

Species diversity patterns of invasive *Tagetes minuta* communities along elevational gradients in southeastern Xizang (#120668)

1

First submission

Guidance from your Editor

Please submit by **17 Jul 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

4 Figure file(s)

4 Table file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Species diversity patterns of invasive *Tagetes minuta* communities along elevational gradients in southeastern Xizang

Norzin Tso Equal first author, 1, 2, **Ngawang Norbu** Equal first author, 1, 2, **Wei Li** ^{1, 2}, **Xin Tan** ^{1, 2}, **Zhefei Zeng** ^{1, 2}, **La Qiong** Corresp., 1, 2, **Junwei Wang** Corresp. 1, 2

¹ Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Xizang University, Lhasa, China

² Yani Observation and Research Station for Wetland Ecosystem of the Xizang Autonomous Region, Xizang University, Nyingchi, China

Corresponding Authors: La Qiong, Junwei Wang
Email address: lhagchong@163.com, 1905490167@qq.com

Tagetes minuta, a herbaceous plant native to South America, has shown a significant trend of invasion along the section from Nyingchi to Shannan, situated along the Yarlung Zangbo River in southeastern Xizang in recent years. In this study, we conducted field surveys of *T. minuta* plant communities at elevations ranging from 2925 to 3553 m. By establishing 31 quadrats, we systematically analyzed the species composition, diversity characteristics of the invaded communities of *T. minuta*, and their relationships with elevation gradients and habitat types. The study results revealed that a total of 78 plant species, belonging to 28 families and 69 genera, were recorded in the invaded communities of *T. minuta*. Among them, the families Asteraceae, Poaceae, and Rosaceae were dominant, with herbaceous plants being in an absolute majority. The diversity analysis showed that the Shannon-Wiener index, Simpson index, and Pielou's evenness index of Cluster Group II were significantly higher than those of Cluster Groups I and III ($P<0.05$), while no significant differences were found in species richness. This suggests that the invasion of *T. minuta* primarily affects the evenness of species distribution rather than species richness. In addition, the species diversity indices of the invaded communities of *T. minuta* showed no significant correlation with elevation, indicating that elevation is not a major factor influencing species diversity in the invaded communities. The height of *T. minuta* was extremely significantly positively correlated with elevation ($P<0.01$), while its cover showed no significant correlation with elevation. Under different habitat types, the height and cover of *T. minuta* showed significant differences, with stronger invasion ability in habitats with greater human disturbance. This study highlights the invasion characteristics of *T. minuta* and its relationship with elevation in southeastern Xizang, offering valuable data for the ecological management of invasive plant species in plateau regions.

1 Species Diversity Patterns of Invasive *Tagetes minuta* Communities Along Elevational Gradients in

2 Southeastern Xizang

4 Norzin Tso^{a,b#}, Ngawang Norbu^{a,b#}, Wei Li^{a,b}, Xin Tan^{a,b}, Zhefei Zeng^{a,b}, La Qiong^{a,b*} & Junwei
5 Wang^{a,b*}

7 a: Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of
8 Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, China
9 b: Yani Observation and Research Station for Wetland Ecosystem of the Xizang Autonomous
10 Region, Xizang University, Nyingchi, 860000, China

11 *: Corresponding authors: La Qiong (lhagchong@163.com) and Junwei Wang
12 (jwyx12240315@126.com)

14 Abstract

Tagetes minuta, a herbaceous plant native to South America, has shown a significant trend of invasion along the section from Nyingchi to Shannan, situated along the Yarlung Zangbo River in southeastern Xizang in recent years. In this study, we conducted field surveys of *T. minuta* plant communities at elevations ranging from 2925 to 3553 m. By establishing 31 quadrats, we systematically analyzed the species composition, diversity characteristics of the invaded communities of *T. minuta*, and their relationships with elevation gradients and habitat types. The study results revealed that a total of 78 plant species, belonging to 28 families and 69 genera, were recorded in the invaded communities of *T. minuta*. Among them, the families Asteraceae, Poaceae, and Rosaceae were dominant, with herbaceous plants being in an absolute majority. The diversity analysis showed that the Shannon-Wiener index, Simpson index, and Pielou's evenness index of Cluster Group II were significantly higher than those of Cluster Groups I and III ($P<0.05$), while no significant differences were found in species richness. This suggests that the invasion of *T. minuta* primarily affects the evenness of species distribution rather than species richness. In addition, the species diversity indices of the invaded communities of *T. minuta* showed no significant correlation with elevation, indicating that elevation is not a major factor influencing species diversity in the invaded communities. The height of *T. minuta* was extremely significantly positively correlated with elevation ($P<0.01$), while its cover showed no significant correlation with elevation. Under different habitat types, the height and cover of *T. minuta* showed significant differences, with stronger invasion ability in habitats with greater human disturbance. This study highlights the invasion characteristics of *T. minuta* and its relationship with elevation in southeastern Xizang, offering valuable data for the ecological management of invasive plant

36 species in plateau regions.

37 **Keywords:** Invasive plants, *Tagetes minuta*, habitat types, species diversity, elevation gradient.

38

39 **Introduction**

40 Invasive plants refer to those plant species that are introduced intentionally or unintentionally
41 into new ecosystems and reproduce and spread rapidly in the local area, thereby negatively
42 affecting local biodiversity and ecosystem functions (Xiang et al., 2002; Wang et al., 2022; Qiong
43 et al., 2010; Li et al., 2022). These plants usually have strong adaptability, reproductive capacity,
44 and competitiveness, and can quickly occupy new ecological niches. They alter the ecological
45 balance by outcompeting native species (Lei, Xiao & Feng, 2010). In recent years, with the
46 intensification of global climate change and the increasing human activities, plant invasion has
47 become increasingly common worldwide, becoming one of the key factors affecting ecosystem
48 stability and biodiversity. Invasive plants profoundly affect the survival and distribution patterns
49 of native species through various pathways, such as competing for resources, altering soil
50 properties, and disrupting ecological processes. Therefore, studying the distribution characteristics
51 of invasive plants under different ecological conditions and their impacts on the diversity of native
52 biological communities is not only of great theoretical value but also of significant practical
53 importance for ecological protection and species management.

54 *Tagetes minuta* is an annual herbaceous plant belonging to the genus *Tagetes* in the family
55 *Asteraceae*. It is also known as stinking Roger (Xu et al., 2022), dwarf marigold, and fine-flowered
56 marigold (Miao, Xu & Zhai, 2022). The plant can reach a height of up to 2.5 meters (Zhang et al.,
57 2014) and contains volatile oils that emit a strong aromatic odor. It is a typical invasive herbaceous
58 species, native to South America (Zhang et al., 2019), and has now been widely distributed in many
59 parts of the world (Yun et al., 2020). In China, *T. minuta* was first recorded as a naturalized species
60 in the central mountainous area of Taichung City, Taiwan, in 2006 (Wang & Chen, 2006). Since
61 then, its distribution has gradually expanded and it has been successively found in several
62 provinces in recent years, including Beijing, Hebei, Shandong, Jiangsu, Guangxi, and Xizang
63 (Zhang et al., 2014; Yun et al., 2020; Dong et al., 2013; Xu & Tashi Tsering, 2015).

