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Bees exhibit remarkable anatomical diversity, with phenotypic traits that reflect broad
evolutionary patterns and specific adaptations. Understanding these patterns requires
examining key anatomical features, such as thoracic musculature, which drives morpho-
functional variation and underscores their extensive phenotypic diversity. The thorax (or
‘mesosoma,’ as it can be referred to in the context of bees and other aculeate
Hymenoptera) serves as a locomotion center housing muscles responsible for leg, wing,
and intertagmatal articulation movements. Despite the role of the thoracic musculature in
the flight mechanics of bees, detailed comparative studies are limited to accounts of
individual species or small subsets of muscles, leaving gaps in understanding muscular
variation and phylogenetic significance. To address this, we conducted detailed dissections
of 13 species, representing six bee families (Andrenidae, Apidae, Colletidae, Halictidae,
Megachilidae, and Melittidae) and three apoid wasp taxa (Bembicidae, Crabronidae,
Philanthidae), selected to capture a broad range of morphological and phylogenetic
diversity. Our results revealed high conservation in mesosomal musculature, with only 16
of 58 muscle groups showing significant variation, primarily in origin points, suggesting a
balance between functional constraints and evolutionary flexibility in muscle attachment.
Phylogenetically relevant changes were investigated by coding 17 morphological
characters, revealing potential synapomorphies for bees or certain lineages. These include
the dorsomedial origin of IdIm1 (M. prophragma-occipitalis) in Meliponini, as evident in
species such as Melipona quadrifasciata and Tetragonisca fiebrigi, suggesting a shared
derived trait for this tribe. Additionally, the extended origin of lllscm2 is observed in
Andrenidae, Colletidae, and Halictidae, indicating closer evolutionary relationships among
these families. Bee-specific modifications, including the non-separation of litpm7b and
litpm7c by the mesepisternal ridge, distinguished bees from most apoid wasps, interpreted
here as a potential synapomorphy for bees. Additional variations, such as the ventral origin
of lvim3 in select lineages and the branched morphology of llpcm4, suggest independent

evolutionary shifts potentially linked to biomechanical demands. These findings
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underscore the evolutionary stability and phylogenetic value of bee mesosomal
musculature, revealing a conserved framework punctuated by lineage-specific adaptations
that may correlate with ecological traits.
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ABSTRACT

Bees exhibit remarkable anatomical diversity, with phenotypic traits that reflect broad
evolutionary patterns and specific adaptations. Understanding these patterns requires examining
key anatomical features, such as thoracic musculature, which drives morpho-functional variation
and underscores their extensive phenotypic diversity. The thorax (or ‘mesosoma,’ as it can be
referred to in the context of bees and other aculeate Hymenoptera) serves as a locomotion center
housing muscles responsible for leg, wing, and intertagmatal articulation movements. Despite the
role of the thoracic musculature in the flight mechanics of bees, detailed comparative studies are
limited to accounts of individual species or small subsets of muscles, leaving gaps in understanding
muscular variation and phylogenetic significance. To address this, we conducted detailed
dissections of 13 species, representing six bee families (Andrenidae, Apidae, Colletidae,
Halictidae, Megachilidae, and Melittidae) and three apoid wasp taxa (Bembicidae, Crabronidae,
Philanthidae), selected to capture a broad range of morphological and phylogenetic diversity. Our
results revealed high conservation in mesosomal musculature, with only 16 of 58 muscle groups
showing significant variation, primarily in origin points, suggesting a balance between functional
constraints and evolutionary flexibility in muscle attachment. Phylogenetically relevant changes
were investigated by coding 17 morphological characters, revealing potential synapomorphies for
bees or certain lineages. These include the dorsomedial origin of Idlml (M. prophragma-
occipitalis) in Meliponini, as evident in species such as Melipona quadrifasciata and Tetragonisca

fiebrigi, suggesting a shared derived trait for this tribe. Additionally, the extended origin of IIIscm2
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is observed in Andrenidae, Colletidae, and Halictidae, indicating closer evolutionary relationships
among these families. Bee-specific modifications, including the non-separation of IItpm7b and
[Itpm7c¢ by the mesepisternal ridge, distinguished bees from most apoid wasps, interpreted here as
a potential synapomorphy for bees. Additional variations, such as the ventral origin of Ivim3 in
select lineages and the branched morphology of IIpcm4, suggest independent evolutionary shifts
potentially linked to biomechanical demands. These findings underscore the evolutionary stability
and phylogenetic value of bee mesosomal musculature, revealing a conserved framework

punctuated by lineage-specific adaptations that may correlate with ecological traits.

KEYWORDS: Apidae, flight, mesosoma, morphology, systematics.
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INTRODUCTION

Like other arthropods, bees have their bodies covered by a chitinous exoskeleton featuring
articulated parts that are moved internally by specialized muscles with well-defined attachment
points (Snodgrass, 1927, 1935). The roles played by these muscles, in coordination with their
cuticular attachment points, vary across body regions, reflecting regional specialization that makes
each tagma suited for specific tasks, with differing degrees of musculature specialization
(Snodgrass, 1935). The prominent thorax of a bee is the main tagma responsible for movement,
because it has two pairs of wings and three pairs of legs attached to it, as is also the case in other
flying insects (Snodgrass, 1927, 1935; Matsuda, 1970), whereby muscles play a crucial role in
fulfilling the demands of flight (Dudley, 2000; Dickinson, 2006; Iwamoto, 2011). In aculeate
Hymenoptera, such specialization is especially pronounced: the enlargement of the mesothorax
correlates with the activity of indirect flight muscles, which are essential for rapid wing beats
(Chapman, 2013). In these insects, the mesosoma, the thoracic tagma fused to the first abdominal
segment, supports complex locomotor adaptations (Vilhelmsen et al., 2010).

Classical morphological techniques, especially detailed dissections, remain essential for
studying the complex skeletomuscular system of insects and documenting the muscle structure. In
this context, “The skeleto-muscular mechanisms of the honey bee” (Snodgrass, 1942) stands out
as a landmark, offering unmatched direct access to muscle attachment points, fiber orientation,
and tissue features. Detailed studies made for a single species (e.g., Snodgrass, 1942; Daly 1964;
Miké et al., 2007; Aibekova et al., 2022, 2025), and comparative investigations (c.g., Wille, 1956;
Matsuda, 1970; Vilhelmsen et al., 2010; Meira & Gongalves, 2021) have enabled more accurate
identification of homologous structures vital for interpreting morphological diversity across taxa
of bees and other taxa of Hymenoptera. Recently, traditional methods have been supplemented by
modern imaging techniques, such as micro-computed tomography (CT scanning), which provides
non-invasive, high-resolution three-dimensional reconstructions of internal anatomy (e.g.,
Friedrich & Beutel, 2008; Friedrich et al., 2014; Willsch et al., 2020; Aibekova et al., 2022, 2025;
Meira et al., 2024). While CT scanning uncovers details that were previously unreachable without
destructive methods, its interpretations rely on the careful foundation set by traditional dissections.
Dissections confirm digital imaging by verifying anatomical features and clarifying ambiguities in
CT data, ensuring precise identification of muscle groups and their arrangements. The synergy

between these approaches, where classical dissections anchor and enhance the reliability of
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modern imaging, creates a robust knowledge base that underpins comparative research, enabling
systematic documentation of anatomical variation across bee lineages and supporting inferences
about their functional and evolutionary significance.

There are about 21,000 known bee species (Ascher & Pickering, 2020) inhabiting nearly all
terrestrial habitats, and exhibiting an impressive size range (Messer, 1984; Michener, 2007) from
less than 2 mm (e.g., some Euryglossina [Colletidae: Euryglossinae]) to nearly 40 mm (e.g.,
Megachile pluto [Megachilidae: Megachilini]). Their species diversity is also reflected by a wide
variety of shapes, sizes, and life histories (Roubik, 1989; Michener, 2007; Danforth et al., 2019),
resulting from the diversification of bees since the early Cretaceous (Almeida et al., 2023). For
instance, while flight adaptation is a key feature of winged insects, many bee species thrive in
environments with limited light, such as dense vegetation or high-altitude regions, and some have
evolved flightlessness (Michener, 2007). Comparing the anatomical variation of thoracic muscles
among bees can yield important insights into how these differences relate to their diverse
ecological and biological strategies in the future.

The investigation of the bee mesosomal skeletomusculature from a comparative perspective
to highlight anatomical variation in this complex is limited to a single study, which only examined
ten muscles (Wille, 1956). There are between 57 (Snodgrass, 1942) and 58 (Meira et al., 2024)
muscle groups in a bee mesosoma (intrinsic mesosomal muscles, plus ¢oxal muscles originating
in the mesosoma), meaning that several dozen muscles remain unstudied from a comparative
perspective. Recent advances in morphological analysis and the terminological standardization
efforts by Meira et al. (2024) have helped align bee morphological terminology with broader
developments in Hymenoptera, making further research in this area both timely and essential for
expanding our understanding of this system.

This study aims to systematically assess and document the diversity of mesosomal muscles
across bee lineages, quantifying anatomical variation and exploring its potential functional and
phylogenetic significance. By mapping muscular configurations across a taxonomic range, this
research aims to determine whether internal mesosomal anatomy exhibits conserved patterns or
reflects lineage-specific adaptations. Furthermore, this study contributes to filling a longstanding
gap in hymenopteran morphological research by providing a detailed comparative framework for

internal thoracic (or mesosomal) musculature in bees.
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MATERIALS & METHODS

Taxon sampling

Representative specimens of 10 bee species, representing all major lineages of bees were sampled
to explore the detailed structure of the mesosomal musculature: Oxaea flavescens Klug and
Psaenythia bergii Holmberg [Andrenidae]; Apis mellifera Linnaeus, Melipona quadrifasciata
Lepeletier, Schwarziana quadripunctata (Lepeletier), and Tetragonisca fiebrigi (Latreille)
[Apidae]; Tetraglossula anthracina (Michener) [Colletidae]; Oragapostemon divaricatus
(Vachal) [Halictidae]; Lithurgus huberi Ducke [Megachilidae]; and Hesperapis carinata Stevens
[Melittidae]. This sampling encompasses a considerable range of morphological variation, with
body sizes ranging from 4 to 22 mm (Fig. 1), and phylogenetic diversity that covers all the extant
bee diversity (according to current hypotheses, e.g., Almeida et al. [2023]). Three apoid wasps
were selected and investigated in detail for comparison with the bee morphology: Steniolia
duplicata [Bembicidae], Trypoxylon lactitarse de Saussure, 1867 [Crabronidae], and Trachypus
boharti Rubio-Espina 1975 [Philanthidae]. Voucher specimens of the taxa investigated in this
study and the dissected specimens are deposited in the Colecdo Entomologica “Prof.

J.M.F.Camargo” (RPSP), Universidade de Sao Paulo, Ribeirdo Preto, Brazil.

Preparation of the specimens

The specimens were killed in a cyanide jar and transferred to a vial containing the fixative Dietrich
fixative, a formaldehyde-based solution. These specimens remained in Dietrich for about three
days, then preserved in absolute ethanol for long-term storage. Ethanol-preserved specimens were
stained with B-12E (2.5%) for 30 minutes immediately before dissection to ensure optimal muscle
visibility. The specimens were washed in 100% ethanol to remove the remaining excess stain and
carried to the dissection step for about 30 minutes. The B-I;E (2,5%) solution is prepared by adding
8.33 mL of LE (15% w/v) to 25 mL of Phosphate buffer and 16.7 mL of bi-distilled water
(modified from Dawood et al., 2021) and the I,E = alcoholic iodine (15% w/v) solution can be
prepared by combining 15 mL of pure I, to 100 mL of absolute ethanol (modified from Li et al.,
2016). Staining with 2% iodine was used to facilitate muscle visualization. As the iodine staining

is not permanent, the procedure was repeated when necessary.

Dissection techniques
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Each dissection began with an incision along the margins of the mesoscutum, which was carefully
removed to expose the indirect flight muscles (Fig. 3a). Dissections were performed using
microforceps and fine scalpels under a stereomicroscope to preserve delicate muscle attachments.
Each muscle was meticulously dissected and photographed, before removal to progressively
access deeper structures, documenting muscle attachments to skeletal elements and their spatial
arrangements. This systematic documentation ensured a comprehensive record of the structural
relationships and morphological details of the musculature. Next, an incision was made to remove
the propectus (Fig. 2f), allowing access to the prothoracic musculature, including muscles
associated with the forelegs and their articulation with the mesothorax and head. The study then
proceeds posteriorly, examining the mesothoracic and metathoracic muscles (Fig. 4), focusing on
the intrinsic and extrinsic muscle groups responsible for wing movement and structural support.
Throughout this posterior dissection, the gradual removal of muscles continues, ensuring that each

newly exposed structure is documented and analyzed in situ before proceeding further.

Visualization and image acquisition

The musculature was observed in Petri dishes containing absolute ethanol filled with fine sand
substrate to prevent the material from moving excessively. We used a Leica M205¢
stereomicroscope with transmitted and incident light. Images were taken with a Leica DFC450
camera using bright field illumination. The stack of images was obtained with Helicon Focus

software (Helicon Soft Ltd.).

Terminology

The terminology for the muscles and skeleton primarily follows Meira et al. (2024). The propectus
is understood as the complex including the propleuron plus prosternum (per Snodgrass, 1942). The
function of each muscle group mainly follows the interpretations of Snodgrass (1942), with
additions by Mik¢ et al. (2007) and Vilhelmsen et al. (2010). Additional literature concerning the
morphology of the mesosomal extrinsic musculature of several hymenopteran taxa was reviewed
to contextualize the findings (Snodgrass, 1942; Vilhelmsen, 2000a, 2000b, Vilhelmsen et al., 2010;
Miko et al., 2007; Friedrich & Beutel, 2008; Willsch et al., 2020; Yoder et al., 2010; Aibekova et
al., 2022; Lieberman et al., 2022), as summarized in supplementary Table S1.

Peer] reviewing PDF | (2025:08:124653:0:1:NEW 5 Sep 2025)


Lars Vilhelmsen
Comment on Text
what medium was the dissection performed in?


PeerJ

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Character coding and optimization

Based on the comparative study, we built characters, coded as binary, to assess the homology
hypotheses implied by the similarities and variations found. The resulting data matrix was
cladistically analyzed to display the joint phylogenetic signal present therein. Individual character
state transformations were estimated using Fitch optimization (Fitch, 1971) in Winclada software
version 1.00.08 (Nixon, 2002) under both unambiguous and ACCTRAN schemes, with the latter
prioritizing early character transformations consistent with bee phylogeny. For the character
transformations, a summary tree including all 10 bee species of this study was prepared in
Mesquite (Maddison and Maddison, 2007) by pruning the phylogenetic hypotheses of Almeida et
al. (2023) for the 10 species of bees, complemented by the tree of Sann et al. (2018) to represent

the three taxa of apoid wasps sampled.

RESULTS

DESCRIPTION OF THE SKELETOMUSCULATURE

The variation of the mesosomal musculature of Apoidea is described in detail below based on ten
species of bees and three apoid wasps. The exemplars of these 13 taxa that were analyzed in this
comparative research have the same number of muscle groups, although variations in size, relative
position in relation to other muscles and sclerites, and their position of insertion and/or origin were
observed for 16 of 58 studied muscles (intrinsic leg muscles were not studied). In instances where
some degree of variation was documented, this is indicated by the “VAR” annotation at the muscle
description; likewise, if the observed variation was used as the basis for character construction (see
next section, below), the character number is indicated too. In contrast, no significant variation
was documented for 35 muscle groups, and a concise summary is provided for those too; the lack

of variation in such cases is indicated by the “INVAR” annotation in the muscle description.

Idiml, M. prophragma-occipitalis (Fig. 2a-b) [VAR: variation coded into character 1 (Fig. 10),

below]: one of the five elevators of the head. It originates dorsomedially or dorsolaterally from the
prophragma of bees, but always lateral to Idlm2 (Figs. 2a, b) and inserts dorsolaterally on the
postocciput. All three apoid wasps have Idlm1 located dorsolaterally on the prophragma, lateral to
Idlm2, inserting on the dorsolateral areas of the postocciput. There is variation related to the origin

point of this muscle (the insertion point does not vary in Apoidea). In M. quadrifasciata, T. fiebrigi,
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S. quadripunctata, and apoid wasps, the muscle origin is dorsomedially (Fig. 2a-b) located on the
prophragma. In contrast, the remaining bees have the muscle origin of Idlm1 dorsolaterally (Fig.
7a) located on the prophragma. The morphology of Idlm1 observed in Meliponini suggests that
the morphology of Idlm1 might be a synapomorphy for the tribe.

Idlm2, M. pronoto-occipitalis (Fig. 2a, b) [INVAR]: one of the five elevators of the head. The

origin point is dorsomedially located on the posterior margin of the pronotum, and the insertion is

dorsomedially located on the postocciput.

Itpml1, M. pleurocrista-occipitalis (Fig. 2b, d) [INVAR]: one of the five elevators of the head. It

originates from the propleuron (dorsal propleural margin) and inserts dorsolaterally on the

postocciput through a shared tendon with the branched Itpm2 (Itpm2a and Itpm2b, see below).

Itpm2, M. propleuro-occipitalis (Fig. 2d) [INVAR]: one of the five elevators of the head.

Branched muscle (Itpm2a, M. propleuro-occipitalis dorsal and Itpm2b, M. propleuro-occipitalis
ventral); both branches originating from the ventral propleura area and inserting dorsolaterally to

the foramen magnum on the postocciput through a shared tendon with Itpm1.

Idvm9, M. profurca-occipitalis (Fig. 2b, ¢) [INVAR]: one of the five elevators of the head. Large

muscle broadly originating from the profurca (anterodorsal and posterodorsal profurcal lamellae
on the posterior profurcal branch), inserting dorsolaterally to the foramen magnum (close to the

insertion of Itpm1 and Itpm2) on the postocciput.

Ivim3, M. profurca-tentorialis (Fig. 2c) [VAR: variation coded into character 2 (Fig. 10), below]:

the only depressor of the head. Large muscle whose origin can be located either on the dorsal (Fig.
2¢) or the ventral (Fig. 7b) surface of the posterior profurcal branch, and the insertion is located
ventrolaterally on the postocciput. Two bee species (O. divaricatus [Halictidae] and H. carinata
[Melittidae]) have this ventral origin, while the remaining bees and apoid wasps have a dorsal

origin.
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Idlm5 M. pronoto-phragmalis anterior (Fig. 2a) [INVAR]: a depressor of the pronotum. Broad

and short muscle originating laterally from the inner surface of the pronotum and inserting laterally

on the prophragma of the mesoscutum.

Idvim5, M. pronoto-cervicalis anterior (Fig. 2a) [INVAR]: the elevator of the propleuron.

Branched muscle (IdvmS5a, M. pronoto-cervicalis anterior primus and IdvmSb, M.
pronoto-cervicalis anterior secundus) with two well-separated origins on the pronotum: one
dorsolateral (Idvm5a) and one dorsomedial (IdvmSb). The insertion of both branches is located

on the cervical apodeme of the propleuron.

Itpm3, M. pronoto-pleuralis anterior (Fig. 2a) [INVAR]: protractor of the propectus. Broad

pronotal muscle, with its origin dorsomedially on the pronotum, close to the origin of Idvm5b,

and its insertion on the anterior lamella of the dorsal propleural margin.

Itpm4, M. pronoto-apodemalis anterior (Fig. 2a) [INVAR]: protractor of the propectus. Muscle

originating anterolaterally from the pronotum and inserting distally on the propleural arm of the

propleuron.

Itpm5, M. pronoto-apodemalis posterior (Fig. 2a) [INVARY]: protractor of the propectus. Muscle

originating posterolaterally from the pronotum and inserting distally on the propleural arm of the

propleuron.

Iviml, M. profurca-cervicalis (Fig. 2c) [INVAR]: the adductor of the propleuron. Muscle

originating from the anteromedian profurcal process of the prosternum and inserting posteriorly

on the cervical apodeme of the propleuron.

Ivim7, M. profurca-mesofurcalis (Figs. 3d, 4c) [VAR: variation coded into characters 3 and 4 (Fig.

10), below]: the retractor of the propectus. Intersegmental muscle originating broad (Figs. 3d, 4c,
8d) or narrowly (Fig. 7¢) from the mesofurcal bridge of the meso-metafurca and inserting in one
(Fig. 7e) or two scars (Fig. 7d) on the posterior surface of the profurca at the prosternum. Only 4.

mellifera and T. fiebrigi (Apidae) have a narrow origin on the mesofurcal bridge. Three species,
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H. carinata (Melittidae), O. divaricatus (Halictidae), and L. huberi (Megachilidae), have two

insertion points on the profurca.

Ipcm2, M. procoxa cervicalis transversalis (Fig. 2¢, €) [INVAR]: rotator of the procoxa. Muscle

originating from the anteromedian bar of the cervical apodeme of one side and inserting on the

anterolateral margin of the procoxal base of the opposite side.

Ipcmd, M. propleuro-coxalis superior (Fig. 2¢) [INVAR]: lateral promotor of the procoxa. Muscle

originating from the anterior process of the dorsal profurcal lamella and from the ventral surface
of the dorsal propleural margin. The insertion is located on the anterolateral margin of the procoxal

base.

Iscml, M. profurca-coxalis anterior (Fig. 2¢) [INVAR]: medial promotor of the procoxa. Muscle

originating from the prodiscrimenal lamella of the prosternum and inserting anteromedially on the

procoxal base.

Idvmm18, M. pronoto-coxalis lateralis (Fig. 2a) [VAR: variation coded into character 5 (Fig. 10),

below]: lateral remotor of the procoxa. Long muscle that originates laterally (Fig. 7a) or
dorsolaterally (Fig. 2a) from the pronotum, close to the pronotal lobe, and inserts posterolaterally
on the procoxal base. The morphology of Idvim18 observed in 4. mellifera, in which this muscle

originates laterally on the pronotum, is interpreted as an autapomorphy of the species.

Iscm3, M. profurca-coxalis medialis (Fig. 2a, f) [INVAR]: medial remotor of the procoxa. Thin

muscle that originates from the sheet of the propleural arm and inserts posteromedially on the

procoxal base.

Iscm4, M. profurca-coxalis lateralis (Fig. 2a, f) [INVAR]: lateral remotor of the procoxa. Broad

muscle that originates from the posterodorsal profurcal lamella of the profurcal arm and inserts

posterolaterally on the procoxal base.
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Iscm5, M. prospina-coxalis (Figs. 2a, 4d) [VAR: variation coded into character 6 (Fig. 10),

below]: retractor of the propectus. Muscle with origin varying from restricted to the horizontal
plate of the meso-metafurca (Figs. 4d, 7c, 8d) to broader and also reaching the free basal portion
of mesofurcal arms (Fig. 8a). The insertion is located posteriorly on the procoxal base. The
morphology of Isem5 observed in L. huberi, in which the origin reaches the free basal portion of

the mesofurcal arms, is interpreted as an autapomorphy of this species.

Iscm6, M. profurca-trochanteralis (Fig. 2a, f) [INVAR]: depressor of the protrochanter. Broad

muscle originating from the sheet of the propleural arm and inserting on the depressor tendon of

the protrochanter.

HIdIm3, M. metascutello-scutellaris (Fig. 3b) [VAR: variation coded into character 7 (Fig. 10),

below]: retractor of the mesoscutellum. Muscle originating medially (Fig. 7¢) or laterally (Fig. 3b)
from the scutoscutellar ridge of the mesoscutellum and the insertion located medially or laterally
on the anterior margin of the internal metanotal ridge. The morphology of IIIdlm3 observed in 4.
mellifera, in which both origin and insertion of this muscle are located laterally, is interpreted as

an autapomorphy of the species.

Ildiml, M. prophragma-mesophragmalis (Fig. 3a) [INVAR]: indirect depressor of the wing.

Large dorsal longitudinal indirect flight muscle with the origin medially located on the ventral side
of the mesoscutum and on the posterior face of the prophragma, and the insertion is located broadly

on the anterior face of the mesophragma.

Ildviml, M. mesonoto-sternalis (Fig. 3a) [INVAR]: indirect elevator of the wing. Mesonotal

muscle that arises laterally from the ventral side of the mesoscutum and from the posterior margin

of the prophragma and inserts broadly on the mesepisternum.

Ilpspiml, M. mesanepisterno-spiracularis (Fig. 3c) [INVAR]: occlusor of the first spiracle.

Muscle of the mesothorax, originating from the anterior margin of the subspiracular area and

inserting on the spiracular membrane at the spiracular aperture.
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Htpm5, M. mesonoto-pleuralis medialis (Fig. 4a) [INVAR]: depressor of the mesoscutellum.

Muscle originating from the lateral areas of the mesepisternal region and from the pleural

apophysis; its insertion is located on the lateral margin of the mesoscutellum.

Htpm7, Mesanepisterno-axillaris (Fig. 4a): flexors of the forewing (Iltpm7a, M. mesanepisterno-

axillaris ventral, Iltpm7b. M. mesanepisterno-axillaris medial and Htpm7c, M. mesanepisterno-

axillaris dorsal) [VAR: variation coded into character 8 (Fig. 10), below]: IItpm7a originates

from the subalar apophysis cavity, while IItpm7b and IItpm7c¢ originate laterally from the
mesepisternum; all three branches insert, by a shared tendon, on the third mesoaxillary sclerite. In
bees, the absence of separation between IItpm7b and IItpm7¢ by the mesepisternal ridge (Figs.
4a, 8c) is likely a synapomorphy, as among apoid wasps most species, except the Bembicidae

species, have this separation (Fig. 8b).

IIspml, M. mesopleura-sternalis (Fig. 4a) [VAR: variation coded into character 9 (Fig. 10),

below]: depressor of the mesobasalar sclerite. Muscle that originates from the anterior margin of
the mesepisternum (Fig. 8c) and/or the subspiracular area (Figs. 4a, 8b) and inserts on the
mesobasalar sclerite. The morphology of IIspm1 observed in A. mellifera, in which this muscle
origin is restricted to the anterior region of the mesepisternum, is interpreted as an autapomorphy

of the species.

Ispm2, M. mesofurca-pleuralis (Fig. 4c-d) [INVAR]: furco-pleural muscle with uncertain
function. Muscle originates from the posterolateral area of the mesepisternum and inserts on the

tip of the free distal portion of the mesofurcal arm.

Ilpcm4, M. propleuro-coxalis posterior (Fig. 4d) [VAR: variation coded into character 10 (Fig.

10), below]: lateral promotor of the mesocoxa. Muscle origin branched (Fig. 8¢) or not (Fig. 4d),
located laterally on the mesepisternum; insertion located laterally on the mesocoxal base. The
variation of origin point of IIpem4 suggests multiple independent changes in Apoidea, further
suggesting a complex evolution of this muscle. This variation was already described by Wille

(1956), although not coded as character and character states.
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Iscml, M. mesofurca-coxalis anterior (Fig. 4c) [VAR: variation coded into character 11 (Fig.

10), below]: medial promotor of the mesocoxa. Muscle that originates posteroventrally from the
mesodiscrimenal lamella and inserts antero- (Fig. 4c) or mediolaterally (Fig. 8f) on the mesocoxal
base. In bees, the muscle consistently inserts anterolaterally on the mesocoxa, a feature also

observed in the bembicid species but not in the other two apoid wasps studied.

Ildvim6, M. mesocoxa-subalaris (Figs. 4c-d) [INVAR]: lateral remotor of the mesocoxa. Slender

muscle that originates posterolaterally from the mesocoxal base and inserts on the mesosubalar

sclerite.

IIscm2, M. mesofurca-coxalis posterior (Fig. 4c) [INVAR]: medial remotor of the mesocoxa.

Muscle that originates anteroventrally from the mesodiscrimenal lamella of the mesofurca and

inserts posteromedially on the base of the mesocoxa.

IIscm6, M. mesofurca-trochanteralis (Fig. 4c) [VAR: variation coded into character 12 (Fig. 10),

below]: thoracic depressor of the mesotrochanter. Broad muscle with origin restricted to the
coalesced furcal arms (Fig. 4c) or also reaching free basal portion of mesofurcal arms (Fig. 8a).
Insertion located on the depressor tendon of the trochanter. The morphology of IIscm6 observed
in M. quadrifasciata, in which this muscle is restricted to the coalesced furcal arms, is interpreted

as an autapomorphy of that species.

HIdlml, M. mesophragma-metaphragmalis (Fig. 6a) [INVAR]: retractor of the mesophragma.
Longitudinal muscle of the mesophragma that originates from the propodeal ridge and inserts on

the posterior surface of the mesophragma.

HItpmS5, M. metanoto-pleuralis medialis (Fig. 4a) [INVAR]: one of the hindwing elevators.

Muscle that originates from the free distal portion of the metafurcal arm and dorsal metafurcal

lamella and inserts on the dorsolateral metanotal area.
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HlItpm6. M. metanoto-pleuralis posterior (Fig. 4a) [INVAR]: one of the hindwing elevators.

Muscle that originates from the dorsal metafurcal lamella and inserts on the tip of the dorsolateral

metanotal area.

HIdvml, M. metanoto-sternalis (Fig. 4a) [INVAR]: one of the hindwing elevators. Tergosternal

muscle of the metathorax that originates from the dorsolateral metanotal area and inserts on the

filamentous process of the free distal portion of the metafurcal arm.

HItpm7, M. metanepisterno-axillaris (Fig. 4a, b) [INVAR]: flexor of the hindwing. Broad muscle

with its origin located on the anterior inflection of the metepisternum and the insertion located on

the third metaaxillary sclerite.

HIspml, M. metapleura-sternalis (Fig. 4b) [INVAR]: depressor of the metabasalar sclerite.

Muscle arising from the ventral region of the metapectus and inserting on the metabasalar sclerite.

HItpml11, M. metapleura-subalaris (Fig. 4b) [INVAR]: depressor of the metasubalar sclerite.

Muscle arising from the anterior inflection of the metapectus and inserting on the metasubalar

sclerite.

HlIpcm4, M. metanepisterno-coxalis posterior (Fig. 5c-d) [INVAR]: lateral promotor of the

metacoxa. Muscle that originates broadly from the intercoxal lamella and the metapleural ridge

and inserts anterolaterally on base of the metacoxa.

HIdvm6, M. metacoxa-subalaris (Fig. 5a-c) [INVAR]: lateral remotor of the metacoxa. Muscle of

the metathorax originating posterolaterally from the metacoxal base and inserting on the

metasubalar sclerite.

HlIscml, M. metafurca-coxalis anterior (Fig. 5b-d) [VAR: variation coded into character 13 (Fig.

10), below]: medial promotor of the metacoxa. Broad muscle that originates from the intercoxal

lamella, reaching (Fig. 5b-d), or not (Fig. 9a), the free basal portion of the metafurcal arms and
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inserting anteriorly on the metacoxal base. The morphology of IlIscml1 reaching the free basal

portion of the metafurcal arms is observed in bees and Steniolia duplicata (Bembicidae).

HIscm2, M. metafurca-coxalis posterior (Fig. 5a) [VAR: variation coded into character 14 (Fig.

10), below]: posterior remotor of the metacoxa. Muscle that originates from the free basal portion
of the metafurcal arm, sometimes extending to the coalesced furcal arms (Fig. 9b) or not (Fig. 5a),
and inserts posteriorly on the metacoxal base. The morphology of IlIIscm2 observed in all
members of Andrenidae, Colletidae, and Halictidae, in which this muscle origin extends to the

coalesced furcal arms, is likely a synapomorphy of the clade formed by these three bee families.

HIsem3, M. metafurca-coxalis medialis (Fig. 5¢) [VAR: variation coded into character 15 (Fig.

10), below]: medial remotor of the metacoxa. Muscle that originates from the metadiscrimenal
lamella, sometimes extending to the free basal portion of the metafurcal arms (Fig. 5¢) or not (Fig.
9¢), and inserts posteromedially on the metacoxal base. The morphology of IIIscm3 reaching the

free basal portion of the metafurcal arms observed in all bees and 7. lactitarse (Crabronidae).

HIscm6, M. metafurca-trochanteralis (Fig. 5a-b) [INVAR]: thoracic depressor of the

metatrochanter. Muscle that originates from the posterior surface of the mesofurcal bridge and

coalesced furcal arms and inserts on the depressor tendon of the metatrochanter.

HIvomm, M. metafurca-abdominosternalis medialis (Fig. 6a) [VAR: variation coded into

character 16 (Fig. 10), below]: medial depressor of the abdomen. Muscle that originates from the
free basal portion of the metafurcal arm, sometimes extending to the coalesced furcal arms (Fig.
6a) or not (Fig. 9d), inserting medially on the first metasomal segment. While its insertion remains
consistent across species, its origin varies in 7. fiebrigi, S. quadripunctata, A. mellifera, and H.
carinata, extending to the coalesced furcal arms, whereas in the remaining analyzed species, it is
restricted to the free basal portion of the metafurcal arm. This variation was already described by

Wille (1956), although not coded as character and character states.

HIvolm, M. metafurca-abdominosternalis lateralis (Fig. 6b) [VAR: variation coded into character

17 (Fig. 10), below]: ventral lateromotor of the abdomen. Muscle that originates from the
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metadiscrimenal lamella and inserts on the sternum of the first metasomal segment. While its
insertion remains consistent across species, its origin varies: in Apidae and Oxaeinae, it is
positioned anteriorly (Figs. 6b, 9¢) on the metadiscrimenal lamella, whereas in all remaining

species, it is located posteriorly (Fig. 9f).

ldomm, M. tergo-tergalis orthomedialis (Fig. 6¢) [INVAR]: medial elevator of the abdomen.

Muscle that originates broadly from the anterior wall of the propodeum and inserts medially on

the constricted margin of the first metasomal tergum.

ldolm, M. tergo -tergalis ortholateralis (Fig. 6d) [INVAR]: dorsal lateromotor of the abdomen.

Muscle that originates from the lateral wall of the propodeum and inserts laterally on the anterior

margin of the first metasomal tergum.

IAspim1, M. spiracularis [ superior (Fig. 6¢) [INVAR]: occlusor of the propodeal spiracle. Muscle

of the propodeal spiracle, originating from the sclerotized area above the propodeal spiracle and

inserting on the sclerotized area below the propodeal spiracle.

IAspim2, M. spiracularis I posterior (Fig. 6¢) [INVAR]: dilator of the propodeal spiracle. Muscle

of the propodeal spiracle originating from the small metapleural coxal process and inserting on the

sclerotized area below the propodeal spiracle.

Character statements

Below are described the 17 morphological characters and their respective states derived from the
extrinsic mesosomal musculature of bees, which were scored for the 13 species of Apoidea (ten
bee and three wasp species) (Table S2). These characters summarize the overall morphological
variation described in the previous section and are interpreted in a phylogenetic context being

optimized onto a phylogenetic hypothesis for bees.

01. Origin of Idlm1: (0) dorsolaterally at the prophragma (Fig. 7a); (1) dorsomedially at the
prophragma (Fig. 2a-b).
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02. Origin of Ivim3: (0) ventrally at the posterior profurcal branch (Fig. 7b); (1) dorsally at the

posterior profurcal branch (Fig. 2c).

03. Origin of Ivim7: (0) broadly at the mesofurcal bridge (Figs. 3d, 4c, 8d); (1) narrowly, restricted
to the ventral margin of the mesofurcal bridge (Fig. 7c).

04. Insertion of Ivim7: (0) single, at the posterior face of the profurcal arm (Fig. 7¢); (1) two, at
the posterior face of the profurcal arm (Fig. 7d).

05. Origin of Idvm18: (0) laterally at the pronotum (Fig. 7a); (1) dorsolaterally at the pronotum
(Fig. 2a).

06. Origin of Iscm5: (0) restricted to the horizontal plate of the meso-metafurca (Figs. 4d, 7c, 8d);

(1) reaching the free basal portion of the mesofurcal arms (Fig. 8a).

07. Insertion of IIIdlm3: (0) medially at the anterior margin of the internal metanotal ridge (Fig.
71); (1) laterally at the anterior margin of the internal metanotal ridge (Fig. 3b).

08. Origin of IItpm7b and IItpm7¢: (0) separated by the mesepisternal ridge (Fig. 8b); (1) not
separated by the mesepisternal ridge (Figs. 4a, 8c).

09. Origin of IIspml: (0) at the anterior margin of the mesopectus (Fig. 8c); (1) at the anterior

margin of the mesopectus and at the subalar area (Figs. 4a, 8b).

10. Origin of IIpcm4: (0) branched (Fig. 8e); (1) not branched (Fig. 4d).

11. Insertion of IIsem1: (0) anterolateral (Fig. 4c); (1) mediolateral (Fig. 8f).

12. Origin of IIscmé6: (0) restricted to the coalesced furcal arms (Fig. 4c); (1) reaching the free

basal portion of the mesofurcal arms (Fig. 8a).
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13. Origin of IIsem1: (0) reaching the free basal portion of metafurcal arms (Fig. 5b-d); (1)

restricted to the metadiscrimenal lamella (Fig. 9a).

14. Origin of IIIsecm2: (0) reaching the coalesced furcal arms (Fig. 9b); (1) restricted to the free
basal portion of the metafurcal arms (Fig. 5a).

15. Origin of IIsem3: (0) reaching the free basal portion of metafurcal arms (Fig. 5c); (1)

restricted to the metadiscrimenal lamella (Fig. 9c¢).

16. Origin of Illvomm: (0) broadly at the free distal portion of metafurcal arm (Fig. 9d); (1) at the

free distal portion of metafurcal arms and coalesced furcal arms (Fig. 6a).

17. Origin of IlIvelm: (0) anteriorly at the metadiscrimenal lamella (Figs. 6b, 9¢); (1) posteriorly

at the metadiscrimenal lamella (Fig. 9f).

DISCUSSION

The mesosoma, a critical theracic region in bees, exhibits remarkable structural conservation
across this diverse insect group, as first highlighted by Wille (1956). In his seminal work, Wille
(1956) explored the evolutionary trends of ten key thoracic muscles, providing insights into their
morphological consistency and variation. These muscles include the lateral promotor of the middle
coxa (herein IIpcm4, M. propleuro-coxalis posterior; coded as character 10), the pleurotergal
muscle of the mesothorax (herein IItpm5, M. mesonoto-pleuralis medialis; showing no significant
variation in this study), the median depressor of the abdomen (herein IIlvomm, M. metafurca-
abdominosternalis medialis; coded as character 16), the lateral promotor of the hind coxa (herein
IIIpcm4, M. metanepisterno-coxalis posterior; lacking notable variation here) and the mesal
remotor of the hind coxa (herein IIIsem2, M. metafurca-coxalis posterior, and IIIscm3, M.
metafurca-coxalis medialis; where variation aligns with broader patterns of Hymenoptera,
following Meira et al. [2024]). This study builds on Wille’s (1956) findings, revealing that only
16 of 58 mesosomal muscle groups exhibit substantial variation across 10 bee and three apoid

wasp taxa, reflecting a balance between phylogenetic conservatism and functional adaptation.
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The limited variation, primarily in muscle origin points, underscores the mesosoma’s
evolutionary stability, with insertion points remaining highly conserved. This pattern suggests that
origin points are less functionally constrained, allowing evolutionary flexibility without
compromising muscle function, as the insertion point primarily dictates movement mechanics
(Snodgrass, 1935). One notable pattern of variation is observed in the muscle Idlm1. In bees, the
muscle origin is either dorsomedially or dorsolaterally positioned on the prophragma, while apoid
wasps consistently exhibit a dorsolateral origin. Among the examined stingless bee species, M.
quadrifasciata, T. fiebrigi, and S. quadripunctata (Apidae: Meliponini), the dorsomedial origin
appears to be a shared derived feature, suggesting a synapomorphy (char: 1, state: 1; Fig. 2a-b, 10)
for the tribe. Conversely, other bee taxa have a lateral origin (char: 1, state: 0; Fig. 7a, 10),
indicating independent evolutionary shifts in Idlm1. Aibekova et al. (2022) noted that variations
in thoracic muscle origins are likely linked to specific functional demands, such as movements of
the head and the mesosomal appendages, further supporting the idea that the observed differences
in Idlm1 may reflect both phylogenetic history and biomechanical adaptations. These evolutionary
morphological changes also support the findings of Vilhelmsen et al. (2010), when noting that
mesosomal musculature can indicate both evolutionary history and functional adaptations.

Similarly, the variation in the muscle group Ivim3 suggests significant phylogenetic
implications. While most bees exhibit a dorsal origin (char: 2, state: 1; Fig. 2c, 10), both andrenid
species, as well as O. divaricatus [Halictidae] and H. carinata [Melittidae] retain a ventral origin
(char: 2, state: 0; Fig. 7b, 10). This distribution suggests that the dorsal attachment may represent
an ancestral condition preserved in specific lineages, whereas the ventral origin likely evolved
independently in other groups. The ventral origin likely represents a derived condition, as
interpreted by Vilhelmsen (2000b), potentially facilitating stronger head depression movements,
such as those associated with certain foraging or ground-nesting behaviors. The dorsal origin,
conversely, may enhance head flexibility as well as biomechanical demands for varied head
positioning (Dudley, 2000).

Based on our results, apoid wasps and bees differ in the morphology of the Ivim7. The
extent of variation in Apoidea remains unexplored, but we sampled representatives of three taxa
that represent at least a fraction of the diversity of apoid wasps. While most taxa exhibit a broad
attachment to the mesofurcal bridge (char: 3, state: 0; Figs. 3d, 4c, 8d, 10), the species 4. mellifera
and T. fiebrigi display a restricted ventral attachment (char: 3, state: 1; Fig. 7c, 10). The restricted
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ventral attachment could be linked to an enhancement of the thoracic rigidity, supporting the high-
frequency wing beats (Dickinson, 2006). Additionally, Ivim7 can have one (char: 4, state: 0; Fig.
7e, 10) or two (char: 4, state: 1; Fig. 7d, 10) insertions in bees, suggesting biomechanical
adaptations for enhanced propectus retraction, potentially aiding in precise leg movements during
nesting or pollen collection (Michener, 2007).

The metathoracic muscle IIIsem2 (M. metafurca-coxalis posterior) exhibits a
phylogenetically informative pattern, with an extended origin to the coalesced furcal arms in
Andrenidae, Colletidae, and Halictidae (char: 14, state: 0; Fig. 9b, 10), which supports their closer
evolutionary relationship (Almeida et al., 2023). This configuration likely enhances coxal stability,
which is critical for the rapid, agile flight of these families, as they often forage in open habitats
(Roubik, 1989). In contrast, the restricted origin in other bees and apoid wasps (char: 14, state: 1;
Fig. 5a, 10) may reflect adaptations for less dynamic flight patterns, as seen in Megachilidae, which
prioritize load-carrying for nest provisioning (Michener, 2007). Similarly, IIIvolm (M. metafurca-
abdominosternalis lateralis) shows an anterior origin in Apidae and O. flavescens (char: 17, state:
0; Figs. 6b, 9e, 10), potentially improving metasomal flexibility for pollen transport or nest
manipulation, contrasting with the posterior origin in other taxa (char: 17, state: 1; Fig. 91, 10).

The muscle ITpem4 (M. propleuro-coxalis posterior) exhibits a branched origin in some
lineages (char: 10, state: 0; Fig. 8e, 10), transitioning from fan-shaped to V-shaped forms, as noted
by Wille (1956). This branching likely increases muscle force distribution, supporting the powerful
leg movements required for digging in ground-nesting bees, like Andrenidae or Halictidae
(Michener, 2007). The not-branched form (char: 10, state: 1; Fig. 4d, 10) in other lineages may
favor streamlined leg motion (Dickinson, 2006), suitable for hovering or precise landing. Changes
of IIpcm4 in unrelated bee lineages suggest that biomechanical demands may drive morphological
variation even more than the degree of phylogenetic proximity.

The absence of separation between IItpm7b and IItpm7¢ by the mesepisternal ridge in
bees (char: 8, state: 1; Figs. 4a, 8c, 10) is a potential synapomorphy, distinguishing them from
most apoid wasps. This fused configuration may enhance wing flexor efficiency, supporting
sustained flight (Dudley, 2000), as observed in behaviors as hovering and foraging on flowers. In
contrast, the separated configuration in apoid wasps (char: 8, state: 0; Fig. 8b, 10) likely may

reflects their predatory lifestyle, requiring rapid and powerful wing movements (Chapman, 2013).
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Several autapomorphies have been identified within specific taxa. In 4. mellifera, unique
features include the lateral origin of the muscle group Idvm18 (char: 5, state: 0; Fig. 7a, 10), the
restricted origin of the muscle group IIspml to the anterior area of the mesepisternum (char: 9,
state: 0; Fig. 8c, 10) and the medial insertion of IIldIm3 (char: 7, state: 0; Fig. 7e, 10). In L. huberi,
the extension of the origin of IsemS to the free basal portion of the mesofurcal arms (char: 6, state:
1; Fig. 8a, 10) highlight species-specific adaptations. The restricted origin point of IIscmé6 (char:
12, state: 0; Fig. 4c, 10) in M. quadrifasciata is suggested to be another autapomorphy. Such
autapomorphies underscore the importance of detailed analyses of the skeletomusculature for
understanding evolutionary differentiation, as emphasized by Vilhelmsen et al. (2010).

These morpho-functional patterns suggest that mesosomal musculature variations are not
randomly distributed, but may have been shaped by ecological and biomechanical demands. For
example, muscle configurations supporting head mobility (Idlm1, Ivim3) may enhance foraging
efficiency in diverse habitats, while those affecting coxal and metasomal movement (IIIscm?2,
IIIvolm) likely to enhance flight and nest building behaviors. Future studies integrating
biomechanical modeling and kinematic analyses could further elucidate how these variations

influence flight dynamics, pollen collection, or nest construction.

CONCLUSION

This study elucidates the phylogenetic significance of mesosomal musculature in bees by
examining 10 bee species and three apoid wasp taxa, revealing distinct patterns of variation within
a largely conserved anatomical framework. Of the 58 muscle groups analyzed, only 16 exhibit
significant variation, primarily in origin points, with the prothoracic (€:g.; Idlm1; Ivim3) and
metathoracic (€.g., IlIsem2; IIlvolm) muscles proving most informative. Some synapomorphies,
such as the dorsomedial Idlm1 in Meliponini and the extended IIIscm2 in Andrenidae, Colletidae,
and Halictidae, underscore close phylogenetic relationships within these lineages, while the fused
IItpm7b and IItpm7¢ of bees distinguish them from their close relatives in the Apoidea. These
variations suggest biomechanical adaptations for flight, foraging, and nesting, as required by
ground-nesting bees, highlighting functional specialization. The detailed character systems
established here provide a foundation for phylogenetic interpretations of the variation in the
mesosomal musculature of bees. Expanding taxonomic sampling in the future will likely enhance

our understanding of mesosomal evolution and its impact on the diverse ecological strategies that
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contribute to the evolutionary success of bees and apoid wasps. Moreover, future research
employing advanced techniques, such as micro-computed tomography, will undoubtedly help

improve our knowledge of muscular variation in Apoidea.
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Figure 1

Morphological diversity of Apoidea

Morphological diversity of Apoidea represented by a sample of 13 species analyzed in this
comparative research of the mesosomal skeletomuscular morphology. Bees were the main
focus of the investigation and were represented by 10 species: (a) Oxaea flavescens, female
and (b) Psaenythia bergii, female [Andrenidael; (c) Apis mellifera, female worker (d) Melipona
quadrifasciata, female worker, (e) Schwarziana quadripunctata, female worker, and (f)
Tetragonisca fiebrigi, female worker [Apidae]; (g) Tetraglossula anthracina, female
[Colletidae]; (h) Oragapostemon divaricatus, female [Halictidae]; (i) Hesperapis carinata,
male [Melittidae], (j) Lithurgus huberi, female [Megachilidae]; complemented by three apoid
wasps: (k) Steniolia duplicata, female [Bembicidae], (1) Trachypus boharti, female

