

First submission

Guidance from your Editor

Please submit by **25 Sep 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

10 Figure file(s)

1 Table file(s)

1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. Basic Reporting
- 2. Study design
- 3. Validity of the findings
- 4. General Comments
- 5. Confidential notes to the editor

• You can also annotate the review pdf and upload it as part of your review (optional).

 You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

Article types: Research and AI Application

BASIC REPORTING

Include the appropriate criteria template based on the type variable

Clear and unambiguous, professional English used throughout.

The article must be written in English and must use clear, unambiguous, technically correct text. The article must conform to professional standards of courtesy and expression.

Literature references, sufficient field background/context provided.

The article should include sufficient introduction and background to demonstrate how the work fits into the broader field of knowledge. Relevant prior literature should be appropriately referenced.

Professional article structure, figures, tables. Raw data shared.

The structure of the article should conform to an acceptable format of 'standard sections' (see our Instructions for Authors for our suggested format). Significant departures in structure should be made only if they significantly improve clarity or conform to a discipline-specific custom.

Figures should be relevant to the content of the article, of sufficient resolution, and appropriately described and labeled.

All appropriate raw data have been made available in accordance with our Data Sharing policy.

Self-contained with relevant results to hypotheses.

The submission should be 'self-contained,' should represent an appropriate 'unit of publication', and should include all results relevant to the hypothesis.

Coherent bodies of work should not be inappropriately subdivided merely to increase publication count.

EXPERIMENTAL DESIGN

Original primary research within [Aims and Scope](#) of the journal.

Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.

The submission should clearly define the research question, which must be relevant and meaningful. The knowledge gap being investigated should be identified, and statements should be made as to how the study contributes to filling that gap.

Rigorous investigation performed to a high technical & ethical standard.

The investigation must have been conducted rigorously and to a high technical standard. The research must have been conducted in conformity with the prevailing ethical standards in the field.

Methods described with sufficient detail & information to replicate.

Methods should be described with sufficient information to be reproducible by another investigator.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

Decisions are not made based on any subjective determination of impact, degree of advance, novelty or being of interest to only a niche audience. We will also consider studies with null findings. Replication studies will be considered provided the rationale for the replication, and how it adds value to the literature, is clearly described. Please note that studies that are redundant or derivative of existing work will not be considered. Examples of "acceptable" replication may include software validation and verification, i.e. comparisons of performance, efficiency, accuracy or computational resource usage.

All underlying data have been provided; they are robust, statistically sound, & controlled.

The data on which the conclusions are based must be provided or made available in an acceptable discipline-specific repository. The data should be robust, statistically sound, and controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

The conclusions should be appropriately stated, should be connected to the original question investigated, and should be limited to those supported by the results. In particular, claims of a causative relationship should be supported by a well-controlled experimental intervention. Correlation is not causation.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Comparative anatomy of the thoracic muscles of bees (Hymenoptera: Apoidea)

Odair M. Meira ^{Corresp., 1}, Eduardo A. B. Almeida ¹

¹ Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

Corresponding Author: Odair M. Meira
Email address: meiramodair@gmail.com

Bees exhibit remarkable anatomical diversity, with phenotypic traits that reflect broad evolutionary patterns and specific adaptations. Understanding these patterns requires examining key anatomical features, such as thoracic musculature, which drives morpho-functional variation and underscores their extensive phenotypic diversity. The thorax (or 'mesosoma,' as it can be referred to in the context of bees and other ~~aculeate~~ Hymenoptera) serves as a locomotion center housing muscles responsible for leg, wing, and ~~intertagmatal articulation~~ movements. Despite the role of the thoracic musculature in the flight mechanics of bees, detailed comparative studies are limited to accounts of ~~individual species~~ or small subsets of muscles, leaving gaps in understanding muscular variation and phylogenetic significance. To address this, we conducted detailed dissections of 13 species, representing six bee families (Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae, and Melittidae) and ~~three~~ apoid wasp taxa (Bembicidae, Crabronidae, Philanthidae), selected to capture a broad range of morphological and phylogenetic diversity. Our results revealed high conservation in mesosomal musculature, with only 16 of 58 muscle groups showing significant variation, primarily in origin points, suggesting a balance between functional constraints and evolutionary flexibility in muscle attachment. Phylogenetically relevant changes were investigated by coding 17 morphological characters, revealing potential synapomorphies for bees or certain lineages. These include the dorsomedial origin of *Idlm1* (*M. prophragma-occipitalis*) in Meliponini, as evident in species such as *Melipona quadrifasciata* and *Tetragonisca fiebrigi*, suggesting a shared derived trait for this tribe. Additionally, the extended origin of *Ilscm2* is observed in Andrenidae, Colletidae, and Halictidae, indicating closer evolutionary relationships among these families. Bee-specific modifications, including the non-separation of *Iltpm7b* and *Iltpm7c* by the mesepisternal ridge, distinguished bees from most apoid wasps, interpreted here as a potential synapomorphy for bees. Additional variations, such as the ventral origin of *Ivlm3* in select lineages and the branched morphology of *Ilpcm4*, suggest independent evolutionary shifts potentially linked to biomechanical demands. These findings

underscore the evolutionary stability and phylogenetic value of bee mesosomal musculature, revealing a conserved framework punctuated by lineage-specific adaptations that may correlate with ecological traits.

1 **Comparative anatomy of the thoracic muscles of bees (Hymenoptera: Apoidea)**

2

3 Odair M. Meira^{1*} & Eduardo A. B. Almeida¹

4

5 ¹ Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, FFCLRP,
6 Universidade de São Paulo. Ribeirão Preto, SP. Brazil.

7

8 Corresponding author:

9 Odair Meira. Departamento de Biologia, FFCLRP, Universidade de São Paulo. Av.

10 Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901. Brazil

11 E-mail address: meiramodair@gmail.com

12

13 ABSTRACT

14 Bees exhibit remarkable anatomical diversity, with phenotypic traits that reflect broad
15 evolutionary patterns and specific adaptations. Understanding these patterns requires examining
16 key anatomical features, such as thoracic musculature, which drives morpho-functional variation
17 and underscores their extensive phenotypic diversity. The thorax (or 'mesosoma,' as it can be
18 referred to in the context of bees and other aculeate Hymenoptera) serves as a locomotion center
19 housing muscles responsible for leg, wing, and intertagmatal articulation movements. Despite the
20 role of the thoracic musculature in the flight mechanics of bees, detailed comparative studies are
21 limited to accounts of individual species or small subsets of muscles, leaving gaps in understanding
22 muscular variation and phylogenetic significance. To address this, we conducted detailed
23 dissections of 13 species, representing six bee families (Andrenidae, Apidae, Colletidae,
24 Halictidae, Megachilidae, and Melittidae) and three apoid wasp taxa (Bembicidae, Crabronidae,
25 Philanthidae), selected to capture a broad range of morphological and phylogenetic diversity. Our
26 results revealed high conservation in mesosomal musculature, with only 16 of 58 muscle groups
27 showing significant variation, primarily in origin points, suggesting a balance between functional
28 constraints and evolutionary flexibility in muscle attachment. Phylogenetically relevant changes
29 were investigated by coding 17 morphological characters, revealing potential synapomorphies for
30 bees or certain lineages. These include the dorsomedial origin of Idlm1 (M. prophragma-
31 occipitalis) in Meliponini, as evident in species such as *Melipona quadrifasciata* and *Tetragonisca*
32 *fiebrigi*, suggesting a shared derived trait for this tribe. Additionally, the extended origin of IIIscm2

33 is observed in Andrenidae, Colletidae, and Halictidae, indicating closer evolutionary relationships
34 among these families. Bee-specific modifications, including the non-separation of IItpm7b and
35 IItpm7c by the mesepisternal ridge, distinguished bees from most apoid wasps, interpreted here as
36 a potential synapomorphy for bees. Additional variations, such as the ventral origin of Ivlm3 in
37 select lineages and the branched morphology of IIpcm4, suggest independent evolutionary shifts
38 potentially linked to biomechanical demands. These findings underscore the evolutionary stability
39 and phylogenetic value of bee mesosomal musculature, revealing a conserved framework
40 punctuated by lineage-specific adaptations that may correlate with ecological traits.

41

42 **KEYWORDS:** Apidae, flight, mesosoma, morphology, systematics.

43

44 **INTRODUCTION**

45 Like other arthropods, bees have their bodies covered by a chitinous exoskeleton featuring
46 articulated parts that are moved internally by specialized muscles with well-defined attachment
47 points (Snodgrass, 1927, 1935). The roles played by these muscles, in coordination with their
48 cuticular attachment points, vary across body regions, reflecting regional specialization that makes
49 each tagma suited for specific tasks, with differing degrees of musculature specialization
50 (Snodgrass, 1935). The prominent **thorax** of a bee is the main tagma responsible for movement,
51 because it has two pairs of wings and three pairs of legs attached to it, as is also the case in other
52 flying insects (Snodgrass, 1927, 1935; Matsuda, 1970), whereby muscles play a crucial role in
53 fulfilling the demands of flight (Dudley, 2000; Dickinson, 2006; Iwamoto, 2011). In **aculeate**
54 Hymenoptera, such specialization is especially pronounced: the enlargement of the mesothorax
55 correlates with the activity of indirect flight muscles, which are essential for rapid wing beats
56 (Chapman, 2013). In these insects, the mesosoma, the thoracic tagma fused to the first abdominal
57 segment, supports complex locomotor adaptations (Vilhelmsen et al., 2010).

58 Classical morphological techniques, especially detailed dissections, remain essential for
59 studying the complex skeleto-muscular system of insects and documenting the muscle structure. In
60 this context, “The skeleto-muscular mechanisms of the honey bee” (Snodgrass, 1942) stands out
61 as a landmark, offering unmatched direct access to muscle attachment points, fiber orientation,
62 and tissue features. Detailed studies made for a single species (e.g., Snodgrass, 1942; Daly 1964;
63 Mikó et al., 2007; Aibekova et al., 2022, 2025), and **comparative investigations** (e.g., Wille, 1956;
64 Matsuda, 1970; Vilhelmsen et al., 2010; Meira & Gonçalves, 2021) have enabled more accurate
65 identification of homologous structures vital for interpreting morphological diversity across taxa
66 of bees and other taxa of Hymenoptera. Recently, traditional methods have been supplemented by
67 modern imaging techniques, such as micro-computed tomography (CT scanning), which provides
68 non-invasive, high-resolution three-dimensional reconstructions of internal anatomy (e.g.,
69 Friedrich & Beutel, 2008; Friedrich et al., 2014; Willsch et al., 2020; Aibekova et al., 2022, 2025;
70 Meira et al., 2024). While CT scanning uncovers details that were previously unreachable without
71 destructive methods, its interpretations rely on the careful foundation set by traditional dissections.
72 Dissections confirm digital imaging by verifying anatomical features and clarifying ambiguities in
73 CT data, ensuring precise identification of muscle groups and their arrangements. The synergy
74 between these approaches, where classical dissections anchor and enhance the reliability of

75 modern imaging, creates a robust knowledge base that underpins comparative research, enabling
76 systematic documentation of anatomical variation across bee lineages and supporting inferences
77 about their functional and evolutionary significance.

78 There are about 21,000 known bee species (Ascher & Pickering, 2020) inhabiting nearly all
79 terrestrial habitats, and exhibiting an impressive size range (Messer, 1984; Michener, 2007) from
80 less than 2 mm (e.g., some *Euryglossina* [Colletidae: Euryglossinae]) to nearly 40 mm (e.g.,
81 *Megachile pluto* [Megachilidae: Megachilini]). Their species diversity is also reflected by a wide
82 variety of shapes, sizes, and life histories (Roubik, 1989; Michener, 2007; Danforth et al., 2019),
83 resulting from the diversification of bees since the early Cretaceous (Almeida et al., 2023). For
84 instance, while flight adaptation is a key feature of winged insects, many bee species thrive in
85 environments with limited light, such as dense vegetation or high-altitude regions, and some have
86 evolved flightlessness (Michener, 2007). Comparing the anatomical variation of thoracic muscles
87 among bees can yield important insights into how these differences relate to their diverse
88 ecological and biological strategies in the future.

89 The investigation of the bee mesosomal skeletomusculature from a comparative perspective
90 to highlight anatomical variation in this complex is limited to a single study, which only examined
91 ten muscles (Wille, 1956). There are between 57 (Snodgrass, 1942) and 58 (Meira et al., 2024)
92 muscle groups in a bee mesosoma (intrinsic mesosomal muscles, plus coxal muscles originating
93 in the mesosoma), meaning that several dozen muscles remain unstudied from a comparative
94 perspective. Recent advances in morphological analysis and the terminological standardization
95 efforts by Meira et al. (2024) have helped align bee morphological terminology with broader
96 developments in Hymenoptera, making further research in this area both timely and essential for
97 expanding our understanding of this system.

98 This study aims to systematically assess and document the diversity of mesosomal muscles
99 across bee lineages, quantifying anatomical variation and exploring its potential functional and
100 phylogenetic significance. By mapping muscular configurations across a taxonomic range, this
101 research aims to determine whether internal mesosomal anatomy exhibits conserved patterns or
102 reflects lineage-specific adaptations. Furthermore, this study contributes to filling a longstanding
103 gap in hymenopteran morphological research by providing a detailed comparative framework for
104 internal thoracic (or mesosomal) musculature in bees.

