

Native pioneer trees can be important phorophytes: Their control for biodiversity conservation on an oceanic island also harms native epiphytes and lianas (#119098)

1

First submission

Guidance from your Editor

Please submit by **9 Aug 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

8 Figure file(s)

7 Table file(s)

2 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Native pioneer trees can be important phorophytes: Their control for biodiversity conservation on an oceanic island also harms native epiphytes and lianas

François M. M. P. Baguette^{Corresp., 1}, Claudia Baider², F. B. Vincent Florens¹

¹ Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, 80837, Le Réduit, Mauritius

² The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry, Food Security, Blue Economy and Fisheries, 80835, Le Réduit, Mauritius

Corresponding Author: François M. M. P. Baguette
Email address: francois.baguette@umail uom.ac.mu

Human activities generate multiple direct and indirect threats driving rapid biodiversity loss globally. Oceanic islands and tropical forests are most affected by this situation and within them, epiphytes and lianas are among the most threatened floristic components. Yet, they are often understudied and neglected particularly within restoration projects which instead typically favour planting trees and often overlook ecosystem dynamics and functional interactions. We compared native epiphytes and lianas growing on native pioneer trees (*Harungana madagascariensis* (Hypericaceae)) with those growing on other native trees of 1) similar trunk diameter; and 2) similar age, within wet native forests undergoing restoration after invasive alien plant control, on the volcanic oceanic island of Mauritius. We also investigated whether the different phorophytes had any differential influence on the fitness of epiphytes and lianas. We studied *H. madagascariensis* because it is the dominant native pioneer tree of the island's wet native vegetation and also because, since decades, it is often controlled by conservation managers. *Harungana madagascariensis* hosted more native epiphyte and liana species than adjacent native trees of similar ages. No significant difference in epiphyte and liana diversity was found on *H. madagascariensis* compared to other nearby native phorophyte of similar trunk diameter. Twice more epiphyte/liana species were closely associated with *H. madagascariensis*, compared to other phorophytes of similar diameter and none were closely associated with other phorophytes of similar age. *Harungana madagascariensis* hosted more reproducing orchids than phorophytes of similar age and size, and the orchid *Angraecum* spp. were larger on *H. madagascariensis* than on phorophytes of similar sizes. The sizes of lianas did not differ significantly across phorophytes. *Harungana madagascariensis* therefore benefit native epiphytes and lianas, promoting their rapid recovery after invasive alien plants are controlled, in contrast with other native

phorophytes. This contrast is in fact even larger because the cut *H. madagascariensis* are often many meters tall, often already hosting epiphytes, in contrast to seedlings that are planted in their place. On an oceanic island where biodiversity conservation is particularly urgent and where cutting *H. madagascariensis* for ecological restoration already lacks any evidence of benefits it brings, our study provides new evidence that the detrimental effects of this management extends beyond the destruction of the native pioneer trees, to also severely set back the restoration of the native epiphytes and lianas guilds. Our study underscores how native pioneer trees can help accelerate ecosystem recovery and foster the restoration of typically neglected native plant guilds. It also underscores the improbable need for stressing that evidence, and not hypotheses, should drive conservation policy.

**1 Native pioneer trees can be important phorophytes: Their
2 control for biodiversity conservation on an oceanic island
3 also harms native epiphytes and lianas**

F. M. M. P. Baguette¹, C. Baider², F. B. V. Florens¹

¹Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, 80837, Le Réduit, Mauritius

²The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry, Food Security, Blue Economy and Fisheries, 80835, Le Réduit, Mauritius

Corresponding Author:

François Marc Marie Pierre Baguette

Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Department of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, 80837, Le Réduit, Mauritius

Email address: francois.baguette@umail.uom.ac.mu

6 **Native pioneer trees can be important phorophytes: Their control for**
7 **biodiversity conservation on an oceanic island also harms native epiphytes**
8 **and lianas**

9

10 *F. M. M. P. Baguette¹, C. Baider², F. B. Vincent Florens¹*

11

12 *¹Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Department of*
13 *Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, 80837, Le Réduit,*
14 *Mauritius*

15 *²The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry, Food Security,*
16 *Blue Economy and Fisheries, 80835, Le Réduit, Mauritius*

17

18 Corresponding author:

19 F. M. M. P. Baguette

20 Tropical Island Biodiversity, Ecology and Conservation Pole of Research, Department of
21 Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, 80837, Le Réduit,
22 Mauritius

23 Email address: francois.baguette@umail.uom.ac.mu

24

25 **Keywords:** Biodiversity conservation, Ecological restoration, Ecological succession, Ecosystem
26 recovery; Facilitation; Heliophyte; Mauritius; Orchids; **Restoration policy**

27

28 **Abstract**

29

30 Human activities generate multiple direct and indirect threats driving rapid biodiversity loss
31 globally. Oceanic islands and tropical forests are most affected by this situation and within them,
32 epiphytes and lianas are among the most threatened floristic components. Yet, they are often
33 understudied and neglected particularly within restoration projects which instead typically favour
34 planting trees and often overlook ecosystem dynamics and functional interactions. We compared
35 native epiphytes and lianas growing on native pioneer trees (*Harungana madagascariensis*
36 (Hypericaceae)) with those growing on other native trees of 1) similar trunk diameter; and 2)
37 similar age, within wet native forests undergoing restoration after invasive alien plant control, on
38 the volcanic oceanic island of Mauritius. We also investigated whether the different phorophytes
39 had any differential influence on the **fitness** of epiphytes and lianas. We studied *H.*
40 *madagascariensis* because it is the dominant native pioneer tree of the island's wet native
41 vegetation and also because, since decades, it is often controlled by conservation managers.
42 *Harungana madagascariensis* hosted more native epiphytes and liana species than adjacent
43 native trees of similar ages. No significant difference in epiphyte and liana diversity was found
44 on *H. madagascariensis* compared to other nearby native phorophyte of similar trunk diameter.
45 Twice more epiphyte/liana species were closely associated with *H. madagascariensis*, compared

46 to other phorophytes of similar diameter and none were closely associated with other
47 phorophytes of similar age. *Harungana madagascariensis* hosted more reproducing orchids than
48 phorophytes of similar age and size, and the orchid *Angraecum* spp. were larger on *H.*
49 *madagascariensis* than on phorophytes of similar sizes. The sizes of lianas did not differ
50 significantly across phorophytes. *Harungana madagascariensis* therefore benefit native
51 epiphytes and lianas, **promoting their rapid recovery after invasive alien plants are controlled, in**
52 **contrast with other native phorophytes.** This contrast is in fact even larger because the cut *H.*
53 *madagascariensis* are often many meters tall, often already hosting epiphytes, in contrast to
54 seedlings that are planted in their place. On an oceanic island where biodiversity conservation is
55 particularly urgent and where cutting *H. madagascariensis* for ecological restoration already
56 lacks any evidence of benefits it brings, our study provides new evidence that the detrimental
57 effects of this management extends beyond the destruction of the native pioneer trees, to also
58 severely set back the restoration of the native epiphytes and lianas guilds. **Our study underscores**
59 **how native pioneer trees can help accelerate ecosystem recovery and foster the restoration of**
60 **typically neglected native plant guilds.** It also underscores the improbable need for stressing that
61 evidence, and not hypotheses, should drive conservation policy.

