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Developing demographic toxicity data: Optimizing effort for
predicting population outcomes

John D. Stark, John E. Banks

Mounting evidence suggests that population endpoints in risk assessment are far more
accurate than static assessments. Complete demographic toxicity data based on full life
tables are eminently useful in predicting population outcomes in many applications as they
capture both lethal and sublethall effects; however, developing these data is extremely
costly. In this study we investigated the efficacy of partial life cycle tests as a substitute for
full life cycles in parameterizing population models. Life table data were developed for
three species of Daphniids, Ceriodaphnia dubia, Daphnia magna, and D. pulex, weekly
throughout the life span of these species. Population growth rates (A) and a series of other
demographic parameters generated from the complete life cycle were compared to those
calculated from cumulative weeks of the life cycle in order to determine the minimum
number of weeks needed to generate an accurate population projection. Results showed
that for C. dubia and D. pulex, A values developed at > 5 weeks (55.6% of the life cycle)
were not significantly different from A developed for the full life cycle (9 weeks) of each
species. For D. magna, A values developed at > 7 weeks (70% of the life cycle) were not
significantly different from A developed for the full life cycle (10 weeks). Furthermore,
these statistically significant cutoff points for A were not the same for other demographic
parameters, with no clear pattern emerging. Our results indicate that for C. dubia, D.
magna, and D. pulex, partial life tables can be used to generate population growth rates in
lieu of full life tables. However, the implications of differences in cutoff points for different
demographic parameters need to be investigated further.

Peer] reviewing PDF | (2016:01:8771:0:0:NEW 26 Jan 2016)



Peer]

1

2 Developing demographic toxicity data: Optimizing effort for
3 predicting population outcomes

4

5 John D. Stark, John E. Banks®*
6 ‘Washington State University Puyallup Research and Extension Center, Puyallup, WA,

7 USA

9  %Undergraduate Research Opportunities Center, California State University, Monterey
10  Bay, Seaside, CA USA
11
12 * Corresponding author

13 Email: jebanks@csumb.edu (JEB)

14

15

16

17

18

19

20

21

22

23

Peer] reviewing PDF | (2016:01:8771:0:0:NEW 26 Jan 2016)


mailto:jebanks@csumb.edu

Peer]

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Abstract

Mounting evidence suggests that population endpoints in risk assessment are far more accurate
than static assessments. Complete demographic toxicity data based on full life tables are
eminently useful in predicting population outcomes in many applications as they capture both
lethal and subletahl effects; however, developing these-datg is extremely costly. In this study we
investigated the efficacy, of partial life cycle tests as a substitute for full life cycles in
parameterizing population models. Life table data were developed for three species of Daphniids,
Ceriodaphnia dubia, Daphnia magna, and D. pulex, weekly throughout the life span of these
species. Population growth rates (1) and a series of other demographic parameters generated
from the complete life cycle were compared to those calculated from cumulative weeks of the

life cycle in order to determine the minimum number of weeks needed to generate an accurate

population projection. Results showed that for C. dubia and D. pulex, A values developed at > 5
weeks (55.6% of the life cycle) were not significantly different from A developed for the full life
cycle (9 weeks) of each species. For D. magna, A values developed at > 7 weeks (70% of the
life cycle) were not significantly different from A\ developed for the full life cycle (10 weeks).

Furthermore, these statisticall)@nificant cutoff points for A were not the same for other

demographic parameters, with no clear pattern emerging. Our results indicate that for C. dubia,
D. magna, and D. pulex, partial life tables can be used to generate population growth rates in lieu
of full life tables. However, the implications of differences in cutoff points for different

demographic parameters need to be investigated further.
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46 Introduction

47 A growing body of literature suggests that demography-based approaches are far more effective
48 in determining what happens to populations subjected to stressors or disturbance than short-term
49  acute mortality estimates (e.g., LCsp) (Van Straalen et al. 1989, Forbes & Calow 1999, Sibly

50 1999, Calow et al. 2001, Pastorok et al. 2002, Stark & Banks 2003, Akcakaya et al. 2008,

51  Bartnhouse et al. 2008). In particular, demography-based approaches can address issues such-as
52  sub-lethal effects, stage- or age-specific life history rates, and time-varying demographic

53  processes far better than more static methods (Stark & Banks 2003, Banks et al. 2008). However,
54  the development of demographic data is costly and time-consuming. In some cases,-such-as

55 re@ toxicological risk assessments, researchers have attempted to use partial life table data

56 instead to predict population outcomes (Laskowski & Hopkin 1996, Preston & Snell 2001,

57  Ducrot et al. 2010). However, it is not clear how predictions from these studies incorporating

58  reduced-datasets compare with studies using complete life tables. In particular, little attention has
59  been paid to the tradeoff between accuracy and experimental effort when comparing partial vs.
60  full life table studies. We offer herejustsuch an approach, in which population outcomes from
61  complete life tables are compared with those developed from partial life tables for three

62  Daphniid species. We address the issue of whether or not partial demographic data can be used
63 in lieu of complete demographic data without loss of accuracy in projecting population

64  outcomes. We focus in particular on whether or not we can explain differences in the accuracy of
65  population responses based on reduced datasets by comparing proportional differences in life

66  spans of the three Daphniid species. Finally, we compare outcomes for lambda vs. other

67  demographic parameters across all species, and assess the overall potential for using reduced

68  datasets to generate reliable population projections.
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Materials and Methods

Species tested

Three species of Daphniids were evaluated in this study; Ceriodaphnia dubia (Richard) Daphnia
pulex (Leydig) and D. magna (Straus). Individuals used to develop life table data were obtained
from cultures maintained at Washington State University, Puyallup Research and Extension
Center. Each species was reared in reconstituted dilution water (RDW). The RDW used in this
study was prepared according to a method modified from a USEPA protocol (USEPA 2002)
resulting in a RDW with pH 7.4-7.8, conductivity 260-320 uS, dissolved oxygen (DO) > 8.0
mg/l, alkalinity of 60-70 mg/l and a hardness of 80-100mg/I. Daphniids were maintained in an
environmental chamber set with a photoperiod of 18h: 6h light: dark, 25.0 + 0.1°C, and 50.0 +

0.1% relative humidity (RH).

The Daphniids were fed a solution consisting of a 1:1.5 mixture of yeast-cereal leaves-trout
chow (YCT) and the algal species Pseudokirchneriella subcapitata (previously Selenastrum

capricornutum) (Charles River Co., Wilmington, MA).

Development of life tables
Individuals (<24h old) at or beyond the third filial (F3) generation were transferred into glass
beakers containing 25 ml RDW. Founding individuals were moved to fresh RDW every other

day. Three batches (replicates) of 10 individuals of each species were used to develop life tables.
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Individual survival and the number of offspring produced were recorded daily throughout their
life span. Offspring we removed daily. Life tables were developed at weekly intervals and at the
end of each species life cycle. Beakers were held in an environmental chamber under the

conditions listed above for colony maintenance.

Life tables were developed following the approach outlined in Carey (1993) and Vargas et al.
(2002). The following demographic parameters were determined in this study: Net Reproductive
Rate (Ro), the per generation contribution of newborn females to the next generation, Intrinsic
Birth Rate (b), the per capita instantaneous rate of birth in the stable population, Intrinsic Death
Rate (d), the per capita instantaneous rate of death in the stable population, Mean Generation
Time (T), the time required for a newborn female to replace herself Ro-fold, Doubling Time
(DT), the time required for the population to increase twofold, Intrinsic Rate of Increase (rn), the
rate of natural increase in a closed population, and the Finite Rate of Increase (1), the factor by

which a population increases in size from time t to time t+1

Statistical analysis

The data for all of the above mentioned demographic parameters were analyzed with one-way
analysis of variance (ANOVA) (SAS Institute 2011) in-order to test for differences among
means; means were separated with the Student-Newman-Keuls test. For each species, we
compared the value of the demographic parameter of interest for each successive week to that
derived from the complete life table (full life span). We thus determined the week at which the

demographic parameter value was not statistically significant different (p < 0.005) from the value
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derived using the entire life span (complete life table), heretofore referred to as the “cutoff

point”.

Results

C. dubia

The time at which net reproductive rate (Ro) was not significantly different from the complete
life table for C. dubia was four weeks (Table 1). That is, if Ro was the endpoint of interest for
this species, a life table would only have to be developed for four weeks to generate the same Ry
value stemming from a complete life table (nine weeks). For birth rate (b), rm, and A the
statistical cutoff point was five weeks, while it was three weeks for the death rate (d).The cutoff

point for both generation time (T) and doubling time (DT) for C. dubia was six weeks.

D. pulex

The cutoff point for the values of Ro, DT, ry, and Afor D. pulex was five weeks (Table 2). The

cutoff time for d was four weeks while the cutoff for b and T was six weeks.

D. magna

For D. magna, the cutoff times for Ro, d, and A were seven weeks (Table 3). The cutoff times for

b, T, DT and ry, were eight weeks.

Discussion
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A number of studies have shown that incorporating demographic data into population models has
the potential to improve population projections, an approach that has been widely used in
conservation and ecological risk assessment (Stark & Banks 2003, Stark et al. 2007, Hommen et
al. 2010, Forbes & Calow 2002, Forbes et al. 2008, Forbes et al. 2001, Mills et al. 2015).
However, demographic data are expensive to develop, and it is not clear how much data is
needed to generate sufficiently accurate population endpoints. Past studies have empirically
demonstrated that partial life tables may yield accurate population projections (Van Straalen et
al. 1989, Oli & Zinner 2001), but none to our knowledge have attempted to quantify the cutoff
point beyond which adding more life history data does not improve accuracy. To this end, in this
study we sought to determine the minimum amount of time a life table needs to be developed to
get a measurement of species demographic parameters that is not statistically different from data
developed over the entire life span of an organism. Our results suggest that if we were only
interested in population growth rate (1), commonly used in population studies, then partial life
tables can be used without sacrificing accuracy. However, the cutoff times varied among the
species we evaluated, with five weeks of data collection (instead of nine weeks) sufficient for C.
dubia and D. pulex, but seven weeks (instead of ten weeks) necessary for D. magna. Notably,
these cutoff times differed not only in real time, but also in terms of the proportion of the life
span of each species. That is, accurate estimates of A were generated from data collected for
70%-80% of the lifespan of D. magna, whereas it took only 55% of the lifespan of C. dubia and
D. pulix to generate accurate estimates for A. Furthermore, there were no clear patterns
discernible in differences among the other demographic parameters measured for the three
species. For instance, accurate estimates of the birth rate (b) were generated earlier than accurate

estimates of A in some cases (D. pulex) and later or in the same time in others (D. magna, C.
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159  dubia, respectively). Taken together, the variable responses among parameters and among

160  species suggests that simple predictions relating longevity or life history ecology patterns to the
161  amount of data we need to accurately characterize population projections may not be

162  forthcoming.

163 We compared the values of A in the current study, as this parameter is mostly commonly
164  used as a population endpoint in disciplines such as conservation science and ecotoxicology.
165  However, it is important to note that an underlying assumption of the calculation of A in life

166  tables is that the population undergoes continuous exponential growth. This assumption may
167  yield misleading population predictions in cases of density-dependence or time-varying per

168  capita reproduction (e.g., Banks et al. 2008). More attention might be profitably paid to such
169  contingencies; here the use of more sophisticated mathematical models may elucidate differences
170  in life history that are driving differences in population outcomes.
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Table 1. C. dubia life table variables determined at weekly intervals
X + SEM
Life Week 1 | Week2 | Week3 | Week4 | Week5 | Week6 |Week7 |Week8 | Week?9
table
value
Ro 12.17+ |50.43+ |103.17 + | 153.83 199.67 228.90 + | 237.90 + | 239.40 | 239.80 +
1.25a 2.50b 7.11c +14.00d | + 23.88d 22.06d |+ 21.7d
21.15d 21.69d
Birth 0.35+ 033 + [0.28+ 0.25 + 0.23 + 0.21 + 0.205+ |0.204+ |0.204 +
rate (b) 0.016a | 0.007a |0.003b |0.003b |0.002c 0.000c 0.002¢c 0.002c 0.002¢c
Death -0.06+ |-0.07+ |-005+ |-0.04+ |-0.03+ |-0.03+ |-0.02+ |-0.02+ |-0.02 +
rate (d) 0.011a | 0.004a |0.001b |0.000b |0.000b |0.000b |0.001b |0.001b | 0.001b
Gen. 6.11 + 9.78 + 13.99+ 1750+ |20.70+ |2298+ |23.88+ |24.06+ |24.12+
time (T) | 0.25a 0.23b 0.28c 0.46d 0.53e 0.37f 0.23f 0.17f 0.11f
Doubling | 1.71 + 1.74 + 2.09 + 241 + 271+ 2.94 + 3.03 + 3.05 + 3.05 +
time 0.12a 0.06a 0.03b 0.03c 0.02d 0.02e 0.05e 0.05e 0.05e
(D7)
m 4,090+ |0.331+ |0.331 + |0.287+ |0.255+ |0.236+ |0.229+ |0.227+ |0.227 +
0.027a | 0.007b | 0.004b | 0.004c 0.002d | 0.001d | 0.004d | 0.004d | 0.004d
Lambda | 1507+ |1.494 + |1393+ |1333+ |1291+ |1266+ |1257+ |1255+ |1.255 +
(n) 0.040a | 0.016a |0.006b | 0.005c 0.003cd | 0.002d | 0.005d | 0.005d | 0.005d