105

106 **MATERIALS & METHODS**107 *Taxon sampling*

108 Representative specimens of 10 bee species, representing all major lineages of bees were sampled
109 to explore the detailed structure of the mesosomal musculature: *Oxaea flavescens* Klug and
110 *Psaenythia bergii* Holmberg [Andrenidae]; *Apis mellifera* Linnaeus, *Melipona quadrifasciata*
111 Lepeletier, *Schwarziana quadripunctata* (Lepeletier), and *Tetragonisca fiebrigi* (Latreille)
112 [Apidae]; *Tetraglossula anthracina* (Michener) [Colletidae]; *Oragapostemon divaricatus*
113 (Vachal) [Halictidae]; *Lithurgus huberi* Ducke [Megachilidae]; and *Hesperapis carinata* Stevens
114 [Melittidae]. This sampling encompasses a considerable range of morphological variation, with
115 body sizes ranging from 4 to 22 mm (Fig. 1), and phylogenetic diversity that covers all the extant
116 bee diversity (according to current hypotheses, e.g., Almeida et al. [2023]). Three apoid wasps
117 were selected and investigated in detail for comparison with the bee morphology: *Steniolia*
118 *duplicata* [Bembicidae], *Trypoxylon lactitarse* de Saussure, 1867 [Crabronidae], and *Trachypus*
119 *boharti* Rubio-Espina 1975 [Philanthidae]. Voucher specimens of the taxa investigated in this
120 study and the dissected specimens are deposited in the *Coleção Entomológica “Prof.*
121 *J.M.F.Camargo”* (RPSP), Universidade de São Paulo, Ribeirão Preto, Brazil.

122

123 *Preparation of the specimens*

124 The specimens were killed in a cyanide jar and transferred to a vial containing the fixative Dietrich
125 fixative, a formaldehyde-based solution. These specimens remained in Dietrich for about three
126 days, then preserved in absolute ethanol for long-term storage. Ethanol-preserved specimens were
127 stained with B-I₂E (2.5%) for 30 minutes immediately before dissection to ensure optimal muscle
128 visibility. The specimens were washed in 100% ethanol to remove the remaining excess stain and
129 carried to the dissection step for about 30 minutes. The B-I₂E (2.5%) solution is prepared by adding
130 8.33 mL of I₂E (15% w/v) to 25 mL of Phosphate buffer and 16.7 mL of bi-distilled water
131 (modified from Dawood et al., 2021) and the I₂E = alcoholic iodine (15% w/v) solution can be
132 prepared by combining 15 mL of pure I₂ to 100 mL of absolute ethanol (modified from Li et al.,
133 2016). Staining with 2% iodine was used to facilitate muscle visualization. As the iodine staining
134 is not permanent, the procedure was repeated when necessary.

135

136 *Dissection techniques*

137 **Each dissection** began with an incision along the margins of the mesoscutum, which was carefully
138 removed to expose the indirect flight muscles (Fig. 3a). Dissections were performed using
139 microforceps and fine scalpels under a stereomicroscope to preserve delicate muscle attachments.
140 Each muscle was meticulously dissected and photographed, before removal to progressively
141 access deeper structures, documenting muscle attachments to skeletal elements and their spatial
142 arrangements. This systematic documentation ensured a comprehensive record of the structural
143 relationships and morphological details of the musculature. Next, an incision was made to remove
144 the propectus (Fig. 2f), allowing access to the prothoracic musculature, including muscles
145 associated with the forelegs and their articulation with the mesothorax and head. The study then
146 proceeds posteriorly, examining the mesothoracic and metathoracic muscles (Fig. 4), focusing on
147 the intrinsic and extrinsic muscle groups responsible for wing movement and structural support.
148 Throughout this posterior dissection, the gradual removal of muscles continues, ensuring that each
149 newly exposed structure is documented and analyzed *in situ* before proceeding further.

150

151 *Visualization and image acquisition*

152 The musculature was observed in Petri dishes containing absolute ethanol filled with fine sand
153 substrate to prevent the material from moving excessively. We used a Leica M205c
154 stereomicroscope with transmitted and incident light. Images were taken with a Leica DFC450
155 camera using bright field illumination. The stack of images was obtained with Helicon Focus
156 software (Helicon Soft Ltd.).

157

158 *Terminology*

159 The terminology for the muscles and skeleton primarily follows Meira et al. (2024). The propectus
160 is understood as the complex including the propleuron plus prosternum (per Snodgrass, 1942). The
161 function of each muscle group mainly follows the interpretations of Snodgrass (1942), with
162 additions by Mikó et al. (2007) and Vilhelmsen et al. (2010). Additional literature concerning the
163 morphology of the mesosomal extrinsic musculature of several hymenopteran taxa was reviewed
164 to contextualize the findings (Snodgrass, 1942; Vilhelmsen, 2000a, 2000b, Vilhelmsen et al., 2010;
165 Mikó et al., 2007; Friedrich & Beutel, 2008; Willsch et al., 2020; Yoder et al., 2010; Aibekova et
166 al., 2022; Lieberman et al., 2022), as summarized in supplementary Table S1.

167

168 *Character coding and optimization*

169 Based on the comparative study, we ~~built~~ characters, coded as binary, to assess the homology
170 hypotheses implied by the similarities and variations found. The resulting data matrix was
171 **cladistically analyzed** to display the joint phylogenetic signal present therein. Individual character
172 state transformations were estimated using Fitch optimization (Fitch, 1971) in Winclada software
173 version 1.00.08 (Nixon, 2002) under both unambiguous and ACCTRAN schemes, with the latter
174 prioritizing early character transformations consistent with bee phylogeny. For the character
175 transformations, a summary tree including all 10 bee species of this study was prepared in
176 Mesquite (Maddison and Maddison, 2007) by pruning the phylogenetic hypotheses of Almeida et
177 al. (2023) for the 10 species of bees, complemented by the tree of Sann et al. (2018) to represent
178 the three taxa of apoid wasps sampled.

179

180 **RESULTS**181 **DESCRIPTION OF THE SKELETOMUSCULATURE**

182 The variation of the mesosomal musculature of Apoidea is described in detail below based on ten
183 species of bees and three apoid wasps. The exemplars of these 13 taxa that were analyzed in this
184 comparative research have the same number of muscle groups, although variations in size, relative
185 position in relation to other muscles and sclerites, and their position of insertion and/or origin were
186 observed for 16 of 58 studied muscles (intrinsic leg muscles were not studied). In instances where
187 some degree of variation was documented, this is indicated by the “**VAR**” annotation at the muscle
188 description; likewise, if the observed variation was used as the basis for character construction (see
189 next section, below), the character number is indicated too. In contrast, no significant variation
190 was documented for 35 muscle groups, and a concise summary is provided for those too; the lack
191 of variation in such cases is indicated by the “**INVAR**” annotation in the muscle description.

192

193 ***Idlm1*, *M. prophragma-occipitalis*** (Fig. 2a-b) [**VAR**: variation coded into character 1 (Fig. 10),
194 below]: one of the five elevators of the head. It originates dorsomedially or dorsolaterally from the
195 prophragma of bees, but always lateral to **Idlm2** (Figs. 2a, b) and inserts dorsolaterally on the
196 postocciput. All three apoid wasps have *Idlm1* located dorsolaterally on the prophragma, lateral to
197 **Idlm2**, inserting on the dorsolateral areas of the postocciput. There is variation related to the origin
198 point of this muscle (the insertion point does not vary in Apoidea). In *M. quadrifasciata*, *T. fiebrigi*,

199 *S. quadripunctata*, and apoid wasps, the muscle origin is dorsomedially (Fig. 2a-b) located on the
200 prophragma. In contrast, the remaining bees have the muscle origin of **Idlm1** dorsolaterally (Fig.
201 7a) located on the prophragma. The morphology of Idlm1 observed in Meliponini suggests that
202 the morphology of **Idlm1** might be a synapomorphy for the tribe.

203

204 **Idlm2**, *M. pronoto-occipitalis* (Fig. 2a, b) [INVAR]: one of the five elevators of the head. The
205 origin point is dorsomedially located on the posterior margin of the pronotum, and the insertion is
206 dorsomedially located on the postocciput.

207

208 **Itpm1**, *M. pleurocrista-occipitalis* (Fig. 2b, d) [INVAR]: one of the five elevators of the head. It
209 originates from the propleuron (dorsal propleural margin) and inserts dorsolaterally on the
210 postocciput through a shared tendon with the branched **Itpm2** (**Itpm2a** and **Itpm2b**, see below).

211

212 **Itpm2**, *M. propleuro-occipitalis* (Fig. 2d) [INVAR]: one of the five elevators of the head.
213 Branched muscle (**Itpm2a**, *M. propleuro-occipitalis* dorsal and **Itpm2b**, *M. propleuro-occipitalis*
214 ventral); both branches originating from the ventral propleura area and inserting dorsolaterally to
215 the foramen magnum on the postocciput through a shared tendon with **Itpm1**.

216

217 **Idvm9**, *M. profurca-occipitalis* (Fig. 2b, c) [INVAR]: one of the five elevators of the head. Large
218 muscle broadly originating from the profurca (anterodorsal and posterodorsal profurcal lamellae
219 on the posterior profurcal branch), inserting dorsolaterally to the foramen magnum (close to the
220 insertion of **Itpm1** and **Itpm2**) on the postocciput.

221

222 **Ivlm3**, *M. profurca-tentorialis* (Fig. 2c) [VAR: variation coded into character 2 (Fig. 10), below]:
223 the only depressor of the head. Large muscle whose origin can be located either on the dorsal (Fig.
224 2c) or the ventral (Fig. 7b) surface of the posterior profurcal branch, and the insertion is located
225 ventrolaterally on the postocciput. Two bee species (*O. divaricatus* [Halictidae] and *H. carinata*
226 [Melittidae]) have this ventral origin, while the remaining bees and apoid wasps have a dorsal
227 origin.

228

229 ***Idlm5***, *M. pronoto-phragmalis anterior* (Fig. 2a) [INVAR]: a depressor of the pronotum. Broad
230 and short muscle originating laterally from the inner surface of the pronotum and inserting laterally
231 on the prophragma of the mesoscutum.

232

233 ***Idvm5***, *M. pronoto-cervicalis anterior* (Fig. 2a) [INVAR]: the elevator of the propleuron.
234 Branched muscle (**Idvm5a**, *M. pronoto-cervicalis anterior primus* and **Idvm5b**, *M.*
235 *pronoto-cervicalis anterior secundus*) with two well-separated origins on the pronotum: one
236 dorsolateral (**Idvm5a**) and one dorsomedial (**Idvm5b**). The insertion of both branches is located
237 on the cervical apodeme of the propleuron.

238

239 ***Itpm3***, *M. pronoto-pleuralis anterior* (Fig. 2a) [INVAR]: protractor of the propectus. Broad
240 pronotal muscle, with its origin dorsomedially on the pronotum, close to the origin of **Idvm5b**,
241 and its insertion on the anterior lamella of the dorsal propleural margin.

242

243 ***Itpm4***, *M. pronoto-apodemalis anterior* (Fig. 2a) [INVAR]: protractor of the propectus. Muscle
244 originating anterolaterally from the pronotum and inserting distally on the propleural arm of the
245 propleuron.

246

247 ***Itpm5***, *M. pronoto-apodemalis posterior* (Fig. 2a) [INVAR]: protractor of the propectus. Muscle
248 originating posterolaterally from the pronotum and inserting distally on the propleural arm of the
249 propleuron.

250

251 ***Ivlm1***, *M. profurca-cervicalis* (Fig. 2c) [INVAR]: the adductor of the propleuron. Muscle
252 originating from the anteromedian profurcal process of the prosternum and inserting posteriorly
253 on the cervical apodeme of the propleuron.

254

255 ***Ivlm7***, *M. profurca-mesofurcalis* (Figs. 3d, 4c) [VAR: variation coded into characters 3 and 4 (Fig.
256 10), below]: the retractor of the propectus. Intersegmental muscle originating broad (Figs. 3d, 4c,
257 8d) or narrowly (Fig. 7c) from the mesofurcal bridge of the meso-metafurca and inserting in one
258 (Fig. 7e) or two scars (Fig. 7d) on the posterior surface of the profurca at the prosternum. Only *A.*
259 *mellifera* and *T. fiebrigi* (Apidae) have a narrow origin on the mesofurcal bridge. Three species,

260 *H. carinata* (Melittidae), *O. divaricatus* (Halictidae), and *L. huberi* (Megachilidae), have two
261 insertion points on the profurca.

262

263 ***Ipcm2***, *M. procoxa cervicalis transversalis* (Fig. 2c, e) [INVAR]: rotator of the procoxa. Muscle
264 originating from the anteromedian bar of the cervical apodeme of one side and inserting on the
265 anterolateral margin of the procoxal base of the opposite side.

266

267 ***Ipcm4***, *M. propleuro-coxalis superior* (Fig. 2e) [INVAR]: lateral promotor of the procoxa. Muscle
268 originating from the anterior process of the dorsal profurcal lamella and from the ventral surface
269 of the dorsal propleural margin. The insertion is located on the anterolateral margin of the procoxal
270 base.

271

272 ***Iscm1***, *M. profurca-coxalis anterior* (Fig. 2e) [INVAR]: medial promotor of the procoxa. Muscle
273 originating from the prodiscrimenal lamella of the prosternum and inserting anteromedially on the
274 procoxal base.

275

276 ***Idvm18***, *M. pronoto-coxalis lateralis* (Fig. 2a) [VAR: variation coded into character 5 (Fig. 10),
277 below]: lateral remotor of the procoxa. Long muscle that originates laterally (Fig. 7a) or
278 dorsolaterally (Fig. 2a) from the pronotum, close to the pronotal lobe, and inserts posterolaterally
279 on the procoxal base. The morphology of **Idvm18** observed in *A. mellifera*, in which this muscle
280 originates laterally on the pronotum, is interpreted as an autapomorphy of the species.

281

282 ***Iscm3***, *M. profurca-coxalis medialis* (Fig. 2a, f) [INVAR]: medial remotor of the procoxa. Thin
283 muscle that originates from the sheet of the propleural arm and inserts posteromedially on the
284 procoxal base.

285

286 ***Iscm4***, *M. profurca-coxalis lateralis* (Fig. 2a, f) [INVAR]: lateral remotor of the procoxa. Broad
287 muscle that originates from the posterodorsal profurcal lamella of the profurcal arm and inserts
288 posterolaterally on the procoxal base.

289

290 **Iscm5**, *M. prospina-coxalis* (Figs. 2a, 4d) [VAR: variation coded into character 6 (Fig. 10),
291 below]: retractor of the propectus. Muscle with origin varying from restricted to the horizontal
292 plate of the meso-metafurca (Figs. 4d, 7c, 8d) to broader and also reaching the free basal portion
293 of mesofurcal arms (Fig. 8a). The insertion is located posteriorly on the procoxal base. The
294 morphology of **Iscm5** observed in *L. huberi*, in which the origin reaches the free basal portion of
295 the mesofurcal arms, is interpreted as an autapomorphy of this species.

296

297 **Iscm6**, *M. profurca-trochanteralis* (Fig. 2a, f) [INVAR]: depressor of the protrochanter. Broad
298 muscle originating from the sheet of the propleural arm and inserting on the depressor tendon of
299 the protrochanter.

300

301 **IIIIdm3**, *M. metascutello-scutellaris* (Fig. 3b) [VAR: variation coded into character 7 (Fig. 10),
302 below]: retractor of the mesoscutellum. Muscle originating medially (Fig. 7e) or laterally (Fig. 3b)
303 from the scutoscutellar ridge of the mesoscutellum and the insertion located medially or laterally
304 on the anterior margin of the internal metanotal ridge. The morphology of **IIIIdm3** observed in *A.*
305 *mellifera*, in which both origin and insertion of this muscle are located laterally, is interpreted as
306 an autapomorphy of the species.

307

308 **IIIdm1**, *M. prophragma-mesophragmalis* (Fig. 3a) [INVAR]: indirect depressor of the wing.
309 Large dorsal longitudinal indirect flight muscle with the origin medially located on the ventral side
310 of the mesoscutum and on the posterior face of the prophragma, and the insertion is located broadly
311 on the anterior face of the mesophragma.

312

313 **IIIdm1**, *M. mesonoto-sternalis* (Fig. 3a) [INVAR]: indirect elevator of the wing. Mesonotal
314 muscle that arises laterally from the ventral side of the mesoscutum and from the posterior margin
315 of the prophragma and inserts broadly on the mesepisternum.

316

317 **Hpspm1**, *M. mesanepisterno-spiracularis* (Fig. 3c) [INVAR]: occlusor of the first spiracle.
318 Muscle of the mesothorax, originating from the anterior margin of the subspiracular area and
319 inserting on the spiracular membrane at the spiracular aperture.

320

321 ***IItpm5***, *M. mesonoto-pleuralis medialis* (Fig. 4a) [INVAR]: depressor of the mesoscutellum.
322 Muscle originating from the lateral areas of the mesepisternal region and from the pleural
323 apophysis; its insertion is located on the lateral margin of the mesoscutellum.

324

325 ***IItpm7***, *Mesanepisterno-axillaris* (Fig. 4a): flexors of the forewing (***IItpm7a***, *M. mesanepisterno-*
326 *axillaris ventral*, ***IItpm7b***, *M. mesanepisterno-axillaris medial* and ***IItpm7c***, *M. mesanepisterno-*
327 *axillaris dorsal*) [VAR: variation coded into character 8 (Fig. 10), below]: ***IItpm7a*** originates
328 from the subalar apophysis cavity, while ***IItpm7b*** and ***IItpm7c*** originate laterally from the
329 mesepisternum; all three branches insert, by a shared tendon, on the third mesoaxillary sclerite. In
330 bees, the absence of separation between ***IItpm7b*** and ***IItpm7c*** by the mesepisternal ridge (Figs.
331 4a, 8c) is likely a synapomorphy, as among apoid wasps most species, except the Bembicidae
332 species, have this separation (Fig. 8b).

333

334 ***IIspm1***, *M. mesopleura-sternalis* (Fig. 4a) [VAR: variation coded into character 9 (Fig. 10),
335 below]: depressor of the mesobasalar sclerite. Muscle that originates from the anterior margin of
336 the mesepisternum (Fig. 8c) and/or the subspiracular area (Figs. 4a, 8b) and inserts on the
337 mesobasalar sclerite. The morphology of ***IIspm1*** observed in *A. mellifera*, in which this muscle
338 origin is restricted to the anterior region of the mesepisternum, is interpreted as an autapomorphy
339 of the species.

340

341 ***IIspm2***, *M. mesofurca-pleuralis* (Fig. 4c-d) [INVAR]: furco-pleural muscle with uncertain
342 function. Muscle originates from the posterolateral area of the mesepisternum and inserts on the
343 tip of the free distal portion of the mesofurcal arm.

344

345 ***IIpcm4***, *M. propleuro-coxalis posterior* (Fig. 4d) [VAR: variation coded into character 10 (Fig.
346 10), below]: lateral promotor of the mesocoxa. Muscle origin branched (Fig. 8e) or not (Fig. 4d),
347 located laterally on the mesepisternum; insertion located laterally on the mesocoxal base. The
348 variation of origin point of ***IIpcm4*** suggests multiple independent changes in Apoidea, further
349 suggesting a complex evolution of this muscle. This variation was already described by Wille
350 (1956), although not coded as character and character states.

351

352 ***IIscm1***, *M. mesofurca-coxalis anterior* (Fig. 4c) [VAR: variation coded into character 11 (Fig.
353 10), below]: medial promotor of the mesocoxa. Muscle that originates posteroventrally from the
354 mesodiscriminal lamella and inserts antero- (Fig. 4c) or mediolaterally (Fig. 8f) on the mesocoxal
355 base. In bees, the muscle consistently inserts anterolaterally on the mesocoxa, a feature also
356 observed in the bembicid species but not in the other two apoid wasps studied.

357

358 ***IIdm6***, *M. mesocoxa-subalaris* (Figs. 4c-d) [INVAR]: lateral remotor of the mesocoxa. Slender
359 muscle that originates posterolaterally from the mesocoxal base and inserts on the mesosubalar
360 sclerite.

361

362 ***IIscm2***, *M. mesofurca-coxalis posterior* (Fig. 4c) [INVAR]: medial remotor of the mesocoxa.
363 Muscle that originates anteroventrally from the mesodiscriminal lamella of the mesofurca and
364 inserts posteromedially on the base of the mesocoxa.

365

366 ***IIscm6***, *M. mesofurca-trochanteralis* (Fig. 4c) [VAR: variation coded into character 12 (Fig. 10),
367 below]: thoracic depressor of the mesotrochanter. Broad muscle with origin restricted to the
368 coalesced furcal arms (Fig. 4c) or also reaching free basal portion of mesofurcal arms (Fig. 8a).
369 Insertion located on the depressor tendon of the trochanter. The morphology of IIscm6 observed
370 in *M. quadrifasciata*, in which this muscle is restricted to the coalesced furcal arms, is interpreted
371 as an autapomorphy of that species.

372

373 ***IIIdlm1***, *M. mesophragma-metaphragmalis* (Fig. 6a) [INVAR]: retractor of the mesophragma.
374 Longitudinal muscle of the mesophragma that originates from the propodeal ridge and inserts on
375 the posterior surface of the mesophragma.

376

377 ***IIItpm5***, *M. metanoto-pleuralis medialis* (Fig. 4a) [INVAR]: one of the hindwing elevators.
378 Muscle that originates from the free distal portion of the metafurcal arm and dorsal metafurcal
379 lamella and inserts on the dorsolateral metanotal area.

380

381 ***IIItpm6***, *M. metanoto-pleuralis posterior* (Fig. 4a) [INVAR]: one of the hindwing elevators.
382 Muscle that originates from the dorsal metafurcal lamella and inserts on the tip of the dorsolateral
383 metanotal area.
384

385 ***IIIdvm1***, *M. metanoto-sternalis* (Fig. 4a) [INVAR]: one of the hindwing elevators. Tergosternal
386 muscle of the metathorax that originates from the dorsolateral metanotal area and inserts on the
387 filamentous process of the free distal portion of the metafurcal arm.
388

389 ***IIItpm7***, *M. metanepisterno-axillaris* (Fig. 4a, b) [INVAR]: flexor of the hindwing. Broad muscle
390 with its origin located on the anterior inflection of the metepisternum and the insertion located on
391 the third metaaxillary sclerite.
392

393 ***IIIspm1***, *M. metapleura-sternalis* (Fig. 4b) [INVAR]: depressor of the metabasalar sclerite.
394 Muscle arising from the ventral region of the metapectus and inserting on the metabasalar sclerite.
395

396 ***IIItpm11***, *M. metapleura-subalaris* (Fig. 4b) [INVAR]: depressor of the metasubalar sclerite.
397 Muscle arising from the anterior inflection of the metapectus and inserting on the metasubalar
398 sclerite.
399

400 ***IIIpcm4***, *M. metanepisterno-coxalis posterior* (Fig. 5c-d) [INVAR]: lateral promotor of the
401 metacoxa. Muscle that originates broadly from the intercoxal lamella and the metapleural ridge
402 and inserts anterolaterally on base of the metacoxa.
403

404 ***IIIdvm6***, *M. metacoxa-subalaris* (Fig. 5a-c) [INVAR]: lateral remotor of the metacoxa. Muscle of
405 the metathorax originating posterolaterally from the metacoxal base and inserting on the
406 metasubalar sclerite.
407

408 ***IIIscm1***, *M. metafurca-coxalis anterior* (Fig. 5b-d) [VAR: variation coded into character 13 (Fig.
409 10), below]: medial promotor of the metacoxa. Broad muscle that originates from the intercoxal
410 lamella, reaching (Fig. 5b-d), or not (Fig. 9a), the free basal portion of the metafurcal arms and

411 inserting anteriorly on the metacoxal base. The morphology of **IIIscm1** reaching the free basal
412 portion of the metafurcal arms is observed in bees and *Steniolia duplicata* (Bembicidae).

413

414 **IIIscm2**, *M. metafurca-coxalis posterior* (Fig. 5a) [VAR: variation coded into character 14 (Fig.
415 10), below]: posterior remotor of the metacoxa. Muscle that originates from the free basal portion
416 of the metafurcal arm, sometimes extending to the coalesced furcal arms (Fig. 9b) or not (Fig. 5a),
417 and inserts posteriorly on the metacoxal base. The morphology of **IIIscm2** observed in all
418 members of Andrenidae, Colletidae, and Halictidae, in which this muscle origin extends to the
419 coalesced furcal arms, is likely a synapomorphy of the clade formed by these three bee families.

420

421 **IIIscm3**, *M. metafurca-coxalis medialis* (Fig. 5c) [VAR: variation coded into character 15 (Fig.
422 10), below]: medial remotor of the metacoxa. Muscle that originates from the metadiscriminal
423 lamella, sometimes extending to the free basal portion of the metafurcal arms (Fig. 5c) or not (Fig.
424 9c), and inserts posteromedially on the metacoxal base. The morphology of **IIIscm3** reaching the
425 free basal portion of the metafurcal arms observed in all bees and *T. lactitarse* (Crabronidae).

426

427 **IIIscm6**, *M. metafurca-trochanteralis* (Fig. 5a-b) [INVAR]: thoracic depressor of the
428 metatrochanter. Muscle that originates from the posterior surface of the mesofurcal bridge and
429 coalesced furcal arms and inserts on the depressor tendon of the metatrochanter.

430

431 **IIIvomm**, *M. metafurca-abdominosternalis medialis* (Fig. 6a) [VAR: variation coded into
432 character 16 (Fig. 10), below]: medial depressor of the abdomen. Muscle that originates from the
433 free basal portion of the metafurcal arm, sometimes extending to the coalesced furcal arms (Fig.
434 6a) or not (Fig. 9d), inserting medially on the first metasomal segment. While its insertion remains
435 consistent across species, its origin varies in *T. fiebrigi*, *S. quadripunctata*, *A. mellifera*, and *H.*
436 *carinata*, extending to the coalesced furcal arms, whereas in the remaining analyzed species, it is
437 restricted to the free basal portion of the metafurcal arm. This variation was already described by
438 Wille (1956), although not coded as character and character states.

439

440 **IIIvolm**, *M. metafurca-abdominosternalis lateralis* (Fig. 6b) [VAR: variation coded into character
441 17 (Fig. 10), below]: ventral lateromotor of the abdomen. Muscle that originates from the

442 metadiscriminal lamella and inserts on the sternum of the first metasomal segment. While its
443 insertion remains consistent across species, its origin varies: in Apidae and Oxaeinae, it is
444 positioned anteriorly (Figs. 6b, 9e) on the metadiscriminal lamella, whereas in all remaining
445 species, it is located posteriorly (Fig. 9f).

446

447 ***Idomm***, *M. tergo-tergalis orthomedialis* (Fig. 6c) [INVAR]: medial elevator of the abdomen.
448 Muscle that originates broadly from the anterior wall of the propodeum and inserts medially on
449 the constricted margin of the first metasomal tergum.

450

451 ***Idolm***, *M. tergo-tergalis ortholateralis* (Fig. 6d) [INVAR]: dorsal lateromotor of the abdomen.
452 Muscle that originates from the lateral wall of the propodeum and inserts laterally on the anterior
453 margin of the first metasomal tergum.

454

455 ***IASpim1***, *M. spiracularis I superior* (Fig. 6c) [INVAR]: occlusor of the propodeal spiracle. Muscle
456 of the propodeal spiracle, originating from the sclerotized area above the propodeal spiracle and
457 inserting on the sclerotized area below the propodeal spiracle.

458

459 ***IASpim2***, *M. spiracularis I posterior* (Fig. 6c) [INVAR]: dilator of the propodeal spiracle. Muscle
460 of the propodeal spiracle originating from the small metapleural coxal process and inserting on the
461 sclerotized area below the propodeal spiracle.

462

463 **Character statements**

464 Below are described the 17 morphological characters and their respective states derived from the
465 extrinsic mesosomal musculature of bees, which were scored for the 13 species of Apoidea (ten
466 bee and three wasp species) (Table S2). These characters summarize the overall morphological
467 variation described in the previous section and are interpreted in a phylogenetic context being
468 optimized onto a phylogenetic hypothesis for bees.

469

470 01. Origin of **Idlm1**: (0) dorsolaterally at the prophragma (Fig. 7a); (1) dorsomedially at the
471 prophragma (Fig. 2a-b).

472

473 02. Origin of **IvIm3**: (0) ventrally at the posterior profurcal branch (Fig. 7b); (1) dorsally at the
474 posterior profurcal branch (Fig. 2c).

475

476 03. Origin of **IvIm7**: (0) broadly at the mesofurcal bridge (Figs. 3d, 4c, 8d); (1) narrowly, restricted
477 to the ventral margin of the mesofurcal bridge (Fig. 7c).

478

479 04. Insertion of **IvIm7**: (0) single, at the posterior face of the profurcal arm (Fig. 7e); (1) two, at
480 the posterior face of the profurcal arm (Fig. 7d).

481

482 05. Origin of **Idvm18**: (0) laterally at the pronotum (Fig. 7a); (1) dorsolaterally at the pronotum
483 (Fig. 2a).

484

485 06. Origin of **Iscm5**: (0) restricted to the horizontal plate of the meso-metafurca (Figs. 4d, 7c, 8d);
486 (1) reaching the free basal portion of the mesofurcal arms (Fig. 8a).

487

488 07. Insertion of **IIIIdlm3**: (0) medially at the anterior margin of the internal metanotal ridge (Fig.
489 7f); (1) laterally at the anterior margin of the internal metanotal ridge (Fig. 3b).

490

491 08. Origin of **IItpm7b** and **IItpm7c**: (0) separated by the mesepisternal ridge (Fig. 8b); (1) not
492 separated by the mesepisternal ridge (Figs. 4a, 8c).

493

494 09. Origin of **IIspm1**: (0) at the anterior margin of the mesopectus (Fig. 8c); (1) at the anterior
495 margin of the mesopectus and at the subalar area (Figs. 4a, 8b).

496

497 10. Origin of **IIpcm4**: (0) branched (Fig. 8e); (1) not branched (Fig. 4d).

498

499 11. Insertion of **IIscm1**: (0) anterolateral (Fig. 4c); (1) mediolateral (Fig. 8f).

500

501 12. Origin of **IIscm6**: (0) restricted to the coalesced furcal arms (Fig. 4c); (1) reaching the free
502 basal portion of the mesofurcal arms (Fig. 8a).

503

504 13. Origin of **IIIscm1**: (0) reaching the free basal portion of metafurcal arms (Fig. 5b-d); (1)
505 restricted to the metadiscriminal lamella (Fig. 9a).

506

507 14. Origin of **IIIscm2**: (0) reaching the coalesced furcal arms (Fig. 9b); (1) restricted to the free
508 basal portion of the metafurcal arms (Fig. 5a).

509

510 15. Origin of **IIIscm3**: (0) reaching the free basal portion of metafurcal arms (Fig. 5c); (1)
511 restricted to the metadiscriminal lamella (Fig. 9c).

512

513 16. Origin of **IIIvomm**: (0) broadly at the free distal portion of metafurcal arm (Fig. 9d); (1) at the
514 free distal portion of metafurcal arms and coalesced furcal arms (Fig. 6a).

515

516 17. Origin of **IIIvolm**: (0) anteriorly at the metadiscriminal lamella (Figs. 6b, 9e); (1) posteriorly
517 at the metadiscriminal lamella (Fig. 9f).

518

519

520 DISCUSSION

521 The mesosoma, a critical ~~thoracic~~ region in bees, exhibits remarkable structural conservation
522 across this diverse insect group, as first highlighted by Wille (1956). ~~In his~~ seminal work, ~~Wille~~
523 (1956) explored the evolutionary trends of ten key thoracic muscles, providing insights into their
524 morphological consistency and variation. These muscles include the lateral promotor of the middle
525 coxa (herein **IIpcm4**, *M. propleuro-coxalis posterior*; coded as character 10), the pleurotergal
526 muscle of the mesothorax (herein **IItpm5**, *M. mesonoto-pleuralis medialis*; showing no significant
527 variation in this study), the median depressor of the abdomen (herein **IIIvomm**, *M. metafurca-*
528 *abdominosternalis medialis*; coded as character 16), the lateral promotor of the hind coxa (herein
529 **IIpcm4**, *M. metanepisterno-coxalis posterior*; lacking notable variation here) and the mesal
530 remotor of the hind coxa (herein **IIIscm2**, *M. metafurca-coxalis posterior*, and **IIIscm3**, *M.*
531 *metafurca-coxalis medialis*; where variation aligns with broader patterns of Hymenoptera,
532 following Meira et al. [2024]). This study builds on Wille's (1956) findings, revealing that only
533 16 of 58 mesosomal muscle groups exhibit substantial variation across 10 bee and three apoid
534 wasp taxa, reflecting a balance between phylogenetic conservatism and functional adaptation.

535 The limited variation, primarily in muscle origin points, underscores the mesosoma's
536 evolutionary stability, with insertion points remaining highly conserved. This pattern suggests that
537 origin points are less functionally constrained, allowing evolutionary flexibility without
538 compromising muscle function, as the insertion point primarily dictates movement mechanics
539 (Snodgrass, 1935). One notable pattern of variation is observed in the muscle **Idlm1**. In bees, the
540 muscle origin is either dorsomedially or dorsolaterally positioned on the prophragma, while apoid
541 wasps consistently exhibit a dorsolateral origin. Among the examined stingless bee species, *M.*
542 *quadrifasciata*, *T. fiebrigi*, and *S. quadripunctata* (Apidae: Meliponini), the dorsomedial origin
543 appears to be a shared derived feature, suggesting a synapomorphy (char: 1, state: 1; Fig. 2a-b, 10)
544 for the tribe. Conversely, other bee taxa have a lateral origin (char: 1, state: 0; Fig. 7a, 10),
545 indicating independent evolutionary shifts in **Idlm1**. Aibekova et al. (2022) noted that variations
546 in thoracic muscle origins are likely linked to specific functional demands, such as movements of
547 the head and the mesosomal appendages, further supporting the idea that the observed differences
548 in **Idlm1** may reflect both phylogenetic history and biomechanical adaptations. These evolutionary
549 morphological changes also support the findings of Vilhelmsen et al. (2010), when noting that
550 mesosomal musculature can indicate both evolutionary history and functional adaptations.

551 Similarly, the variation in the muscle group **Ivlm3** suggests significant phylogenetic
552 implications. While most bees exhibit a dorsal origin (char: 2, state: 1; Fig. 2c, 10), both andrenid
553 species, as well as *O. divaricatus* [Halictidae] and *H. carinata* [Melittidae] retain a ventral origin
554 (char: 2, state: 0; Fig. 7b, 10). This distribution suggests that the dorsal attachment may represent
555 an ancestral condition preserved in specific lineages, whereas the ventral origin likely evolved
556 independently in other groups. The ventral origin likely represents a derived condition, as
557 interpreted by Vilhelmsen (2000b), potentially facilitating stronger head depression movements,
558 such as those associated with certain foraging or ground-nesting behaviors. The dorsal origin,
559 conversely, may enhance head flexibility as well as biomechanical demands for varied head
560 positioning (Dudley, 2000).

561 Based on our results, apoid wasps and bees differ in the morphology of the **Ivlm7**. The
562 extent of variation in Apoidea remains unexplored, but we sampled representatives of three taxa
563 that represent at least a fraction of the diversity of apoid wasps. While most taxa exhibit a broad
564 attachment to the mesofurcal bridge (char: 3, state: 0; Figs. 3d, 4c, 8d, 10), the species *A. mellifera*
565 and *T. fiebrigi* display a restricted ventral attachment (char: 3, state: 1; Fig. 7c, 10). The restricted

566 ventral attachment could be linked to an enhancement of the thoracic rigidity, supporting the high-
567 frequency wing beats (Dickinson, 2006). Additionally, **Ivlm7** can have one (char: 4, state: 0; Fig.
568 7e, 10) or two (char: 4, state: 1; Fig. 7d, 10) insertions in bees, suggesting biomechanical
569 adaptations for enhanced propectus retraction, potentially aiding in precise leg movements during
570 nesting or pollen collection (Michener, 2007).

571 The metathoracic muscle **IIIscm2** (M. metafurca-coxalis posterior) exhibits a
572 phylogenetically informative pattern, with an extended origin to the coalesced furcal arms in
573 Andrenidae, Colletidae, and Halictidae (char: 14, state: 0; Fig. 9b, 10), which supports their closer
574 evolutionary relationship (Almeida et al., 2023). This configuration likely enhances coxal stability,
575 which is critical for the rapid, agile flight of these families, as they often forage in open habitats
576 (Roubik, 1989). In contrast, the restricted origin in other bees and apoid wasps (char: 14, state: 1;
577 Fig. 5a, 10) may reflect adaptations for less dynamic flight patterns, as seen in Megachilidae, which
578 prioritize load-carrying for nest provisioning (Michener, 2007). Similarly, **IIIvolm** (M. metafurca-
579 abdominosternalis lateralis) shows an anterior origin in Apidae and *O. flavesrens* (char: 17, state:
580 0; Figs. 6b, 9e, 10), potentially improving metasomal flexibility for pollen transport or nest
581 manipulation, contrasting with the posterior origin in other taxa (char: 17, state: 1; Fig. 9f, 10).

582 The muscle **IIpcm4** (M. propleuro-coxalis posterior) exhibits a branched origin in some
583 lineages (char: 10, state: 0; Fig. 8e, 10), transitioning from fan-shaped to V-shaped forms, as noted
584 by Wille (1956). This branching likely increases muscle force distribution, supporting the powerful
585 leg movements required for digging in ground-nesting bees, like Andrenidae or Halictidae
586 (Michener, 2007). The not-branched form (char: 10, state: 1; Fig. 4d, 10) in other lineages may
587 favor streamlined leg motion (Dickinson, 2006), suitable for hovering or precise landing. Changes
588 of **IIpcm4** in unrelated bee lineages suggest that biomechanical demands may drive morphological
589 variation even more than the degree of phylogenetic proximity.

590 The absence of separation between **IItpm7b** and **IItpm7c** by the mesepisternal ridge in
591 bees (char: 8, state: 1; Figs. 4a, 8c, 10) is a potential synapomorphy, distinguishing them from
592 most apoid wasps. This fused configuration may enhance wing flexor efficiency, supporting
593 sustained flight (Dudley, 2000), as observed in behaviors as hovering and foraging on flowers. In
594 contrast, the separated configuration in apoid wasps (char: 8, state: 0; Fig. 8b, 10) likely may
595 reflects their predatory lifestyle, requiring rapid and powerful wing movements (Chapman, 2013).

596 Several autapomorphies have been identified within specific taxa. In *A. mellifera*, unique
597 features include the lateral origin of the muscle group **Idvm18** (char: 5, state: 0; Fig. 7a, 10), the
598 restricted origin of the muscle group **IIspm1** to the anterior area of the mesepisternum (char: 9,
599 state: 0; Fig. 8c, 10) and the medial insertion of **IIIIdlm3** (char: 7, state: 0; Fig. 7e, 10). In *L. huberi*,
600 the extension of the origin of **Iscm5** to the free basal portion of the mesofurcal arms (char: 6, state:
601 1; Fig. 8a, 10) highlight species-specific adaptations. The restricted origin point of **IIscm6** (char:
602 12, state: 0; Fig. 4c, 10) in *M. quadrifasciata* is suggested to be another autapomorphy. Such
603 autapomorphies underscore the importance of detailed analyses of the skeleto-musculature for
604 understanding evolutionary differentiation, as emphasized by Vilhelmsen et al. (2010).

605 These morpho-functional patterns suggest that mesosomal musculature variations are not
606 randomly distributed, but may have been shaped by ecological and biomechanical demands. For
607 example, muscle configurations supporting head mobility (**Idlm1**, **Ivlm3**) may enhance foraging
608 efficiency in diverse habitats, while those affecting coxal and metasomal movement (**IIscm2**,
609 **IIIvolm**) likely to enhance flight and nest building behaviors. Future studies integrating
610 biomechanical modeling and kinematic analyses could further elucidate how these variations
611 influence flight dynamics, pollen collection, or nest construction.

612

613 CONCLUSION

614 This study elucidates the phylogenetic significance of mesosomal musculature in bees by
615 examining 10 bee species and three apoid wasp taxa, revealing distinct patterns of variation within
616 a largely conserved anatomical framework. Of the 58 muscle groups analyzed, only 16 exhibit
617 significant variation, primarily in origin points, with the prothoracic (e.g., **Idlm1**, **Ivlm3**) and
618 metathoracic (e.g., **IIscm2**, **IIIvolm**) muscles proving most informative. Some synapomorphies,
619 such as the dorsomedial **Idlm1** in Meliponini and the extended **IIscm2** in Andrenidae, Colletidae,
620 and Halictidae, underscore close phylogenetic relationships within these lineages, while the fused
621 **IItpm7b** and **IItpm7c** of bees distinguish them from their close relatives in the Apoidea. These
622 variations suggest biomechanical adaptations for flight, foraging, and nesting, as required by
623 ground-nesting bees, highlighting functional specialization. The detailed character systems
624 established here provide a foundation for phylogenetic interpretations of the variation in the
625 mesosomal musculature of bees. Expanding taxonomic sampling in the future will likely enhance
626 our understanding of mesosomal evolution and its impact on the diverse ecological strategies that

627 contribute to the evolutionary success of bees and apoid wasps. Moreover, future research
628 employing advanced techniques, such as micro-computed tomography, will undoubtedly help
629 improve our knowledge of muscular variation in Apoidea.

630

631 **Acknowledgements.** This work was supported by the São Paulo Research Foundation (FAPESP)
632 grants 2018/09666-5, 2019/09215-6, 2021/07258-0), Brazilian National Council of Technological
633 and Scientific Development—CNPq grant 309790/2025-5, and by Coordenação de
634 Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We are
635 thankful to Anderson Lepeco for his critical evaluation of the manuscript, and to Bruno Rosa and
636 Dennis Michez for their assistance in the taxonomic determination of two taxa included in the
637 analyses.

638

639

640 **References**

641 Aibekova, L., Boudinot, B. E., Beutel, R. G., Richter, A., Keller, R. A., Hita-Garcia, F., &
642 Economo, E. P. (2022). The skeletomuscular system of the mesosoma of *Formica rufa*
643 workers (Hymenoptera: Formicidae). *Insect Systematics and Diversity*, 6(2), 1–26.
644 <https://doi.org/10.1093/isd/ixac002>

645 Aibekova, L., Richter, A., Beutel, R. G., van de Kamp, T., Economo, E. P., Griebenow, Z., &
646 Boudinot, B. E. (2025). The mesosoma of *Protanilla* (Leptanillinae) and the groundplan of
647 the Formicidae (Hymenoptera). *Journal of Morphology*, 286(1), e70064.
648 <https://doi.org/10.1002/jmor.70064>

649 Almeida, E. A. B., Bossert, S., Danforth, B. N., Porto, D. S., Freitas, F. V., Davis, C. C., Murray,
650 E. A., Blaimer, B. B., Spasojevic, T., Ströher, P. R., Orr, M. C., Packer, L., Brady, S. G.,
651 Kuhlmann, M., Branstetter, M. G., & Pie, M. R. (2023). The evolutionary history of bees in
652 time and space. *Current Biology*, 33(16), 3409–3422.
653 <https://doi.org/10.1016/j.cub.2023.07.005>

654 Ascher, J. S., & Pickering, J. (2020). *Discover Life bee species guide and world checklist*
655 (*Hymenoptera: Apoidea: Anthophila*). Discover Life. Retrieved from
656 http://www.discoverlife.org/mp/20q?guide=Apoidea_species

657 Chapman, R. F. (2013). *The insects: Structure and function* (5th ed.). Cambridge University Press.

658 Danforth, B. N., Minckley, R. L., & Neff, J. L. (2019). *The solitary bees: Biology, evolution,*
659 *conservation*. Princeton University Press.

660 Dawood, Y., Hagoort, J., Siadari, B. A., Ruijter, J. M., Gunst, Q. D., Lobe, N. H. J., Strijkers, G.
661 J., de Bakker, B. S., & van den Hoff, M. J. B. (2021). Reducing soft-tissue shrinkage artefacts
662 caused by staining with Lugol's solution. *Scientific Reports*, 11(1), 19781.
663 <https://doi.org/10.1038/s41598-021-99202-2>

664 Daly, H. V. (1964). Skeleto-muscular morphogenesis of the thorax and wings of the honey bee
665 *Apis mellifera* (Hymenoptera: Apidae). *University of California Publications in*
666 *Entomology*, 39, 1–77.

667 Dickinson, M. H. (2006). Insect flight. *Current Biology*, 16(9), R309–R314.
668 <https://doi.org/10.1016/j.cub.2006.03.087>

669 Dudley, R. (2000). *The biomechanics of insect flight: Form, function, evolution*. Princeton
670 University Press.

671 Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a specific tree
672 topology. *Systematic Biology*, 20(4), 406–416. <https://doi.org/10.1093/sysbio/20.4.406>

673 Friedrich, F., & Beutel, R. G. (2008). The thorax of *Zorotypus* (Hexapoda, Zoraptera) and a new
674 nomenclature for the musculature of Neoptera. *Arthropod Structure & Development*, 37(1),
675 29–54. <https://doi.org/10.1016/j.asd.2007.04.003>

676 Friedrich, F., Matsumura, Y., Pohl, H., Bai, M., Hörnschemeyer, T., & Beutel, R. G. (2014). Insect
677 morphology in the age of phylogenomics: Innovative techniques and its future role in
678 systematics. *Entomological Science*, 17(1), 1–24. <https://doi.org/10.1111/ens.12053>

679 Iwamoto, H. (2011). Structure, function and evolution of insect flight muscle. *Biophysics*, 7, 21–
680 28. <https://doi.org/10.2142/biophysics.7.21>

681 Li, Z., Ketcham, R. A., Yan, F., Maisano, J. A., & Clarke, J. A. (2016). Comparison and evaluation
682 of the effectiveness of two approaches of diffusible iodine-based contrast-enhanced
683 computed tomography (diceCT) for avian cephalic material. *Journal of Experimental*
684 *Zoology Part B: Molecular and Developmental Evolution*, 326(6), 352–362.
685 <https://doi.org/10.1002/jez.b.22692>

686 Lieberman, Z. E., Billen, J., van de Kamp, T., & Boudinot, B. E. (2022). The ant abdomen: The
687 skeletomuscular and soft tissue anatomy of *Amblyopone australis* workers (Hymenoptera:
688 Formicidae). *Journal of Morphology*, 283(6), 693–770. <https://doi.org/10.1002/jmor.21471>

689 Maddison, W. P., & Maddison, D. R. (2007). *Mesquite: A modular system for evolutionary*
690 *analysis* (Version 2.0). Retrieved from <http://www.mesquiteproject.org>

691 Matsuda, R. (1970). Morphology and evolution of the insect thorax. *Memoirs of the Entomological*
692 *Society of Canada*, 102(S76), 5–431. <https://doi.org/10.4039/entm10276fv>

693 Meira, O. M., & Gonçalves, R. B. (2021). Comparative morphology and evolution of the cranial
694 musculature in bees (Hymenoptera: Apoidea). *Arthropod Structure & Development*, 65,
695 Article 101112. <https://doi.org/10.1016/j.asd.2021.101112>

696 Meira, O. M., Beutel, R. G., Pohl, H., van de Kamp, T., Almeida, E. A. B., & Boudinot, B. E.
697 (2024). Bee morphology: A skeletomuscular anatomy of *Thyreus* (Hymenoptera: Apidae).
698 *Journal of Morphology*, 285(6), e21751. <https://doi.org/10.1002/jmor.21751>

699 Messer, A. C. (1984). *Chalicodoma pluto*: The world's largest bee rediscovered living communally
700 in termite nests (Hymenoptera: Megachilidae). *Journal of the Kansas Entomological*
701 *Society*, 57(1), 165–168. <https://www.jstor.org/stable/25084498>

702 Michener, C. D. (2007). *The bees of the world* (2nd ed.). Johns Hopkins University Press.

703 Mikó, I., Vilhelmsen, L., Johnson, N. F., Masner, L., & Pénzes, Z. (2007). Skeletomusculature of
704 Scelionidae (Hymenoptera: Platygastroidea): Head and mesosoma. *Zootaxa*, 1571(1), 1–78.
705 <https://doi.org/10.11646/zootaxa.1571.1.1>

706 Nixon, K. C. (2002). *WinClada* (Version 1.00.08). Author.

707 Roubik, D. W. (1989). *Ecology and natural history of tropical bees*. Cambridge University Press.

708 Sann, M., Niehuis, O., Peters, R. S., Meusemann, K., Misof, B., Groth, J., Nip, H., & Mayer, C.
709 (2018). Phylogenomic analysis of Apoidea sheds new light on the sister group of bees. *BMC*
710 *Evolutionary Biology*, 18(1), 71. <https://doi.org/10.1186/s12862-018-1155-8>

711 Snodgrass, R. E. (1927). Morphology and mechanism of the insect thorax. *Smithsonian*
712 *Miscellaneous Collections*, 80(1), 1–108.

713 Snodgrass, R. E. (1935). *Principles of insect morphology*. McGraw-Hill Book Company.

714 Snodgrass, R. E. (1942). The skeleto-muscular mechanisms of the honey bee. *Smithsonian*
715 *Miscellaneous Collections*, 103(2), 1–120.

716 Vilhelmsen, L. (2000a). Before the wasp-waist: Comparative anatomy and phylogenetic
717 implications of the skeletomusculature of the thoraco-abdominal boundary region in basal
718 Hymenoptera (Insecta). *Zoomorphology*, 119(4), 185–221.
719 <https://doi.org/10.1007/s004350000028>

720 Vilhelmsen, L. (2000b). Cervical and prothoracic skeleтомускулатура in the basal Hymenoptera
721 (Insecta): Comparative anatomy and phylogenetic implications. *Zoologischer Anzeiger*,
722 239(2), 105–138.

723 Vilhelmsen, L., Mikó, I., & Krogmann, L. (2010). Beyond the wasp-waist: Structural diversity and
724 phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera).
725 *Zoological Journal of the Linnean Society*, 159(1), 22–194. <https://doi.org/10.1111/j.1096-3642.2009.00576.x>

727 Wille, A. (1956). Comparative studies of the thoracic musculature of bees. *The University of
728 Kansas Science Bulletin*, 38(6), 439–471.

729 Willsch, M., Friedrich, F., Baum, D., Jurisch, I., & Ohl, M. (2020). A comparative description of
730 the mesosomal musculature in Sphecidae and Ampulicidae (Hymenoptera, Apoidea) using
731 3D techniques. *Deutsche Entomologische Zeitschrift*, 67(1), 51–67.
732 <https://doi.org/10.3897/dez.67.49493>

733 Yoder, M. J., Mikó, I., Seltmann, K. C., Bertone, M. A., & Deans, A. R. (2010). A gross anatomy
734 ontology for Hymenoptera. *PLoS ONE*, 5(12), e15991.
735 <https://doi.org/10.1371/journal.pone.0015991>

736

Figure 1

Morphological diversity of Apoidea

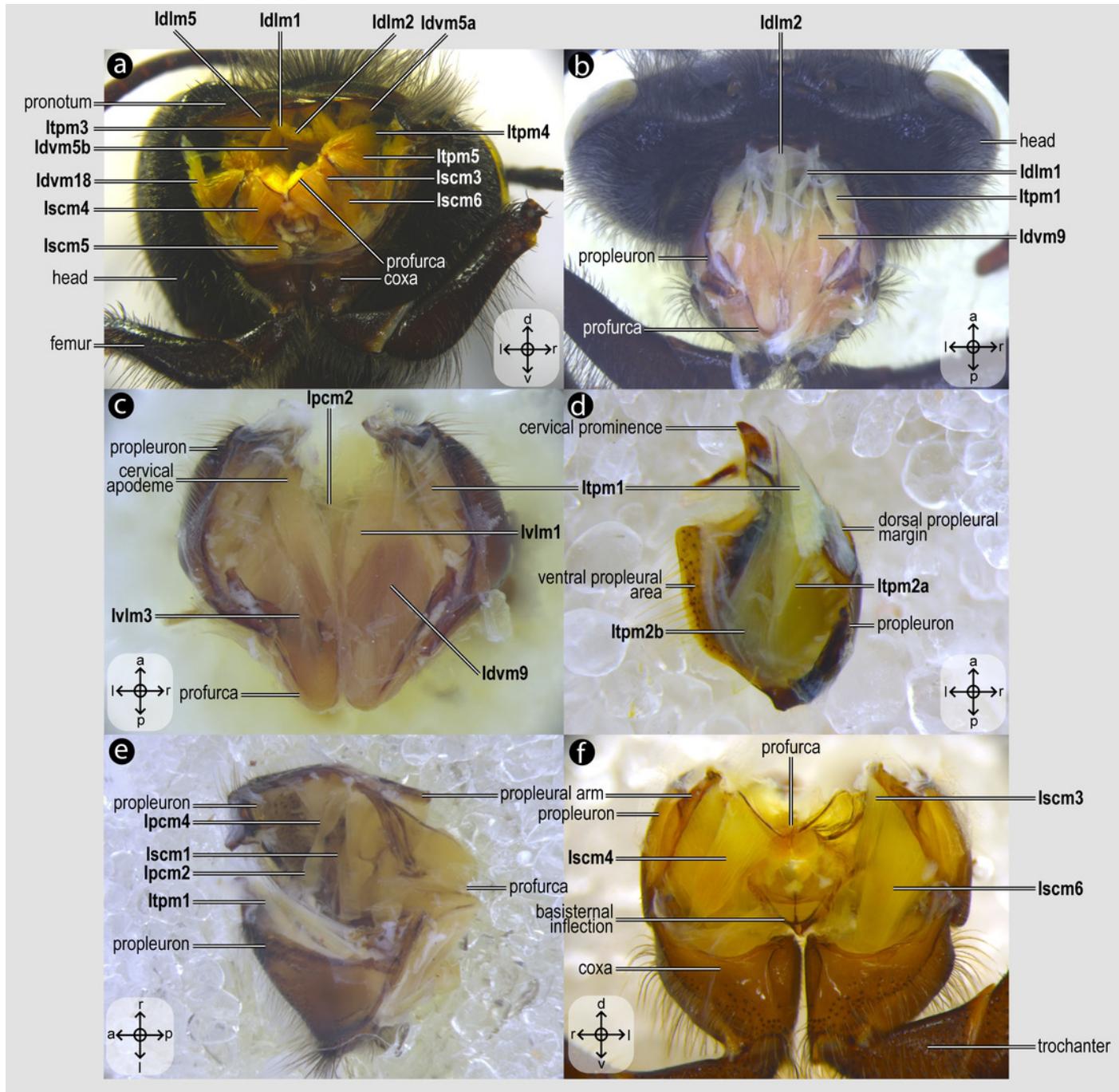

Morphological diversity of Apoidea represented by a sample of 13 species analyzed in this comparative research of the mesosomal skeletomuscular morphology. Bees were the main focus of the investigation and were represented by 10 species: (a) *Oxaea flavescens*, female and (b) *Psaenythia bergii*, female [Andrenidae]; (c) *Apis mellifera*, female worker (d) *Melipona quadrifasciata*, female worker, (e) *Schwarziana quadripunctata*, female worker, and (f) *Tetragonisca fiebrigi*, female worker [Apidae]; (g) *Tetraglossula anthracina*, female [Colletidae]; (h) *Oragapostemon divaricatus*, female [Halictidae]; (i) *Hesperapis carinata*, male [Melittidae], (j) *Lithurgus huberi*, female [Megachilidae]; complemented by three apoid wasps: (k) *Steniolia duplicata*, female [Bembicidae], (l) *Trachypus boharti*, female [Philantidae], and (m) *Trypoxylon lactitarse*, female [Crabronidae]. Scale bar = 5 mm.

Figure 2

Prothoracic skeletomusculature

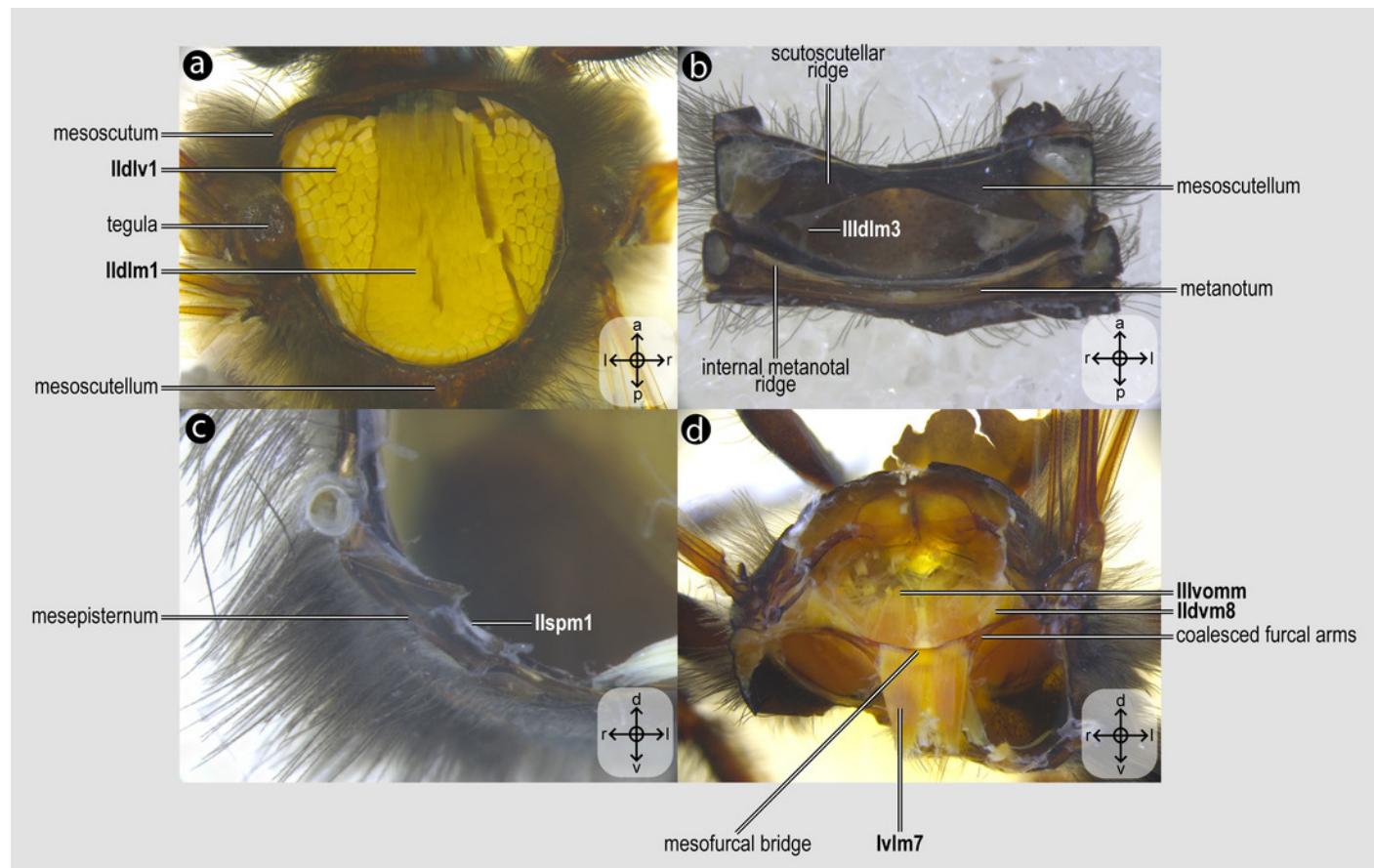

Prothoracic skeletomusculature of *Melipona quadrifasciata*: (a) muscles associated with the profurca, pronotum, and propleura—posterolateral view of the head; (b) muscles associated with the head and propectus—dorsal view of propectus; (c) muscles associated with the propectus—dorsal view of propectus; (d) muscles associated with the propleura—dorsal view of propleura; (e) muscles associated with propectus—dorsal view of propectus; (f) muscles associated with propectus and procoxa—posterior view of propectus. Muscle labels are displayed in bold and larger font to differentiate them from labels applied to sclerites and body regions; photomicrographs not to scale. Stars indicate structure orientation according to three axes: anterior-posterior, dorsal-ventral, and left-right.

Figure 3

Mesothoracic skeletomusculature

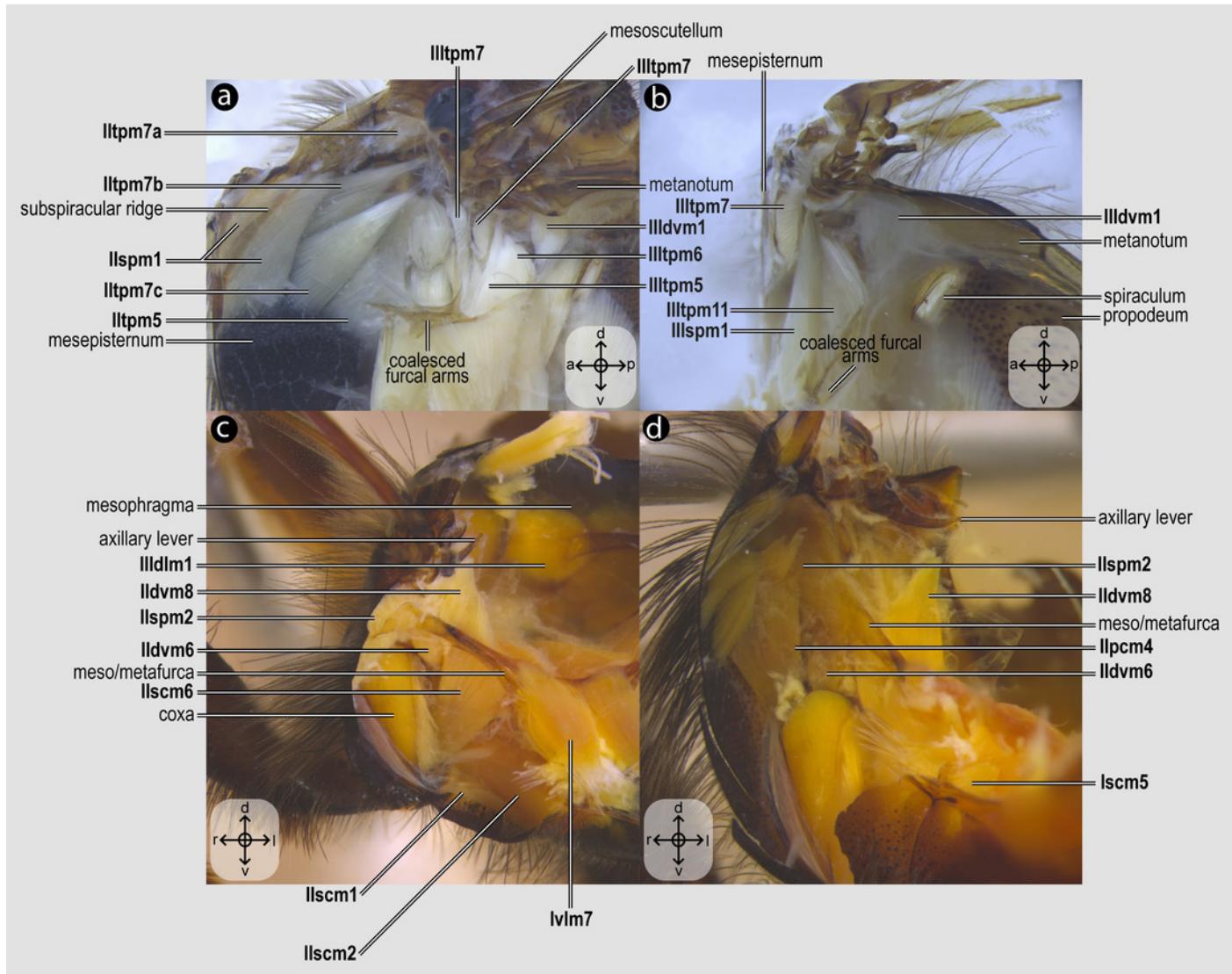

Mesothoracic skeletomusculature of *Melipona quadrifasciata*: (a) indirect flight muscles—dorsal view of mesosoma; (b) scutoscutellar muscles—ventral view of mesoscutellum; (c) first spiracular muscles—anterior view of mesepisternum; (d) muscles associated with the meso/metafurca—anterior view of the meso/metafurca. Muscle labels are displayed in bold and larger font to differentiate them from labels applied to sclerites and body regions; photomicrographs not to scale Stars indicate structure orientation according to three axes: anterior-posterior, dorsal-ventral, and left-right.

Figure 4

Direct flight muscles and mesocoxal skeletomusculature

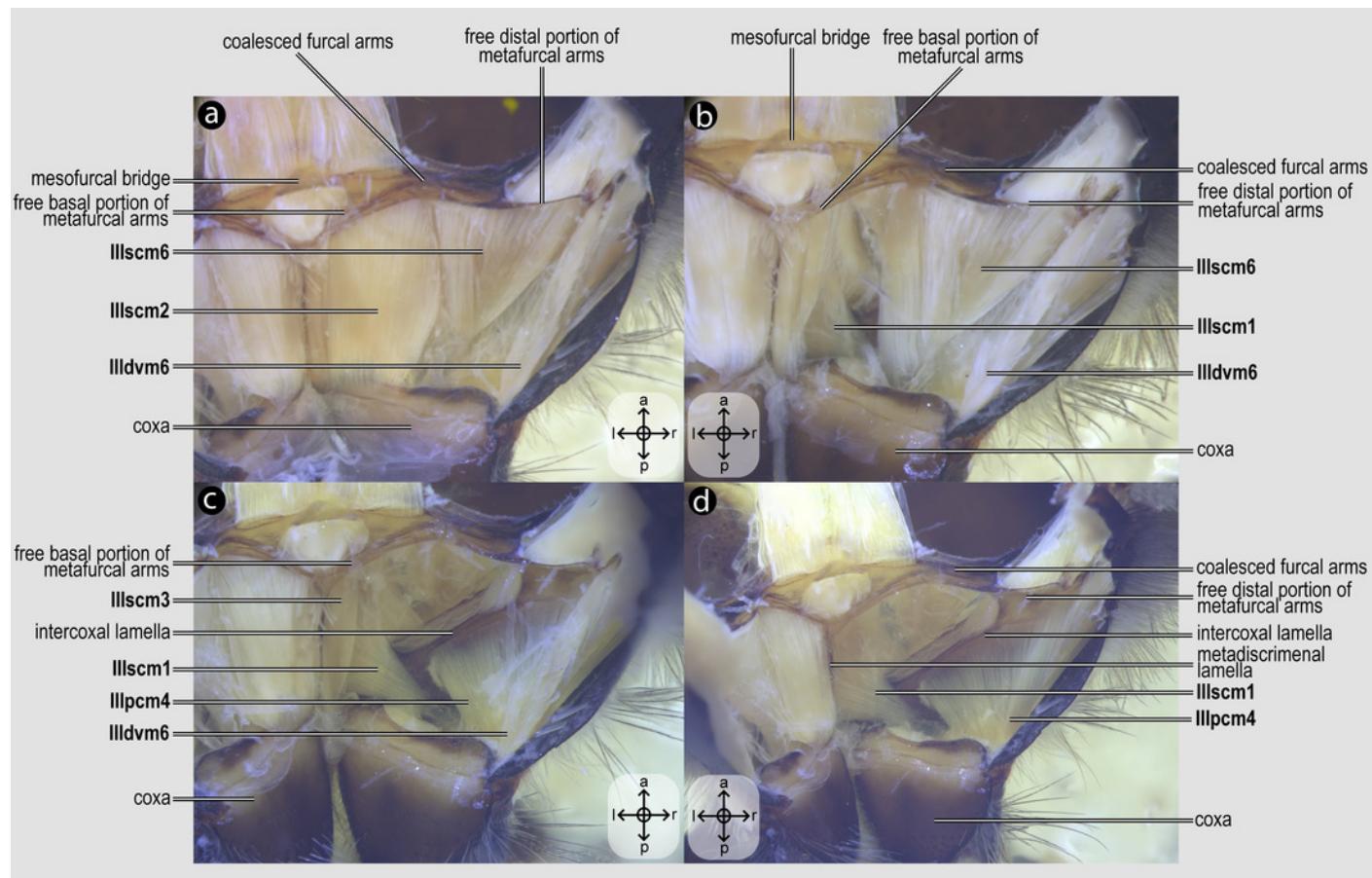

Direct flight muscles and mesocoxal skeletomusculature of *Melipona quadrifasciata* : (a) muscles associated with the **mesoaxillary sclerites**—mesal view of the mesepisternum; b) muscles associated with the **metaaxillary sclerites**—mesal view of the metapectus; c) mesocoxal muscles associated with the meso/metafurca—anterior view of the metafurca; d) pleural muscles associated with the meso/metafurca—anterior view of the meso/metafurca. Muscle labels are displayed in bold and larger font to differentiate them from labels applied to sclerites and body regions; photomicrographs not to scale. The star depicted in (a) indicates structure orientation according to three axes: anterior–posterior, dorsal–ventral, and left–right. All figures oriented according to the star depicted in (a).

Figure 5

Metacoxal muscles

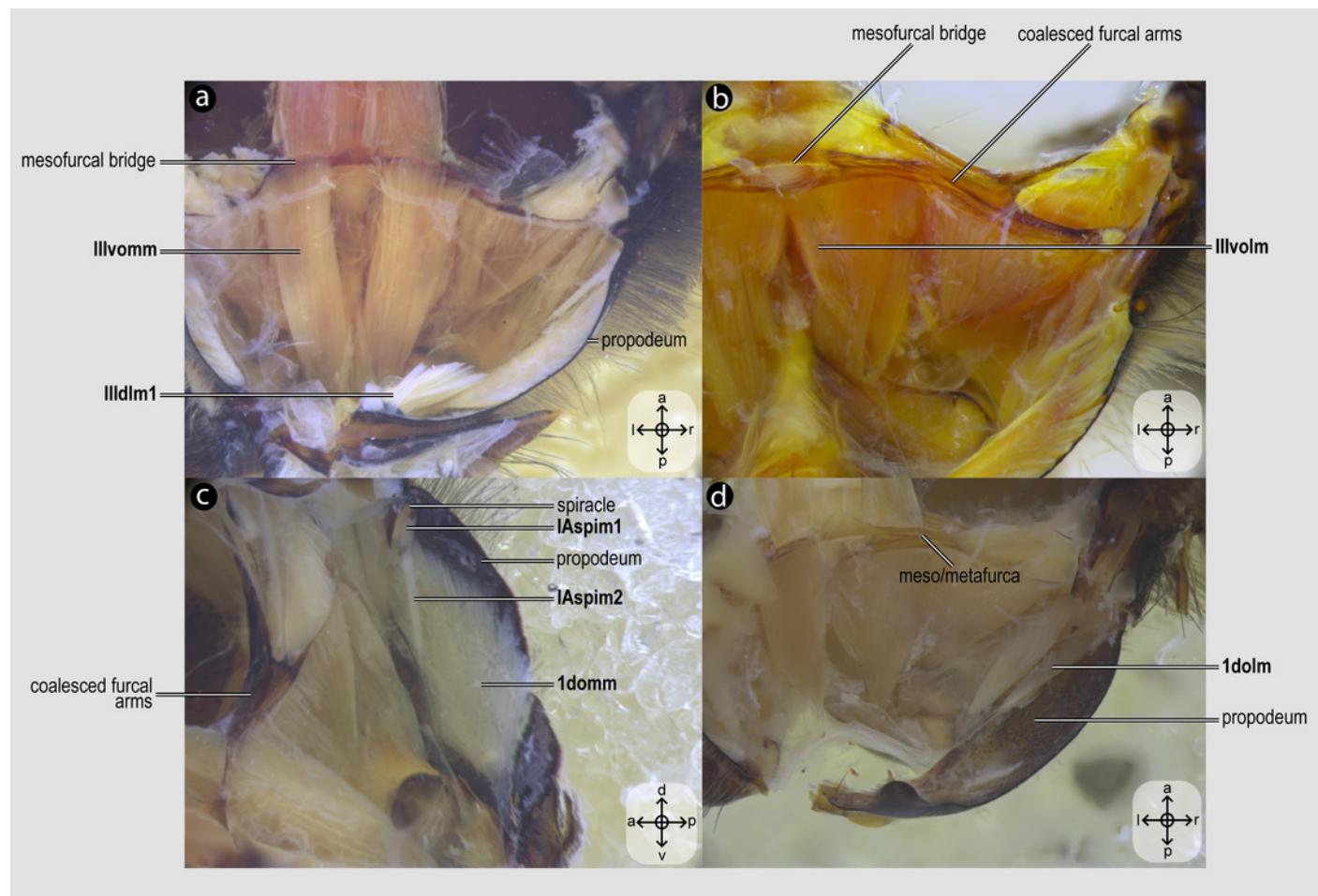

Metacoxal muscles of *Melipona quadrifasciata* : (a), (b), (c), (d) metacoxal muscles associated with the meso/metafurca—dorsal view of the metafurca. Muscle labels are displayed in bold and larger font to differentiate them from labels applied to sclerites and body regions; photomicrographs not to scale. The star depicted in (a) indicates structure orientation according to two axes: anterior-posterior and left-right.

Figure 6

Propodeal muscles

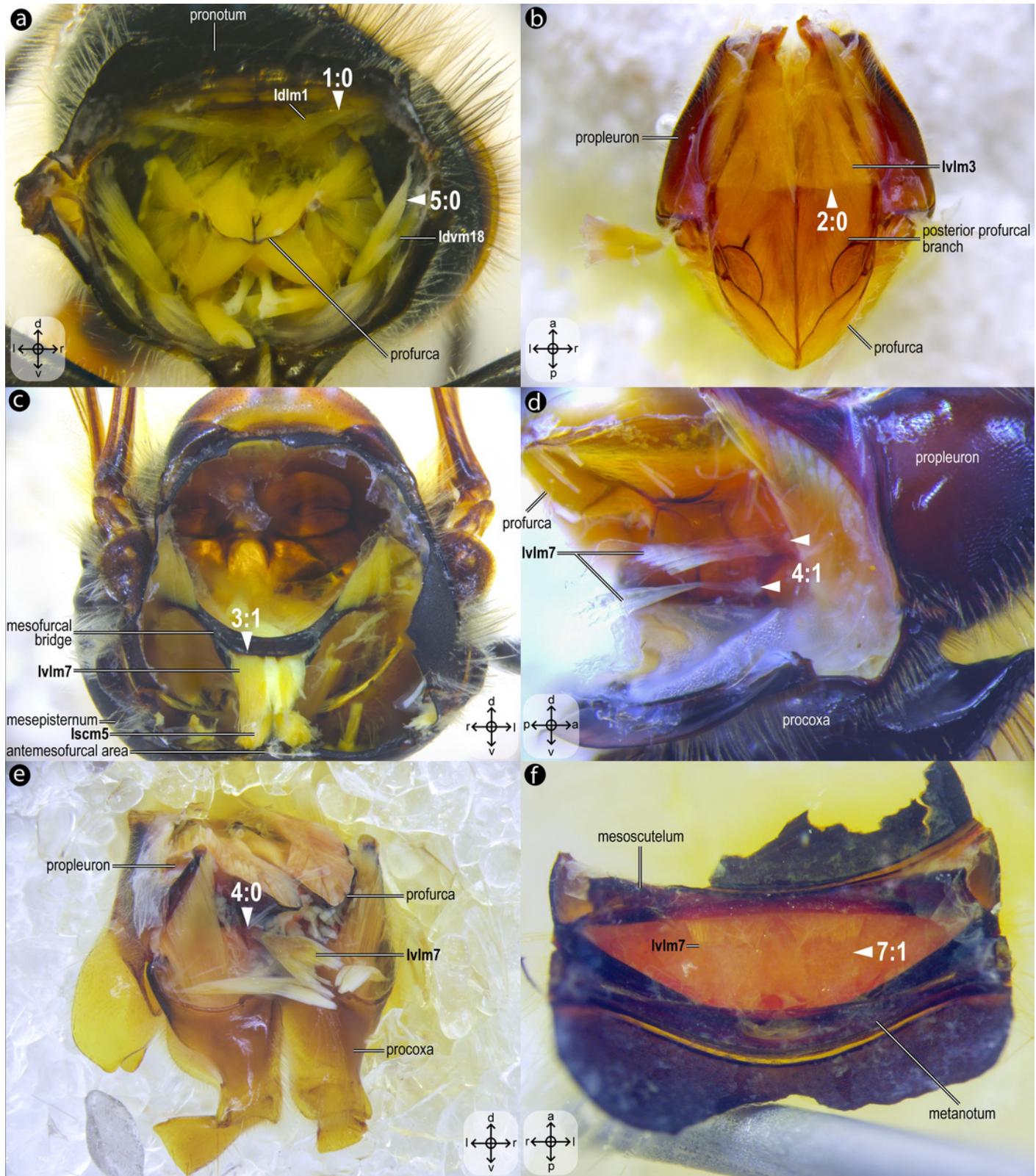

Propodeal muscles of *Melipona quadrifasciata* : (a) propodeal muscles associated with the metafurca—dorsal view of metafurca; (b) propodeal muscles associated with metafurca—dorsolateral view of metafurca; (c) propodeal and spiracular muscles associated with the propodeum—medial view of the propodeum; (d) propodeal muscles—dorsal view of the metafurca. Muscle labels are displayed in bold and larger font to differentiate them from labels applied to sclerites and body regions; photomicrographs not to scale. Stars indicate structure orientation according to three axes: anterior-posterior, dorsal-ventral, and left-right.

Figure 7

Variation of thoracic skeletomusculature: Part 1

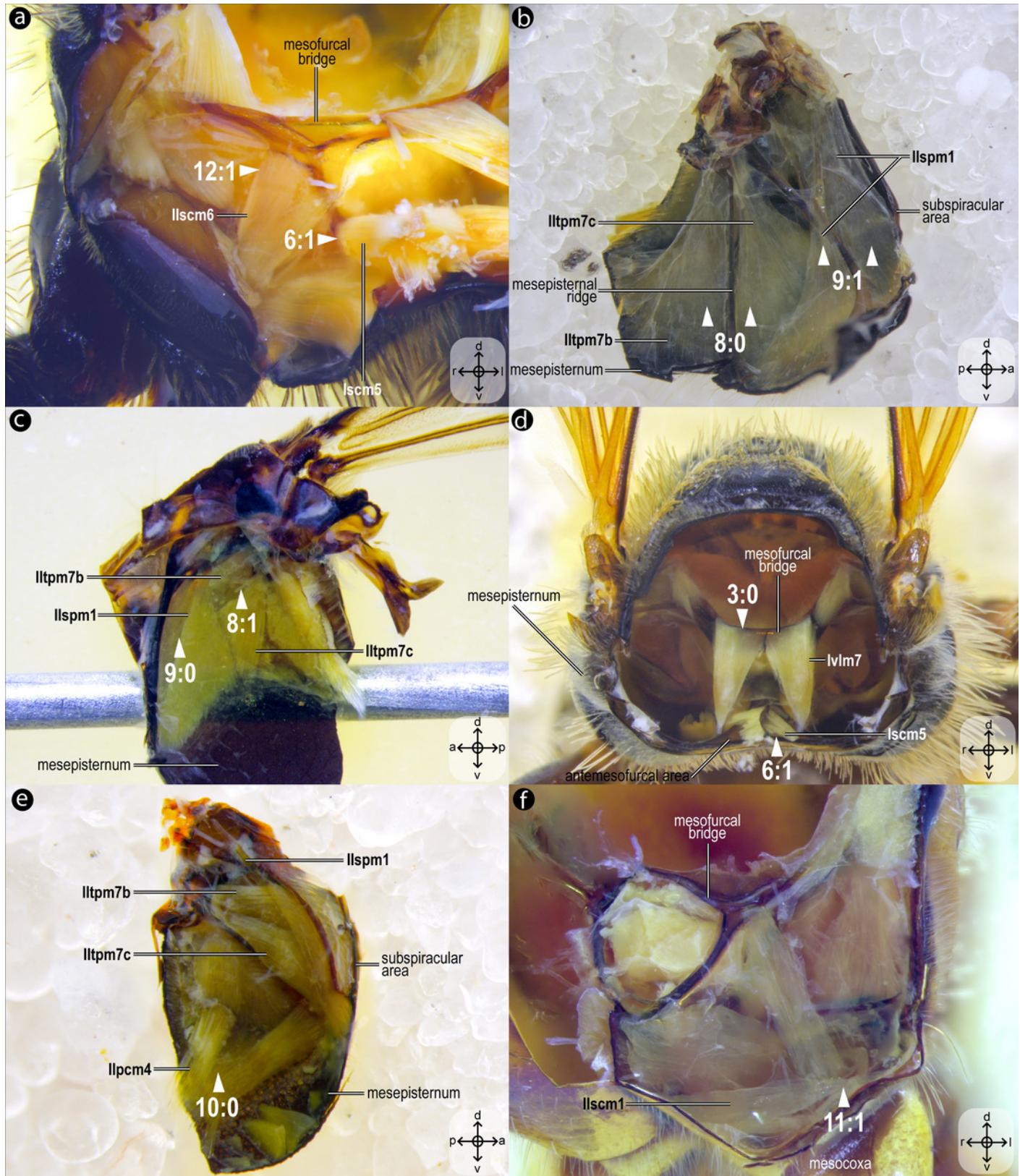

Photomicrographs of dissections of female representatives of Apoidea: (a) *Apis mellifera*, anterior view of the propectus; (b) *Oxaea flavescens*, dorsal view of the propectus; (c) *Apis mellifera*, anterior view of the mesosoma; (d) *Lithurgus huberi*, lateral view of the profurca; (e) *Trypoxylon lactitarse*, posterolateral view of the prospectus; (f) *Apis mellifera*, ventral view of mesoscutellum. Arrowheads indicate morphological conditions coded as character states. Stars indicate structure orientation according to three axes: anterior-posterior, dorsal-ventral, and left-right.

Figure 8

Variation of thoracic skeletomusculature: Part 2

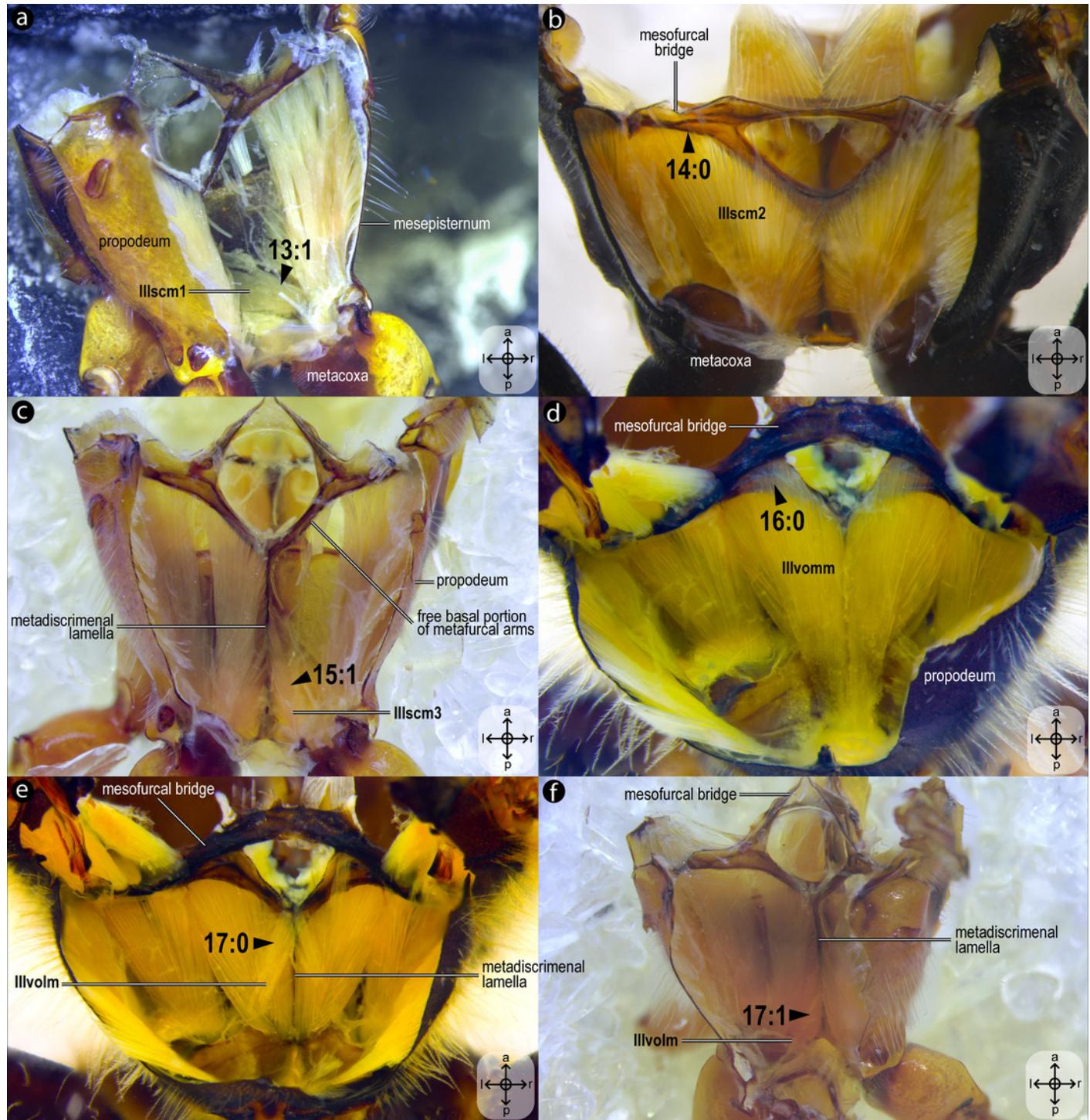

Dissections of female representatives of Apoidea: (a) *Lithurgus huberi*, anterolateral view of the meso/metafurca; (b) *Trypoxylon lactitarse*, mesal view of the mesepisternum; (c) *Apis mellifera*, mesal view of the mesepisternum; (d), *Hesperapis carinata*, anterior view of the mesosoma; (e) *Psaenythia bergii*, mesal view of the mesepisternum; (f) *Trachypus boharti*, anterolateral view of meso/metafurca. Arrowheads indicate morphological conditions coded as character states. Stars indicate structure orientation according to three axes: anterior-posterior, dorsal-ventral, and left-right.

Figure 9

Variation of thoracic skeletomusculature: Part 3

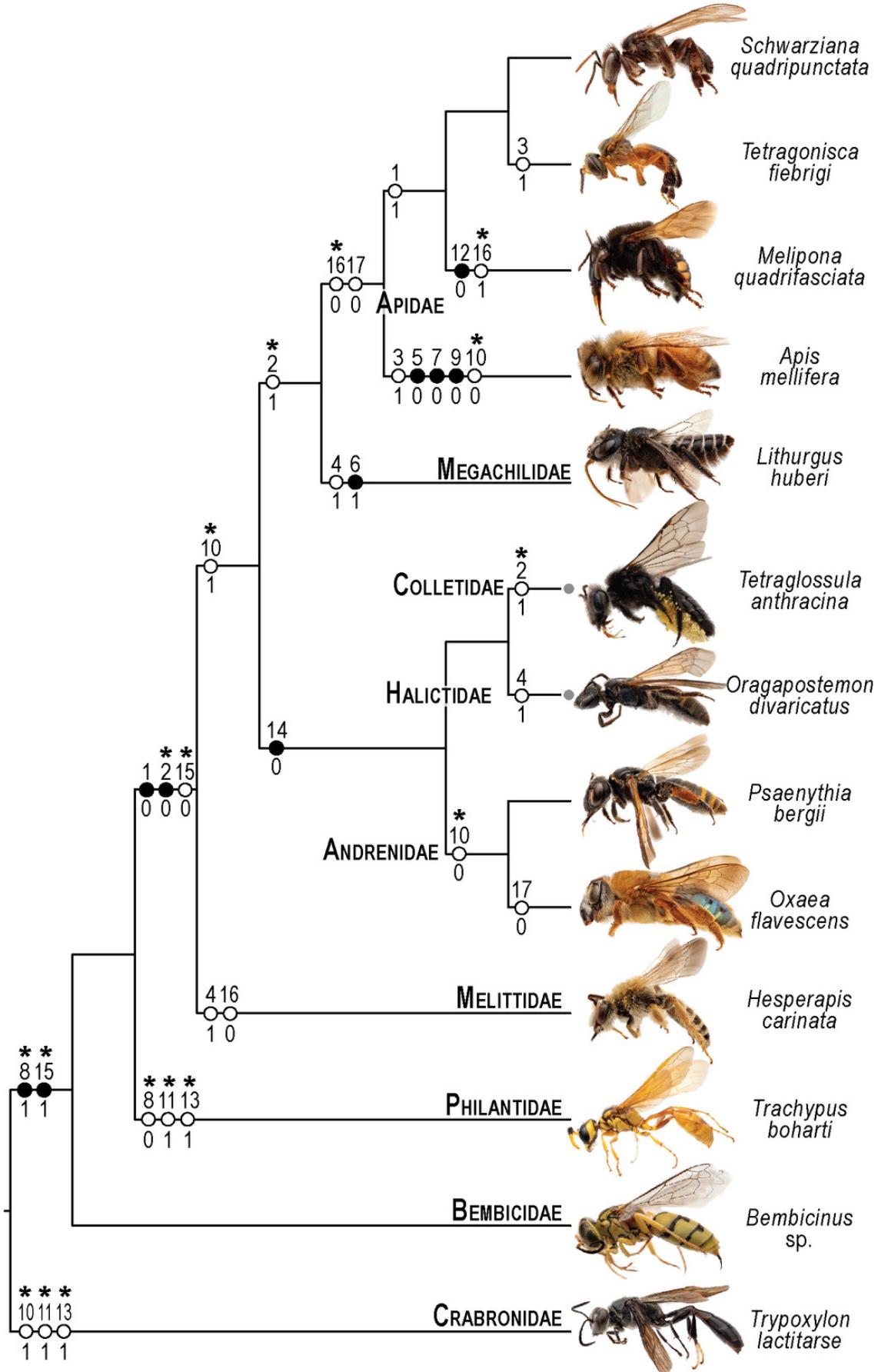

Dissections of female representatives of Apoidea: (a) *Trachypus boharti*, dorsolateral view of the propodeum; (b) *Psaenythia bergii*, dorsal view of the propodeum; (c) *Trachypus boharti*, dorsal view of the propodeum; (d) *Apis mellifera* dorsal view of the propodeum; (e) *Apis mellifera*, dorsal view of the propodeum; (f) *Trachypus boharti*, dorsal view of the propodeum. Arrowheads indicate morphological conditions coded as character states. Stars indicate structure orientation according to two axes: anterior-posterior and left-right.

Figure 10

Phylogenetic interpretation of variation in the skeletomusculature of the mesosoma

Phylogenetic relationships among the 13 species of Apoidea investigated in this research follow Almeida et al. (2023) for relationships among bee taxa and Sann et al. (2018) for the three apoid wasp lineages. Evolutionary changes of 13 characters encoding variation in the skeletomusculature of the mesosoma were phylogenetically optimized onto the tree. Filled circles indicate unique transformations, while empty circles signify non-unique transformations; numbers above the circles denote character numbers, and those below indicate their apomorphic character states; ambiguous changes only recovered with accelerated transformation (ACCTRAN) are indicated by stars above their character numbers. Photographs on the left are not to scale and serve to illustrate the general appearance of each taxon (see Figure 1 for more details).