62

63 **Introduction**

64

65 Global biodiversity is declining rapidly, primarily driven by human activities and their associated
66 impacts (Baillie, Hilton-Taylor & Stuart, 2004; Vie, Hilton-Taylor & Stuart, 2009; Barnosky et
67 al., 2011). In the absence of intensified mitigation efforts, projections indicate that this
68 downward trajectory will persist, potentially resulting in the extinction of up to 12% of species
69 and a 63% reduction in wildlife population densities by the turn of the century (Leclère et al.,
70 2020). Among the different regions of the globe, tropical oceanic islands suffered particularly
71 from this situation as they host roughly half of the species recognized as threatened in any of the
72 IUCN threat categories (IUCN, 2017), including 6,800 angiosperms species estimated to be
73 highly threatened (Caujapé-Castells et al., 2010). Greater efforts of conservation, including of
74 ecological restoration, should therefore be promoted, particularly given that habitat loss remains
75 the most significant driver of biodiversity loss globally and on islands (Borges, Gabriel &
76 Fattorini, 2019) and continues despite the creation of protected areas (Mora & Sale, 2011; Hill et
77 al., 2015).

78

79 In response to this global biodiversity crisis, governments have committed to several
80 international frameworks, such as the Convention on Biological Diversity (CBD) and the United
81 Nations Sustainable Development Goals (SDGs) (CBD, 2011; UN, 2015). In 2022, the UN
82 strengthened its commitment by introducing new targets under the Global Biodiversity
83 Framework (e.g., Target 2), emphasizing the restoration of degraded terrestrial ecosystems
84 (Global Biodiversity Framework (<https://www.cbd.int/gbf>)). Furthermore, large-scale initiatives
85 like the Bonn Challenge (2011) and the UN Decade on Ecosystem Restoration (2021–2030) have
86 been launched to drive coordinated global action. Overall however, planting tree seedlings has

87 been highly favoured among restoration projects while the inclusion of other growth forms has
88 commonly been disregarded (Ruiz-Jaen & Aide, 2005). Little attention has been paid to non-
89 arborescent plant assemblage development in restoration areas (Garcia et al., 2014, 2015) as
90 these plants rarely reach desirable diversity in restoration forests in a relatively short time (Shoo
91 et al., 2016; Garcia et al., 2016). Yet these plants can make up a significant portion of
92 biodiversity and play significant ecological functions in their ecosystems.

93

94 Epiphytic plants constitute an extremely species-rich guild, including over 27,000 recorded
95 species which amount for almost 10% of global vascular plant diversity (Zotz, 2013), and
96 comprise an essential part of the tropical and subtropical flora (Kreft et al., 2004; Krömer et al.,
97 2005). Lianas also constitute a conspicuous feature in tropical forests, contributing up to 27.1%
98 of their species diversity (Gentry, 1992; Zhu, 2008). Altogether, epiphytes and lianas provide
99 important ecosystem functions, including primary productivity (Clark, Nadkarni & Gholz, 1998),
100 food and habitat provisioning (Duellman, 1988; Nadkarni & Matelson, 1989; Yanoviak, 2015) as
101 well as micro-habitat buffering (Scheffers et al., 2013) and canopy water storage (Campbell et
102 al., 2015; Ah-Peng et al., 2017) among others. However, few studies investigated epiphyte
103 colonization in secondary forests (Ceballos, 2020), and lianas have also been neglected in many
104 conservation and research programs (Ashton et al., 2001; Nakamura, Proctor & Catterall, 2003;
105 Vargas, Grombone-Guaratini & Morellato, 2020; Stone et al., 2020) despite their importance for
106 ecosystem functioning (Schnitzer, 2015; Gotsch, Nadkarni & Amici, 2016) and their threatened
107 status. Indeed, up to 1,700 liana species could be endangered worldwide (Song et al., 2022) and
108 concerning epiphytes, with the Neotropics as example, 6,721 species (~60%) are threatened
109 (Carmona-Higuita et al., 2024).

110

111 We studied native epiphyte and liana communities growing in tropical forest areas undergoing
112 ecological restoration that follows the control of invasive alien plants (Baider & Florens, 2011)
113 on the tropical volcanic oceanic island of Mauritius whose forests are known to sustain advanced
114 invasion (Florens et al., 2016) that leaves fairly large gaps after invasive plants control (Florens
115 & Baider, 2013). In particular, we compared the phorophyte potential of native pioneer trees that
116 grow in those gaps with that of non-pioneer tree species. We focused on a widespread native
117 pioneer tree species (*Harungana madagascariensis* Lam. (Hypericaceae)) (Bojer, 1837; Baker,
118 1877; Robson & Stevens, 1976; Botanic Gardens Conservation International (BGCI) & IUCN
119 SSC Global Tree Specialist Group, 2019) that is commonly controlled by conservation managers
120 who then plant other native tree species in its place (Florens & Baider 2013, F.M.M.P. Baguette,
121 C. Baider, F.B. Vincent Florens pers. obs. 2023- 2025). More specifically, we investigated three
122 questions: (a) How does *H. madagascariensis* compare as phorophyte with other naturally
123 growing native trees of comparable sizes that belong to species that are commonly planted where
124 *H. madagascariensis* is cut ('parallel host specificity')? (b) How does the phorophytic function
125 of *H. madagascariensis* compare with that of other naturally growing trees of comparable age
126 belonging to species that are typically planted after *H. madagascariensis* is removed? (c) Does

127 the fitness of epiphytes and lianas vary depending on whether they grow on *H. madagascariensis*
128 or other phorophytes of comparable age and size?

129

130 **Materials & Methods:**

131

132 *Study sites*

133

134 Mauritius (centred on 20°15' S and 57°35' E) is a tropical, volcanic island, situated about 900
135 km east of Madagascar, within the Madagascar and Indian Ocean Islands biodiversity hotspot
136 (Myers et al., 2000). It covers 1,865 km² and culminates at 828 m elevation. The mean annual
137 rainfall varies from 800 mm (leeward coast) to 4,000 mm (central uplands) and the mean annual
138 temperature is 22° C (Staub, Stevens & Waylen, 2014). Following extensive degradation caused
139 since human colonisation of the island in 1638, only 82.1 km² or 4.4% of the island's vegetation
140 remains that still comprise a high percentage of native species (Hammond et al., 2015). This
141 native vegetation, however, survived in highly fragmented forest patches (Florens, 2013) that are
142 increasingly dominated by alien woody species, particularly in the understorey (Florens et al.,
143 2016). Attempts to restore native vegetation communities have been implemented since the mid-
144 1980s (Jones, 2008), comprising mainly of the control of invasive alien plants, and by 2021,
145 ~700 ha of native forest is undergoing restoration on the island (Government of Mauritius,
146 2021).

147

148 Two of the forest areas undergoing ecological restoration for biodiversity conservation and
149 known to host native epiphyte and liana communities (Figure 1) were surveyed between August
150 2023 and August 2024. The first one, Mount Camizard, (20°19'51" to 20°20'00"S and
151 57°42'52" to 57°43'02"E, 250–320 m asl) is located in the island's South-East within an area of
152 Mountain Reserve inside the Bamboo Mountains forest block. The native forest at the site has
153 been undergoing ecological restoration mainly through invasive alien plant control since 2005
154 and is close to the lower elevational range of *H. madagascariensis* on Mauritius. The second site
155 is Brise-Fer in the South-West of Mauritius (20°22'10" to 20°22'30"S and 57°25'55" to
156 57°26'20"E, 560–600 m asl) within the Black River Gorges National Park. Different patches of
157 the native forest at site sampled have been weeded of invasive alien plants for promoting
158 ecological restoration since 1986, with the largest area weeded in 1996, which we chose for our
159 sampling. Brise Fer occurs close to the higher elevational range of *H. madagascariensis*. Mount
160 Camizard and Brise Fer receive comparable annual rainfall of respectively 2.5 and 2.4 m, and no
161 permanent water sources, but some storm streams, cross the study areas.

162

163 *Data collection*

164

165 Naturally growing (non-planted) trees of *H. madagascariensis* (52 at Mount Camizard and 21 at
166 Brise Fer) were randomly sampled along with the closest individual of another native tree
167 species to each of them that was of (1) similar trunk diameter (measured at 1.3 m above ground,

168 along the stem) and (2) similar age (Figure 2 and 3). Trees of similar age were chosen from
169 within the ten most important species of each site (Florens et al., 2012) to ensure their nearby
170 occurrence, their most comparable ecological importance to *H. madagascariensis* which itself is
171 relatively common, and to also reflect the most commonly planted species by conservation
172 practitioners after they cut *H. madagascariensis*. In all, 219 woody plants were sampled,
173 including 73 trees of each category. For each of the 219 potential phorophyte, GPS coordinates
174 were recorded (with GPSMap® 65, Garmin), the species identified, and its diameter at breast
175 height (DBH) recorded. The reproductive status of each epiphyte and liana was recorded as
176 either vegetating or reproducing (bearing flower buds, open flower, unripe fruit, ripe fruit or
177 showing traces of fallen fruits for angiosperms and fertile fronds for pteridophytes). Furthermore,
178 the number of leaves or fronds of each epiphyte, and the stem diameter of each liana were
179 recorded to assess the influence of the phorophyte type on the fitness of epiphytes and lianas.
180

181 **Vascular epiphytes** and lianas were identified and counted on all sampled trees from the ground,
182 with the aid of an 8x42 pair of binoculars when necessary. For larger trees (> 8 m height), we
183 restricted our census up to the first section of the canopy (e.g. 1/3 of the branches length),
184 equivalent to “Zone 3” (Johansson, 1974), to avoid observation bias due to the high probability
185 of missing individuals higher up. Hemiepiphytes and hemiparasites were not considered due to
186 their different ecology from epiphytes and lianas and also because of their rarity or absence in
187 the study areas. We defined an individual epiphyte as an assemblage of rhizomes and leaves
188 forming a clearly bounded stand (Sanford, 1968) due to the difficulty of delineating individual
189 epiphytes when multiple shoots occur in close proximity. For species exhibiting a creeping
190 growth form, individuals were considered separate if physically separated rhizome segments
191 were growing on distinct branches or if no visible connection was discernible between them
192 Finally, each clearly separated clump of epiphytic filmy ferns (Hymenophyllaceae) observed was
193 defined as a single individual due to the impossibility to delimitate individuals otherwise in the
194 field.
195

196 *Estimation of tree age*

197
198 We estimated tree age using long-term individual tree monitoring census data from 2005, 2010
199 and 2022 (**only available from Brise Fer**) supplied by the Mauritius Herbarium and comprising
200 ~19,000 individual native woody plants belonging to ~100 species. First, using two segments of
201 stem diameter monitoring (from 2005–2010 and from 2010–2023) we calculated the annual DBH
202 increments of *Harungana madagascariensis* and of the ten most important species along which it
203 grows. The ten most important species were determined following Importance Values from
204 Florens et al. (2012). The changes in stem diameters were used to estimate the average annual
205 growth rate of each species of interest. A growth rate ratio between *H. madagascariensis* and
206 each of the other species was then computed to estimate the diameter of an individual of the ten
207 other most important species that would be of similar age to the individual of *H.*
208 *madagascariensis* being sampled (Supplementary Table S1). Finally, we sampled the nearest

209 similar-aged plant to each *H. madagascariensis* studied. This indirect method was chosen as the
210 census data used were the best available data for tree age estimation, and more reliable methods
211 such as tree coring could not be performed due to the risk of damage (Florens, 2014; Tsen, Sitzia
212 & Webber, 2016) which would not have been justifiable in our context.

213

214 *Data analysis*

215

216 Only native species were used in the data analysis, because introduced species encountered
217 represented only individuals that were missed during invasive alien plant control campaigns and
218 are therefore not characteristic of the study sites, and transient in nature until removed at a future
219 weeding campaign. In all, 81% (1,805 of 2,229 individuals) of all epiphytes and lianas observed
220 were identified to species level directly *in situ* or at the National Herbarium of Mauritius based
221 on photographs taken *in-situ*. Beside these, Hymenophyllaceae were treated as a single group
222 due to their small size and the difficulty to identify them to species level. Observations were
223 grouped under morphospecies groups for species that were indistinguishable from each other
224 either because of the lack of distinctive characters on immature individuals or due to the absence
225 of visible distinctive characters. This was the case for *Angraecum calceolus*, *Angraecum*
226 *caulescens* and *Angraecum multiflorum* which have been grouped under the “*Angraecum* spp.
227 Group” (n = 383); *Bulbophyllum* spp. grouped under the “*Bulbophyllum* spp. Group” (n = 4);
228 *Haplopteris* spp. in “*Haplopteris* spp. Group” (n = 3), and *Selaginella* spp. in “*Selaginella* spp.
229 Group” (n = 19). Four observations of ferns could not be associated to any genus and those were
230 excluded from the data analysis, on the basis that they could have been immature alien species.
231 The final dataset used for analysis included the respective taxa classified as morphospecies.

232

233 We used RStudio version 2024.12.0.467 (R Core Team, 2024) to do all statistical analysis and
234 graphs. Floristic diversity has been analysed using the Fisher α , Shannon-Weaver (H'), Simpson
235 index (D), and Margalef Indices (Shannon & Weaver, 1949; Simpson, 1949; Margalef, 1958;
236 Condit et al., 1998) calculated for all the tree categories (*H. madagascariensis* versus trees of
237 similar diameter and similar age) in each site. Structural variables such as epiphyte density (N,
238 epiphytes tree⁻¹), and species richness were also computed. Shapiro-Wilk Test was used to test
239 the distribution of abundance and species richness data. Epiphyte abundance and species richness
240 were compared between the different tree categories using Kruskal-Wallis rank sum tests with
241 the post-hoc Dunn's tests of multiple comparisons with Bonferroni adjustment using the r
242 packages rcompanion and dunn.test (Mangiafico, 2024; Dinno, 2024). Graphs were produced
243 using the r package ggplot2 (Wickham, 2016).