[Philantidae], and (m) Trypoxylon lactitarse, female [Crabronidae]. Scale bar = 5 mm.
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Figure 2

Prothoracic skeletomusculature

Prothoracic skeletomusculature of Melipona quadrifasciata: (a) muscles associated with the
profurca, pronotum, and propleura—posterolateral view of the head; (b) muscles associated
with the head and propectus—dorsal view of propectus; (c) muscles associated with the
propectus—dorsal view of propectus; (d) muscles associated with the propleura—dorsal view
of propleura; (e) muscles associated with propectus—dorsal view of propectus; (f) muscles
associated with propectus and procoxa—posterior view of propectus. Muscle labels are
displayed in bold and larger font to differentiate them from labels applied to sclerites and
body regions; photomicrographs not to scale. Stars indicate structure orientation according

to three axes: anterior-posterior, dorsal-ventral, and left-right.
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Figure 3

Mesothoracic skeletomusculature

Mesothoracic skeletomusculature of Melipona quadrifasciata: (a) indirect flight
muscles—dorsal view of mesosoma; (b) scutoscutellar muscles—ventral view of
mesoscutellum; (c) first spiracular muscles—anterior view of mesepisternum; (d) muscles
associated with the meso/metafurca—anterior view of the meso/metafurca. Muscle labels are
displayed in bold and larger font to differentiate them from labels applied to sclerites and
body regions; photomicrographs not to scale Stars indicate structure orientation according to

three axes: anterior-posterior, dorsal-ventral, and left-right.
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Figure 4

Direct flight muscles and mesocoxal skeletomusculature

Direct flight muscles and mesocoxal skeletomusculature of Melipona quadrifasciata : ( a)
muscles associated with the mesoaxillary sclerites—mesal view of the mesepisternum; b)
muscles associated with the metaaxillary sclerites—mesal view of the metapectus; c)
mesocoxal muscles associated with the meso/metafurca—anterior view of the metafurca; d)
pleural muscles associated with the meso/metafurca—anterior view of the meso/metafurca.
Muscle labels are displayed in bold and larger font to differentiate them from labels applied
to sclerites and body regions; photomicrographs not to scale. The star depicted in (a)
indicates structure orientation according to three axes: anterior-posterior, dorsal-ventral,

and left-right. All figures oriented according to the star depicted in (a).
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Figure 5

Metacoxal muscles

Metacoxal muscles of Melipona quadrifasciata : ( a), (b), (c), (d) metacoxal muscles
associated with the meso/metafurca—dorsal view of the metafurca. Muscle labels are
displayed in bold and larger font to differentiate them from labels applied to sclerites and
body regions; photomicrographs not to scale. The star depicted in (a) indicates structure

orientation according to two axes: anterior-posterior and left-right.

mesofurcal bridge free basal portion of
metafurcal arms

coalesced furcal arms free distal portion of
metafurcal arms

coalesced furcal arms

free distal portion of
metafurcal arms

mesofurcal pﬁdge —-
i FAES_—

liscm6—gg — Wl N L — Iiiscmé6
i e | . ' ; He8 SN ; —=— - TR liisem1

] ¥ 'l L= . 3 F 4 r-
llldvmé = = = 3 = ’ — Illdvm6

coxa

e D re oy il . s e F = coalesced furcal arms
lliscm3 2z free distal portion of

intercoxal lamella —

T metafurcal arms
— intercoxal lamella
lilscm1 _ Eﬁltgﬁéscnmenal
Illpecmé4 —— Lt TR — ——————lliscm1
llidvme : By — \ Ny lllpcmd

coxa

Peer] reviewing PDF | (2025:08:124653:0:1:NEW 5 Sep 2025)



PeerJ Manuscript to be reviewed

Figure 6

Propodeal muscles

Propodeal muscles of Melipona quadrifasciata : (-a) propodeal muscles associated with the
metafurca—dorsal view of metafurca; (b) propodeal muscles associated with
metafurca—dorsolateral view of metafurca; (c) propodeal and spiracular muscles associated
with the propodeum—medial view of the propodeum; (d) propodeal muscles—dorsal view of
the metafurca. Muscle labels are displayed in bold and larger font to differentiate them from
labels applied to sclerites and body regions; photomicrographs not to scale. Stars indicate
structure orientation according to three axes: anterior-posterior, dorsal-ventral, and

left-right.
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Figure 7

Variation of thoracic skeletomusculature: Part 1

Photomicrographs of dissections of female representatives of Apoidea: (a) Apis mellifera,
anterior view of the propectus; (b) Oxaea flavescens, dorsal view of the propectus; (c) Apis
mellifera, anterior view of the mesosoma; (d) Lithurgus huberi, lateral view of the profurca;
(e) Trypoxylon lactitarse, posterolateral view of the prospectus; (f) Apis mellifera, ventral
view of mesoscutellum. Arrowheads indicate morphological conditions coded as character
states. Stars indicate structure orientation according to three axes: anterior-posterior,

dorsal-ventral, and left-right.
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Figure 8

Variation of thoracic skeletomusculature: Part 2

Dissections of female representatives of Apoidea: (a) Lithurgus huberi, anterolateral view of
the meso/metafurca; (b) Trypoxylon lactitarse, mesal view of the mesepisternum; (c) Apis
mellifera, mesal view of the mesepisternum; (d), Hesperapis carinata, anterior view of the
mesosoma; (e) Psaenythia bergii, mesal view of the mesepisternum; (f) Trachypus boharti,
anterolateral view of meso/metafurca. Arrowheads indicate morphological conditions coded
as character states. Stars indicate structure orientation according to three axes:

anterior-posterior, dorsal-ventral, and left-right.
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Figure 9

Variation of thoracic skeletomusculature: Part 3

Dissections of female representatives of Apoidea: (a) Trachypus boharti, dorsolateral view of
the propodeum; (b) Psaenythia bergii, dorsal view of the propodeum; (c) Trachypus boharti,
dorsal view of the propodeum; (d) Apis mellifera dorsal view of the propodeum; (e) Apis
mellifera, dorsal view of the propodeum; (f) Trachypus boharti, dorsal view of the
propodeum. Arrowheads indicate morphological conditions coded as character states. Stars

indicate structure orientation according to two axes: anterior-posterior and left-right.
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Figure 10

Phylogenetic interpretation of variation in the skeletomusculature of the mesosoma

Phylogenetic relationships among the 13 species of Apoidea investigated in this research
follow Almeida et al. (2023) for relationships among bee taxa and Sann et al. (2018) for the
three apoid wasp lineages. Evolutionary changes of 13 characters encoding variation in the
skeletomusculature of the mesosoma were phylogenetically optimized onto the tree. Filled
circles indicate unique transformations, while empty circles signify non-unique
transformations; numbers above the circles denote character numbers, and those below
indicate their apomorphic character states; ambiguous changes only recovered with
accelerated transformation (ACCTRAN) are indicated by stars above their character numbers.
Photographs on the left are not to scale and serve to illustrate the general appearance of

each taxon (see Figure 1 for more details).
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