al., 2011) however the association is possible as the postcranial elements were

111 identif%]alt the time the holotypic skull was collected. @
112 The postcranial remains of Pissarrachampsa sera were compared within the context of

113  Crocodyliformes although special attention was given to the morphology of other baurusuchids

114  with-pesteraniuvm- The comparisons were focused in first-hand examination of specimens (Table

115 1), however, published resources were also used-(acknewledged-aceordinghy).

116  Axial Skeleton — Dorsal Vertebrae

117  Seven dorsal vertebrae are partially preserved in the holotype of Pissarrachampsa sera

118 (LPRP/USP 0019), all of which exhibit the typical amphicoelous morphology seen in Notosuchia
119  (Pol, 2005; Nascimento & Zaher, 2010). Fivebrae are articulated in a series (Figure 1), and
120 are recognized as mid- to caudal-dorsal vertebrae, whereas the other two are isolated and very
121  likely belong to a more cranial position in the vertebral series. One of the features used to

122 determine the axial position of the preserved vertebrae was the relative position of the

123  parapophysis and diapophysis. In notosuchians, as Baurusuchus albertoi, Sebecus icaeorhinus,
124  and Notosuchus terrestris, the diapophysis is located more dorsally in cranial dorsal vertebrae,
125 but migrate to a more ventral position caudally along the series (Pol, 2005; Nascimento & Zaher,
126  2010; Pol et al., 2012). On the other hand, the parapophysis is located ventrally in cranial-dorsal
127  vertebrae, and migrate to a more dorsal position in more caudal elements, until it reaches the

128 same dorsoventral level of the diapophysis (Pol, 2005; Nascimento & Zaher, 2010; Pol et al.,
129  2012). The vertebrae in the articulated series show no evidence of paf@ld diapophyses

130 migration, with both structures located at the same dorsoventral level at the distal portion of the
131 transverse process. In addition, the preserved prezygaposhyses are fused with the transverse

132 processes. In closely related taxa, as Baurusuchus albertoi and Notosuchus terrestris, this fusion
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is present in vertebrae caudal to the seventh dorsal element (Pol, 2005; Nascimento & Zaher,

2010), also suggesting that the cranial-dorsal vertebrae.

The vertebrae of Pissarrachampse sera have an elliptical centrum in cranial view and are
constricted at the middle, as typical for notosuchians (Pol, 2005). The centrum is slightly
craniocaudally longer than high (measured from the ventral margin to the level of the ventral
limit of the neural channel), and the dimensions are approximately the same in all preserved
centra (28 mm long, and 19 mm high). The preserved portion of the neural spine in the third
vertebra of the sequence suggests that this structure projects cranially, as in caudal dorsal
vertebrae of Baurusuchus albertoi. However, the neural spine of caudal-dorsal vertebrae of
Baurusuchus bends caudally on its distal end (Nascimento & Zaher, 2010); a condition not
accessible in Pissarrachampsasera. The transverse processes are caudally oriented, and project
horizontally in cranial and caudal views.

The base of the prezygapophyseal process is located slightly ventral to the upper margin
of the neural canal, and projects dorsally and laterally. There is also a slight caudal projection, but
the prezygapophyses do not extend beyond the cranial limit of the vertebral centrum.@e
articulation area between the prggand postzygapophyses is slightly oblique in relation to the
horizontal plane of the vertebral column. The postzygapophyses, in the second and third
vertebrae of the articulated series, are dorsally curved and projected from the caudalmost part of
the transverse processes. There is a deep fossa cranially to the postzygapophysis, at the
intersection of the neural spine with the transverse process. Pol et al. (2012) suggests that such
fossa is exclusive of notosuchians. The cranial limit of this fossa is marked by a ridge, which
extends laterally from the base of the neural spine to half of the lateral length of the transverse
process.

One of the isolated vertebrae provides additional information on the vertebral morphology

of Pissarrachmpsa sera. The dimensions of this vertebral centrum are approximately the same as
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for these of the articulated series. However, the neural arch is slightly craniocaudally longer.
Also, its neural canal exhibits a rounded opening in cranial view. In caudal view, the
postzygapophyses are connected by the postspinal fossa (Pol ef al., 2012). The U-shaped ventral
margin of this fossa forms a groove located ventral to the dorsal margin of the neural canal
(Figure 1). This groove becomes progressively wider dorsally, until it merges with the
zygapophyses. Also, in dorsal view, the cranialmost part of the fossa is lateromedially narrower
than the area between the postzygapophyses.

The suture line between the neural arch and the vertebral centrum is clearly
distinguishable in the best preserved isolated vertebra, and it is very likely that the neurocentral
suture was also not completely closed in the dorsal vertebrae of the articulated series. Brochu
(1996) proposed a cranial to caudal closure pattern of this suture for the crown-group Crocodylia,
so that juveniles retain the suture opened in caudal presacral vertebrae. Yet, Pol (2005)
commented that such pattern might not be valid for taxa outside the Crocodylia clade, such as
Pissarreeheampsea sera, and Ikejiri (2012) showed that presacral sutures remain opened even in
some very mature extant alligators. Thus, as the vertebrae described here belong to the holotype,
which represents an adult specimen based on comparisons to smaller specimens from the type

locality), the presence of distinguishable sutures reinforces the inference of Pol (2005).

Appendicular Skeleton

Forelimb

Ulna

The right ulna of the holotype of Pissarraehampsesera is preserved (LPRP/USP 0019), as well
as a smaller referred right ulna (LPRP/USP 0740), that corresponds to a juvenile individual. The
holotipic ulna is damaged at both ends (Figure 2). Its maximum proximodistal length is 165 cm,

and the midshaft mediolateral width is 18 cm. The general shape is similar to that of other

Peer] reviewing PDF | (2016:02:8992:0:0:NEW 8 Feb 2016)


Agustin
Cross-Out

Agustin
Replacement Text
.

Agustin
Cross-Out

Agustin
Cross-Out

Agustin
Replacement Text
.

Agustin
Cross-Out

Agustin
Inserted Text
.

Agustin
Cross-Out

Agustin
Replacement Text
.


Peer]

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

crocodyliform ulnae, including baurusuchids (Nascimento & Zaher, 2010; Vasconcellos &
Carvalho, 2010; Riff & Kellner, 2011; Godoy et al., 2014), but less lateromedially compressed
than the gracile ulnae of Araripesuchus tsangatsangana (Turner, 2006). The interosseous space
between the articulated ulna and radius is reduced, in contrast with the relatively large space seen
in extant crocodylians (Brochu, 1992). This pattern is also seen in other terrestrial fossil
crocodyliforms, as the baurusuchids Stratiotosuchus maxhechti and Baurusuchus albertoi, as well
as Araripesuchus tsangatsangana (Turner, 2006; Nascimento & Zaher, 2010; Riff & Kellner,
2011).

The proximal end of the ulna is craniocaudally expanded compared to both shaft and
distal ends, as in other crocodyliforms. Since the proximal end is damaged, the structures of the
articular surface with the humerus are not preserved. The olecranon process is severely damaged,
hampering the assessment of its morphology. Nevertheless, two expansions are preserved in the
proximal end, a cranial process and a neted, lateral process. Prior to taphonomic damage, the
proximal surface of the lateral process corresponded to the ulnar radiohumeral surface, but the
radial facet is still preserved. In proximal view, the ulna-radius articulation forms a sinusoidal
contact (Figure 3). In caudal view, distal to the olecranon processes, scars are seen for the
insertion of the M. triceps brachii tendon (Meers, 2003).

The ulnar shaft is subtriangular in cross-section, similar to that of other baurusuchids and
Simosuchus clarki (Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Riff & Kellner, 2011),
differing from the ovoid shaft of Araripesuchus tsangatsangana and Mahajangasuchus insignis
(Buckley & Brochu, 1999; Turner, 2006). The shaft is strongly bowed laterally, resembling the
flexure seen in Simosuchus clarki , but not in other baurusuchids and extant forms (Caiman and
Alligator), in which the curvature is faint (Brochu, 1992; Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Vasconcellos & Carvalho, 2010; Riff & Kellner, 2011; Godoy et al., 2014). The

cranial surface of the shaft bears a vascular foramen proximal to the midheight, close to the
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medial margin. On the lateral surface, distal to the lateral process of the proximal end, there is a
groove for the insertion of M. extensor carpi radialis brevis pars ulnaris (Meers, 2003), which is
distally delimited by a ridge, caudal to that groove. This ridge also marks the cranial limit of M.
flexor ulnaris, which extends distally to the distal condyle (Meers, 2003). As a whole, this lateral
ridge extends proximodistally in an almost straight line, as in Stratiotosuchus maxhechti and
Baurusuchus albertoi (Nascimento & Zaher, 2010; Riff & Kellner, 2011). On the caudal surface,
the limit between M. flexor digitorum longus and M. flexor ulnaris is marked by a ridge that is
more pronounced distally. This condition in Pissarrachampse sera is different from the smooth
ridge of Baurusuchus albertoi (Nascimento & Zaher, 2010). On the medial surface, just distal to
the proximal end, there is an ovoid fossa for the insertion of M. pronator quadratus (Meers,
2003). It is deeper than in Simosuchus clarki and Araripesuchus tsangatsangana, but does not
extend further distally as in Stratiotosuchus maxhechti (Turner, 2006; Sertich & Groenke, 2010;
Riff & Kellner, 2011). Due to the fragmentary condition of the region, the flexor ridge that would
mark the limit between M. pronator quadratus and M. flexor digitorum longus pars ulnaris
(Meers, 2003) is not preserved. However, the latter muscle extends distally until the cranial
oblique process of the distal condyle, as seen by the well-marked scars for its insertion proximal
to the process, as in Baurusuchus albertoi (Nascimento & Zaher, 2010).

The distal end of the ulna has a craniocaudal breadth 45% shorter than that of the
proximal end. The distal condyle has both cranial and caudal oblique processes turned medially.
These processes have about the same size, what gives the bone a heart-shaped outline in distal
view. The craniolateral process is not completely preserved, due to a damage that also affected
the distal surface of the condyle, preventing a precise assessment of the ulnare and radiale
articulations. Yet, preserved parts suggest the ulnar articulation with the carpal bones was similar

to that of other mesoeucrocodylians, such as Stratiotosuchus maxhechti, in which the cranial
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oblique process articulates with the radiale and the caudal process articulates with the ulnare (Riff

& Kellner, 2011).

Radius

The right radius is preserved in the holotype of Pissarrachanpse sera (LPRP/USP 0019). The
straight proximodistal extension of its slender shaft gives the bone a rod-like shape; which seems
to be exaggerated due to the badly preserved proximal and distal ends (Figure 4). Its maximum
proximodistal length is 16 cm, and the midshaft mediolateral width is 134 cm. This general shape
resembles that of other baurusuchid radii (Nascimento & Zaher, 2010; Vasconcellos & Carvalho,
2010; Godoy et al., 2014), but less robust than in Stratiotosuchus maxhechti (Riff & Kellner,
2011) and in extant crocodylians, such as Caiman and Alligator (Brochu, 1992).

The lateral and medial processes of the proximal condyle are not complete but the
lateromedial expansion of the proximal end is clear, as in most crocodyliforms (Pol, 2005). The
proximal end of the radius is bent cranially at an angle of approximately 25°. In cranial view, the
radiohumeral articular surface bears a concavity for the articulation of the radial condyle of the
humerus. In caudal view, part of a crest is seen, adjacent to the lateral process of the proximal
condyle. This crest is described by Pol (2005) for Notosuchus terrestris as a thin proximodistal
crest and is also present in Simosuchus clarki, as well as in the baurusuchids Stratiotosuchus
maxhechti and Baurusuchus albertoi (Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Riff
& Kellner, 2011). The ulnar facet is poorly preserved, but it is represented in caudal view by a
concavity between the lateral and medial processes. The medial process of the proximal condyle
bears, on its medial surface, the scar for the tendon of M. humeroantebrachialis inferior. This
scar was described by Turner (2006) for Araripesuchus tsangatsangana, and is also present in

Simosuchus clarki and Baurusuchus albertoi (Nascimento & Zaher, 2010; Sertich & Groenke,
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2010). Caudodistally to this scar, the tubercle for the insertion of M. biceps brachii is seen
(Meers, 2003).