244

245 Description of the epiphyte and liana communities in each tree category was made through its
246 species composition and the relative importance value of all species. To this end, we carried out
247 an indicator species analysis using the **multipatt** function in the **indicspecies** package (version
248 1.7.15) (De Cáceres, Legendre & Moretti, 2010) to identify species that are good indicators for
249 one or several tree categories (Dufrêne & Legendre, 1997). Finally, we chose the Orchidaceae,

250 the most abundant epiphyte family recorded (1,181 individuals), to compare the abundance of
251 reproducing individuals on *H. madagascariensis* and other phorophytes of similar age and size.
252 We also used the two most abundant orchid species or taxon recorded, namely *Angraecum*
253 *pectinatum* and *Angraecum* spp. (respectively 523 and 386 individuals), and the most abundant
254 species of liana recorded, namely *Piper borbonense* (226 individuals) to compare sizes of
255 epiphyte and liana growing on the different phorophytes, as further proxies of fitness.
256

257 Results

258

259 Epiphyte or liana were observed on 116 of 219 (53%) sampled potential phorophytes, including
260 very small ones (DBH ~1 cm). Trees devoid of epiphytes or lianas were mostly of relatively
261 small sizes (median DBH: 5.5 cm), but also included six relatively large trees (DBH \geq 15 cm).
262 Plants sampled hosted 23 epiphyte species or morphospecies (1,973 individuals) and five liana
263 species (256 individuals) (Supplementary Table S2). Overall, half (14) of the species occurred as
264 < 10 individuals each, and the other half was represented by > 2,000 individuals (Supplementary
265 Table S3). The most abundant species was the orchid *Angraecum pectinatum*, which accounted
266 for 23.5% of all epiphytes. Other *Angraecum* species grouped into ‘*Angraecum* spp.’ and the fern
267 *Microsorum punctatum* were the other most frequent epiphytes (Supplementary Table S4). The
268 Orchidaceae was the most important plant family, both in terms of abundance and species
269 richness, including 36% of all species or taxa and 53% of all individuals (Supplementary Table
270 S5).

271

272 Overall, *H. madagascariensis* hosted a higher diversity of epiphyte and liana than other native
273 trees of similar age, and a slightly lower diversity than other trees of similar diameter (Table 1).
274 A significant difference in species richness ($\chi^2 = 121.80$, df = 5, p < 0.05) and abundance ($\chi^2 =$
275 107.59, df = 5, p < 0.05) of epiphytes was found among phorophytes across both sites, with post
276 hoc Dunn's tests revealing that *H. madagascariensis* hosted a significantly higher species
277 richness (p < 0.05) and abundance (p < 0.05) of epiphyte communities than other native trees of
278 similar age in both Brise Fer and Mount Camizard. However, no significant difference in
279 epiphyte species richness existed on *H. madagascariensis* compared to other native trees of
280 similar diameter (p > 0.05), and a similar result applied for abundance (p > 0.05) in both sites
281 (Figure 4 and 5). In Brise Fer, six species were significantly associated with *H.*

282 *madagascariensis* compared to only three with other trees of similar diameter (Table 2).

283 Furthermore, five species were significantly associated with *H. madagascariensis* and trees of
284 similar DBH compared to only one being associated with the combination of *H.*
285 *madagascariensis* and trees of similar DBH and age (Table 2). No significant association were
286 found in Mount Camizard.

287

288 There was a significant difference in abundance of reproducing orchid ($\chi^2 = 63.93$, df = 5, p <
289 0.05) among phorophytes across both sites, with post hoc Dunn's tests revealing that *H.*
290 *madagascariensis* hosted significantly more reproducing orchid than other native phorophyte of

291 similar age and size in Brise Fer ($p < 0.05$ respectively) but no significant difference was
292 observed in Mount Camizard (Figure 6). In addition, there was a significant difference of size (in
293 terms of number of leaves) for *Angraecum* spp. ($\chi^2 = 24.78$, $df = 5$, $p < 0.05$) but not for
294 *Angraecum pectinatum* ($\chi^2 = 3.35$, $df = 5$, $p > 0.05$) among phorophytes across both sites. Post
295 hoc Dunn's tests revealed that individuals of *Angraecum* spp. on *H. madagascariensis* had
296 significantly more leaves than individuals on other phorophytes of similar DBH ($p < 0.05$) in
297 Brise Fer, and that the leafiness of these orchids was similar whether they grew on *H.*
298 *madagascariensis* or on other phorophytes of similar age ($p > 0.05$) (Figure 7a). With regards to
299 lianas, there was no significant difference of size (in terms of stem DBH) for *Piper borbonense*
300 among phorophytes in Brise Fer ($\chi^2 = 0.69$, $df = 5$, $p > 0.05$) (Figure 7b).

301

302 Discussion

303

304 Ecological implications

305

306 The native pioneer tree *H. madagascariensis* which grows naturally best in disturbed areas,
307 precisely therefore where other potential phorophytes are rare, constitute furthermore a relatively
308 better phorophyte compared to other potential native phorophytes that grow alongside it in the
309 Mauritian native forests. Furthermore, the epiphyte and liana communities that *H.*
310 *madagascariensis* come to support in just two to three decades of its growth, is comparable to
311 those assembling on often much-slower growing and much older, often multi-centennial trees of
312 comparable size to *H. madagascariensis*, which further stresses the latter's importance for
313 establishment and recovery of epiphytes and lianas following a disturbance. Our study also
314 aligns with previous findings that tree age and sizes strongly influence phorophytic function in
315 various ways that depend on tree species' ecology (pioneer versus later successional species)
316 (Catling & Lefkovitch, 1989; Wolf, 1994; Annaselvam & Parthasarathy, 2001; Bernal, Valverde
317 & Hernández-Rosas, 2005; José Válka Alves, Kolbek & Becker, 2008).

318

319 Moreover, we showed that, within two to three decades of a disturbance, the fitness of native
320 epiphytes that establish on *H. madagascariensis* is substantially superior to that of epiphytes that
321 establish on other potential phorophytes close by, as indicated by greater leafiness and greater
322 proportion of mature individuals on *H. madagascariensis*. This superiority as phorophyte is
323 apparent even when compared to much older other species of the same trunk diameter as the *H.*
324 *madagascariensis*. This situation appears linked to the fact that the bark of *H. madagascariensis*
325 is particularly thick and spongy relative to most other native phorophytes. Such a bark would
326 retain moisture for longer periods and probably provide more nutrients, thereby promoting
327 epiphyte establishment and their faster growth and maturation. Hence, *H. madagascariensis* can
328 not only quickly provide large surface areas suitable for epiphyte establishment and
329 maintenance, but also offer a suitable habitat for their relatively rapid growth and earlier
330 maturation. Those results corroborate previous studies showing that pioneer trees can be suitable
331 phorophytes for epiphytes (Callaway et al., 2002; Cascante Marín, 2008; Einzmann et al., 2015;

332 Besi et al., 2023; Pie et al., 2023; Wysocki et al., 2024), and lianas (Putz, 1984; Letcher, 2015;
333 Schnitzer, 2015). However, it's important to note that site conditions modulate the benefits that
334 pioneer trees like *H. madagascariensis* can bring, with greater positive impacts on boosting
335 epiphytes and lianas in sites where greater species richness and abundance of epiphytes and
336 lianas is found (e.g. Brise Fer compared to Mount Camizard).

337

338 Finally, the indicator analysis identified 21.4% of the epiphyte and liana species recorded in this
339 study (N = 6) as significantly associated with *H. madagascariensis*, and 32.1% (N = 9) with *H.*
340 *madagascariensis* and other trees of the same size, further stressing the key role that *H.*
341 *madagascariensis* plays in supporting specific native epiphyte and liana species. Therefore, *H.*
342 *madagascariensis* trees also constitute a real refugia for epiphytes and lianas relatively early
343 following a disturbance. Importantly, those results obtained in Mauritius are likely to also apply
344 more broadly within the vast native range, of about 13 M km², of *H. madagascariensis*
345 (Baguette, Baider & Florens, 2025) whenever the tree grows within the natural range of
346 epiphytic orchids, ferns and lianas, given the broad similarity of ecological niches and
347 requirements of these guilds of plants.

348

349 *Implications for ecological restoration and biodiversity conservation*

350

351 The extreme invasion of Mauritius native forests by alien plants (Florens et al., 2016) has driven
352 such a high rate of native tree mortality (Florens et al., 2017) including of some of the largest
353 canopy species (Baider & Florens, 2006), that when alien plants are removed to foster ecological
354 restoration, scanty native trees remain within the substantial gaps created in the forest canopy.
355 These gaps form ideal habitat for *H. madagascariensis* which grows naturally from the seedbank
356 to recreate a canopy reaching ~12 m high within four to six years (Swaine & Hall, 1983; Ndam
357 & Healey, 2001; Manjaribe et al., 2013) before starting to decline after ~10 years (Hervé et al.,
358 2015). Our results show that, where it grows, this pioneer tree is highly beneficial to native
359 epiphytes species richness, abundance and fitness, more so than other species which grows
360 alongside it. Yet, all major conservation practitioners of Mauritius cut back large numbers of *H.*
361 *madagascariensis* in areas undergoing ecological restoration for biodiversity conservation
362 (Figure 8), to create space where later successional woody native plants are often planted
363 (Florens & Baider, 2013). Here, we show that by doing so, conservation managers not only
364 reverse restoration progress of woody plant cover (Florens & Baider, 2013), but also set back
365 ecosystem recovery by: 1) immediately destroying the many native structural epiphytes that have
366 already established on *H. madagascariensis*; and 2) subsequently slowing down the recovery of
367 structural epiphytes by leaving them poorer quality phorophytes than *H. madagascariensis* to
368 grow on.

369

370 Among the species significantly associated specifically with *H. madagascariensis*, four are
371 orchids. Orchids constitute a major group of the island flora as it is the island's most species-rich
372 family of flowering plants, and is dominated by species endemic to the biodiversity hotspot

373 region (80%), followed by species endemic to the Mascarene archipelago (41%), including those
374 endemic to the island (10%) (Baider & Florens, 2022). The Orchidaceae is also the native
375 angiosperm family that has sustained the highest extinction rate on Mauritius, with 22% of
376 Mauritian native orchids driven extinct over the last 2.5 centuries or so (Baider & Florens, 2022)
377 and many species are now extremely rare (e.g. Baider et al., 2012; Pailler et al., 2020a).
378 Furthermore, known species have been found for the first time on the island relatively recently
379 (Roberts et al., 2004) and new species are still being discovered even more recently (Fournel,
380 Micheneau & Baider, 2015; Pailler & Baider, 2020; Pailler et al., 2020b). For all these reasons,
381 conservation of native orchids in Mauritius should be a priority and our results show that *H.*
382 *madagascariensis* can greatly help to enhance their conservation in wet forests by providing
383 advantageous habitats for their colonisation and fast growth and maturation. It is thus particularly
384 unfortunate that most conservation managers cut back *H. madagascariensis* from areas
385 undergoing restoration. Importantly, *H. madagascariensis* germinates and grows naturally in wet
386 forests undergoing restoration such that no additional investment after invasive plants weeding is
387 required from conservation managers for its establishment.
388

389 Finally, it is important to stress that epiphyte support diverse ecological interactions with animals
390 (Nadkarni & Matelson, 1989; Stuntz et al., 2002; Boechat, da Silva & Nunes-Freitas, 2019;
391 Spicer & Woods, 2022), as lianas also do (Yanoviak, 2015; Odell, Stork & Kitching, 2019). In
392 particular, *Piper borbonense*, the most abundant native liana growing on *H. madagascariensis*,
393 produces many fruits eaten by native vertebrates (Heinen et al., 2023) including the threatened
394 endemic Mauritius Bulbul (*Hypsipetes olivaceus*). Mauritius is the only place within *H.*
395 *madagascariensis*' 13 M km² native range where conservationists cut the tree (Baguette, Baider
396 & Florens, 2025), based on justifications contradicting best available evidence, including the
397 unsubstantiated claim that it harms native biodiversity. Here, we show the opposite to be true
398 regarding the neglected and threatened guilds of epiphytes and lianas. We hope that our findings
399 may help practitioners shift scarce conservation resources away from management that harm
400 native biodiversity, and above all that our results can trigger a paradigm shift in Mauritius where
401 conservation policy is driven less by non-expert opinions and hypotheses and more by scientific
402 evidence. This situation is not an isolated case; the mass-culling of a threatened Flying fox
403 spearheaded by Mauritius' main conservation service was also based on non-expert opinions and
404 hypotheses instead of evidence (Florens, 2015, 2016) and predictably led to failure (Florens &
405 Baider, 2019). Concerning *H. madagascariensis*, while some encouraging signs have started
406 appearing (Ferney Ltd., 2025) much remains to be done to meaningfully accomplish the
407 paradigm shift (Figure 8).
408

409 Conclusion

410

411 Using the widely distributed *Harungana madagascariensis* as a model, we show that pioneer
412 trees can serve as important and even superior phorophytes for native epiphytes and lianas
413 compared to the rest of the woody plant community where it grows. This finding was made

414 within tropical forest areas undergoing ecological restoration following the weeding of invasive
415 alien plants and was already apparent within the early stages after the weeding. This is good
416 news for conservation in a place like Mauritius where much of the biota is highly threatened with
417 extinction, and where epiphytes and lianas remain a particularly diverse and also largely
418 overlooked component of native plant diversity which has furthermore already sustained high
419 extinction rates and comprise many rare and threatened species. However, the enduring practice
420 of most major local conservation managers of cutting back native pioneer trees like *H.*
421 *madagascariensis* from areas being restored for conservation of biodiversity remains a concern
422 as it represents investment of scarce conservation resources in ways that setback biodiversity
423 conservation objectives and undermine the reinstatement of natural functioning of the ecosystem
424 being restored. A shift from the current hypothesis-based to an evidence-based conservation
425 policy on that matter is warranted.
426

427 Acknowledgements

428
429 The authors are grateful to the University of Mauritius for its administrative support, The
430 National Parks and Conservation Services of the Ministry of Agro-Industry, Food Security, Blue
431 Economy and Fisheries for permission to carry out surveys in the Black River Gorges National
432 Park, and Mr. Owen L. Griffiths and Mrs. Mary-Ann Griffiths for their permission to collect data
433 at Mount Camizard. We also thank Teesha Baboorun Baguette, Geetika Bandha, Dr. Bissessur,
434 Yogishah Ashmi Bunsy, Raphaël Merven, and Ghanishta Seeburrun for their substantial
435 assistance in data collection. We also thank Kenji Yip Tong and Peter Horchler for their
436 assistance and advice with some data analyses.
437

438 Reference

439
440 Ah-Peng C, Cardoso AW, Flores O, West A, Wilding N, Strasberg D, Hedderson TAJ. 2017.
441 The role of epiphytic bryophytes in interception, storage, and the regulated release of
442 atmospheric moisture in a tropical montane cloud forest. *Journal of Hydrology* 548:665–
443 673. DOI: 10.1016/j.jhydrol.2017.03.043.
444 Annaselvam J, Parthasarathy N. 2001. Diversity and distribution of herbaceous vascular
445 epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. *Biodiversity*
446 & *Conservation* 10:317–329. DOI: 10.1023/A:1016670621331.

447 Ashton MS, Gunatilleke CVS, Singhakumara BMP, Gunatilleke IAUN. 2001. Restoration
448 pathways for rain forest in southwest Sri Lanka: A review of concepts and models. *New*
449 *Directions in Tropical Forest Research* 154:409–430. DOI: 10.1016/S0378-
450 1127(01)00512-6.

451 Baguette FM, Baider C, Florens FV. 2025. A scoping review of tropical pioneer trees' roles for
452 restoration and conservation management: *Harungana madagascariensis* (Hypericaceae) a
453 widespread African species as a model. *PeerJ* 13:e19458.

454 Baider C, Florens F. 2006. Current decline of the ““Dodo Tree””: a case of broken-down
455 interactions with extinct species or the result of new interactions with alien invaders. In:
456 Laurance W, Peres C eds. *Emerging Threats to Tropical Forests*. Chicago University
457 Press, 199–214.

458 Baider C, Florens FBV. 2011. Control of invasive alien weeds averts imminent plant extinction.
459 *Biological Invasions* 13:2641–2646. DOI: 10.1007/s10530-011-9980-3.

460 Baider C, Florens FBV. 2022. Diversity, ecology, and conservation of Mauritius orchids. In:
461 Mérillon J-M, Kodja H eds. *Orchids Phytochemistry, Biology and Horticulture:*
462 *Fundamentals and Applications*. Cham: Springer International Publishing, 107–133.
463 DOI: 10.1007/978-3-030-38392-3_29.

464 Baider C, Florens F, Rakotoarivelo F, Bosser J, Pailler T. 2012. Two new records of *Jumellea*
465 (Orchidaceae) for Mauritius (Mascarene Islands) and their conservation status. *Phytotaxa*
466 52:21–28. DOI: 10.11646/phytotaxa.52.1.3.

467 Baillie J, Hilton-Taylor C, Stuart SN. 2004. *2004 IUCN Red List of Threatened Species: a global*
468 *species assessment*. Gland, Switzerland and Cambridge, UK.: IUCN.

469 Baker JG. 1877. *Flora of Mauritius and the Seychelles: a description of the flowering plants and*
470 *ferns of those islands*. London, UK: L. Reeve and Co.

471 Barnosky AD, Matzke N, Tomaia S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire
472 JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA. 2011. Has the Earth's sixth mass
473 extinction already arrived? *Nature* 471:51–57. DOI: 10.1038/nature09678.

474 Bernal R, Valverde T, Hernández-Rosas L. 2005. Habitat preference of the epiphyte *Tillandsia*
475 *recurvata* (Bromeliaceae) in a semi-desert environment in Central Mexico. *Canadian*
476 *Journal of Botany* 83:1238–1247. DOI: 10.1139/b05-076.

477 Besi EE, Mustafa M, Yong CSY, Go R. 2023. Habitat ecology, structure influence diversity, and
478 host-species associations of wild orchids in undisturbed and disturbed forests in
479 Peninsular Malaysia. *Forests* 14:544. DOI: 10.3390/f14030544.

480 Boechat RF, da Silva BF, Nunes-Freitas AF. 2019. Bird-epiphyte interactions in three Atlantic
481 Forest environments in southeastern Brazil. *Revista Brasileira de Ornitologia* 27:108–
482 114. DOI: 10.1007/BF03544454.

483 Bojer W. 1837. *Hortus Mauritianus, ou, énumération des plantes, exotiques et indigènes, qui*
484 *croissent à l'Ile Maurice : disposées d'après la méthode naturelle*. Mauritius: Imprimerie
485 d'Aimé Mamarot et Compagnie.

486 Borges PAV, Gabriel R, Fattorini S. 2019. Biodiversity erosion: Causes and consequences. In:
487 Leal Filho W, Azul AM, Brandli L, Özuyar PG, Wall T eds. *Life on Land*. Cham:
488 Springer International Publishing, 1–10. DOI: 10.1007/978-3-319-71065-5_78-1.

489 Botanic Gardens Conservation International (BGCI), IUCN SSC Global Tree Specialist Group.
490 2019. *Harungana madagascariensis*. DOI: 10.2305/IUCN.UK.2019-
491 2.RLTS.T62019179A146204258.en.

492 Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC. 2002. Epiphyte host
493 preferences and host traits: mechanisms for species-specific interactions. *Oecologia*
494 132:221–230. DOI: 10.1007/s00442-002-0943-3.

495 Campbell, Will Edwards, Erica Odell, Dharmalingam Mohandass, William F. Laurance. 2015.
496 Can lianas assist in rainforest restoration? *Tropical Conservation Science* 8:257–273.
497 DOI: 10.1177/194008291500800119.

498 Carmona-Higuita MJ, Mendieta-Leiva G, Gómez-Díaz JA, Villalobos F, Ramos FN, Elias JPC,
499 Jiménez-López DA, Zuluaga A, Holst B, Kessler M, Mathieu G, Zizka A, Zott G,
500 Krömer T. 2024. Conservation status of vascular epiphytes in the neotropics. *Biodiversity
501 and Conservation* 33:51–71. DOI: 10.1007/s10531-023-02730-8.

502 Cascante Marín A. 2008. Establishment, reproduction and genetics of epiphytic bromeliad
503 communities during premontane forest succession in Costa Rica. 40:441–448. DOI:
504 10.1111/j.1744-7429.2008.00403.x.

505 Catling PM, Lefkovitch LP. 1989. Associations of vascular epiphytes in a Guatemalan Cloud
506 Forest. *Biotropica* 21:35–40. DOI: 10.2307/2388439.

507 Caujapé-Castells J, Tye A, Crawford DJ, Santos-Guerra A, Sakai A, Beaver K, Lobin W,
508 Vincent Florens FB, Moura M, Jardim R, Gómes I, Kueffer C. 2010. Conservation of
509 oceanic island floras: Present and future global challenges. *Perspectives in Plant
510 Ecology, Evolution and Systematics* 12:107–129. DOI: 10.1016/j.ppees.2009.10.001.

511 CBD. 2011. Conference of the Parties Decision X/2: Strategic plan for biodiversity 2011–2020.
512 DOI: <https://www.cbd.int/decision/cop?id=12268>.

513 Ceballos SJ. 2020. Vascular epiphyte communities in secondary and mature forests of a
514 subtropical montane area. *Acta Oecologica* 105:103571. DOI:
515 10.1016/j.actao.2020.103571.

516 Clark KL, Nadkarni NM, Gholz HL. 1998. Growth, net production, litter decomposition, and net
517 nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. *Biotropica*
518 30:12–23. DOI: 10.1111/j.1744-7429.1998.tb00365.x.

519 Condit R, Foster R, Hubbell S, Sukumar R, Leigh E, Manokaran N, Lao S de, LaFrankie J,
520 Ashton P. 1998. Assessing forest diversity on small plots: calibration using species-
521 individual curves from 50-ha plots. In: F. Dallmeier JAC ed. *Forest biodiversity*
522 *research, monitoring and modeling. Conceptual background and Old World case studies.*
523 Parthenon Publishing Group, 247–268.

524 De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by combining
525 groups of sites. *Oikos* 119:1674–1684. DOI: 10.1111/j.1600-0706.2010.18334.x.

526 Dinno A. 2024. Dunn's test of multiple comparisons using rank sums.

527 Duellman WE. 1988. Patterns of species diversity in anuran amphibians in the American tropics.
528 *Annals of the Missouri Botanical Garden* 75:79–104. DOI: 10.2307/2399467.

529 Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible
530 asymmetrical approach. *Ecological Monographs* 67:345–366. DOI: 10.1890/0012-
531 9615(1997)067[0345:SAAIST]2.0.CO;2.

532 Einzmann HJR, Beyschlag J, Hofhansl F, Wanek W, Zotz G. 2015. Host tree phenology affects
533 vascular epiphytes at the physiological, demographic and community level. *AoB PLANTS*
534 7:plu073. DOI: 10.1093/aobpla/plu073.

535 Ferney Ltd. 2025. Building climate resilience in the Nyon river watershed.

536 Florens FBV. 2013. Conservation in Mauritius and Rodrigues: Challenges and achievements
537 from two ecologically devastated oceanic islands. In: Raven PH, Sodhi NS, Gibson L
538 eds. *Conservation Biology*. Voices from the Tropics, press., 40–50. DOI:
539 10.1002/9781118679838.ch6.

540 Florens FBV. 2014. Research no matter the risks? A reply to Boura et al. *Trends in Ecology &*
541 *Evolution* 29:134–135. DOI: 10.1016/j.tree.2014.01.006.

542 Florens F. 2015. Flying foxes face cull despite evidence. *Science* 350:1325–1326. DOI:
543 10.1126/science.350.6266.1325-a.

544 Florens F. 2016. Biodiversity law: Mauritius culls threatened fruit bats. *Nature* 530:33–33. DOI:
545 10.1038/530033a.

546 Florens FBV, Baider C. 2013. Ecological restoration in a developing island nation: how useful is
547 the science? *Restoration Ecology* 21:1–5. DOI: 10.1111/j.1526-100X.2012.00920.x.

548 Florens FBV, Baider C. 2019. Mass-culling of a threatened island flying fox species failed to
549 increase fruit growers' profits and revealed gaps to be addressed for effective
550 conservation. *Journal for Nature Conservation* 47:58–64. DOI:
551 10.1016/j.jnc.2018.11.008.

552 Florens FBV, Baider C, Martin GMN, Seegoolam NB, Zmanay Z, Strasberg D. 2016. Invasive
553 alien plants progress to dominate protected and best-preserved wet forests of an oceanic
554 island. *Journal for Nature Conservation* 34:93–100. DOI: 10.1016/j.jnc.2016.09.006.

555 Florens FBV, Baider C, Martin G, Strasberg D. 2012. Surviving 370 years of human impact:
556 What remains of tree diversity and structure of the lowland wet forests of oceanic island
557 Mauritius? *Biodiversity and Conservation* 21:2139–2167. DOI: 10.1007/s10531-012-
558 0304-4.

559 Florens FBV, Baider C, Seegoolam N, Zmanay Z, Strasberg D. 2017. Long-term declines of
560 native trees in an oceanic island's tropical forests invaded by alien plants. *Applied
561 Vegetation Science* 20:94–105. DOI: 10.1111/avsc.12273.

562 Fournel J, Micheneau C, Baider C. 2015. A new critically endangered species of *Angraecum*
563 (Orchidaceae), endemic to the island of Mauritius, Indian Ocean. *Phytotaxa* 222:211–
564 220. DOI: 10.11646/phytotaxa.222.3.4.

565 Garcia LC, Cianciaruso MV, Ribeiro DB, dos Santos FAM, Rodrigues RR. 2015. Flower
566 functional trait responses to restoration time. *Applied Vegetation Science* 18:402–412.
567 DOI: 10.1111/avsc.12163.

568 Garcia LC, Hobbs RJ, Mäes dos Santos FA, Rodrigues RR. 2014. Flower and fruit availability
569 along a forest restoration gradient. *Biotropica* 46:114–123. DOI: 10.1111/btp.12080.

570 Garcia LC, Hobbs RJ, Ribeiro DB, Tamashiro JY, Santos FAM, Rodrigues RR. 2016.
571 Restoration over time: is it possible to restore trees and non-trees in high-diversity
572 forests? *Applied Vegetation Science* 19:655–666. DOI: 10.1111/avsc.12264.

573 Gentry AH. 1992. The distribution and evolution of climbing plants. In: Putz FE, Mooney HA
574 eds. *The Biology of Vines*. Cambridge: Cambridge University Press, 3–50. DOI:
575 10.1017/CBO9780511897658.003.

576 Gotsch SG, Nadkarni N, Amici A. 2016. The functional roles of epiphytes and arboreal soils in
577 tropical montane cloud forests. *Journal of Tropical Ecology* 32:455–468. DOI:
578 10.1017/S026646741600033X.

579 Government of Mauritius. 2021. *Sixth National Report to the Convention on Biological
580 Diversity: Republic of Mauritius*.

581 Hammond DS, Gond V, Baider C, Florens FBV, Persand S, Laurance SGW. 2015. Threats to
582 environmentally sensitive areas from peri-urban expansion in Mauritius. *Environmental*
583 *Conservation* 42:256–267. DOI: 10.1017/S0376892914000411.

584 Heinen JH, Florens FBV, Baider C, Hume JP, Kissling WD, Whittaker RJ, Rahbek C,
585 Borregaard MK. 2023. Novel plant–frugivore network on Mauritius is unlikely to
586 compensate for the extinction of seed dispersers. *Nature Communications* 14:1019. DOI:
587 10.1038/s41467-023-36669-9.

588 Hervé D, Razanaka S, Rakotondraompiana S, Rafamantanantsoa F, Carrière S. 2015. *Transitions*
589 *agraires au sud de Madagascar. Résilience et viabilité, deux facettes de la conservation.*
590 Antananarivo, Madagascar: IRD-SCAC/ PARRUR.

591 Hill R, Miller C, Newell B, Dunlop M, Gordon IJ. 2015. Why biodiversity declines as protected
592 areas increase: the effect of the power of governance regimes on sustainable landscapes.
593 *Sustainability Science* 10:357–369. DOI: 10.1007/s11625-015-0288-6.

594 IUCN. 2017. *International Union for Conservation of Nature annual report 2017*. Gland,
595 Switzerland: IUCN.

596 Johansson D. 1974. *Ecology of vascular epiphytes in West African rain forest*. Uppsala, Sweden:
597 Svenska Växtgeografiska Sällskapet.

598 Jones CG. 2008. Practical conservation on Mauritius and Rodrigues. Steps towards the
599 restoration of devastated ecosystems. In: Cheke AS, Hume JP eds. *Lost land of the dodo*.
600 London, United Kingdom: T & AD Poyser, 256–259.

601 José Válka Alves R, Kolbek J, Becker J. 2008. Vascular epiphyte vegetation in rocky savannas
602 of southeastern Brazil. *Nordic Journal of Botany* 26:101–117. DOI: 10.1111/j.0107-
603 055X.2008.00190.x.

604 Kreft H, Köster N, Küper W, Nieder J, Barthlott W. 2004. Diversity and biogeography of
605 vascular epiphytes in Western Amazonia, Yasuní, Ecuador. *Journal of Biogeography*
606 31:1463–1476. DOI: 10.1111/j.1365-2699.2004.01083.x.

607 Krömer T, Kessler M, Robbert Gradstein S, Acebey A. 2005. Diversity patterns of vascular
608 epiphytes along an elevational gradient in the Andes. *Journal of Biogeography* 32:1799–
609 1809. DOI: 10.1111/j.1365-2699.2005.01318.x.

610 Leclère D, Obersteiner M, Barrett M, Butchart SHM, Chaudhary A, De Palma A, DeClerck FAJ,
611 Di Marco M, Doelman JC, Dürauer M, Freeman R, Harfoot M, Hasegawa T, Hellweg S,
612 Hilbers JP, Hill SLL, Humpenöder F, Jennings N, Krisztin T, Mace GM, Ohashi H, Popp
613 A, Purvis A, Schipper AM, Tabeau A, Valin H, van Meijl H, van Zeist W-J, Visconti P,
614 Alkemade R, Almond R, Bunting G, Burgess ND, Cornell SE, Di Fulvio F, Ferrier S,
615 Fritz S, Fujimori S, Grooten M, Harwood T, Havlík P, Herrero M, Hoskins AJ, Jung M,
616 Kram T, Lotze-Campen H, Matsui T, Meyer C, Nel D, Newbold T, Schmidt-Traub G,
617 Stehfest E, Strassburg BBN, van Vuuren DP, Ware C, Watson JEM, Wu W, Young L.
618 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. *Nature*
619 585:551–556. DOI: 10.1038/s41586-020-2705-y.

620 Letcher S. 2015. Patterns of liana succession in tropical forests. In: Schnitzer SA, Bongers F,
621 Burnham RJ, Putz FE eds. *Ecology of lianas*. Oxford, UK: John Wiley & Sons Ltd., 116–
622 130.

623 Mangiafico SS. 2024. *rcompanion: Functions to Support Extension Education Program
624 Evaluation*. New Brunswick, New Jersey: Rutgers Cooperative Extension.

625 Manjaribe C, Frasier CL, Rakouth B, Louis EE. 2013. Ecological restoration and reforestation of
626 fragmented forests in Kianjavato, Madagascar. *International Journal of Ecology*
627 2013:726275. DOI: 10.1155/2013/726275.

628 Margalef R. 1958. Information Theory in Ecology. *General Systems* 3:36–71.

629 Mora C, Sale P. 2011. Ongoing global biodiversity loss and the need to move beyond protected
630 areas: a review of the technical and practical shortcomings of protected areas on land and
631 sea. *Marine Ecology Progress Series* 434:251–266. DOI: 10.3354/meps09214.

632 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity
633 hotspots for conservation priorities. *Nature* 403:853–858. DOI: 10.1038/35002501.

634 Nadkarni NM, Matelson TJ. 1989. Bird use of epiphyte resources in Neotropical trees. *The
635 Condor* 91:891–907. DOI: 10.2307/1368074.

636 Nakamura A, Proctor H, Catterall CP. 2003. Using soil and litter arthropods to assess the state of
637 rainforest restoration. *Ecological Management & Restoration* 4:20–28. DOI:
638 10.1046/j.1442-8903.4.s.3.x.

639 Ndam N, Healey J. 2001. Woody plants recovery in abandoned farms of different ages in the
640 Mount Cameroon region. *Systematics and Geography of Plants* 71:817–826. DOI:
641 10.2307/3668720.

642 Odell EH, Stork NE, Kitching RL. 2019. Lianas as a food resource for herbivorous insects: a
643 comparison with trees. *Biological Reviews* 94:1416–1429. DOI: 10.1111/brv.12508.

644 Pailler T, Baider C. 2020. *Bulbophyllum mascarenense* Pailler and Baider sp nov.: a new
645 endemic orchid species from the Mascarenes. *Botany Letters* 167:417–423. DOI:
646 10.1080/23818107.2020.1817145.

647 Pailleur T, Rakotoarivelo F, Razafimandimbison S, Bytebier B, Florens F, Martos F, Baider C.

648 2020a. Taxonomic revision of *Jumellea* (Orchidaceae, Angraecinae) in the Mascarenes.

649 *Phytotaxa* 477:1–34. DOI: 10.11646/phytotaxa.477.1.1.

650 Pailleur T, Verlynde S, Bytebier B, Florens FBV, Baider C. 2020b. Revision of *Angraecum* sect.

651 *Perrierangraecum* (Orchidaceae; Epidendroideae; Vandae) for the Mascarenes, with a

652 description of a new endemic species for Mauritius. *Phytotaxa* 442:183–195. DOI:

653 10.11646/phytotaxa.442.3.4.

654 Pie MR, Caron FS, Dallimore T, Einzmann H, Hietz P, Kessler M, Ramos FN, Elias JPC, Kreft

655 H, Krömer T, Higuita MJC, Zuleta D, Machado G, de Gasper AL, Zott G, Mendieta

656 Leiva G, Jimenez-Lopez DA, Mendes AF, Brancalion P, Mortara S, Blum CT, Irume

657 MV, Martínez-Meléndez Nayely N, Benavides AM, Boelter CR, Batke S. 2023.

658 Phylogenetic diversity and the structure of host-epiphyte interactions across the

659 Neotropics. *PeerJ* 11:e15500. DOI: 10.7717/peerj.15500.

660 Putz FE. 1984. How trees avoid and shed lianas. *Biotropica* 16:19–23. DOI: 10.2307/2387889.

661 R Core Team. 2024. *R: A Language and Environment for Statistical Computing*. Vienna,

662 Austria: R Foundation for Statistical Computing.

663 Roberts DL, Florens VF, Baider C, Bosser J. 2004. *Taeniophyllum coxii* (Summerh.)

664 Summerh.(Orchidaceae): a new record for Mauritius, Indian Ocean. *Kew Bulletin*

665 59:493–494. DOI: 10.2307/4110957.

666 Robson NKB, Stevens P. 1976. 49. Guttiferae. In: Bosser J, Cadet T, Guého J, Marais W eds.

667 *Flore des Mascareignes: La Réunion, Maurice, Rodrigues*. MSIRI/IRSTOM-IRD/Kew,

668 Ruiz-Jaen MC, Aide TM. 2005. Restoration success: How is it being measured? *Restoration*

669 *Ecology* 13:569–577. DOI: 10.1111/j.1526-100X.2005.00072.x.

670 Sanford WW. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in
671 southern Nigeria. *Journal of Ecology* 56:697–705. DOI: 10.2307/2258101.

672 Scheffers B, Brunner R, Ramirez S, Shoo L, Diesmos A, Williams S. 2013. Thermal buffering of
673 microhabitats is a critical factor mediating warming vulnerability of frogs in the
674 Philippine Biodiversity Hotspot. *Biotropica* 45:628–635. DOI: 10.1111/btp.12042.

675 Schnitzer SA. 2015. The contribution of lianas to forest ecology, diversity, and dynamics. In:
676 Parthasarathy N ed. *Biodiversity of lianas*. Cham, Switzerland: Springer, 149–160.

677 Shannon CE, Weaver W. 1949. *The mathematical theory of communication*. Champaign, IL,
678 US: University of Illinois Press.

679 Shoo LP, Freebody K, Kanowski J, Catterall CP. 2016. Slow recovery of tropical old-field
680 rainforest regrowth and the value and limitations of active restoration. *Conservation
681 Biology* 30:121–132. DOI: 10.1111/cobi.12606.

682 Simpson EH. 1949. Measurement of diversity. *Nature* 163:688–688. DOI: 10.1038/163688a0.

683 Song S, Shen J, Zhou S, Guo X, Zhao J, Shi X, Yu Z, Gong Q, You S, