Developing demographic toxicity data: Optimizing effort for predicting population outcomes (#8771)

First submission

Please read the **Important notes** below, and the **Review guidance** on the next page. When ready **submit online**. The manuscript starts on page 3.

Important notes

Editor and deadline

Leon Higley / 11 Mar 2016

Files Please visit the overview page to <u>download and review</u> the files

not included in this review pdf.

Declarations No notable declarations are present

Please in full read before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this **pdf** and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standard**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (See <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Negative/inconclusive results accepted.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusion well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

Developing demographic toxicity data: Optimizing effort for predicting population outcomes

John D. Stark, John E. Banks

Mounting evidence suggests that population endpoints in risk assessment are far more accurate than static assessments. Complete demographic toxicity data based on full life tables are eminently useful in predicting population outcomes in many applications as they capture both lethal and sublethall effects; however, developing these data is extremely costly. In this study we investigated the efficacy of partial life cycle tests as a substitute for full life cycles in parameterizing population models. Life table data were developed for three species of Daphniids, Ceriodaphnia dubia, Daphnia magna, and D. pulex, weekly throughout the life span of these species. Population growth rates (λ) and a series of other demographic parameters generated from the complete life cycle were compared to those calculated from cumulative weeks of the life cycle in order to determine the minimum number of weeks needed to generate an accurate population projection. Results showed that for C. dubia and D. pulex, λ values developed at > 5 weeks (55.6% of the life cycle) were not significantly different from λ developed for the full life cycle (9 weeks) of each species. For *D. magna*, λ values developed at > 7 weeks (70% of the life cycle) were not significantly different from λ developed for the full life cycle (10 weeks). Furthermore, these statistically significant cutoff points for λ were not the same for other demographic parameters, with no clear pattern emerging. Our results indicate that for C. dubia, D. magna, and D. pulex, partial life tables can be used to generate population growth rates in lieu of full life tables. However, the implications of differences in cutoff points for different demographic parameters need to be investigated further.

1	
2	Developing demographic toxicity data: Optimizing effort for
3	predicting population outcomes
4	
5	John D. Stark ¹ , John E. Banks ^{2*}
6	¹ Washington State University Puyallup Research and Extension Center, Puyallup, WA,
7	USA
8	
9	² Undergraduate Research Opportunities Center, California State University, Monterey
10	Bay, Seaside, CA USA
11	
12	* Corresponding author
13	Email: <u>jebanks@csumb.edu</u> (JEB)
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1	1
	4

Abstract

Mounting evidence suggests that population endpoints in risk assessment are far more accurate 26 than static assessments. Complete demographic toxicity data based on full life tables are 27 eminently useful in predicting population outcomes in many applications as they capture both 28 29 lethal and subletahl effects; however, developing these data is extremely costly. In this study we investigated the efficacy of partial life cycle tests as a substitute for full life cycles in 30 parameterizing population models. Life table data were developed for three species of Daphniids, 31 32 Ceriodaphnia dubia, Daphnia magna, and D. pulex, weekly throughout the life span of these species. Population growth rates (λ) and a series of other demographic parameters generated 33 from the complete life cycle were compared to those calculated from cumulative weeks of the 34 life cycle in order to determine the minimum number of weeks needed to generate an accurate 35 population projection. Results showed that for C. dubia and D. pulex, λ values developed at > 536 weeks (55.6% of the life cycle) were not significantly different from λ developed for the full life 37 cycle (9 weeks) of each species. For *D. magna*, λ values developed at > 7 weeks (70% of the 38 life cycle) were not significantly different from λ developed for the full life cycle (10 weeks). 39 Furthermore, these statistically prince in first cutoff points for λ were not the same for other 40 41 demographic parameters, with no clear pattern emerging. Our results indicate that for C. dubia, D. magna, and D. pulex, partial life tables can be used to generate population growth rates in lieu 42 of full life tables. However, the implications of differences in cutoff points for different 43 demographic parameters need to be investigated further. 44

Introduction
A growing body of literature suggests that demography-based approaches are far more effective
in determining what happens to populations subjected to stressors or disturbance than short-term
acute mortality estimates (e.g., LC ₅₀) (Van Straalen et al. 1989, Forbes & Calow 1999, Sibly
1999, Calow et al. 2001, Pastorok et al. 2002, Stark & Banks 2003, Akçakaya et al. 2008,
Bartnhouse et al. 2008). In particular, demography-based approaches can address issues such as
sub-lethal effects, stage- or age-specific life history rates, and time-varying demographic
processes far better than more static methods (Stark & Banks 2003, Banks et al. 2008). However
the development of demographic data is costly and time-consuming. In some cases, such as
re toxicological risk assessments, researchers have attempted to use partial life table data
instead to predict population outcomes (Laskowski & Hopkin 1996, Preston & Snell 2001,
Ducrot et al. 2010). However, it is not clear how predictions from these studies incorporating
reduced datasets compare with studies using complete life tables. In particular, little attention has
been paid to the tradeoff between accuracy and experimental effort when comparing partial vs.
full life table studies. We offer here just such an approach, in which population outcomes from
complete life tables are compared with those developed from partial life tables for three
Daphniid species. We address the issue of whether or not partial demographic data can be used
in lieu of complete demographic data without loss of accuracy in projecting population
outcomes. We focus in particular on whether or not we can explain differences in the accuracy of
population responses based on reduced datasets by comparing proportional differences in life
spans of the three Daphniid species. Finally, we compare outcomes for lambda vs. other
demographic parameters across all species, and assess the overall potential for using reduced
datasets to generate reliable population projections.

PeerJ

69	
70	Materials and Methods
71	
72	Species tested
73	Three species of Daphniids were evaluated in this study; Ceriodaphnia dubia (Richard) Daphnia
74	pulex (Leydig) and D. magna (Straus). Individuals used to develop life table data were obtained
75	from cultures maintained at Washington State University, Puyallup Research and Extension
76	Center. Each species was reared in reconstituted dilution water (RDW). The RDW used in this
77	study was prepared according to a method modified from a USEPA protocol (USEPA 2002)
78	resulting in a RDW with pH 7.4-7.8, conductivity 260-320 μ S, dissolved oxygen (DO) > 8.0
79	mg/l, alkalinity of 60-70 mg/l and a hardness of 80-100mg/l. Daphniids were maintained in an
80	environmental chamber set with a photoperiod of 18h: 6h light: dark, 25.0 ± 0.1 °C, and $50.0 \pm$
81	0.1% relative humidity (RH).
82	
83	The Daphniids were fed a solution consisting of a 1:1.5 mixture of yeast-cereal leaves-trout
84	chow (YCT) and the algal species Pseudokirchneriella subcapitata (previously Selenastrum
85	capricornutum) (Charles River Co., Wilmington, MA).
86	
87	Development of life tables
88	Individuals (<24h old) at or beyond the third filial (F3) generation were transferred into glass
89	beakers containing 25 ml RDW. Founding individuals were moved to fresh RDW every other
90	day. Three batches (replicates) of 10 individuals of each species were used to develop life tables.

92

93

94

95 96

97

98

99

100

101

102

103

104

105

Individual survival and the number of offspring produced were recorded daily throughout their life span. Offspring we removed daily. Life tables were developed at weekly intervals and at the end of each species life cycle. Beakers were held in an environmental chamber under the conditions listed above for colony maintenance. Life tables were developed following the approach outlined in Carey (1993) and Vargas et al. (2002). The following demographic parameters were determined in this study: Net Reproductive Rate (Ro), the per generation contribution of newborn females to the next generation, Intrinsic Birth Rate (b), the per capita instantaneous rate of birth in the stable population, Intrinsic Death Rate (d), the per capita instantaneous rate of death in the stable population, Mean Generation Time (T), the time required for a newborn female to replace herself R_0 -fold, Doubling Time (DT), the time required for the population to increase twofold, Intrinsic Rate of Increase (r_m) , the rate of natural increase in a closed population, and the Finite Rate of Increase (λ), the factor by which a population increases in size from time t to time t+1**Statistical analysis**

106

107

108

109

110

111

112

113

The data for all of the above mentioned demographic parameters were analyzed with one-way analysis of variance (ANOVA) (SAS Institute 2011) in order to test for differences among means; means were separated with the Student-Newman-Keuls test. For each species, we compared the value of the demographic parameter of interest for each successive week to that derived from the complete life table (full life span). We thus determined the week at which the demographic parameter value was not statistically significant different (p < 0.005) from the value

114	derived using the entire life span (complete life table), heretofore referred to as the "cutoff
115	point".
116	
117	Results
118	
119	C. dubia
120	The time at which net reproductive rate (Ro) was not significantly different from the complete
121	life table for C. dubia was four weeks (Table 1). That is, if Ro was the endpoint of interest for
122	this species, a life table would only have to be developed for four weeks to generate the same $R_{\rm 0}$
123	value stemming from a complete life table (nine weeks). For birth rate (b), r_m , and λ the
124	statistical cutoff point was five weeks, while it was three weeks for the death rate (d) . The cutoff
125	point for both generation time (T) and doubling time (DT) for C . $dubia$ was six weeks.
126	
127	D. pulex
128	The cutoff point for the values of Ro , DT , r_m , and λ for D . $pulex$ was five weeks (Table 2). The
129	cutoff time for d was four weeks while the cutoff for b and T was six weeks.
130	
131	D. magna
132	For <i>D. magna</i> , the cutoff times for Ro , d , and λ were seven weeks (Table 3). The cutoff times for
133	b, T, DT and r_m were eight weeks.
134	
135	Discussion

A number of studies have shown that incorporating demographic data into population models h	ıas
the potential to improve population projections, an approach that has been widely used in	
conservation and ecological risk assessment (Stark & Banks 2003, Stark et al. 2007, Hommen et	et
al. 2010, Forbes & Calow 2002, Forbes et al. 2008, Forbes et al. 2001, Mills et al. 2015).	
However, demographic data are expensive to develop, and it is not clear how much data is	
needed to generate sufficiently accurate population endpoints. Past studies have empirically	
demonstrated that partial life tables may yield accurate population projections (Van Straalen et	
al. 1989, Oli & Zinner 2001), but none to our knowledge have attempted to quantify the cutoff	
point beyond which adding more life history data does not improve accuracy. To this end, in the	is
study we sought to determine the minimum amount of time a life table needs to be developed to	Э
get a measurement of species demographic parameters that is not statistically different from date	ta
developed over the entire life span of an organism. Our results suggest that if we were only	
interested in population growth rate (λ) , commonly used in population studies, then partial life	
tables can be used without sacrificing accuracy. However, the cutoff times varied among the	
species we evaluated, with five weeks of data collection (instead of nine weeks) sufficient for C	7.
dubia and D. pulex, but seven weeks (instead of ten weeks) necessary for D. magna. Notably,	
these cutoff times differed not only in real time, but also in terms of the proportion of the life	
span of each species. That is, accurate estimates of λ were generated from data collected for	
70%-80% of the lifespan of <i>D. magna</i> , whereas it took only 55% of the lifespan of <i>C. dubia</i> and	d
D. pulix to generate accurate estimates for λ . Furthermore, there were no clear patterns	
discernible in differences among the other demographic parameters measured for the three	
species. For instance, accurate estimates of the birth rate (b) were generated earlier than accurate	te
estimates of λ in some cases (D. pulex) and later or in the same time in others (D. magna, C.	

160

161

162

163

164

165

166

167

168

169

170

dubia, respectively). Taken together, the variable responses among parameters and among species suggests that simple predictions relating longevity or life history ecology patterns to the amount of data we need to accurately characterize population projections may not be forthcoming.

We compared the values of λ in the current study, as this parameter is mostly commonly used as a population endpoint in disciplines such as conservation science and ecotoxicology. However, it is important to note that an underlying assumption of the calculation of λ in life tables is that the population undergoes continuous exponential growth. This assumption may yield misleading population predictions in cases of density-dependence or time-varying per capita reproduction (e.g., Banks et al. 2008). More attention might be profitably paid to such contingencies; here the use of more sophisticated mathematical models may elucidate differences in life history that are driving differences in population outcomes.

171

172

173

174

References

- Akçakaya HR, Stark JD, Bridges TS. 2008. Demographic toxicity: methods in ecological risk
- assessment. Oxford (UK): Oxford University Press.
- Banks JE, Dick L, Banks HT, Stark JD. 2008. Time-varying vital rates in ecotoxicology:
- selective pesticides and aphid population dynamics. *Ecological Modelling* 210,155–160.
- Barnthouse LW, Munns WR, Sorensen MT. 2008. Population-level ecological risk assessment.
- 180 CRC Press, Boca Raton.
- 181 Calow P, Sibly R, Forbes V. 2001. Risk assessment on the basis of simplified life history
- scenarios. *Environmental Toxicology & Chemistry* 16,1983–1989.

- 183 Carey JR. 1993. Applied Demography for Biologists with Special Emphasis on Insects. Oxford
- 184 University Press, New York, NY, USA.
- Ducrot V, Billoir E, Péry AR, Garric J, Charles S. 2010. From individual to population level
- effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a
- 187 Bayesian framework. *Environmental Science & Technology* 44(9), 3566-3571.
- Forbes VE, Calow P. 1999. Is the per capita rate of increase a good measure of population-level
- effects in ecotoxicology? *Environmental Toxicology & Chemistry* 18,1544-1556.
- 190 Forbes VE, Calow P. 2002. Population growth rate as a basis for ecological risk assessment
- of toxic chemicals. *Philosophical Transactions of the Royal Society of London B.*
- 192 357(1425),1299–306.

- 194 Forbes VE, Calow P, Grimm V, Hayashi TI, Jager T, Katholm A, Palmqvist A, Pastorok
- 195 RA, Salvito D, Sibly R, Spromberg J, Stark, JD, Stillman RA. 2011. Adding value to
- ecological risk assessment with population modelling. *Human and Ecological Risk Assessment*
- 197 17,287–299.
- 198 Forbes VE, Calow P, Sibly RM. 2008. The extrapolation problem and how population modeling
- can help. *Environmental Toxicology & Chemistry* 27,1987–94.
- Hommen U, Baveco J, Galic N, van den Brink PJ. 2010. Potential application of ecological
- 201 models in the European environmental risk assessment of chemicals I: Review of protection
- 202 goals in EU directives and regulations. Integrated Environmental Assessesment & Management
- 203 6, 325–337.

204

- Laskowski R, Hopkin SP. 1996. Effect of Zn, Cu, Pb, and Cd on fitness in snails (*Helix*
- 206 aspersa), Ecotoxicology & Environmental Safety 34,59–69.
- 207 Mills NJ, Beers EH, Shearer PW, Unruh TR, Amarasekare KG. 2015. Comparative analysis of
- 208 pesticide effects on natural enemies in western orchards: A synthesis of laboratory bioassay data.
- 209 Biological Control.

210

- Oli MK, Zinner B. 2001. Partial life-cycle analysis: a model for birth-pulse populations. *Ecology*
- 212 82(4), 1180-1190.
- Van Straalen NM, Schobben JHM, De Goede RGM. 1989. Population consequences of cadmium
- 214 toxicity in soil microarthropods. *Ecotoxicology & Environmental Safety* 17,190--204.

215

- Pastorok RA, Bartell MB, Ferson S, et al., editors. 2002. Ecological Modeling in Risk
- 217 Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes. Boca Raton, FL:
- 218 CRC Press.

219

- 220 Preston BL, Snell TW. 2001. Full life-cycle toxicity assessment using rotifer resting egg
- production: implications for ecological risk assessment. Environmental Pollution 114(3), 399-
- 222 406.

PeerJ

223 224 225	Sibly RM. 1999. Efficient experimental designs for studying stress and population density in animal populations. <i>Ecological Applications</i> 9,496-503.
226 227	Stark JD, Banks JE. 2003. Population-level effects of pesticides and other toxicants on arthropods. <i>Annual Review of Entomology</i> 48,505–519.
228 229 230 231	Stark JD, Vargas R, Banks JE. 2007. Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. <i>Journal of Economic Entomology</i> 100,1027–1032.
232 233 234	USEPA (US Environmental Protection Agency). 2002. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms, 3rd edit. Washington, DC, USA.
235 236 237 238 239 240	Vargas RI, Ramadan M, Hussain T, Mochizuki N, Bautista R, Stark JD. 2002. Comparisons of demographic parameters: Six parasitoids (Hymenoptera: Braconidae) and their fruit fly (Diptera: Tephritidae) hosts. <i>Biological Control</i> 25, 30-40.

Table 1. C. dubia life table variables determined at weekly intervals

	$X \pm SEM$										
Life table value	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9		
Ro	12.17 <u>+</u> 1.25a	50.43 ± 2.50b	103.17 <u>+</u> 7.11c	153.83 + 14.00d	199.67 ± 21.15d	228.90 ± 23.88d	237.90 ± 22.06d	239.40 ± 21.69d	239.80 ± 21.7d		
Birth rate (b)	0.35 <u>+</u> 0.016a	0.33 <u>+</u> 0.007a	0.28 <u>+</u> 0.003b	0.25 <u>+</u> 0.003b	0.23 <u>+</u> 0.002c	0.21 <u>+</u> 0.000c	0.205 <u>+</u> 0.002c	0.204 <u>+</u> 0.002c	0.204 <u>+</u> 0.002c		
Death rate (d)	-0.06 <u>+</u> 0.011a	-0.07 <u>+</u> 0.004a	-0.05 <u>+</u> 0.001b	-0.04 <u>+</u> 0.000b	-0.03 <u>+</u> 0.000b	-0.03 <u>+</u> 0.000b	-0.02 <u>+</u> 0.001b	-0.02 <u>+</u> 0.001b	-0.02 ± 0.001b		
Gen. time (T)	6.11 <u>+</u> 0.25a	9.78 <u>+</u> 0.23b	13.99 <u>+</u> 0.28c	17.50 <u>+</u> 0.46d	20.70 ± 0.53e	22.98 ± 0.37f	23.88 ± 0.23f	24.06 ± 0.17f	24.12 <u>+</u> 0.11f		
Doubling time (DT)	1.71 <u>+</u> 0.12a	1.74 <u>+</u> 0.06a	2.09 <u>+</u> 0.03b	2.41 ± 0.03c	2.71 ± 0.02d	2.94 <u>+</u> 0.02e	3.03 <u>+</u> 0.05e	3.05 <u>+</u> 0.05e	3.05 <u>+</u> 0.05e		
r _m	4.090 <u>+</u> 0.027a	0.331 <u>+</u> 0.007b	0.331 <u>+</u> 0.004b	0.287 <u>+</u> 0.004c	0.255 <u>+</u> 0.002d	0.236 <u>+</u> 0.001d	0.229 <u>+</u> 0.004d	0.227 <u>+</u> 0.004d	0.227 <u>+</u> 0.004d		
Lambda (λ)	1.507 <u>+</u> 0.040a	1.494 <u>+</u> 0.016a	1.393 <u>+</u> 0.006b	1.333 <u>+</u> 0.005c	1.291 <u>+</u> 0.003cd	1.266 <u>+</u> 0.002d	1.257 <u>+</u> 0.005d	1.255 <u>+</u> 0.005d	1.255 <u>+</u> 0.005d		

^{*/} Student-Newman-Keuls test

Table 2. D. magna life table variables determined at weekly intervals

	$X \pm SD$										
Life table value	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	
Ro	14.07 <u>+</u> 0.78a	73.13 <u>+</u> 6.21b	98.60 <u>+</u> 9.37c	129.20 + 13.58d	169.50 ± 18.65e	204.13 ± 15.07e	222.77 ± 11.81f	238.04 ± 11.76f	243.47 ± 12.33	244.34 <u>+</u> 13.58f	
Birth rate (b)	0.33 <u>+</u> 0.005a	0.35 <u>+</u> 0.006b	0.32 <u>+</u> 0.003c	0.27 ± 0.003d	0.23 <u>+</u> 0.003e	0.21 <u>+</u> 0.006f	0.20 ± 0.008g	0.19 <u>+</u> 0.007h	0.18 <u>+</u> 0.007h	0.184 <u>+</u> 0.006h	
Death rate (d)	-0.05 <u>+</u> 0.003b	-0.08 <u>+</u> 0.003a	-0.06 <u>+</u> 0.001b	-0.05 <u>+</u> 0.001c	-0.03 <u>+</u> 0.001d	-0.03 <u>+</u> 0.002d	-0.02 <u>+</u> 0.002e	-0.02 <u>+</u> 0.002e	$-0.02 \pm 0.002e$	-0.02 <u>+</u> 0.001e	
Gen. time (T)	7.00 <u>+</u> 0.00a	10.09 <u>+</u> 0.14b	12.08 <u>+</u> 0.12c	15.22 <u>+</u> 0.12d	19.24 <u>+</u> 0.18e	22.58 <u>+</u> 0.43f	24.54 <u>+</u> 0.84g	26.35 <u>+</u> 0.89h	27.11 <u>+</u> 0.87h	27.25 <u>+</u> 0.72h	
Doubling time (DT)	1.84 <u>+</u> 0.04a	1.63 <u>+</u> 0.04b	1.82 ± 0.02c	2.17 <u>+</u> 0.03d	2.60 <u>+</u> 0.03e	2.94 <u>+</u> 0.10f	3.15 <u>+</u> 0.14g	3.34 <u>+</u> 0.14h	3.42 <u>+</u> 0.14h	3.44 <u>+</u> 0.12h	
$r_{\rm m}$	0.378 <u>+</u> 0.008a	0.425 <u>+</u> 0.009b	0.380 ± 0.004a	0.319 <u>+</u> 0.005c	0.267 ± 0.004d	0.236 ± 0.008e	0.220 ± 0.010f	0.208 <u>+</u> 0.009g	0.203 <u>+</u> 0.008g	0.202 <u>+</u> 0.007g	
Lambda (λ)	1.459 <u>+</u> 0.012b	1.530 ± 0.014a	1.462 <u>+</u> 0.006b	1.376 <u>+</u> 0.006c	1.305 <u>+</u> 0.005d	1.266 <u>+</u> 0.010e	1.247 <u>+</u> 0.010f	1.231 <u>+</u> 0.011f	1.225 ± 0.010f	1.224 <u>+</u> 0.009f	

^{*/} Student-Newman-Keuls test

Table 3. *D. pulex* life table variables determined at weekly intervals

	$X \pm SD$								
Life table	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9
Ro Ro	8.70 <u>+</u> 1.04a	69.80 <u>+</u> 7.60b	122.83 <u>+</u> 15.95c	169.43 + 19.00d	201.60 ± 18.28e	223.50 ± 13.87e	231.40 ± 9.43e	234.93 + 5.30e	237.43 ± 2.66e
Birth rate (b)	0.31 <u>+</u> 0.013a	0.33 <u>+</u> 0.005b	0.30 <u>+</u> 0.004c	0.26 <u>+</u> 0.004d	0.24 <u>+</u> 0.006e	0.23 <u>+</u> 0.008ef	0.22 <u>+</u> 0.011f	0.22 <u>+</u> 0.014f	0.22 <u>+</u> 0.017f
Death rate (d)	-0.03 <u>+</u> 0.009b	-0.07 <u>+</u> 0.003a	$-0.05 \pm 0.002c$	-0.04 <u>+</u> 0.003d	-0.03 <u>+</u> 0.003d	-0.03 <u>+</u> 0.004d	-0.03 <u>+</u> 0.005d	-0.03 <u>+</u> 0.006d	-0.03 ± 0.007d
Gen. time (T)	6.27 <u>+</u> 0.04a	10.54 <u>+</u> 0.07b	13.79 <u>+</u> 0.26c	16.78 <u>+</u> 0.01d	19.12 <u>+</u> 0.32e	21.03 ± 0.75f	21.86 ± 1.22f	22.33 ± 1.75f	22.70 ± 2.14f
Doubling time (DT)	2.02 <u>+</u> 0.13a	1.72 <u>+</u> 0.04a	1.99 <u>+</u> 0.03a	2.23 <u>+</u> 0.05ab	2.50 ± 0.08bc	2.70 <u>+</u> 0.13c	2.75 <u>+</u> 0.18c	2.83 ± 0.23c	2.88 <u>+</u> 0.28c
r _m	0.344 <u>+</u> 0.021b	0.402 <u>+</u> 0.009a	0.349 <u>+</u> 0.006b	0.306 <u>+</u> 0.007c	0.277 <u>+</u> 0.009d	0.257 <u>+</u> 0.012d	0.250 <u>+</u> 0.016d	0.246 <u>+</u> 0.020d	0.242 <u>+</u> 0.023d
Lambda (λ)	1.411 <u>+</u> 0.030b	1.495 <u>+</u> 0.013a	1.417 <u>+</u> 0.009b	1.357 <u>+</u> 0.009c	1.320 <u>+</u> 0.012d	1.294 <u>+</u> 0.016d	1.284 <u>+</u> 0.020d	1.278 <u>+</u> 0.026d	1.275 <u>+</u> 0.03d

^{*/} Student-Newman-Keuls test