*/ Student-Newman-Keuls test
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Table 2. D. magna life table variables determined at weekly intervals

X +SD
Life Week1 | Week2 |Week3 | Week4 |Week5 |Week6 |Week7 |Week8 | Week9 | Week 10
table
value
Ro 14.07+ | 73.13+ |98.60+ | 129.20 169.50 204.13 + | 222.77 + | 238.04 243.47 + | 244.34 +
0.78a 6.21b 9.37c +13.58d | + 15.07e 11.81f + 12.33 13.58f
18.65e 11.76f
Birth 0.33+ 035 + [0.32+ 0.27 + 0.23+ 0.21 + 0.20 + 0.19 + 0.18 + 0.184 +
rate (b) 0.005a 0.006b 0.003c 0.003d 0.003e 0.006f 0.008g 0.007h 0.007h 0.006h
Death -0.05+ |-0.08+ |-0.06 + |-0.05+ |-0.03+ |-0.03+ |-0.02+ |-0.02+ |-0.02 + |-0.02 +
rate (d) 0.003b 0.003a 0.001b 0.001c 0.001d 0.002d 0.002e 0.002e 0.002e 0.001e
Gen. 7.00 + 10.09+ |12.08+ |[1522+ |19.24+ |2258+ |2454+ |2635+ |27.11+ |27.25+
time (T) | 0.00a 0.14b 0.12c 0.12d 0.18e 0.43f 0.84g 0.89h 0.87h 0.72h
Doubling | 1.84 + 163+ 1.82 + 2.17 + 2.60 + 2.94 + 3.15+ 3.34 + 3.42 + 3.44 +
time 0.04a 0.04b 0.02c 0.03d 0.03e 0.10f 0.14g 0.14h 0.14h 0.12h
(DT)
m 0.378+ | 0425+ |0.380 + | 0.319+ |0.267+ |0.236+ |0.220+ |0.208+ |0.203+ |0.202 +
0.008a 0.009b 0.004a 0.005¢ 0.004d 0.008e 0.010f 0.009g 0.008g 0.007g
Lambda |1.459+ |1530 + [1462+ |1376+ |1305+ |1266+ |1.247+ |1231+ |1225 + |1.224+
(n) 0.012b 0.014a 0.006b 0.006¢ 0.005d 0.010e 0.010f 0.011f 0.010f 0.009f

*/ Student-Newman-Keuls test
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Table 3. D. pulex life table variables determined at weekly intervals
X +SD
Life Week1 | Week2 | Week3 | Week4 |Week5 |Week6 |Week7 |Week8 | Week9
table
value
Ro 8.70 + 69.80 + | 122.83 + | 169.43 201.60 223.50 + | 231.40 + | 234.93 237.43 +
1.04a 7.60b 15.95¢c +19.00d | + 13.87e 9.43e + 5.30e | 2.66e
18.28e
Birth 0.31+ 033 + [0.30+ 0.26 + 0.24 + 0.23 + 0.22 + 0.22 + 0.22 +
rate (b) 0.013a 0.005b 0.004c 0.004d 0.006e 0.008ef | 0.011f 0.014f 0.017f
Death -0.03+ |-0.07+ |-005+ |-0.04+ |-0.03+ |-0.03+ |-0.03+ |-0.03+ |-0.03 +
rate (d) 0.009b 0.003a 0.002c 0.003d 0.003d 0.004d 0.005d 0.006d 0.007d
Gen. 6.27 + 1054+ |13.79+ |[16.78+ |19.12+ |21.03+ |21.86+ |2233+ |22.70+
time (T) | 0.04a 0.07b 0.26¢ 0.01d 0.32e 0.75f 1.22f 1.75f 2.14f
Doubling | 2.02 + 1.72 + 1.99 + 2.23+ 2.50 + 2.70 + 2.75 + 2.83+ 2.88 +
time 0.13a 0.04a 0.03a 0.05ab 0.08bc 0.13c 0.18c 0.23c 0.28c
(DT)
Mm 0.344+ |0.402+ [0.349 + [0.306+ |0.277+ |0.257+ |0.250+ |0.246+ |0.242+
0.021b 0.009a 0.006b 0.007c 0.009d 0.012d 0.016d 0.020d 0.023d
Lambda |1.411+ |1.495+ |1417+ |1357+ |1320+ |1.294+ |1284+ |1.278+ 1.275 +
(n) 0.030b 0.013a 0.009b 0.009c 0.012d 0.016d 0.020d 0.026d 0.03d

*/ Student-Newman-Keuls test
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