The radial shaft is elliptical in cross-section, and marked by scars and ridges for muscle
insertions. In cranial view, distal to the proximal condyle, the scar for the M. abductor radialis
insertion is present, lateral to the tuberosity for the insertion of M. humeroradialis. That scar
extends distally to the midlenght of the shaft, as in other notosuchians and living crocodylians
(Meers, 2003; Pol, 2005; Turner, 2006; Sertich & Groenke, 2010). More distally, in the midline
of the cranial surface, a proximodistally elongated ridge separates the insertions of M. supinator
laterally and M. pronator teres, medially, along most of the shaft (Meers, 2003). Such ridge is
also seen in Baurusuchus albertoi, but less marked than in Stratiotosuchus maxhechti
(Nascimento & Zaher, 2010; Riff & Kellner, 2011). The proximodistally long insertions of M.
extensor carpi radialis brevis and M. pronator quadratus are better seen, respectively, on the
lateral and caudal surfaces (Meers, 2003). A well-developed, proximodistal elongated ridge
marks the caudal limit of M. extensor carpi radialis brevis and the lateral limit of M. pronator
quadratus (Meers, 2003) at the lateral surface of the distal half of the shaft. This ridge extends
from the first to the third quarters of the shaft, resembling that of Simosuchus clarki,
Baurusuchus albertoi and Aplestosuchus sordidus (Sertich & Groenke, 2010; Nascimento &
Zaher, 2010; Godoy et al., 2014), but is smoother than that of Stratiotosuchus maxhechti (Riff &
Kellner, 2011). Still in lateral view, another ridge, in the proximal half of the shaft, separates the
insertion extensions of M. extensor carpi radialis brevis and M. abductor radialis (Meers, 2003).
This ridge almost reaches the cranial surface, as in other baurusuchids, differing from the pattern
seen in Simosuchus clarki, in which the ridge is restricted to the lateral surface (Sertich &
Groenke, 2010; Nascimento & Zaher, 2010; Riff & Kellner, 2011; Godoy et al., 2014).

The distal end of the radius is lateromedially expanded and strongly compressed

craniocaudally. In distal view, the caudal surface is concave for the articulation with the ulna
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(Figure 3). On the caudal surface of the distal end a small vascular foramen is seen medial to the
ulnar articulation concavity. The radiale articulates with the cranial convex surface of the radius.
This articulation gives the radial distal end two separate condyles, a more distally extended
medial condyle and a lateral one, as seen in Stratiotosuchus maxhechti and Simosuchus clarki

(Sertich & Groenke; Riff & Kellner, 2011).

Carpus

The holotype (LPRP/USP 0019) has both right radiale and ulnare preserved, along with an
incomplete right manus (Figure 5). Only the cranial surfaces of both bones are visible. The
pisiform and the distal carpal, which complete the carpus of Crocodylia, are not preserved in
Pissarrachampsa sera (Mook, 1921; Nascimento & Zaher, 2010; Sertich & Groenke, 2010). Both
radiale and ulnare are elongated bones, a synapomorphy of Crocodylomorpha (Walker, 1970;
Clark, 1986; Benton & Clark, 1988). They are lateromedially constricted and craniocaudally
compressed between enlarged proximal and distal ends, as in Simosuchus clarki, Stratiotosuchus
maxhechti and Baurusuchus albertoi (Riff, 2007; Nascimento & Zaher, 2010; Sertich & Groenke,
2010). Accordingly, although described as “elongated”, these bones are significantly stouter than
the highly elongated and slender carpals of other notosuchians such as Araripesuchus
tsangatsangana (Turner, 2006).

The proximal surface of the right radiale of Pissarrachampsa sera (holotype, LPRP/USP
0019) is not completely exposed however it appears to be concave, with the medial two-thirds of
the surface represented by a concave area, whereas the lateral third is occupied by a proximally
directed convex lateral process. The same pattern is found in Simosuchus clarki, Stratiotosuchus
maxhechti, Notosuchus terrestris, Baurusuchus albertoi, Sebecus icaeorhinus, and Yacarerani
boliviensis (Pol, 2005; Rift, 2007; Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Pol et

al.,2012; Leardi et al., 2015b). The exposed portion of the proximal surface represents the
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articulation for the distal end of the radius, as described for Baurusuchus albertoi, Simosuchus
clarki, Stratiotosuchus maxhechti and Araripesuchus tsangatsangana (Turner, 2006; Riff, 2007;
Nascimento & Zaher, 2010; Sertich & Groenke, 2010). The presence of a marked longitudinal
crest in the cranial surface of the radiale has been described for several notosuchians, such as
Notosuchus terrestris, Baurusuchus albertoi, Sebecus icaeorhinus, Stratiotosuchus maxhechti,
and Yacarerani boliviensis (Pol, 2005; Riff, 2007; Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Pol et al., 2012; Leardi et al., 2015b). On the other hand, Turner (2006) describes
a “median ridge” in Araripesuchus tsangatsangana, which may correspond to the longitudinal
crest. There is no sign of such crest in the exposed surface of the radiale of Pissarrachampsa
sera, but its absence cannot be confirmed as most of the cranial surface of the radiale is
embedded in the rock matrix.

Sertich & Groenke (2010) described a prominent pit and a raised rugosity for Simosuchus
clarki, which topologically corresponds to the proximal portion of the cranial longitudinal crest in
Mahajangasuchus insignis, and represents the insertion of the M. extensor carpi radialis longus
(Meers, 2003). The presence of raised scars medial and lateral to this pit is has also been
described for Simosuchus clarki, consistently with the origin of the superficial extensor muscles
for digits I, II and IIT (Brochu, 1992; Meers, 2003; Sertich & Groenke, 2010). In
Pissarrachampsa sera, despite the lack of the pit, it is possible that the exposed surface of the
radiale includes the insertion areas of those extensor muscles, or at least those lateral to the pit in
Simosuchus clarki.

The ulnare of Pissarrachampsa sera (holotype, LPRP/USP 0019) seems to be
proximodistally shorter than the radiale (Figure 5), as in Araripesuchus tsangatsangana,
Baurusuchus albertoi, Simosuchus clarki, Stratiotosuchus maxhechti, Notosuchus terrestris,
Yacarerani boliviensis, and Crocodylia (Mook, 1921; Pol, 2005; Turner, 2006, Turner, 2006;

Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Leardi et al., 2015b). Its proximal articular
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surface is covered by matrix, but its proximal outline seems to be subtriangular, with the apex
positioned cranially, as in Simosuchus clarki (Sertich & Groenke, 2010).

The distal end of the ulnare is more expanded than the proximal, as in Notosuchus
terrestris, Sichuanosuchus shuhanensis, Baurusuchus albertoi, Araripesuchus tsangatsangana,
Stratiotosuchus maxhechti, Simosuchus clarki, Yacarerani boliviensis, and most non-Crocodylia
crocodyliforms (Wu et al., 1997; Pol, 2005; Turner, 2006; Riff, 2007; Nascimento & Zaher, 2010;
Sertich & Groenke, 2010; Leardi ef al., 2015b). Yet, the bone is not exposed enough to see if this
expansion is symmetrical, as in Simosuchus clarki and Yacarerani boliviensis, or more marked
medially, as in Notosuchus terrestris, Stratiotosuchus maxhechti and Baurusuchus albertoi

(Leardi et al., 2015b)

Manus
Two right manus are associated to Pissarrachampsa sera, one of the holotype (LPRP/USP 0019)
and an isolated one (LPRP/USP 0745). The holotipic right manus (Figure 5) is composed by five
digits: the first includes the metacarpal and the proximal phalanx; the second includes the
metacarpal, a poorly preserved proximal phalanx, and the distal phalanx; the third includes the
metacarpal and fragments of the medial portions of three phalanges; the last two digits include
only the metacarpals. The right manus of LPRP/USP 0745 preserves (albeit partially) all five
metacarpals, an incomplete proximal phalanx of the digit I, and a fragment that might represent
the proximal phalanx of the digit III. The holotipic manus is better seen in ventral view (Figure
5), whereas LPRP/USP 0745 has only its dorsal surface exposed.

From the first to the fourth digits, the metacarpals show a decrease in width and an
increase in length (Figure 5), as in Baurusuchus albertoi and Stratiotosuchus maxhetchi
(Nascimento & Zaher, 2010; Riff & Kellner, 2011). Metacarpal | is the most robust, as in

Notosuchus terrestris, Stratiotosuchus maxhechti, Simosuchus clarki, and Yacarerani boliviensis,
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differing from Crocodylia, in which metacarpal I is similar in robustness to the others (Mook,
1921; Pol, 2005; Sertich & Groenke, 2010; Riff & Kellner, 2011; Leardi et al., 2015b). The
preserved proximal end of the metacarpal V is dorsoventrally flat and lateromedially wide, as in
Baurusuchus albertoi, S. maxhetchi, and Yacarerani boliviensis (Nascimento & Zaher, 2010; Riff
& Kellner, 2011; Leardi et al., 2015b).

All phalanges preserved in the holotype are robust, with a blocky appearance in dorsal
and ventral views, with a midlength constriction, also seen in Baurusuchus albertoi, Simosuchus
clarki, Stratiotosuchus maxhetchi, Araripesuchus tsangatsangana, and Yacarerani boliviensis
(Turner, 2006; Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Riff & Kellner, 2011;
Leardi ef al., 2015b). All manual phalanges of Pissarrachantpsegsera that preserve their articular

surfaces exhibit medial and lateral condyles, in both the distal and proximal surfaces.

Pelvic Girdle
Ilium
One left ilium is partially preserved for Pissarrachampsa sera (Figure 6), from a referred
specimen (LPRP/USP 0742). It lacks the distal part of the postacetabular process, most of the
preacetabular process, and the ventral portion of the acetabular region. The acetabulum is deep,
as in Baurusuchus albertoi and Sebecus icaeorhinus, as a result from the strictly lateral
orientation of the supraacetabular crest (Nascimento & Zaher, 2010; Pol et al., 2012). On the
other hand, the supraacetabular crest of Araripesuchus tsangatsangana projects not only laterally,
but also dorsally, which gives a shallower aspect to the acetabulum (Turner, 2006). In some
neosuchians and living taxa, the crest is strongly inclined dorsally, giving an accentuated shallow
aspect to the acetabulum in lateral view (Leardi et al., 2015a).

In Pissarrachampsa sera, the morphology of the dorsal surface of the acetabular roof

resembles that of Baurusuchus albertoi (Nascimento & Zaher, 2010). In both taxa, the dorsal
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component of the supraacetabular crest is confluent with the remaining dorsal portion of the
bone, extending as a flat horizontal surface, what gives the ilium a broad aspect. On the other
hand, in Sebecus icaeorhinus, Microsuchus schilleri, and living forms, as Caiman latirostris
(MZSP 2137), the supraacetabular crest is not confluent with the rest of dorsal margin, but has a
medial boundary (Pol et al. 2012; Leardi et al. 2015a). Particularly, in Sebecus icaeorhinus and
Caiman yacare, the dorsal margin is sloped, with the portion corresponding to the
supraacetabular crest lying dorsal to the medial portion of the iliac dorsal surface (Nascimento,
2008; Pol et al. 2012). Given the great lateral projection of the supraacetabular crest, the
maximum width of the dorsal margin of the ilium of Pissarrachampsa sera is located right above
the caudal margin of the acetabular area. The rest of the dorsal surface becomes gradually
narrower in the direction of both the pre- and postacetabular processes. Rugosities on the dorsal
surface of the supraacetabular crest indicate the area for the attachment of M. iliotibialis 1 and 2
(Romer, 1923; Leardi et al., 2015a). In Pissarrachampsa sera, most of this surface is rugose,
indicating a greater area for the attachment of those muscles.

The proximal portion of the postacetabular process is at least four times dorsoventrally
higher than lateromedially wide, and its dorsal margin is slightly caudoventrally directed in this
area. In medial view, it is possible to see the medial expansion of the dorsal portion of the
postacetabular process, forming a ridge that extends craniocaudally (Figure 6, D-E). This ridge
marks the dorsal limit of a concave surface on the medial portion of the ilium. Ventrally, this
concavity is delimited by a curved ridge, which corresponds to the dorsal part of the articular
surface for the second sacral rib (see Pol et al. 2012), and this same morphology is also seen in
Baurusuchus albertoi and Sebecus icaeorhinus (Nascimento & Zaher, 2010; Pol et al. 2012). On
the other hand, in Theriosuchus pusillus and some extant taxa as Caiman yacare and
Melanosuchus niger, there is no evidence of a supraacetabular process medial crest, which gives

a more flattened aspect to the process above the articular surface for the second sacral rib (Wu et
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al., 1996). Baurusuchus albertoi has a total of three sacral vertebrae, with the articulation surface
for the third element located in the distal portion of the postacetabular process (Nascimento &
Zaher, 2010). Three sacral vertebrae are also found in of other baurusuchids, such as
Baurusuchus salgadoensis (Vasconcellos & Carvalho, 2010) and Aplestosuchus sordidus (Godoy
et al., 2014), and there is no evidence of a different condition in Pissarrachampsea sera, although

this remains speculative due to the absence of more complete remains.

Ischium
Both left and right ischia of the holotype of Pissarrachampsa sera (LPRP/USP 0019) are
partially preserved, lacking the distal portions of the ischial blade, and of the iliac and pubic
peduncles. Despite the incompleteness, the typical crocodyliform ischium is visible (Figure 7),
with a lateromedially constricted ischial blade, a caudal process which would probably contact
the ilium, and a cranial process which likely contacted both ilium and pubis (Sertich & Groenke,
2010 ). The notch between both processes formed the ventral margin of the perforate acetabulum,
similar to the condition seen in mesoeucrocodylians such as Chimaerasuchus paradoxus,
Mahajangasuchus insignis, Stratiotosuchus maxhechti, and Sebecus icaeorhinus (Wu & Sues,
1996; Buckley & Brochu, 1999; Riff & Kellner, 2011; Pol et al. 2012). The proximal parts of
both processes differ in thickness, with a more extended cranial process, as seen in
Stratiotosuchus maxhechti and Sebecus icaeorhinus (Riff & Kellner, 2011; Pol et al., 2012). In
these two taxa, however, the cranial process expands distally, becoming more robust, an unknown
condition for Pissarrachampsa sera.

On the lateral surface of the ischial blade, a ridge extends dorsoventrally along its
proximal third marking the limits of muscles attached to the ischium. The ischium is very
constricted lateromedially, cranial and caudal to this ridge, giving a sharp aspect to its margins.

Caudal to the ridge is the area for attachment of both M. flexor tibialis internus pars 3, laterally,
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M. ischiotrochantericus, medially (Hutchinson, 2001). In the distal portion of the ischial blade,
only the cranial margin is constricted, as the dorsoventral ridge becomes confluent with the
caudal margin, which becomes more rounded. The constricted cranial margin corresponds to the
attachment surface for M. puboischiofemoralis externus pars 3, on the medial surface of the bone
(Hutchinson, 2001; Riff, 2007). In cranial and lateral views it is possible to see a tubercle on the
dorsal portion of the ischial blade, ventral to the cranial process of the ischium. Stratiotosuchus
maxhechti bears a similar tubercle, which is interpreted as the attachment point for muscle M.

pubioischiotibialis (Riff & Kellner, 2011).

Pubis

Both pubes are partially preserved (Figure 7) in the holotype of Pissarrachampsa sera
(LPRP/USP 0019). As typical for Crocodyliformes, the proximal shaft of the pubis lacks the
obturator foramen present in some non-Crocodyliformes Crocodylomorpha, as Terrestrisuchus
gracilis (Crush, 1984). In general, the pubis has a rod-like aspect, as also seen in Baurusuchus
albertoi, Sebecus icaeorhinus and the protosuchians Protosuchus richardsoni, and Orthosuchus
stormbergii (Colbert & Mook, 1951; Nash, 1975; Nascimento & Zaher, 2010; Pol et al., 2012).
On the other hand, other crocodyliforms such as Araripesuchus tsangatsangana, Notosuchus
terrestris, Mahajangasuchus insignis, Theriosuchus pusillus, as well as the living forms, bear an
expanded distal pubic end (Brochu, 1992; Wu et al., 1996; Buckley & Brochu, 1999; Turner,
2006; Pol, 2005).

Given the incompleteness of the pelvis of Pissarrachampsa sera, the isolation of the
pubis from the acetabulum cannot be asserted. Yet, in all Crocodyliformes, except from
protosuchians, the pubis is excluded from the acetabulum by the cranial process of the ischium,
which represents the articulation point for the proximal end of the pubis (Colbert & Mook, 1951).

In Pissarrachampsa sera, the partially preserved proximal articulation is lateromedially
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constricted, and more constricted in its cranial third, giving it a pear-shaped aspect. Such
lateromedial constriction extends distally along the shaft, as also seen in Stratiotosuchus
maxhechti (Riff, 2007). Pissarrachampsa sera and Stratiotosuchus maxhechti also share the
proximal pubic shaft bent approximately 30 degrees in relation to the pubic blade. In other
notosuchians, such as Araripesuchus tsangatsangana and Simosuchus clarki, and also in the
living Crocodylia, such bending is unknown (Turner, 2006; Riff, 2007; Sertich & Groenke,
2010). The pubic blade is craniocaudally constricted in its medial third, which forms the pubic
symphysis. Lateral to the laminar symphyseal region, the ischial blade does not show any
evidence of the craniocaudal constriction. The attachment area for both M. puboischiofemoralis
externus pars 1 and 2 is probably located in the proximal two thirds of the transitional area
between the constricted and non-constricted regions of the pubic blade, in the caudal and cranial
surfaces respectively (Romer, 1923).

The pubis is a remarkably long element in Pissarrachampsa sera, when compared to that
of other crocodyliforms even lacking its distalmost portion. Indeed, even without the distal part,
the pubic length of Pissarrachampsa sera is 0,7 the total length of the femur. This condition is
similar to that of Stratiotosuchus maxhechti (Riff, 2007), in which this ratio is 0,8, than to the
condition observed in other crocodyliforms: 0,25 in Araripesuchus tsangatsangana; 0,42 in
Edentosuchus tienshanensis, 0,55 in Sunosuchus junggarensis; 0,55 in Mahajangasuchus

insignis, and 0,57 in Caiman yacare (Buckley & Brochu, 1999; Pol ef al. 2004; Turner, 2006).

Hindlimb

Femur

There are four preserved femora known for Pissarrachampsa sera. The femoral pair of the
holotype (LPRP/USP 0019), as well as two smaller isolated, partially preserved left and a right

elements (LPRP/USP 0743 and LPRP/USP 0744). The smaller right femur is still in articulation
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with tibia and fibula, but the following description is based mostly on the holotipic material
(Figure 8), since these are better preserved. The femur is virtually straight in cranial and caudal
views, and its proximodistal length is about 24 cm. It is longer than the tibia and or fibula, as seen
in most other Mesoeucrocodylia (Leardi ef al., 2015a). In medial and lateral views, the shaft is
slightly bowed cranially, and the proximal and distal ends are cranially and caudally curved. The
proximal articulation surface is medially inturned, as seen in Baurusuchus albertoi and
Stratiotosuchus maxhechti, but not as displaced as in Araripesuchus tsangatsangana and extant
crocodylians (Parrish, 1986; Turner, 2006; Nascimento & Zaher, 2010; Riff & Kellner, 2011). In
proximal view, the robust articular surface is rounded and rugose at its distal portion, with scars
for muscle insertion, whereas the caudolateral extension of the head is slender, as in other
baurusuchids and Mariliasuchus amarali (Nascimento & Zaher, 2010; Riff & Kellner, 2011;
Nobre & Carvalho, 2013). At this point, in caudal view, there is a proximodistally extensive
“greater trochanter” placed laterally, extending cranially and parallel to the “medial proximal
crest”, at the caudal most extension of the head (Pol et al. 2012). The “medial proximal crest”
turns caudally in Pissarrachampsa sera, and not medially as in Sebecus icaeorhinus (Pol et al.
2012).

In lateral view, the proximal part of the femur bears marked depressions and scars for
musculature insertion. The scars along the “greater trochanter” correspond to the insertions of M.
ischiotrochantericus and M. puboischiofemoralis internus 2, and are also possibly related to the
adductor fossa, placed cranially to these muscles insertions (Hutchinson, 2001; Sertich &
Groenke, 2010; Nascimento & Zaher, 2010). In caudal view, M. puboischiofemoralis externus
(Hutchinson, 2001) attaches at the “medial proximal crest”. In cranial view, the “cranial flange”
marks the transition between the proximal femur and the shaft. There are many names for this
structure in the literature: anteromedial process (Fiorelli & Calvo, 2007), anterior flange and

caudofemoralis flange (Turner, 2006), and cranium-medial crest (Riff, 2007; Nascimento &
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Zaher, 2010). Although less sharp and prominent than in Simosuchus clarki, this structure is well
marked, and bears scars for musculature insertions (Sertich & Groenke, 2010). This condition is
similar to that of other baurusuchids and Araripesuchus tsangatsangana, but in Microsuchus
schilleri and other small notosuchians, as Mariliasuchus amarali, have a less marked “cranial
flange”, which is absent in Sebecus icaeorhinus and Yacarerani boliviensis (Nobre & Carvalho,
2006; Turner, 2006; Nascimento & Zaher, 2010; Riff & Kellner, 2011; Pol ef al., 2012; Nobre &
Carvalho, 2013; Leardi et al., 2015b). In Pissarrachampsa sera, the “cranial flange” divides the
femoral shaft in medial and lateral parts. In cranial view, the insertion for M. puboischiofemoralis
internus 1 is flanked medially by a rugose convexity related to M. caudofemoralis longus
(Hutchinson, 2001). Caudal to that, another smaller rough convexity, also seen in Araripesuchus
tsangatsangana, may correspond to the fourth trochanter (Turner, 2006). This corresponds to a
shallow proximodistally oriented groove that extends distally as a faint ridge and has scars for the
insertion of M. caudofemoralis brevis (Hutchinson, 2001). It differs from the poorly developed
fourth trochanter of Sebecus icaeorhinus, Microsuchus schilleri, and Yacarerani boliviensis and
the very prominent structure seen in Simosuchus clarki (Sertich & Groenke, 2010; Pol et al.,
2012; Leardi et al., 2015a; b).

Other muscle scars seen along the shaft, as well as a foramen mediodistal to the cranial
flange. Laterodistal to the flange lies the insertion area for the M. iliofemoralis (Hutchinson,
2001) and distal to the flange, there is an extensive intermuscular line that almost reaches the
proximal limit of the intercondilar fossa (Romer, 1956). This corresponds to the M. femorotibialis
internus (Hutchinson, 2001) and its distal most extension forms a longitudinal ridge, named here
"femorotibialis ridge". This intermuscular line does not form a ridge in the juvenile specimen,
and is interpreted as an ontogeny-related character. Caiman sp. (LPRP/USP N 0008) also has this
intermuscular line, but it does not form a ridge. The presence of this ridge is not clear in other

notosuchians, except for Stratiotosuchus maxhecthi and Aplestosuchus sordidus, in which it is
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smoother than in Pissarrachampsa sera (Riff & Kellner, 2011; Godoy et al., 2014). On the
caudal face of the femoral shaft, the linea intermuscularis caudalis extends obliquely, from the
fourth trochanter to the proximal portion of the lateral condyle, and forms the lateral border of the
popliteal fossa. This scar corresponds to the boundary between M. femorotibialis externus,
craniomedially, and M. adductor femoris 1 & 2, caudolaterally (Hutchinson, 2001).

The two distal condyles are well developed, forming the intercondilar fossa cranially and
a deep popliteal fossa caudally. The latter is rugose, as in Stratiotosuchus maxhechti, whereas the
intercondilar fossa has smoother scars for muscles insertion (Romer, 1956; Riff & Kellner, 2011).
The lateral or fibular condyle has a laterodistal concavity, possibly related to the fibular
articulation. It is about two times larger than the medial or tibial condyle, which is not as distally
expanded as the lateral condyle, a general crocodyliform condition (Sertich & Groenke, 2010; Pol
et al., 2012). In lateral view, the rugose surface above the lateral condyle makes the insertion of
M. gastrocnemius (Brochu, 1992; Sertich & Groenke, 2010). Cranially, the distal portion of the
femur has a well developed medial supracondylar ridge, whereas the lateral supracondylar ridge
is smoother This differs from the condition in Sebecus icaeorhinus, which lacks a marked
transition from the cranial to the lateral surfaces of the distal femur (Pol et al., 2012). The caudal
surface of the distal femur bears the lateral supracondylar ridge (which would be the distal
extension of the linea intermuscularis caudalis) the medial supracondylar ridge, and the popliteal
fossa between these (Hutchinson, 2001; Pol et al., 2012). The medial supracondylar ridge forms a
proximodistally oriented crest, above the medial condyle, separating the caudal and lateral
surfaces of the distal portions of the femur. The medial facet of the distal portion of the femur is
almost flat, cranially bound by the medial supracondylar ridge, whereas in Sebecus icacorhinus

this surface is slightly convex (Pol et al., 2012).

Tibia

Peer] reviewing PDF | (2016:02:8992:0:0:NEW 8 Feb 2016)



Peer]

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Both tibiae of the holotype (LPRP/USP 0019) are nearly complete, and articulated with the
fibulae in their original position (Figure 9). Additionally, there is a smaller isolated right tibia
(LPRP/USP 0741), as well as the additional right tibia in articulation with femur and fibula
(LPRP/USP 0744). The shafts of the articulated tibia and fibula are very close to one another, as
are the radius and ulna. This condition is different from that of modern crocodylians (e.g.:
Caiman and Melanosuchus) in which this distance is larger. When compared with more gracile
tibiae, as those of Araripesuchus tsangatsangana and Microsuchus schilleri, the tibia of
Pissarrachampsa sera approaches the more robust elements as in most crocodyliforms (Brochu,
1992; Turner, 2006; Leardi et al., 2015a). The tibia is 18,6 cm long, i.e. 77% the femur's length,
same ratio of Sebecus icaeorhinus. This differs from other notosuchians as the relatively short
tibia of other baurusuchids (about 72%) and the elongated bone (82%) of Araripesuchus
tsangatsangana (Pol et al., 2012).

The proximal and distal extremities of the tibia are well mediolaterally expanded. The
proximal surface is divided into medial and lateral facets (Figure 9), which respectively
correspond to the articulation areas for the tibial and fibular condyles of the femur. In proximal
view, the medial articulation (posteromedial proximal process of the tibia, according to Leardi et
al., 2015b) has a trapezoid-shape; a pattern also seen in other baurusuchids, as Stratiotosuchus
maxhechti and Baurusuchus albertoi (Nascimento & Zaher, 2010; Riff & Kellner, 2011). The
medial articular facet is well protruded relative to the lateral one. The proximal surface of the
medial facet forms a gentle concavity, corresponding to the “proximal pit” sensu Brochu (1992),
and bears a pronounced deflection toward its caudomedial corner (Figure 9). This condition is
also observed in Sebecus icaeorhinus, which bears a gently protruded medial facet, but differs
from Mariliasuchus amarali, Yacarerani boliviensis, and Stratiotosuchus maxhechti, in which
that medial portion is weakly pronounced (Pol et al., 2012,; Leardi at al. 2015). The latter

condition is also present in modern crocodylians (e.g.: Caiman, Melanosuchus and Alligator)
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resulting in equally projected facets. The lateral articular facet is semi-lunar in shape and slightly
concave in proximal view. The cranial border is rounded and the caudal tip is somewhat deflected
distally. It resembles the pattern of Sebecus icaeorhinus and Yacarerani boliviensis, differing
from the weakly projected tip of Mariliasuchus amarali, Araripesuchus tsangatsangana and S.
maxhechti (Turner, 2006; Riff & Kellner, 2011; Pol et al., 2012; Nobre & Carvalho, 2013; Leardi
et al., 2015b).

Cranially, the proximal expansion of the tibia bears a well developed tuberosity for the
insertion of M. flexor tibialis internus (Figure 9). This insertion is proximodistally elongated, as
in Araripesuchus tsangatsangana, but it is more sharply raised and closer to the proximal
articular surface, a condition more marked than in extant taxa (e.g.: Alligator, Caiman and
Melanosuchus). Proximolaterally, there is a shallow depression related to the attachment of the
internal lateral ligament (Figure 9), as in Alligator (Brochu, 1992). Along with this depression,
the lateral margin bears an anterolateral straight ridge (anterolateral proximal ridge, according to
Leardi ef al., 2015b), corresponding to the insertion of M. tibialis anterior. The ridge is
proximodistally elongated, as in Araripesuchus tsangatsangana, but not Simosuchus clarki,
which bears a tuberosity in the corresponding area (Turner, 2006; Sertich & Groenke, 2010).
Caudally, the lateral and medial articular facets are separated by a small notch, the “fossa
flexoria” sensu Hutchinson (2002) or “posterior cleft” sensu Sertich & Groenke (2010). In
Pissarrachampsa sera this fossa is more excavated, as in Araripesuchus tsangatsangana and
Stratiotosuchus maxhechti, than in Sebecus icaeorhinus, Yacarerani boliviensis, and Alligator
(Brochu, 1992; Turner, 2006; Riff & Kellner, 2011; Pol et al., 2012; Leardi et al., 2015).

The tibial shaft is smooth and rounded in cross section, and craniolaterally bowed. This
bowing (see character 336 of Leardi ef al., 2015a) can be seen in different degrees within
Mesoeucrocodylia. In Pissarrachampsa sera, Baurusuchus albertoi, Stratiotosuchus maxhechti,

and Sebecus icaeorhinus the shaft is markedly bowed, differing from the slightly bowed tibia of
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Yacarerani boliviensis, Simosuchus clarki, and Araripesuchus tsangatsangana, or the straight one
in Alligator (Pol et al., 2012; Leardi et al., 2015). There is no distinguished torsion in the tibial
shaft of Pissarrachampsa sera. In caudal view, it bears a faint ridge for the insertion of M. flexor
digitorum longus. This structure is more prominent in other baurusuchids, as Stratiotosuchus
maxhechti and Baurusuchus albertoi, but absent in Araripesuchus tsangatsangana (Turner, 2006;
Nascimento & Zaher, 2010; Riff & Kellner, 2011). In modern crocodylians, the longitudinal crest
can be marked (e.g.: Alligator and Melanosuchus), or slightly prominent (Caiman).

The distal expansion of tibia is divided in lateral and medial portions, both contacting the
astragalus. The medial portion is distally projected, forming an oblique distal margin relative to
the transverse plane. A similar condition is seen in other mesoeucrocodylians as Sebecus
icaeorhinus, Stratiotosuchus maxhechti, Notosuchus terrestris, Araripesuchus tsangatsangana,
and Yacarerani boliviensis (Turner, 2006; Fiorelli & Calvo, 2008; Riff & Kellner, 2011; Pol. et al,
2012; Leardi et al., 2015), and it is different from the sub-equally expanded distal tibia of living
crocodylians (Alligator and Crocodylus), and also some notosuchians like Simosuchus clarki,
Mariliasuchus amarali, and Microsuchus schilleri (Brochu, 1992; Sertich & Groenke, 2010;
Nobre & Carvalho, 2013; Leardi et al., 2015a). In distal view, the tibial surface has a crescentic
shape, resembling more the pattern seen in Araripesuchus tsangatsangana and Yacarerani
boliviensis, than the “L-shaped” pattern of Sebecus icaeorhinus (Turner, 2006; Pol et al., 2012;
Leardi ef al., 2015). The craniolateral margin of the distal portion of the tibial expansion is
curved, followed by a short and sharp crest that ends caudally at the fibular contact (Figure 9). A
triangular depression is seen at the caudal surface between the medial and lateral edges of this
expansion. First described for Araripesuchus tsangatsangana (Turner 2006), this structure is well
excavated in other basal mesoeucrocodylians, as Sebecus icaeorhinus, Stratiotosuchus maxhechti,
and Mariliasuchus amarali (Pol et al., 2012; Riff & Kellner, 2011; Nobre & Carvalho, 2013), but

relatively shallow in Baurusuchus albertoi and Yacarerani boliviensis (Nascimento & Zaher,
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2010; Leardi et al., 2015). Extant crocodylians, as Caiman, show a clear depression in the same
area, but this structure is not triangular. Cranially, close to the medial margin of the distal
expansion, there is a protuberance for insertion of M. interosseus cruris. This structure is placed
more proximally in extant taxa, slightly developed in Caiman and Melanosuchus, but marked in
Alligator (Brochu, 1992). Among Baurusuchidae, both Stratiotosuchus maxhechti and
Baurusuchus albertoi bear the same protuberance, although less prominent in the latter
(Nascimento & Zaher, 2010; Riff & Kellner, 2011). Craniolaterally, the distal end of the tibia is
devoid of the circular depression for the attachment of the medial tibioastragalar ligament, which

is clearly seen in Araripesuchus tsangatsangana (Turner, 2006).

Fibula

Both fibulae of the holotype of Pissarrachampsa sera (LPRP/USP 0019) are virtually complete
(Figure 9) and in articulation with the tibiae. This is also the case of the fibula of LPRP/USP
0744, preserved in articulation with femur and tibia. The fibula of the holotype is 17 cm long,
slender and slightly shorter than the tibia. The fibular width corresponds to half of that of the
tibia, differing from Baurusuchus albertoi, the fibula of which is three times thinner than the tibia
(Nascimento & Zaher, 2010). The proximal articular surface is gently concave, with the lateral
border more developed than the medial. In proximal view, the fibula is crescentic in shape and
the medial margin is slightly notched. Differently, the proximal fibula of Stratiotosuchus
maxhechti is caudally wedged (Riff & Kellner, 2011).

The proximal end of the fibula is lateromedially flat and strongly expanded caudally. The
living forms Melanosuchus, Caiman, and Alligator, bear the same caudal expansion for the
attachment of the long external lateral ligament (Brochu, 1992), which is also present in
baurusuchids such as Stratiotosuchus maxhechti and Baurusuchus albertoi (Nascimento & Zaher,

2010; Riff & Kellner, 2011). Indeed, the shape of the proximal fibular end varies systematically
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within Crocodyliformes (Turner, 2006). Whereas modern crocodylians, as Alligator, bear a
straight caudal margin, Yacarerani boliviensis, Araripesuchus tsangatsangana, and
Araripesuchus gomesii have strongly inflected caudal margin (Turner, 2006; Leardi et al., 2015),
baurusuchids have an intermediate condition, with the caudal margin of the proximal head is
slightly curved. Proximocranially, there are attachment scars for M. flexor digitorius longus. The
lateral iliofibularis trochanter is sharply raised and proximodistally elongated (Figure 9), differing
from that of Stratiotosuchus maxhechti, Baurusuchus albertoi, Araripesuchus tsangatsangana,
and Yacarerani boliviensis, in which the iliofibularis trochanter is shorter and does not reach the
proximal edge (Turner, 2006; Nascimento & Zaher, 2010; Riff & Kellner, 2011; Leardi et al.,
2015b). In extant forms, this trochanter is tubercle-shaped and distant from the proximal edge
(Brochu, 1992).

The fibular shaft is almost entirely compressed lateromedially, except in its middle
portion, which is elliptical in cross-section. Laterally, the fibular shaft bears faintly developed
ridges, as in Baurusuchus albertoi, corresponding to the origin of M. peroneus longus (sensu
Brochu, 1992) or M. fibularis longus (sensu Hutchinson, 2002). A different condition is seen in
Stratiotosuchus maxhechti, in which that ridge is well developed (Riff, 2007). Among extant
crocodylians, both Caiman and Melanosuchus show weakly developed ridges on the lateral
surface of the fibular shaft, whereas in A/ligator the fibula bears well developed crests and a
slightly rugose shaft lateral surface (Brochu, 1992). In medial view, the shaft is mostly smooth
and lacks any distinctive muscle scar. However, the caudodistal surface is rugose, revealing scars
possibly related to the attachment for M. interosseus cruris, as also observed in Araripesuchus
tsangatsangana and Stratiotosuchus maxhechti (Turner, 2006; Riff, 2007). There is a small
vascular foramen on the caudal surface near the midshaft. The tibial distal end is enlarged with a
triangular distal outline, as in Araripesuchus tsangatsangana and Microsuchus schilleri (see

Leardi et al., 2015a: character 425). As in Alligator, Caiman, and Melanosuchus, a “distal hook”
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(sensu Brochu, 1992) contacts the tibia and tapers medially. This differs from the condition in
Stratiotosuchus maxhechti and Yacarerani boliviensis, in which the medial end of the distal
margin of the tibia is rounded (Riff & Kellner, 2011; Leardi ef al., 2015b). The contact of the
distal hook with the tibia is more proximal then the distal tibial articulation (Figure 9), and differs
from the pattern in Microsuchus schilleri, the distal hook of which contacts the tibia more

distally. This hook is absent in Araripesuchus tsangatsangana and Yacarerani boliviensis (Turner,

2006; Leardi et al., 2015b).

Tarsus

Both complete astragali and calcanea are preserved in articulation (Figure 10) in the holotype of
Pissarrachampsa sera (LPRP/USP 0019), although the more distal tarsal bones are not preserved.
The best preserved left astragalus and calcaneum are slightly displaced from their original
positions. The tarsal morphology of Pissarrachampsa sera is similar to that of other
crocodylomorphs with the “crocodile normal” condition, in which the astragalar “peg” fits into
the calcaneal “socket” (Chatterjee, 1978; 1982). In this configuration, the astragalus is fixed in
articulation with tibia and the ankle rotation occurs between astragalus and calcaneum (Brochu,
1992).

Proximally, the astragalus bears of a concave and laterally elongate surface for the
articulation with distal tibia (Figure 10). The division of this surface for the reception of medial
and lateral condyles of the tibia is weak and both facets are similar in lateromedial extension.
These are bounded caudally by a ridge, but this structure is more developed on the lateral region
of the medial tibial facet. As in the baurusuchids Baurusuchus albertoi and Stratiotosuchus
maxhechti, and the sebecid Sebecus icaeorhinus (Riff & Kellner, 2011; Pol et al., 2012), there is
no sign of an “astragalar fossa” (Hecht & Tarsitano, 1984). This differs from the morphology of

extant taxa, Simosuchus clarki, and Yacarerani boliviensis, in which the fossa is present and well
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developed (Hecht & Tarsitano, 1984; Brochu, 1992; Sertich & Groenke, 2010; Leardi et al,.
2015b). The lateral tibial facet is flat, equally developed lateromedially and ends just
craniomedial to the fibular facet (Figure 10). The lateromedial edge of the lateral tibial facet
seems to lack the notch observed in Yacarerani boliviensis, Stratiotosuchus maxhechti, Sebecus
icaeorhinus, and Lomasuchus palpebrosus, but this surface is damaged in both left and right
elements (Pol et al., 2012; Leardi et al., 2015b). The lateral tibial and fibular articular surfaces
are set almost perpendicular to each other, as in other fossil crocodyliforms, such as Simosuchus
clarki, Baurusuchus albertoi, Stratiotosuchus maxhechti, Yacarerani boliviensis, and also in
extant forms (Hecht & Tarsitano, 1984; Brochu 1992, Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Riff & Kellner, 2011; Leardi et al., 2015b). The medial tibial articular facet is
reniform, as in Sebecus icaeorhinus, but more craniocaudally expanded, as in Simosuchus clarki
and Yacarerani boliviensis (Sertich & Groenke, 2010; Leardi et al., 2015b). The fibular facet is
trapezoidal and slightly concave. Distally, the astragalus bears a medial distal roller (Hecht &
Tarsitano, 1984) and the calcaneal articulation (Brochu, 1992). The distal roller is elliptical in
distal view and extends cranioproximally merging into the craniomedial edge of the tibial facet.
The metatarsals are not preserved in articulation with the astragali, but there is a slight depression
in the distal surface of the medial distal roller that is probably related to the articulation of both
first and second metatarsals, as in Baurusuchus albertoi, Simosuchus clarki, Stratiotosuchus
maxhechti, and extant forms (Hecht & Tarsitano, 1984; Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Riff & Kellner, 2011).

The calcaneal articulation is formed by a well developed distolaterally directed peg as in
other crocodyliforms. This is divided in two distinct areas, the distal area of articulation
(“astragalar trochlea” of Hecht & Tarsitano, 1984) and the lateral articular surface. Yet, the
morphology of these facets cannot be accessed due the tight articulation with the calcaneum in

both sides. The cranial surface of the astragalus consists of a limited non-articular region (the
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“anterior hollow” of Hecht & Tarsitano, 1984). This area is more restricted when compared to
that of Sebecus icaeorhinus, Simosuchus clarki, and extant forms, but similar to the condition of
Baurusuchus albertoi and Stratiotosuchus maxhechti (Hecht & Tarsitano, 1984; Brochu, 1992;
Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Riff & Kellner, 2011; Pol et al., 2012). As
in Sebecus icaeorhinus, Stratiotosuchus maxhechti, and Simosuchus clarki (Pol et al., 2012,
Leardi ef al., 2015b), the “anterior hollow” does not seem bounded distally and laterally by
crests, but its lateralmost surface is somewhat damaged. Distally, the pit for the astragalar-tarsale
ligament is located at the anterior hollow, close to the medial distal roller (Brinkman, 1980). The
pit is well-developed, as in Yacarerani boliviensis, Simosuchus clarki, Stratiotosuchus maxhechti,
and Sebecus icaeorhinus, differing from the reduced depression of Baurusuchus albertoi (Sertich
& Groenke, 2010; Nascimento & Zaher, 2010; Riff & Kellner, 2011; Pol ef al., 2012; Leardi et
al., 2015b). The vascular foramina observed in other taxa, such as Baurusuchus albertoi,
Stratiotosuchus maxhechti, and Simosuchus clarki (Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Riff & Kellner, 2011), are not present in Pissarrachampsa sera, as well as in
Sebecus icaeorhinus (Pol et al., 2012).

The calcaneum of Pissarrachampsa sera is robust and mediolaterally developed, as in
Yacarerani boliviensis, Baurusuchus albertoi, Stratiotosuchus maxhechti, and Sebecus
icaeorhinus, differs from the mediolaterally compressed calcaneum of Araripesuchus
tsangatsangana and Uruguays@s (Turner, 2006; Nascimento & Zaher, 2010; Sertich &
Groenke, 2010; Riff & Kellner, 2011; Pol et al., 2012; Leardi ef al., 2015b). It is formed by a
cranial body, a socket for the reception of the astragalar peg, and the caudally directed tuber
(Brochu, 1992). As in other crocodyliforms, the cranial body in Pissarrachantpse sera contacts
the astragalus, fibula, and possibly the fourth distal tarsal (Brinkman, 1980; Hecht & Tarsitano,

1984; Brochu. 1992; Sertich & Groenke, 2010; Pol et al., 2012).
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The cranial and proximal portions of the cranial body form a well-developed rounded
articular surface (a roller) that articulates medially with the astragalus and proximally with the
fibula. This morphology is widespread, also seen in living forms and other fossil crocodylians, as
Baurusuchus albertoi, Stratiotosuchus maxhechti, Sebecus icaeorhinus, Simosuchus clarki, and
Araripesuchus tsangatsangana (Brinkman, 1980; Turner, 2006; Sertich & Groenke, 2010;
Nascimento & Zaher, 2010; Riff & Kellner, 2011; Pol et al., 2012). No ridge is present at the
articular surface of the roller, which in Simosuchus clarki separates the medial articulation area
for the astragalus and the lateral articulation area for the fibula (Sertich & Groenke, 2010). This
rounded surface slopes abruptly cranioventrally, forming a distally directed surface, which
probably contacted the fourth distal tarsal. In Pissarrachampsa sera, this surface is flat and
elliptical in distal view, resembling the condition in Stratiotosuchus maxhechti (Riff & Kellner,
2011). The lateral portion of the cranial body forms a well-developed flat surface that lacks any
articular facet. This surface is proximodistally restricted and does not overcome the proximodistal
extension of the distal tuber. The medial face of the cranial body forms the calcaneal socket. Most
of the morphology of this area is not accessible due the articulation with the astragalus, but a faint
medial flange overhang the calcaneal socket as in Simosuchus clarki (Sertich & Groenke 2010).

The calcaneal tuber is caudally directed and sub-elliptical in caudal view, as in
Baurusuchus albertoi and Stratiotosuchus maxhechti (Nascimento & Zaher, 2010; Riff &
Kellner, 2011). The caudal surface of the tuber is orthogonal to the distal facet of the calcaneal
condyle, and is deeply concave, forming a slot for attachment of M. gastrocnemius (Brochu,
1992; Leardi et al., 2015b). The concavity divides the tuber into well-marked lateral and medial
ridges, as in Baurusuchus albertoi, Stratiotosuchus maxhechti, Sebecus icaeorhinus,
Araripesuchus tsangatsangana, and Simosuchus clarki (Turner, 2006; Riff & Kellner, 2011;
Sertich & Groenke, 2010; Pol ef al., 2012). Differently from Stratiotosuchus maxhechti, there is

no transversal ridge separating the caudal surface in proximal and distal areas (Riff & Kellner,
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2011). The lateral ridge is shorter than the medial one, as in Simosuchus clarki and
Uruguaysuchus, whereas in other taxa (Baurusuchus albertoi, Stratiotosuchus maxhechti,
Sebecus icaeorhinus) both ridges are equally developed (Sertich & Groenke, 2010; Nascimento
& Zaher, 2010; Riff & Kellner, 2011; Pol ef al., 2012). The lateral ridge bears a lateral tubercle,
as in Yacarerani boliviensis, Sebecus icaeorhinus and Stratiotosuchus maxhechti (Riff & Kellner
2011; Pol et al., 2012; Leardi ef al., 2015b). The tubercle extends laterodistally and invades the
lateral surface of the calcaneal tuber (Figure 10). A well-defined groove flanks the medial side of
the calcaneal tuber. This corresponds to the “medial channel” of Hecht & Tarsitano (1984). It
expands proximolaterally in a shallow and wide surface that terminates abruptly at the lateral
edge of the calcaneum. A lateral groove also separates the distal articular surface of the cranial
body from the calcaneum tuber, just medial to the lateral tubercle, as seen in Simosuchus clarki

(Sertich & Groenke, 2010).

Pes
Pissarrachampsa sera has three preserved pedes, one left pes of the holotype (LPRP/USP 0019),
and two referred (a left and a right) pedes (LPRP/USP 0739 and LPRP/USP 0746). The holotype
pes is represented by four metatarsals (Figure 11), whereas LPRP/USP 0739 includes four
isolated metatarsals, and LPRP/USP 0746 comprises four partially preserved digits (Figure 11).
Metatarsal V is not preserved in any of the specimens of Pissarrachampsa sera, following the
trend of reduction of that metatarsal towards Crocodylomorpha (Parrish, 1987). Therefore, the
four metatarsals preserved in Pissarrachampsa sera constitute the entire number of fully
functional pedal digits, as in all living crocodylians and most fossil crocodyliforms (Riff, 2007).
The metatarsals of Pissarrachampsa sera are longer than the metacarpals, as in

Baurusuchus albertoi, Araripesuchus tsangatsangana, Stratiotosuchus maxhetchi, Simosuchus

clarki and Yacarerani boliviensis (Turner, 2006; Nascimento & Zaher, 2010; Sertich & Groenke,
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2010; Riff & Kellner, 2011; Leardi ef al., 2015b). Moreover, metatarsals II and III are slightly
longer than metatarsals I and IV, as in Baurusuchus albertoi and possibly in Yacarerani
boliviensis and S. maxhetchi (Nascimento & Zaher, 2010; Riff & Kellner 2011; Leardi et al.,
2015b). The proximal articular surfaces of the metatarsals are lateromedially expanded,
especially in their lateral margin. As a result, the proximal surface of each metatarsal overlaps the
medial portion of the proximal surface of the immediate lateral metatarsal (Figure 11 —
LPRP/USP 0746) as in Baurusuchus albertoi, Simosuchus clarki, and Stratiotosuchus maxhetchi
(Nascimento & Zaher, 2010; Sertich & Groenke, 2010; Riff & Kellner, 2011). This morphology
is different from that of Araripesuchus tsangatsangana, in which a medial expansion of these
surfaces underlies the proximal surface of the immediate medial metatarsal, and from Yacarerani
boliviensis, in which there is a medial expansion of the surface in each metatarsal that overlaps
the immediate medial metatarsal (Turner, 2006; Leardi ef al., 2015b). The distal articular surfaces
are divided by a groove in medial and lateral condyles, as in Simosuchus clarki, Baurusuchus
albertoi and Stratiotosuchus maxhechti (Nascimento & Zaher, 2010; Sertich & Groenke, 2010;
Riff & Kellner, 2011).

Only LPRP/USP 0746 preserves articulated phalanges (Figure 11), but the phalangeal
formula cannot be assessed. The phalanges have a blocky appearance and a constriction between
the expanded proximal and distal ends, as in Simosuchus clarki, Baurusuchus albertoi,
Stratiotosuchus maxhechti, and Araripesuchus tsangatsangana (Turner, 2006; Nascimento &
Zaher, 2010; Sertich & Groenke, 2010; Riff & Kellner, 2011). The proximal phalanges preserved
in LPRP/USP 0746 are relatively longer than those preserved in the right manus of the holotype
(both hands are similar in size), a pattern described for both Baurusuchus albertoi and
Stratiotosuchus maxhechti (Nascimento & Zaher, 2010; Riff & Kellner, 2011). Also, the proximal

phalanges preserved in LPRP/USP 0746 are longer than the preserved more distal phalanges, as
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in Baurusuchus albertoi, Araripesuchus tsangatsangana, and S. maxhetchi (Turner, 2006;
Nascimento & Zaher, 2010; Riff & Kellner, 2011).

Aside from the articulated phalanges of LPRP/USP 0746, three disarticulated pedal
ungual phalanges were found associated to the holotype skeleton. They decrease in size from the
first to the third digit, as in Baurusuchus albertoi, Stratiotosuchus maxhechti, Uberabasuchus
terrificus and living crocodylians (Miiller & Alberch, 1990; Vasconcellos, 2006; Riff, 2007;
Nascimento & Zaher, 2010). They form curved claws, with a robust base, and bear foramina in
both lateral and medial surfaces, as also present in Baurusuchus albertoi and, possibly, in

Araripesuchus tsangatsangana (Turner, 2006; Nascimento, 2008; Nascimento & Zaher, 2010).

Results and discussion
Body size and mass estimates for Pissarrachampsa sera
The preserved elements of the holotype (LPRP/USP 0019), particularly the femora, allow
estimating the body size and mass of Pissarrachampsa sera. Based on the protocol presented by
Farlow et al. (2005), we estimated that Pissarrachampsa sera had a total length varying between
2.7 and 3.5 meters, and a body mass between 81 and 163 kilograms (for detailed results see
Supplemental Information). This significant variation is also observed in estimates for other
terrestrial crocodyliforms, as Protosuchus and Sebecus (Farlow et al., 2005; Pol et al., 2012). The
regressions of Farlow et al. (2005) were built with data from Alligator mississippiensis, and
might not be as accurate as desired for fossil taxa with distinct habits and body proportions (Pol
etal.,2012).

Indeed, the comparison with nearly complete baurusuchid specimens permits assessing
the accuracy of these regressions for the group. Comparisons to more complete baurusuchids
such as the 1.9 m long specimen referred to Baurusuchus salgadoensis (lacking only the skull

and pectoral girdle), the 1.3 m long holotype of Baurusuchus albertoi (lacking the tip of tail and
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snout), and the 1.1 m long holotype of Aplestosuchus sordidus (1acking the tail) (Nascimento,
2008; Vasconcellos & Carvalho, 2010; Godoy et al., 2014) suggest that it is unlikely that any of
these specimens reached the maximum length estimated for Pissarrachampsa sera (3.49 m) using
the regressions. Further, after applying the formulas for Baurusuchus albertoi and B.
salgadoensis (both with femora well preserved), we obtained a total length of approximately 3.8
meters for both taxa (see Supplemental Information). Even though not completely preserved, this
is an evidence that, at least for baurusuchids, the regressions are overestimating the size of the
specimens.

Regardless the incompleteness of specimens and inaccuracy of the estimates, it is very
likely that an adult individual of Pissarrachampsa sera reached at least 2 meters (Figure 12),
placing the taxon amongst the largest terrestrial predators of Late Cretaceous environments in
southwest Brazil, together with other baurusuchids and theropods (Riff & Kellner, 2011; Godoy
et al, 2014). The Bauru Group rocks have provided numerous carnivorous crocodyliforms (e.g.:
Campos et al., 2001; Carvalho et al., 2005; Godoy et al., 2014), particularly baurusuchids, and
many titanosaur sauropods (e.g.: Kellner & Azevedo, 1999; Salgado & Carvalho, 2008; Santucci
& Arruda-Campos, 2011), but very few theropods (Méndez et al., 2012; Azevedo et al., 2013,
Godoy et al., 2014). This has been used as evidence for the rearrangement of roles in this
paleoecosystem, with baurusuchids occupying the typical ecological niche of theropods (Riff &%
Kellner, 2011). However, although the morphology of baurusuchids indicates highly specialized
predatory habit, similar to that of theropods, it seems unlikely that even larger baurusuchids could
have preyed on adult sauropods (>8 meter length for some titanosaurs; Salgado & Carvalho,
2008), if assumed as solitary predators. Indeed, this hypothesis is supported by the single reliable
and identifiable direct evidence of predation among baurusuchids, in which a small sphagesaurid
(Mesoeucrocodylia, Notosuchia) was found in the abdominal cavity of the holotipic skeleton of

Aplestosuchus sordidus (Godoy et al., 20 {%}As such, theropods remain as the most likely
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sauropod predators in this Cretaceous ecosystem, and the scarcity of theropods might reflect
incomplete or biased sampling. Accordingly, some niche partitioning may have occurred, with
baurusuchids preying on smaller animals, as well as young or hatchling sauropods, and theropods

being able to prey on larger individuals.

Terrestriality in Pissarrachampsa sera

A series of anatomical features have been recognized as related to the terrestrial habits of
Crocodyliformes, many of which are observed in the postcranial skeleton of Pissarrachampsa
sera. As detailed in the description, Pissarrachampsa sera possess a tubercle in the lateral surface
of the ischium. Riff & Kellner (2011) pointed that this tubercle, located in the attachment area of
the muscle M. pubioischiotibialis, can be related to a permanent upright posture and parasagittal
movement in Stratiotosuchus maxhechti. This tubercle is very similar to the obturator tubercle of
the maniraptoriform theropods (although related to a different tissue - ligamentun
ischiopubicum), and is absent in extant forms, in which there is only a scar on this attachment
area, and also absent in any other taxa in the Pseudosuchia lineage (Riff & Kellner, 2011). In this
scenario, the presence of this ischial tubercle is better interpreted as an exclusive lifestyle-related
feature for baurusuchids.

Another feature presumably linked to terrestriality is the space between articulated ulna
and radius, which is very reduced in Pissarrachampsa sera. Although contrasting with the
relatively large space in extant crocodylians, this pattern is also observed in other baurusuchids,
as Stratiotosuchus maxhechti and Baurusuchus albertoi, as well as in the terrestrial notosuchian
Araripesuchus tsangatsangana (Brochu, 1992; Turner, 2006; Nascimento & Zaher, 2010; Riff &
Kellner, 2011). Similarly, the space between tibia and fibula of Pissarrachampsa sera is also
reduced. Further, the proximal portion of its tibia bears a well-protruded medial facet that

corresponds to the articulation with the tibial condyle of the femur. The uneven proximal facets
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rotates the distal tibia laterally when in articulation with the femur. Accordingly, both propodium
and epipodium arranged on the same long axis (on caudal or cranial views), allowing a
parasagittal movement of the leg during locomotion. This condition is also seen in the terrestrial
notosuchians Sebecus icaeorhinus and Simosuchus clarki (Sertich & Groenke, 2010; Pol et al.,
2012). The proximal articulation facets of the tibia are caudally separated by an excavated fossa
flexoria, and cranially, by a well-developed tuberosity for the insertion of M. flexor tibialis
internus. This is an evidence of a tight/stable knee joint in agreement of an erect posture. Also,
the distal tibial articulation of Pissarrachampsa sera is obliquely disposed, with a more
developed medial facet, as in Stratiotosuchus (Riff & Kellner, 2011). Modern crocodiles, on the
other hand, bear the equally developed distal ends (medial and lateral) of the tibia, allowing a
range of sprawling to semi-erect high walk (Brinkman, 1980; Parrish 1986; 1987; Gatesy, 1991).
This oblique and the well-sharped distal end of tibia fits tightly with the astragalus, and can
reduce the range of movements. But also indicates a stable articulation with the foot, allowing
some lateral displacement, matching with the medial displacement of the distal tibia, denoting an
upright posture. This is similar to the ankle articulation morphology seen in sphenosuchians and

protosuchians (Parrish, 1987).

The lack of osteoderms in Pissarrachampsa sera

Pissarrachampsa sera is represented by a series of specimens all from the same locality. The
specimens range from the relatively complete and fairly articulated holotype to isolated
fragmentary skulls and postcranial elements. So far, no osteoderm was found associated to these
specimens, neither elsewhere in the type locality. This raises the question whether the lack of
osteoderms represents a taphonomic signature or a genuine anatomical feature of the taxon. In the
latter case, Pissarrachampsa sera would be the first terrestrial crocodyliform to completely lack

any body armor, with biomechanical implications to be explored.
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The specimens of Pissarrachampsa sera were collected without rigorous taphonomic
control, but there are geological and paleontological evidences that support the absence of
osteoderms as a not taphonomy-related feature. The type locality of P. sera is assigned to the
Adamantina Formation and the deposition of this geological unity is associated to arid to semi-
arid conditions (Fernandes & Coimbra, 1996; 2000; Batezelli, 2015). In the same way, the local
geology suggests a developed paleosol profile that is also indicative of arid to semi-arid
conditions (Marsola ef al., in prep). In this scenario, the prolonged periods without sedimentation
lead to erosion and pedogenesis. Furthermore, well-preserved and complete crocodyliform egg
clutches are found in the same levels of the body fossils of Pissarrachampsa sera (Marsola et al.,
2011). Crocodyliform eggs are particularly fragile to long-range transport (Grellet-Tinner et al.,
2006; Hayward et al., 2000), whereas the skeletal elements of P. sera %Jlot show significant
signs of abrasion caused by transport (Montefeltro et al., 2011). Therefore, the decay and burial
of the P. sera remains most likely occurred in a low-energy, probably sub-aerial environment.

Aragjo-Junior & Marinho (2013) analyzed the taphonomy of one specimen of
Baurusuchus pachecoi from the same formation, collected in Jales (Sao Paulo, Brazil), which
matches the putative pre-burial conditions experienced by Pissarrachampsa sera. In that study,
osteoderms were found close to their in vivo position, even after exposed to some degree of
scavenging and sub-aerial decay. A similar pattern of osteoderm disarticulation was found by
Beardmore et al. (2012) for the marine crocodile Steneosaurus, from the Posidonienschiefer
Formation (Lower Jurassic, Germany), which decayed and were buried in a quiet-water, marine
basin. In that case, osteoderms are placed close to the carcass even in specimens with greater
degree of disarticulation. The same pattern is as also seen in actualistic taphonomic experiments
in juvenile Crocodylus porosus, in which the osteoderms remain at the vicinity of the carcass
even with relatively prolonged subaerial and subaqueous decay (Syme & Salisbury, 2014, Figure

6). In fact, a series of fossil crocodyliforms are recovered with associated osteoderms, even
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showing a relatively advanced degree of disarticulation (e.g. Susisuchus anatoceps Salisbury et
al., 2003; Alligatorelus Schwarz-Wings et al., 2011; Wannchampsus kirpachi Adams, 2014;
Diplocynodon Hastings & Hellmund, 2015). We took into consideration the possibility that
Pissarrachampsa sera had its osteoderms disarticulated earlier in the decay process, differently
from other fossil and extant crocodyliforms. However, it would also be unrealistic, given their
great number in a single individual associated to the complete absence of these elements in the
outcrop. Therefore, in light of all evidences we suggest the lack of osteoderms as an inherent and
diagnostic feature of in Pissarrachampsa sera.

The presence of osteoderms is considered plesiomorphic for Crocodyliformes (Scheyer &
Desojo, 2011), as these structures are found in most pseudosuchians (Brown, 1933; Wu &
Chatterjje, 1993; Clark & Sues, 2002; Sues et al., 2003; Pol & Norell, 2004; Clark, 2011; Nesbitt,
2011; Scheyer & Desojo, 2011). Likewise, this ancestral condition is inferred for most internal
nodes of Crocodyliformes, which bear at least one pair of parasagittal rows forming the body
armor (Salisbury & Frey, 2001; Frey & Salisbury, 2001; Hill, 2005; Pierce & Benton, 2006;
Jouve et al., 2006; Marinho & Carvalho 2009; Pol et al., 2009; Hill, 2010; Andrade et al., 2011,
Pol et al., 2012; Nobre & Carvalho, 2013; Tennant & Mannion, 2014). The only exception known
so far is the complete absence of osteoderms in the marine metriorhynchids, a feature probably
associated to their aquatic lifestyle (Young et al., 2010; 2013; Molnar et al., 2015). Similarly,
metriorhynchids do not have palpebral bones roofing the orbits (Nesbitt ez al., 2012), and
previous analyses of the crocodylian skeletogenesis show that postcranial osteoderms match the
palpebral development (Vickaryous & Hall, 2008). In this case, it might have been a common
cause underlying the successive loss of the palpebrals and postcranial osteoderms in
Thalattosuchia and Metriorhynchidae.

Molnar et al. (2015) presented evidences that the loss of osteoderms in Metriorhynchidae

is related to an increasing aquatic adaptation in this group, whereas the rigid series of osteoderms
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965  of early crocodylomorphs would be related to terrestrial habits. In this scenario, the presence of
966 non-imbricate osteoderms in basal thalattosuchians (Teleosauridae) and the more flexible

967 arrangement of these structures in the extant semi-aquatic forms would represent intermediate
968  stages (Salisbury & Frey, 2001; Molnar ef al., 2015). The presence of one pair of parasagittal
969 rows of oval osteoderms is considered a plesiomorphic state for Baurusuchidae, as all specimens
970 previously described with postcranial remains exhibit this pattern (Nascimento & Zaher, 2010;
971 Vasconcellos & Carvalho, 2010; Aratjo-Junior & Marinho, 2013; Godoy et al., 2014). The

972  osteoderms of these forms (e.g. Aplestosuchus sordidus) barely imbricate, which might represent
973 an intermediate condition towards the total lack of osteoderms seen Pissarrachampsa sera. This
974  absence probably had biomechanical implications, with the osteoderms in other baurusuchids @
975 possibly playing diminutive role in the sustained terrestrial locomotion of these animals. This is
976 different from what is inferred for other terrestrial Crocodylomorpha such as “sphenosuchians”
977  and the peirosaurids, in which the osteoderms played an important role in the sustained erect

978 locomotion (Molnar et al., 2015; Tavares et al.; 2015).

979 Phylogenetic analysis and the significance of postcranial characters in Crocodyliformes

980 phylogeny

981 Here, for the first time, the postcranial data for Pissarrachampsa sera was included in a

982 phylogenetic analysis. This resulted scoring a total of 34 additional characters (see the

983  Supplemental Information) for the taxon in the data matrix presented by Leardi ef al. (2015a),
984  which is the most recent work including a substantial amount of postcranial characters. The

985 resulting data matrix (439 characters and 111 taxa) was analysed in TNT (Goloboff et al., 2008a;
986 2008b) via heuristic searches under the following parameters: 10.000 replicates of Wagner Trees,
987 hold 10, TBR (tree bi-section and reconnection) for branch swapping, and collapse of zero length

988  branches according to “rule 1” of TNT. The result of our analysis (Supplemental Information)
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was exactly that presented by Leardi et al. (2015a), and all the clades are supported by the same
set of synapomorphies as in the original study.

We also conducted exploratory analyses to investigate the significance of the postcranial
anatomy for the phylogenetic relationships of crocodyliforms based on the data matrix used in
this study. We created two subsets of the original matrix, one using only cranial characters (315
characters), and another solely with postcranial characters (124 characters). As some of the taxa
in this dataset do not have cranial or post-cranial data, we performed an extra "control analysis"
with taxa for which elements of both subsets of the skeleton are scored. This "control analysis"
was performed to test whether simply the removal of taxa caused an impact on the overall
relationships between taxa. A total of 39 taxa (all from the ingroup) were excluded following this
criteria (Supplemental Information), and the 72 remaining taxa were used in the two exploratory
analyses.

The topology of the strict consensus of the MPT’s obtained in the "control analysis"
(Figure 13) is consistent with that of the original dataset. A single difference in the branching
pattern is that the “protosuchians” are less resolved than in the original dataset, but a fully
compatible structure is recovered for Mesoeucrocodylia. In the basal dichotomy of this clade, one
of the branches leads to Notosuchia, including Uruguaysuchidae, Peirosauridae, and Ziphosuchia,
with the latter containing Baurusuchidae and Sebecidae. The other branch leads to Neosuchia,
including a clade containing the longirostrine forms (Tethysuchia + Thalattosuchia) and another
clade including Atoposauridae, Goniopholididae and Eusuchia. Overall, this result indicates that
the deletion of the 39 taxa did not have a significant impact on the inferred relationships.

The strict consensus tree of the analysis using only cranial characters does not show a
great amount of politomies and is similar to the original complete analysis (Leardi ef al., 2015a),
even the arrangement of “Protosuchians” (Figure 14). However, there are important

discrepancies, as the paraphyletic arrangement of Notosuchia. Only the clades Uruguaysuchidae
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and Baurusuchidae are recognized, and the relations within these groups are not completely
compatible, particularly for peirosaurids and sebecids. A monophyletic Sebecia (Peirosauridae +
Sebecidae) is recovered in this exploratory analysis, recovering a pattern proposed by previous
works (Larsson & Sues, 2007; Montefeltro et al., 2013). Pol et al., (2012) already pointed out
that the clade Sebecia was enforced by anatomical similarities related to the cranial anatomy of
baurusuchids and sebecids.

Additional differences are in the internal relationships of Neosuchia. Despite the presence
of monophyletic Goniopholididae, Tethysuchia, Thalattosuchia, and Atoposauridae, substantial
changes are noted, as Eusuchia is paraphyletically arranged in relation to Tethysuchia +
Thalattosuchia. The recovery of the clade encompassing Tethysuchia and Thalattosuchia probably
reflects the major modifications on the skull of longirostrine forms belonging to these groups.

The results were much more discrepant when the analysis was conducted only with
postcranial characters. The strict consensus is poorly resolved (Supplemental Information). This
conflict could be related to the numerous taxa with a reduced number of scored characters and/or
to the scarcity of overlapping elements among taxa (e.g.: various specimens have few elements
preserved), or still to a high ratio of conflicting information. Accordingly, in order to better
explore the data, we pruned the most unstable taxa of the MPT’s of this analysis by using the
command pcrprune in TNT (Goloboff & Szumik, 2015). Notosuchia is recovered, including
peirosaurids, uruguaysuchids and ziphosuchians. The relationships between peirosaurids and
uruguaysuchids, as well as among some notosuchians, are discrepant in relation to the original
results (Leardi ef al., 2015a). Yet, the importance of postcranial morphology to support the
affinities of peirosaurids to notosuchians is strengthened, following previous evidences presented
by Pol ef al. (2012; 2014). Also, the presence of a monophyletic Notosuchia illustrates the
peculiarity of the notosuchian postcranial anatomy, what could be related to the emergency of a

new terrestrial lifestyle, different from other terrestrial crocodyliforms, as the “protosuchians”.
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However, it is also important to stress that most of the postcranial phylogenetic characters
employed were based on the anatomy of notosuchians (Pol et al., 2012; Leardi et al., 2015a,b).
Accordingly, the postcranial characters could favour the recovery of Notosuchia, particularly
when only a reduced number of characters is present in the dataset.

Further, the results of the analyses using only the postcranial information show that some
“protosuchians” are found together with the notosuchians, in a clade with only terrestrial forms
(the only exception being Leidyosuchus). Thalattosuchia is also clade recognized in this analysis,
illustrating the peculiar postcranial anatomy of these taxa linked to a fully aquatic lifestyle.
Another clade recovered includes semi-aquatic crocodyliforms (the only exception being
Shamosuchus), including goniopholidids and eusuchians, but their relations largely deviate from
the "control analysis". Overall, the results of these exploratory analyses indicate that
crocodyliform relationships are strongly determined by skull characters. The postcranium has its
importance in defining some relationships, as the affinity of peirosaurids to Notosuchia, and the
position of the longirostrine taxa within Neosuchia. However, the general arrangement is still
determined by characters related to the skull.

Finally, we interpret the results presented here as a consequence of the low number of
postcranial characters in the matrix (124 out of 439), and not by the inability of this kind of data
to illustrate the evolutionary history of the group. Indeed, we consider this scenario influenced by
historical factors associated to the study of fossil crocodyliforms. Descriptions are preferably
based on skulls; postcranial elements are neglected, sometimes never described or mentioned in
the descriptive works. However, the postcranium may play a bigger role in phylogenetic studies,
as Crocodyliformes range from fully terrestrial animals to semi-aquatic and fully marine forms,
and this diversity in lifestyle leads to different postcranial morphologies (e.g.: Riff & Kellner,
2011; Molnar et al., 2015). Indeed, our exploratory analysis performed only with postcranial

characters recovered three clades mainly representative of three different lifestyles (a "terrestrial"
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clade, a "semi-aquatic" clade, and a "marine" clade). However, the different homoplasy indexes
show that this grouping is probably not a result of convergent events. The Rescaled Consistency
Index (RCI — Farris, 1989) for the analysis with postcranial characters is 0.37, higher than those
for the analyses with cranial characters (0.28), the control analysis (0.28), or the original analysis
(0.22). This higher RCI value could result from the high rate of missing data, constraining the
number of homoplasies. On the other hand, this also suggests that there is still much to explore on
the postcranial anatomy of Crocodyliformes. In this way, future works, describing more
postcranial elements and proposing more characters based on this data will show if the phylogeny

of Crocodyliformes is truly “skull-based” or merely “skull-biased”.

Conclusions

The study of the postcranial skeleton of Pissarrachampsa sera allowed the recognition of some
exclusive features of this taxon in the context of Baurusuchidae, as the short and sharp crest at the
craniolateral margin of the distal tibial expansion, the raised and proximodistally elongated
iliofibularis trochanter of the fibula, and the more proximally placed contact between the fibular
distal hook and the tibia. Also, some features related to a terrestrial lifestyle were identified, as
the reduced interosseous space between both radio-ulna and tibia-fibula, the tubercle in the lateral
surface of the ischium, as well as a well-protruded medial facet and a well-excavated fossa
flexoria in the tibia.

A highlighting feature is the complete absence of osteoderms in Pissarrachampsa sera, as
first reported for a terrestrial crocodyliform. This complete loss of body armor was previously
known only for metriorhynchids, which have extreme adaptations for a fully marine habit. In this
scenario, osteoderms probably played a minor role in locomotion of terrestrial baurusuchids, with
their complete absence in Pissarrachampsa sera representing the endpoint of this trend in the

group. Further, the body size and mass estimations indicate that P. sera was a large predator in
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the terrestrial ecosystems of the Bauru Group, but it is unlikely that it fed on adult sauropods also
present at this stratigraphic unit.

Finally, our exploratory phylogenetic analyses indicate that, at least for the matrix used in
this study, the crocodyliform relationships are still very determined by skull characters. However,
this is more likely a consequence of the few postcranial characters in the matrix and not of the

inability of this data to reflect the evolutionary history of Crocodyliformes.
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1448 Tables and Figure (with captions)

1449  Table 1. List of taxa used for comparison in the description.

Taxon

Specimens numbers/references

Alligator sp.
Aplestosuchus sordidus
Araripesuchus gomesii

Araripesuchus tsangatsangana

Baurusuchus albertoi
Baurusuchus salgadoensis
Caiman sp.
Chimaerasuchus paradoxus
Crocodylus sp.
Edentosuchus tienshanensis
Lomasuchus palpebrosus
Mahajangasuchus insignis
Mariliasuchus amarali
Melanosuchus niger
Microsuchus schilleri

Notosuchus terrestris

Orthosuchus stormbergii
Protosuchus richardsoni
Sebecus icaeorhinus
Sichuanosuchus shuhanensis

Simosuchus clarki

Stratiotosuchus maxhechti
Theriosuchus pusillus
Uberabasuchus terrificus
Uruguaysuchus aznarezi

Yacarerani boliviensis

Brochu (1992)

LPRP/USP 0229a

AMNH 24450; Turner (2006)

FMNH PR 2297; FMNH PR 2298; FMNH PR 2326; FMNH PR 2327;
FMNH PR 2335; FMNH PR 2337; Turner (2006)

MZSP-PV 140; Nascimento (2008); Nascimento & Zaher (2010)

UFRJ DG 285-R; Vasconcellos & Carvalho (2010)

LPRP/USP N 0008; MZSP 2137; Brochu (1992); Nascimento (2008)

Wu & Sues (1996)

Brochu (1992)

Pol et al. (2004)

Leardi et al. (2015)b

FMNH 2721 (research cast of UA8654); Buckley & Brochu (1999)

UFRJ-DG-105-R; Nobre & Carvalho (2013)

Brochu (1992); Nascimento (2008)

Leardi et al. (2015)a

MACN-RN 1037; MACN-RN 1044, MACN N 109; Pol (2005);
Fiorelli & Calvo (2008)

SAM-PK 409; Nash (1975)

AMNH 3024; UMCP 34634, 36717

AMNH 3159; Pol et al. (2012)

Wu et al. (2007)

Research cast of UA 8679; Georgi & Krause (2010); Sertich &
Groenke (2010)

DGM 1477-R; Riff (2007); Riff & Kellner (2011)

NHMUK 48330; Wu et al. (1996)

CPP 0630; Vasconcellos (2006)

Pol et al. (2012)

Leardi et al. (2015)b
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1450 Figure 1. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawing of
1451  the articulated dorsal vertebrae in right lateral (A and B) and ventral views (C), and isolated dorsal
1452  vertebra in caudal view (D). Cross-hatched areas represent broken surfaces. Black areas represent

1453  sediment-filled areas. Abbreviations: dpon: depression between the postzygapophysis and the neural
1454  spine; ns: neural spine (base); nes: neurocentral suture; pf: postspinal fossa; poz: postzygapophysis; prz:

1455  prezygapophysis; tp: transverse process; ve: vertebral centrum. Scale bar equals 5 cm.
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1456 Figure 2. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawings of
1457  the right ulna in cranial (A and B), lateral (C and D), caudal (E and F), and medial views (G and H).
1458  Light grey represent (broken) articulation areas. Abbreviations: cop, caudal oblique process; crop, cranial
1459  oblique process; crp, ulnar cranial process; ers, M. extensor carpi radialis brevis sulcus; fds, M. flexor
1460  digitorum longus insertion surface; fdsc, M. flexor digitorum longus insertion scars; fus, M. flexor ulnaris
1461 insertion surface; Ip, ulnar lateral process; Ir, lateral ridge; olp; olecranon process; pqf; M. pronator

1462  quadratus origin fossa; rf, radial facet; ths, M. triceps brachii insertion scars; vf, vascular foramen. Scale

1463  bar equals 5 cm.
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cop

1464 Figure 3. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs of articulated right ulna
1465 and radius in proximal (A) and distal views (B). Abbreviations: cop, caudal oblique process of ulna; cp,
1466  ulnar cranial process; crlp, craniolateral process of ulna; crop, cranial oblique process of ulna; Ip, ulnar
1467 lateral process; Ipc, lateral process of proximal condyle of radius; olp; olecranon process of ulna; rhs,

1468 radiohumeral articular surface; rds, radiale articular surface of radius. Scale bar equals 5 cm.
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1469 Figure 4. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawings of
1470 the right radius in cranial (A and B), lateral (C and D), caudal (E and F), and medial views (G and
1471 H). Light grey represent articulation areas. Abbreviations: ars, M. abductor radialis insertion surface; bbt,
1472 M. biceps brachii insertion tubercle; has, M. humeroantebrachialis inferior insertion scar; ecrs, M.

1473  extensor carpi radialis brevis insertion surface; hrt, M. humeroradialis insertion tubercle; ler, thin

1474  longitudinal crest; Ipc, lateral process of proximal condyle; mpe, medial process of proximal condyle;
1475  pmr, proximodistal medial ridge; pqs, M. pronator quadratus insertion surface; pts, M. pronator teres
1476  insertion surface; rds, radiale articular surface; rhs, radiohumeral articular surface; sps, M. supinator

1477  insertion surface; uac, ulnar articulation concavity; uf, ulnar facet; vf, vascular foramen. Scale bar equals

1478 5 cm.
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1479
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Figure 5. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs of the right carpus/manus
in dorsal (A) and ventral views (B). Abbreviations: I me, metacarpal I; II me, metacarpal IT; I mc,
metacarpal III; IV mc, metacarpal [V; V me, metacarpal V; dph, distal phalanx; mph, medial phalanx;

pph, proximal phalanx; rdl, radiale; uln, ulnare. Scale bar equals 5 cm.
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Figure 6. Pissarrachampsa sera (LPRP/USP 0742), photographs and schematic drawing of the left
ilium in dorsal (A and B), medial (C and D), and lateral views (E). Cross-hatched areas represent
broken surfaces. Abbreviations: ac: acetabulum; acr: acetabular roof; das: dorsal portion of the
articular surface for the second sacral rib; dmar: dorsal margin of the acetabular roof; pap:
postacetabular process; imr: ridge on the medial surface of the ilium; s 1r: articular surface for first sacral

rib; s 2r: articular surface for second sacral rib. Scale bar equals 5 cm.
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1489  Figure 7. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawing of
1490 left ischium in lateral view (A and B) and pubis in caudal view (C). Abbreviations: ac: acetabulum; ib:
1491  iliac blade; ipi: iliac peduncle of ischium; ph: pubic head; ps: pubic symphysis; psh: pubic shaft; ppi:

1492  pubic peduncle of ischium; ri: ridge; ti: tubercle of the ischium. Scale bar equals 5 cm.
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1493  Figure 8. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawings of
1494  the left femur in cranial (A and B), medial (C and D), caudal (E and F), lateral (G and H), proximal
1495 (I and J), and distal views (K and L). Areas of musculature insertion are shadowed in dark gray. Light
1496  grey represent areas of bone articulation. Abbreviations: af?, adductor fossa; add1 + 2, M. adductor

1497  femoris 1 & 2; cfb, M. caudofemoralis brevis; cfl, M. caudofemoralis longus; crf, cranial flange; fmte, M.
1498  femorotibialis externus; fmti, M. femorotibialis internus; ftr, femorotibialis ridge ; ga. M. gastrocnemius ;
1499  gt, greater trochanter; if, M. iliofemoralis; icf, intercondylar fossa ; it, M. ischiotrochantericus; lc, lateral
1500 condyle ; lic, linea intermuscularis caudalis; mc, medial condyle ; mpe, medial proximal crest ; mscr,
1501 medial supracondylar crest; pas, proximal articulation surface; pf, popliteal fossa ; pife, M.

1502  puboischiofemoralis externus; pifi 1, M. puboischiofemoralis internus 1; pifi 2, M. puboischiofemoralis
1503 internus 2; s fi, articular surface for fibula ; smi, surface for muscular insertion; vf, vascular foramen; 4th,

1504  fourth trochanter. Scale bar equal 5 cm (A-H) and 2 cm (I-M).
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1505 Figure 9. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawings of
1506 the left tibia and fibula in caudal (A and B), lateral (C and D), cranial (E and F), and medial views
1507 (G and H). Light grey represents areas of bone articulation. Abbreviations: dh, distal hook; ffx, fossa
1508 flexoria; ift, iliofibularis trochanter; ill, internal lateral ligament; lell, long external lateral ligament; If,
1509 lateral facet; mf, medial facet; mfdl, origin of M. flexor digitorium longus; mfti, M. flexor tibialis internus
1510 insertion; mic, M. interosseous cruris insertion; mta, M. tibialis anterior insertion; vf, vascular foramen.

1511  Scale bar equals 5 cm.
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1512  Figure 10. Pissarrachampsa sera (holotype, LPRP/USP 0019), photographs and schematic drawings
1513  of the left astragalus and calcaneum in proximal (A and B), cranial (C and D), and distal views (E
1514 and F). Abbreviations: aho, “anterior hollow”; ¢be, cranial body of calcaneum; cte, caudal tuber of

1515 calcaneum; fif, fibular facet; Ich, lateral channel; lIrc, lateral ridge of calcaneal tuber; Itb, lateral tubercule;
1516 Itf, lateral tibial facet; m i, ii?, area for articulation with metatarsals I and II; mch, medial channel; mdr,
1517 medial distal roller; mfl, medial flange; mre, medial ridge of calcaneal tuber; mtf, medial tibial facet; pat,
1518 pit for astragalar -tarsal ligament; peg, astragalar peg; td iv?, area for the articulation with tarsal distal IV.

1519  Scale bar equals 2 cm.
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1520 Figure 11. Pissarrachampsa sera, photographs of two pedes. A. right pes of LPRP/USP 0746 in
1521 ventral view; B. left pes of LPRP/USP 0019 (holotype) in dorsal view. Abbreviations: I mt, metatarsal
1522  I; II mt, metatarsal II; III mt, metatarsal III; IV mt, metatarsal 1V; ast, astragalus; dph, distal phalanx;

1523 mph, medial phalanx; pph, proximal phalanx; uph, ungueal phalanx. Scale bar equals 5 cm.

1524 Figure 12. Skeletal reconstruction of Pissarrachampsa sera, including all known cranial and

1525 postcranial material. Scale bar equals 100 cm. ’:
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1526  Figure 13. Strict consensus tree of the '"control analysis" after excluding taxa with no cranial or

1527  postcranial characters.
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1528 Figure 14. Strict consensus tree of the analysis based only on cranial characters. Name of clades

1529

1530

between quotes indicates that their inclusivity differ from those of the "control analysis". Clade with the

node marked by a square (Sebecia) represents those not present in the "control analysis".
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Figure 15. Strict consensus tree of the analysis based only on postcranial characters after exclusion
of very unstable taxa. Name of clades between quotes indicates that the assemblage of taxa related to the
clade differs from the one of the "control analysis". Clades identified with a white circle represent

informal clades. Taxa marked with * have an seemingly anomalous position within each informal clade

recovered.
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