64 *T. minuta* has an extremely strong ability to reproduce and spread. Firstly, it produces a large
65 number of seeds with high germination rates and strong dispersal capabilities, which can cover
66 considerable distances (Zhang et al., 2014). In addition, *T. minuta* has a strong adaptability to
67 habitats, and it can grow and spread rapidly in arid regions, saline-alkali lands, and infertile soils
68 (Dong et al., 2013). Because of this, *T. minuta* has posed a threat to the ecological environment in
69 many tropical and subtropical regions around the world. Although research on the invasive plant
70 *T. minuta* in China is relatively limited, existing studies have mainly focused on reports of species
71 naturalization (Wang & Chen, 2006; Qiu et al., 2020; Hu, 2008), morphological characteristics,
72 the harm it causes, and the impact of its root system on soil microbial diversity (Yun et al., 2020).
73 Zhang Ruihai et al. (2019) assessed its ecological risks, while Tu Yanli et al. (2018) conducted
74 competition experiments between *T. minuta* and *Hordeum vulgare* var. *trifurcatum* and carried out
75 field research on its community pollen. The results showed that the invasion of *T. minuta* can
76 significantly increase the mortality rate of *H. vulgare* var. *trifurcatum*. Moreover, foreign research

77 has mostly focused on the chemical composition of *T. minuta* essential oil and its resource
78 utilization (Egularas et al., 2005).

79 In the section from Nyingchi to Shannan along the Yarlung Zangbo River in southeastern
80 Xizang, *T. minuta* has become a seriously invasive plant species and has the potential to further
81 spread into the original habitats. However, there is currently a lack of systematic research based
82 on field plant community surveys regarding the specific impacts of *T. minuta* on community
83 species diversity distribution patterns and invasion dynamics under different elevation gradients.
84 Therefore, this study aims to systematically investigate the species diversity distribution
85 characteristics of the invaded communities of *T. minuta* under different elevation gradients in the
86 section from Nyingchi to Shannan along the Yarlung Zangbo River. It also aims to explore its
87 invasion dynamics in southeastern Xizang, including characteristics such as the height, abundance,
88 and cover of *T. minuta*. The results of this study are intended to provide a scientific basis for the
89 ecological control of *T. minuta* and theoretical support for ecological protection and management
90 of invasive alien species in the region.

91

92 **1 Study Area and Methods**

93 **1.1 Overview of the Study Area**

94 The study area is located in the section from Nyingchi to Shannan along the Yarlung Zangbo
95 River in southeastern Xizang (29°07'28.16"N - 29°25'50.38"N, 92°04'13.02"E - 94°27'27.53"E,
96 elevation 2925–3553 m). The area has a plateau temperate semi-humid monsoon climate (Qiu et
97 al., 2020), with an annual precipitation of 350–641 mm, an average annual temperature of 8.2–
98 11.0°C, an average annual sunshine duration of 2000–2500 h, and a frost-free period of 130–170
99 days (Qiu et al., 2021).

100 **1.2 Methods**

101 This study focuses on the plant communities in the invaded areas of *T. minuta*. The survey
102 was conducted using the quadrat method. When establishing sampling points, the distribution of
103 *T. minuta* across different altitudes and habitat types was taken into account to ensure
104 representative sampling of the study area's ecological characteristics. A total of 31 invaded
105 quadrats were surveyed, each measuring 2 m × 2 m. The habitat types included 9 sites along
106 national highways near residential areas (GJ), 5 sites at garbage dump locations (LJ), 4 sites at
107 artificial tree pits along national highways (GH), 4 sites at drainage ditches along national
108 highways (GP), 3 sites next to abandoned buildings (FJ), 3 sites at riverbank sandy areas (HB),
109 and 3 sites at construction sites (JZ). Within each quadrat, the species names of plants, the
110 abundance, cover, and height of *T. minuta* were investigated and recorded. Additionally,
111 geographical coordinates, vegetation types, and habitat characteristics, including longitude,
112 latitude, altitude, and habitat type, were documented. These data were used to analyze the species
113 composition structure and diversity characteristics of *T. minuta* communities. For plants that were
114 difficult to identify in the field, specimens were collected and brought back to the laboratory for
115 detailed identification.

116 **1.3 Data Processing**

117 Data analysis was performed using Microsoft Office Excel 2010 and R v4.3.3 software for
118 data organization and calculation of diversity indices. The Euclidean distance matrix was
119 calculated based on species abundance to measure the dissimilarity between quadrats. The
120 complete linkage clustering method was used to classify the 31 community quadrats into three
121 clusters. One-way ANOVA and the Least Significant Difference (LSD) method were applied to
122 conduct variance analysis and multiple comparisons of the diversity indices among different
123 clusters and the characteristic variations of *T. minuta* in different vegetation types and habitat
124 types. The results were visualized using Origin 2021.

125 The species diversity within the communities was measured using species richness (*R*), the
126 Shannon-Weiner index (*H'*), the Simpson index (*D*), and the Pielou evenness index (*J*) (Tong et
127 al., 2024). The calculation formulas are as follows:

128 Shannon-Weiner Index (*H'*):

$$129 H' = - \sum_{i=1}^S P_i \ln (P_i) \#(1)$$

130 Simpson Index (*D*):

$$131 D = 1 - \sum_{i=1}^S P_i^2, P_i = \frac{N_i}{N} \#(2)$$

132 Pielou's Evenness Index (*J*)

$$133 J = \frac{H}{\ln (S)} \#(3)$$

134 Species Richness (*R*)

$$135 R = S \#(4)$$

136 In the formulas, *S* represents the number of species within the quadrat, *N* denotes the total
137 number of individuals of all species in the quadrat, *N_i* is the number of individuals of the *i*-th
138 species, and *P_i* is the proportion of individuals of species *i* to the total number of individuals .
139

140 **2 Results and Analysis**141 **2.1 Species Composition of *Tagetes minuta* Invaded Communities**

142 A total of 78 plant species belonging to 28 families and 69 genera were found in the 31
143 community quadrats (Table 1). The family with the highest number of species was Asteraceae,
144 with 19 species, accounting for 24.36% of the total species in the invaded areas. Poaceae and
145 Rosaceae followed, each with 9 species, representing 11.54% of the total species. The Fabaceae
146 family had 7 species. When classified by life form, herbaceous plants were dominant, with few
147 woody and shrub species. There were 31 annual and biennial species and 47 perennial species. In
148 addition to *T. minuta*, nine other invasive alien plants were found in the invaded communities,
149 such as *Sonchus oleraceus*, *Galinsoga parviflora*, *Senecio vulgaris*, and *Erigeron canadensis*,

151 accounting for 11.54% of all plants in the invaded areas.

152 At the family level, in the plant communities invaded by *T. minuta*, there are four families
153 with more than three species. These families account for only 14.29% of the total number of
154 families but make up 56.41% of the total species number. They are Asteraceae (19 species),
155 Poaceae (9 species), Rosaceae (9 species), and Fabaceae (7 species). There are eight families with
156 2 to 3 species, such as Lamiaceae (3 species), Polygonaceae (3 species), Scrophulariaceae (2
157 species), and Rubiaceae (2 species). There are a total of 16 families with only one species, which
158 is the largest number of families and accounts for 57.14% of the total number of families. Examples
159 include Ranunculaceae, Cyperaceae, and Violaceae.

160 At the genus level, the genus with the highest number of species is *Artemisia* (4 species).
161 There are six genera with 2 species, accounting for 8.70% of the total number of genera and
162 15.38% of the total number of species, such as *Euphorbia*, *Astragalus*, and *Taraxacum*. The
163 majority of genera, a total of 62, contain only one species, representing 89.86% of the total number
164 of genera and 79.49% of the total number of species. Examples include *Plantago*, *Melilotus*,
165 *Erodium*, and *Datura*.

166 In addition, species with relatively high frequency of occurrence in the plant communities of
167 *T. minuta* include *Poa annua*, *Digitaria cruciata*, *Plantago depressa*, *Artemisia sieversiana*,
168 *Eragrostis nigra*, *Setaria viridis*, and *Erodium cicutarium*.

169 **2.2 Cluster Analysis of *Tagetes minuta* Communities**

170 According to the cluster analysis using the complete linkage method, Cluster Group I mainly
171 includes habitat types such as national highway roadside residential areas, garbage dump sites, and
172 areas next to abandoned buildings. Cluster Group II consists of habitat types like national highway
173 roadside residential areas and roadside ditches. Cluster Group III includes national highway
174 roadside residential areas, garbage dump sites, and riverbank sandy areas.

175 A comparison of the diversity indices among the three clusters (Table 2) reveals that Cluster
176 Group II has a significantly higher Shannon-Wiener index than Cluster Group I (0.85) and Cluster
177 Group III (1.16) ($P<0.05$), indicating higher species diversity in Cluster Group II. The Simpson
178 index, which measures the dominance concentration in a community, reflects the impact of
179 different vegetation types on the evenness of species distribution. The Pielou evenness index
180 indicates the evenness of the distribution of *T. minuta* within the community. Cluster Group II has
181 significantly higher Shannon-Wiener index, Simpson diversity index, and Pielou evenness index
182 than Cluster Groups I and III. In terms of species richness index, no significant differences were
183 found among the three clusters.

184

185 **2.3 Invasion Characteristics of *Tagetes minuta* Under Different Habitats**

186 Under different vegetation types, there are significant differences in the height of *T. minuta*,
187 while its cover does not show a significant correlation with vegetation types (Fig. 1). In terms of
188 cover, it is shown that Abandoned Waste Vegetation (AWV) > Semi-Natural Vegetation (SNV) >
189 Urban Roadside Vegetation (URV); in terms of height, the order is AWV > URV > SNV. In
190 particular, in AWV, the cover and height of *T. minuta* are significantly higher than those in the

191 other two types of vegetation. All three types of vegetation are invaded by *T. minuta* to varying
192 degrees, with the situation being more severe in AWV.

193 By analyzing the growth conditions of *T. minuta* in different habitats, it was found that its
194 cover and height show significant differences among the various habitats (Fig. 2). The cover of *T.*
195 *minuta* at garbage dump sites is significantly higher than that at roadside ditches ($P<0.05$); its
196 height at garbage dump sites is significantly higher than that at artificial tree pits along national
197 highways, riverbank sandy areas, and next to abandoned buildings ($P<0.05$). Both the cover and
198 height of *T. minuta* at garbage dump sites are the highest among all habitat types.

199 **2.4 Diversity Patterns of *Tagetes minuta* Communities Along the Altitudinal Gradient**

200 As illustrated in Figure 3, the results of linear regression analysis indicate that there is no
201 significant correlation between the cover of *T. minuta* and altitude ($P>0.05$), suggesting that
202 altitude has no significant effect on the cover of *T. minuta*. However, a highly significant positive
203 correlation was found between the height of *T. minuta* and altitude ($P<0.01$), indicating that the
204 biomass growth of *T. minuta* in the height direction is less restricted by altitude.

205 As shown in Figure 4, this study used linear regression to analyze the correlation between
206 the species diversity indices of *T. minuta* invaded communities and the altitudinal factor. The
207 results show that there is no significant correlation between altitude and any of the diversity
208 indices of *T. minuta* invaded communities. This indicates that altitude has no significant effect on
209 the species diversity of *T. minuta* communities.

210

211 **3 Discussion**

212 **3.1 Species Composition and Distribution of *Tagetes minuta* Communities**

213 After arriving in a new habitat, invasive alien species can disrupt the functions and structure
214 of ecosystems through allelopathy, competition, and other means (Yang et al., 2011), thereby
215 breaking the original ecological balance of the ecosystem (Lei , Xiao & Feng, 2010). Research by
216 Tu Yanli et al. (T2018) found that the invasion of *T. minuta* significantly suppresses the survival
217 of the local crop *H. vulgare* var. *trifurcatum*, markedly reducing its survival rate and demonstrating
218 strong competitive and inhibitory abilities compared with indigenous crops. The results of our
219 survey of *T. minuta* communities in southeastern Xizang showed that a total of 78 plant species,
220 belonging to 28 families and 69 genera, were recorded. In these communities, Asteraceae, Poaceae,
221 and Rosaceae were the dominant families, which is similar to the family distribution of some other
222 common invasive plants. For example, in the communities of *Ageratina adenophora* (Jiang et al.,
223 2024), *Datura stramonium* (Wang et al., 2024), and *G. parviflora* (He, Yang & Shi, 2020), plants
224 of the family Asteraceae often hold important positions. This suggests that plants of these families
225 may have certain advantages in adapting to the environment and in their ability to spread. In terms
226 of life forms, perennial herbs were the most abundant in the *T. minuta* communities, which is
227 consistent with the findings of Qi Shunying et al. (2022) and Li Weijie et al. (2023) on the species
228 composition of *Solidago canadensis* invaded communities. The second most abundant were annual
229 herbs and biennial herbs. The coexistence of multiple invasive plants may lead to competition for

230 resources among them, but it may also enhance their invasive capacity against local ecosystems
231 through synergistic effects.

232

233 **3.2 The Impact of Different Habitats on the Invasion Characteristics of *Tagetes minuta***

234 As an invasive plant, *T. minuta* exhibits significant differences in its invasion characteristics
235 and impact on species diversity across different habitats. This study used the height and cover of
236 *T. minuta* as indicators of invasion characteristics to investigate its distribution features and
237 influencing factors in different vegetation types in southeastern Xizang. The results showed that
238 the cover and height of *T. minuta* varied among different vegetation types, with more severe
239 invasion in abandoned waste vegetation. This indicates that *T. minuta* has stronger invasion ability
240 and competitive advantage in habitats with higher human disturbance and weaker vegetation
241 recovery (Qiu et al., 2021). Moreover, in different habitat types such as garbage dump sites, the
242 cover and height of *T. minuta* were the highest among all habitat types, which may be related to
243 factors such as soil fertility and human activities in these habitats. Wang Junwei et al. (2024) found
244 that *D. stramonium* mainly grows in places with greater human disturbance, such as abandoned
245 farmland, construction waste piles, domestic waste piles, and roadside areas, which is consistent
246 with our research results. Qiu Xiaoyu et al. (2021) also pointed out that *T. minuta* has a larger
247 biomass in habitats such as roadsides and wastelands, and its phenotypic plasticity is higher,
248 allowing it to adjust the biomass of various components to adapt to different environmental
249 conditions. This adaptability enables *T. minuta* to successfully invade different vegetation types.

250

251 Through the study of species diversity of *T. minuta* in various habitats, it was found that the
252 type and degree of human disturbance, as well as habitat type, are the factors that determine the
253 invasion characteristics of *T. minuta*. The Shannon-Wiener index and Simpson index of Cluster
254 Group II are significantly higher than those of Cluster Groups I and III, indicating that this cluster
255 has higher species diversity and a more even distribution of species. This may be related to the
256 higher disturbance frequency of the habitat types included in Cluster Group II. The main habitat
257 types in Cluster Group II include national highway roadside residential areas, national highway
258 roadside ditches, garbage dump sites, areas next to abandoned buildings, and construction sites,
259 which dominate in Cluster Group II. Frequent human activities may have altered the structure of
260 the communities, providing suitable niches for the invasion of *T. minuta* and also promoting an
261 increase in species diversity. However, in terms of the species richness index, no significant
262 differences were found among the three clusters, indicating that the invasion of *T. minuta* has a
263 relatively small impact on species richness but a more significant impact on the evenness of species
264 distribution.

265 These findings are consistent with previous research results, which indicate that disturbance
266 in the habitat environment is one of the main causes of the establishment of alien species (Hertling
267 & Lubke, 2000). Such disturbances lead to a rapid increase in resources in the short term, providing
268 opportunities for alien species that can quickly exploit these resources to expand rapidly (Hertling
269 & Lubke, 2000). At the same time, human activities can increase the propagule pressure in
270 disturbed habitats, as travelers bring in large numbers of seeds through their clothing, shoes, or

271 vehicles, and the seeds of almost all roadside plants may be introduced into new habitats by
272 humans (Mack & Lonsdale, 2001; Schmidt, 1989). Therefore, areas with more frequent human
273 activities are often more likely to have a greater number of alien species. This can explain the trend
274 of high species diversity of *T. minuta* in habitats such as national highway roadside residential
275 areas and garbage dump sites. In addition, roads, as landscape corridors, not only increase edge
276 effects but also promote the invasion of alien species (Zhou, Peng & Lin, 2009). Studies have
277 shown that roads play an important role in the spread of alien species to adjacent habitats (such as
278 forests) (Nelson, Halpern & Agee, 2008). These findings are in line with the results of this study,
279 that is, stronger human disturbance can promote the occurrence of plant invasions. In specific
280 habitats, such as garbage dump sites and national highway roadside residential areas, human
281 activities are frequent and human disturbance is strong, which provides favorable conditions for
282 invasive plants. The invasion characteristics of these habitats are consistent with the research
283 results of Li Jiahao et al. (2018). Areas with frequent human activities are more susceptible to
284 invasion by alien species, and the vacant niches in these areas provide convenience for the
285 colonization and spread of invasive species.

286

287 **3.3 The Diversity Pattern of Community Species Invaded by *Tagetes patula***

288 The study of the mechanisms of alien plant invasion and their influencing factors has always
289 been a hot topic in ecology (Yang et al., 2011; Jiang et al., 2024; Wang et al., 2024). Research
290 shows that the degree of alien plant invasion is influenced by a variety of factors, including the
291 ecological interactions between the invaded area and the local plant community, as well as the
292 impact of human activities (Li et al., 2023; Wang, Bai & Sang, 2017). Changes in hydrothermal
293 conditions caused by factors such as altitude are important indicators in the study of species
294 diversity gradients (Hao et al., 2001; Zhang et al., 2021). As altitude increases, temperature
295 decreases, atmospheric pressure and CO₂ partial pressure drop, and light intensity increases, which
296 can cause significant changes in the ecological and physiological characteristics of plants and may
297 affect the distribution of plant species along the altitudinal gradient and the structure and
298 composition of plant communities (Pan et al., 2009). Altitude changes are decisive factors in the
299 distribution and composition of plant community species (Guo et al., 2003).

300 Firstly, in terms of the invasion characteristics of *T. minuta*, linear regression analysis showed
301 that there was no significant correlation between its cover and the altitude of the sampling points
302 ($P>0.05$), indicating that altitude did not limit the cover of *T. minuta*. This result may imply that
303 the cover of *T. minuta* is influenced by a combination of various factors, and altitude is not the
304 dominant factor. However, there was a highly significant positive correlation between the height
305 of *T. minuta* and the altitude of the sampling points ($P<0.01$), which may be related to the specific
306 environmental conditions in high-altitude areas, such as lower temperatures and stronger light,
307 which may be conducive to the growth and development of *T. minuta*, allowing it to reach greater
308 heights. Chen Xiaoyan et al. (2022) showed that, with the increase of the altitudinal gradient, the
309 population cover of *Galinsoga quadriradiata* did not show significant changes, but its plant height
310 decreased significantly. This result is consistent with the findings of the present study regarding
311 cover, but is opposite to the results of the present study in terms of the relationship between altitude

312 and plant height. This finding is of great significance for understanding the invasion dynamics of
313 *T. minuta* in different altitudinal regions and provides a reference for predicting its spread trend
314 along different altitudinal gradients.

315 Secondly, regarding the relationship between the species diversity of the community invaded
316 by *T. minuta* and the altitude factor, the results of the linear regression analysis showed that the
317 Shannon-Weiner diversity index, Simpson diversity index, Pielou evenness index, and species
318 richness index of the community invaded by *T. minuta* were not significantly correlated with
319 altitude ($P>0.05$). Altitude had no significant effect on the species diversity of the community
320 invaded by *T. minuta* ($P>0.05$), and its diversity changes may be mainly regulated by other non-
321 altitude factors. Qiu Luo et al. (2010) predicted the potential distribution of the invasive plant
322 *Mikania micrantha* in Guangzhou and found that altitude had a significant impact on the
323 distribution of *Mikania micrantha*, which is contrary to the results of this study.

324 Overall, the invasion characteristics of *T. minuta* and its impact on species diversity are
325 regulated by a combination of various factors, including habitat type, degree of human disturbance,
326 and environmental conditions. It exhibits a stronger invasion ability in habitats with frequent
327 human disturbance, and the positive correlation between its height and altitude indicates that the
328 specific environmental conditions in high-altitude areas may be conducive to its growth. However,
329 the lack of a significant correlation between the species diversity of the community invaded by *T.*
330 *minuta* and altitude suggests that its diversity changes may be more influenced by other non-
331 altitudinal factors. The invasion of *T. minuta* poses a significant threat to the ecological
332 environment. Therefore, it is necessary to conduct more in-depth research on the interactions
333 among these factors to better understand the invasion mechanisms of *T. minuta* and to provide a
334 scientific basis for implementing appropriate control measures and ecological security
335 construction.

336

337 **4 Conclusion**

338 This study investigated the invasion characteristics of *T. minuta* in the southeastern Xizang
339 Yarlung Zangbo River Basin through field surveys. The results showed that: (1) The main
340 associated species in the invaded areas of *T. minuta* are plants from the families Asteraceae,
341 Poaceae, and Rosaceae; (2) Abandoned human-impacted vegetation, urban roadside vegetation,
342 and semi-natural vegetation were all subject to varying degrees of invasion by *T. minuta*, with the
343 invasion being more severe in abandoned human-impacted vegetation. Rubbish dump sites were
344 identified as the key habitat types invaded by *T. minuta*; (3) The height of *T. minuta* was
345 significantly positively correlated with altitude, while its cover showed no significant correlation
346 with altitude; (4) Moreover, the species diversity indices of the invaded communities were not
347 significantly correlated with altitude, indicating that the invasion characteristics of *T. minuta* and
348 its impact on local biodiversity are mainly driven by human activities and habitat types, rather than
349 the influence of the altitudinal gradient.

350

351 **References**

352 Chen XY, Zhang WG, Liu RL, Liu G. Effects of elevational gradients on reproductivity
353 and seed dispersal ability of *Galinsoga quadriradiata* in mountain ranges[J]. Ecological S
354 cience, 2022, 41 (03): 44-53.

355 Dong ZG, Liu QX, Hu J, Deng MB, Xiong YN. New records of naturalized plants form
356 the Chinese Mainland[J]. Guihaia, 2013, 33(03): 432-434.

357 Guo ZG, Liu HX, Sun XG, Chen GD. Characristics of species diversity of plant commu
358 nitiesin the upper reaches of Bailong river[J]. Acta Phytoecologica Sinica, 2003, (03): 38
359 8-395.

360 He JY, Yang X, Shi SD. Effects of the invasive weed, *Galinsoga quadriradiata* Ruiz et
361 Pav. on plant diversity in Hohhot City, Inner Mongolia[J]. Journal of biosafety, 2020, 29
362 (02):129-134.

363 Hertling U M, Lubke R A. Assessing the potential for biological invasion: The case *Am
364 mophlia arenaria* in the South Africa[J]. South African Journal of Science, 2000, 96: 52
365 0-527.

366 Hao ZQ, Deng HB, Jiang P, Wang Z, Huang NW. Co-occurrence of plant species among
367 communities with changes inaltitudes on the northern slope of Changbai Mountain[J]. Act
368 aecologica sinica, 2001, (09): 1421-1426.

369 Hu L N. Wild marigold-*Tagetes minuta* L. new weed on theisland of Hvar, and new co
370 ntribution to the knowledge ofits distribution in Dalmatia(Croatia)[J]. Agriculturae Con-spe
371 ctus Scientificus, 2008, 73(1): 1036-1048.

372 Jiang H, Nie JH, Chen P, Li YT. Effects of *Ageratina adenophora* Invasion on the Dive
373 rsity of Plantation Plant Community in Baihualing Area of Gaoligong Mountain[J]. Journ
374 al of Southwest Forestry University(Nature Science), 2024, 44(05): 54-62.

375 Li HR, Yan J, Du C, Yan XL. Current status and suggestions of research on invasive ri
376 sk assessment of alien plants in China[J]. Acta Ecologica Sinica, 2022, 42(16): 6451-646
377 3.

378 Lei YB,Xiao HF,Feng YL.Impacts of alien plant invasions on biodiversity and evolutiona
379 ry responses of native species[J]. Biodiversity Science, 2010, 18(06): 622-630.

380 Li WJ, Zhu XZ, Luo HT, Huang X, Tang SJ. Species composition and diversity charact
381 eristics of invaded community of *Solidago canadensis* in Nanjing[J]. Guihaia,2023, 43(08)

382 : 1488-1500.

383 Li JH, Li DH, Zhao RB, Yang XB, Luo WQ, Zhang K, Wu TT, Gao BY. Adaptivity of
384 Major Terrestrial Invasive Plants in Different Habitats in Hainan Province[J]. Journal of
385 Tropical biology, 2018, 9(02): 225-233.

386 Miao Q, Xu SJ, Zhai Q. New Record of the Invasive Plant *Tagetes minuta* in Shanxi Pr
387 ovince[J]. Contemporary Horticulture, 2022, 45(16): 137-138+141.

388 Mack R N, Lonsdale W M. Humans as global plant dispersers: getting more than we ba
389 rgained for [J]. Bio Science, 2001, 51: 95-102.

390 Martín J. Egularas, S. Fuselli, L. Gende, R. Fritz, Sergio R. Ruffinengo, G. Clemente, Ald
391 a Gonzalez, Pedro N. Bailac, Marta I. Ponzi. An in vitro Evaluation of *Tagetes minuta* E
392 ssential Oil for the Control of the Honeybee Pathogens Paenibacillus larvae and Ascosp
393 aera apis, and the Parasitic Mite Varroa destructor[J]. Journal of Essential Oil Research, 2
394 005, 17(3):336-340.

395 Pan HL, Li MH, Cai XH, Wu J, Su Z, Liu XL. Responses of growth and ecophysiology
396 of plants to altitude[J]. Ecology and Environmental Sciences, 2009, 18(02): 722-730.

397 Mountians and its relationship with altitude factors[J]. Acta Ecologica Sinica, 2024, 44(12
398): 5307-5317.

399 Nelson Cara R., Charles B. Halpern, James K. Agee. Thinning and burning result in low
400 -level invasion by nonnative plants but neutral effects on natives[J].

401 Qiu XY, Xu ZY, Tu YL, Luo J. Biomass Study on the Modules of Invasive Plant *Taget*
402 *es minuta* Populations at Flowering Stage in Nyingchi Area[J]. Journal of Plateau Agricul
403 ture, 2020, 4(01): 9-16.

404 Qiu XY, Xu ZY, Tu YL, Luo J. Module biomass and allocation characteristics of invasi
405 ve plant *Tagetes minuta* populations in different habitats[J]. Guihaia, 2021, 41(03): 447-4
406 55.

407 Qi SY, Gong ZF, Yang YH, He MY, Liu Y, Zhang Z. Effects of *Solidago canadensis* i
408 nvasion on aboveground vegetation and soil seed banks[J]. Journal of Anhui Agricultural
409 University, 2022, 49(03): 476-482.

410 Qiu L, Yang ZG, Chen W, Xiong QM, Yu Y. Forecasting analysis potential space distri
411 bution of *Mikania micrantha* in Guangzhou[J]. Journal of central south university of fore
412 stry&technology, 2010, 30(05): 128-133.

413 Qiong S, Guo QC, Li BP, Ling M. LiInvasive alien species in Chinese agricultural ecos
414 ystems and their management[J]. Biodiversity Science, 2010, 18(01): 647-659+674-675.

415 Schmidt W. Plant dispersal by motor cars[J]. Vegetatio, 1989, 80: 147-152.

416 Tu YL, Qiu XY, Luo J, Wang XL, Duan YW. Competitive Interactions Between the Inv
417 asive Species *Tagetes minuta* and the Tibetan Crop *Hordeum vulgare* var. *coeleste* in Ny
418 ingchi, Tibet[J]. Tibet's Science and Technology, 2018, (11): 62-65.

419 Tong YW, Qu LL, Fu QX, Chen YB,Xiang XY, Zhu WD, Qi G,Dai LM. Species diver
420 sity of forest plant communities on the southern slope of the Dabie
421 Ecological Applications, 2008, 18(3): 762-770.

422 Wang Z, Jin K, Ding Y, Paul CS.Zhang YJ,LI YH. The Mechanism of Plants-Soil Micr
423 obialFeedback in Grassland Succession[J]. Chinese Journal of Grassland, 2022, 44(01): 95
424 -103.

425 Wang QM,Chen ZX.A new natural species in Taiwan-*Tagetes minuta* L. [J]. Taiwania, 2
426 006, 51(1): 32-35.

427 Wang JW, Chen YH, Zeng ZF, Chen MY, La Q. Study on Species Diversity of Invasive
428 Plant *Datura stramonium* Community in Lhasa, Tibet[J]. Ecology and Environmental Scie
429 nces, 2024, 33(06): 900-907.

430 Wang GH, Bai F, Sang WG. Spatial distribution of invasive alien animal and plant speci
431 es and its influencing factors in China[J]. Plant Science Journal, 2017, 35(04): 513-524.

432 Xiang YC, Peng SL, Zhou HC, Cai XA. The impacts of non-native species onbiodiversit
433 y and its control[J]. Guihaia, 2002, 22(5): 425-432.

434 Xu WL, Li QK, Yang X, Wang JS. Prediction of potential distribution of the invasive p
435 lant *Tagetes minuta* L. (WildMarigold) in Tibet under climate change[J]. Acta Ecologica
436 Sinica, 2022, 42(17): 7266-7277.

437 Xu M, TASHI Tsing. A newly naturalized plant in Qinghai-Tibetan Plateau[J]. Guihaia,
438 2015, 35(04): 554-555.

439 Yun LL, Zhang RH, Song Z, Fu WD, Wang R, Wang ZH, Zhang GL. The Effect of *T
440 agetes minuta* L. on the Diversity of Soil Bacterial Community[J]. Ecology and Environ
441 mental Sciences, 2020, 29(05): 901-909.

442 Yang RY, Zan ST, Tang JJ, Chen X. Invasion mechanisms of *Solidago canadensis* L.: a
443 review[J]. Acta Ecologica Sinica, 2011, 31(04): 1185-1196.

444 Zhang JL, Lv YF, Bian Y, Liu RS, Jiang L. A new kind of invasive plant from mainland
445 China-*Tagetes minuta* L. [J]. Plant Quarantine, 2014, 28(02): 65-67.
446 Zhang RH, Zhang GL, Song Z, Wang ZH, Fu WD. The invasive assessment and manag
447 ement measure of *Tagetes minuta* L. [J]. Journal Of Biosafety, 2019, 28(01): 71-75.
448 Zhou T, Peng SL, Lin ZG. Edge effect of road in Dinghushan forests[J]. Chinese Journa
449 lof Ecology, 2009, 28(03): 433-437.
450 Zhang HQ, Wang HS, Jiao Y, Liu JY, Li JX. Species diversity of forest plant community
451 in Buyun Mountain and its relationship with elevation factor[J]. Journal of Liaoning Nor
452 mal University(Natural Science Edition), 2021, 44(01): 57-65.

453

454 **Acknowledgements**

455 The authors would like to express their sincere gratitude for the support from the N
456 ational Natural Science Foundation of China (Grant No. 31760127), the Natural Science
457 Foundation of Xizang Autonomous Region (Project No. XZ202401ZR0028), the Science a
458 nd Technology Planning Project of Xizang Autonomous Region (Project No. XZ202303Z
459 Y0002G), and the Major Science and Technology Special Project of Xizang Autonomous
460 Region (Project No. XZ202402ZD0005).

461

462 **Funding**

463 This work was supported by the National Natural Science Foundation of China (Gra
464 nt No. 31760127), the Natural Science Foundation of Xizang Autonomous Region (Projec
465 t No. XZ202401ZR0028), the Science and Technology Planning Project of Xizang Auton
466 omous Region (Project No. XZ202303ZY0002G), and the Major Science and Technology
467 Special Project of Xizang Autonomous Region (Project No. XZ202402ZD0005).

468 **Author information**

469 **Authors and Affiliations**

470 **Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry
471 of Education, School of Ecology and Environment, Xizang University, Lhasa, 850000, China**

472 Norzin Tso, Ngawang Norbu, Wei Li, Xin Tan, Zhefei Zeng, La Qiong, Junwei Wang

473

474 **Yani Observation and Research Station for Wetland Ecosystem of the Xizang Autonomous
475 Region, Xizang University, Lhasa, 850000, China**

476 Norzin Tso, Ngawang Norbu, Wei Li, Xin Tan, Zhefei Zeng, La Qiong, Junwei Wang

477 **Contributions**

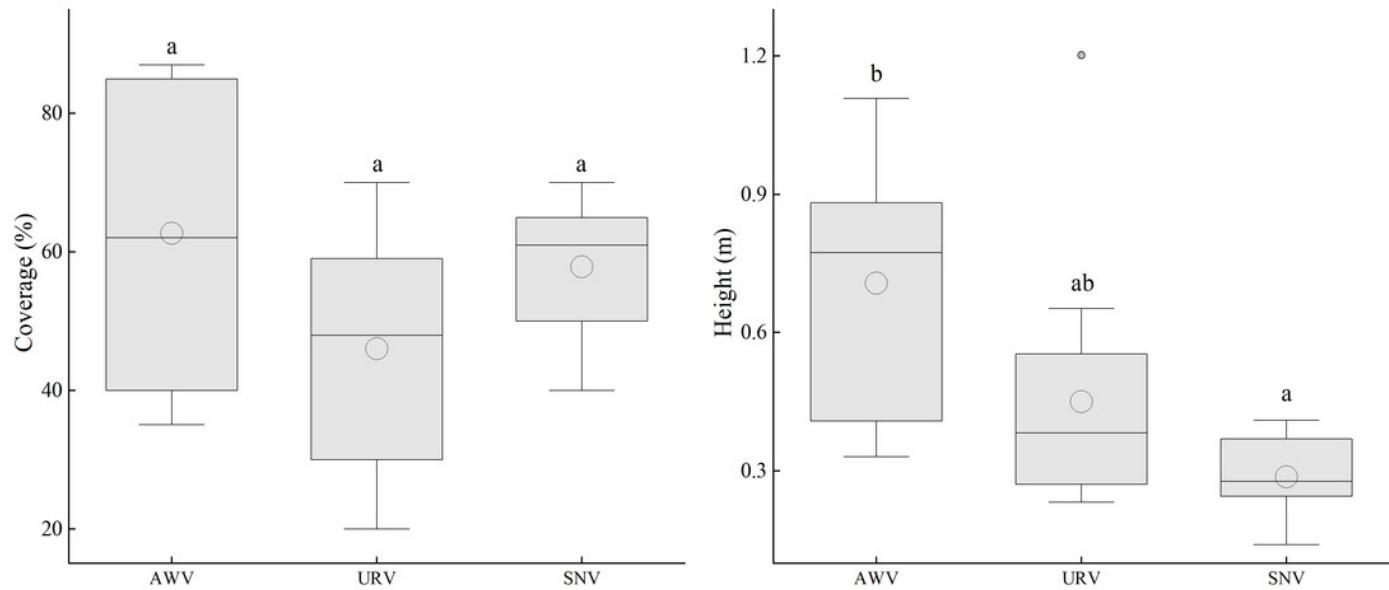
478 L.Q. and J.W. contributed to the conception and design of the study. N.T., N.N., W.L., X.T.,
479 and Z.Z. contributed to the experimental design and field sampling. N.T., N.N., W.L., and X.T.
480 were responsible for data analysis. N.T. and N.N. prepared the initial draft of the manuscript and
481 incorporated feedback from L.Q. and J.W. All authors participated in revising the draft and
482 approved the final manuscript for publication.

483 #These authors contributed equally to this work.

484 **Corresponding author**

485 Correspondence to Junwei Wang and La Qiong

486 **Ethics declarations**


487 **Competing interests**

488 The authors declare no competing interests.

Figure 1

Figure 1 The cover and height of the invasive alien plant *Tagetes minuta* in different vegetation types

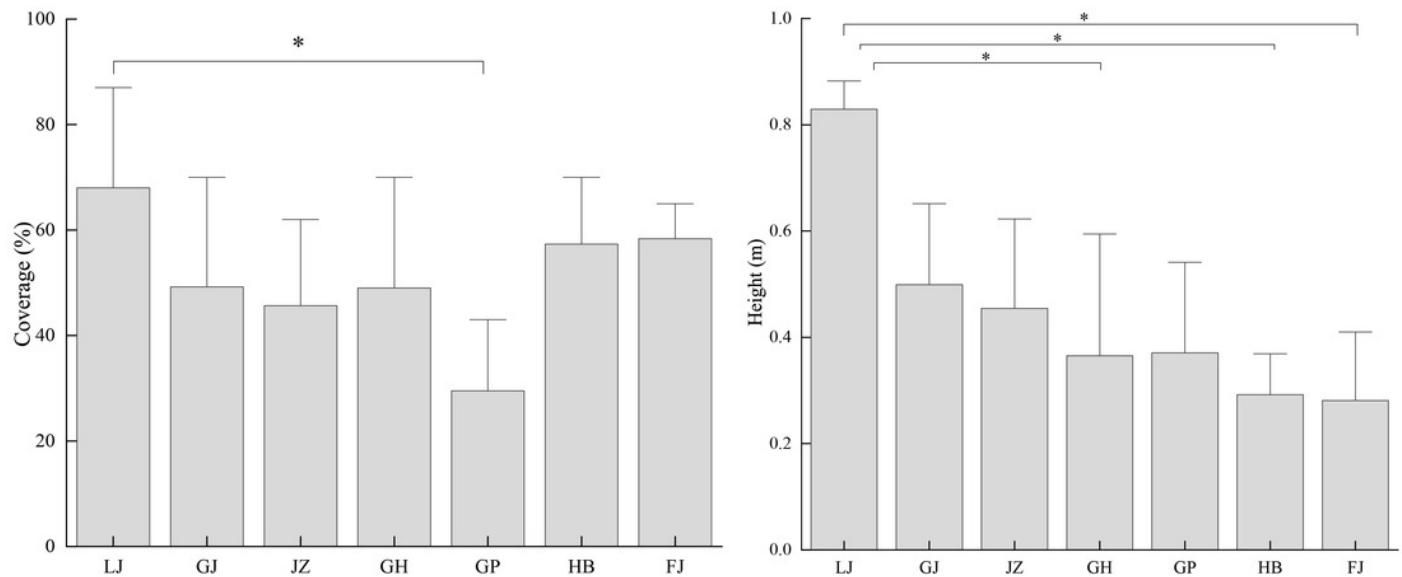
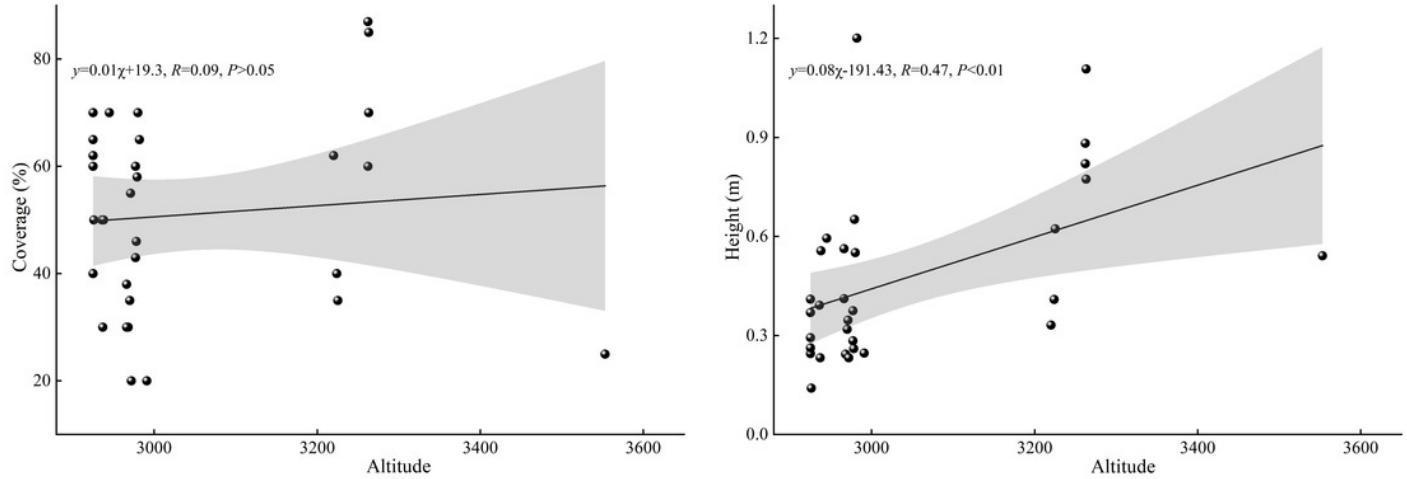

a**a**b Different letters indicate significant differences among vegetation types AWV: Anthropogenic Wasted Vegetation URV: Urban Road Vegetation SNV: Semi-Natural Vegetation

Figure 2


Figure 2 The relationship between different habitat types and the coverage and height of *Tagetes minuta*

* indicates significant differences among different habitat types.

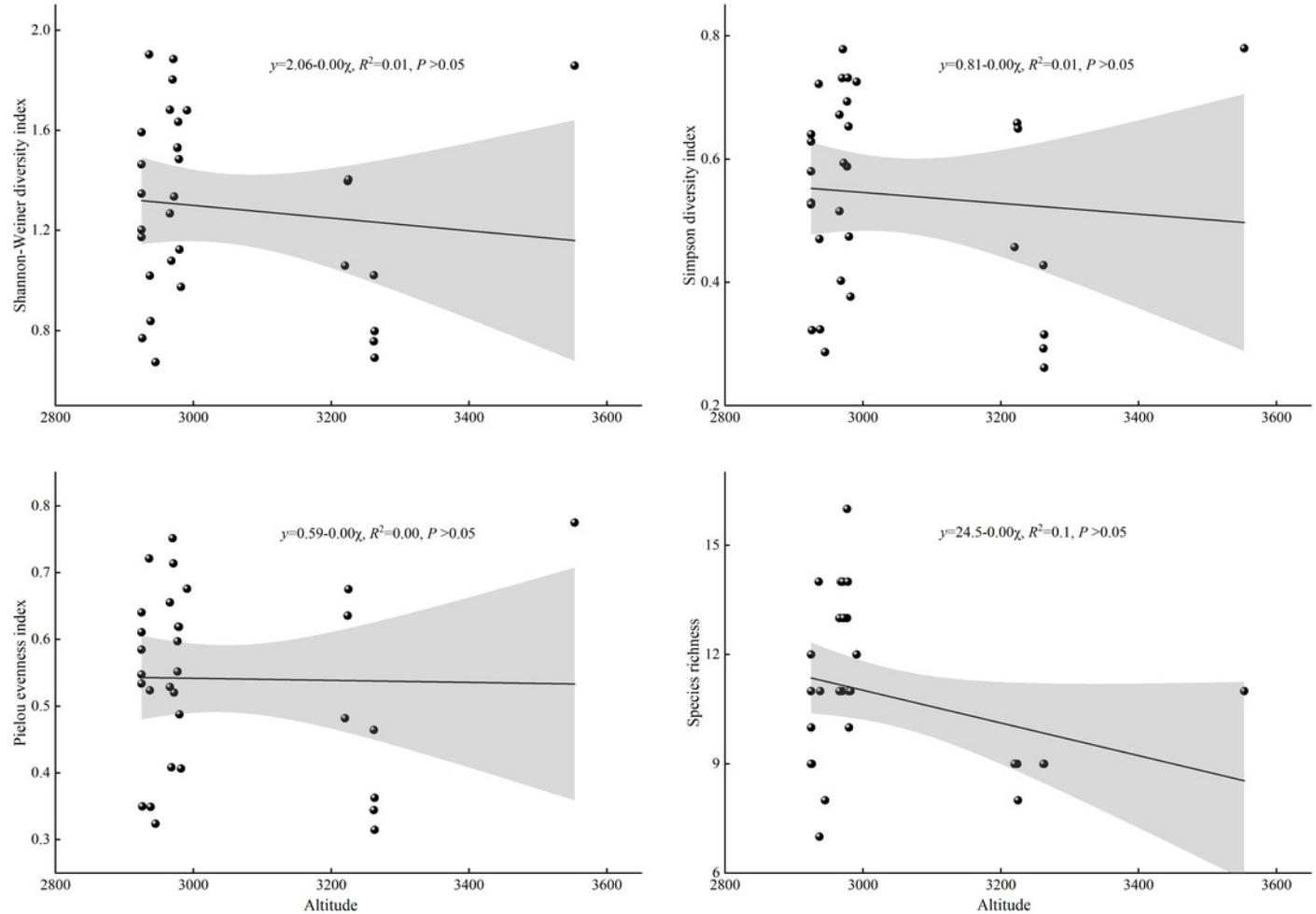

Figure 3

Figure 3 The correlation between the cover and height of *T. minuta* and the altitudinal gradient

Figure 4

Figure 4 The changing trend of plant species diversity in *Tagetes minuta* communities with altitude

Table 1(on next page)

Table 1 The species composition of the community invaded by *Tagetes minuta*

1

Table 1 The species composition of the community invaded by *Tagetes minuta*

Family	Number of Genera	Percentage of Genera (%)	Number of Species	Percentage of Species (%)
Asteraceae	14	20.291	19	24.359
Poaceae	9	13.043	9	11.538
Rosaceae	7	10.145	9	11.538
Fabaceae	6	8.697	7	8.975
Lamceiaae	3	4.348	3	3.847
Polygonaceae	3	4.348	3	3.847
Brassicaceae	2	2.899	2	2.564
Solanaceae	2	2.899	2	2.564
Scrophulariaceae	2	2.899	2	2.564
Rubiaceae	2	2.899	2	2.564
Boraginaceae	2	2.899	2	2.564
Euphorbiaceae	1	1.449	2	2.564
Oleaceae	1	1.449	1	1.282
Equisetaceae	1	1.449	1	1.282
Violaceae	1	1.449	1	1.282
Malvaceae	1	1.449	1	1.282
Campanulaceae	1	1.449	1	1.282
Onagraceae	1	1.449	1	1.282
Gentianaceae	1	1.449	1	1.282
Geraniaceae	1	1.449	1	1.282
Ranunculaceae	1	1.449	1	1.282
Cyperaceae	1	1.449	1	1.282
Polypodiaceae	1	1.449	1	1.282
Mazaceae	1	1.449	1	1.282
Adoxaceae	1	1.449	1	1.282
Amaranthaceae	1	1.449	1	1.282
Oxalidaceae	1	1.449	1	1.282
Plantaginaceae	1	1.449	1	1.282
Total	69	100	78	100

2

Table 2(on next page)

Table 2 Comparison of Community Species Diversity Among Different Cluster Groups

a□b indicate the significant different at 5% probability level in each row

1 Table 2 Comparison of Community Species Diversity Among Different Cluster Groups

Indices	Cluster Group		
	I	II	III
Shannon-Wiener index	0.85a	1.66b	1.16a
Simpson's index	0.33a	0.69b	0.49a
Species Richness	10.67a	12.00a	10.22a
Pielou evenness index	0.36a	0.67b	0.50a

2 a, b indicate the significant different at 5% probability level in each row

3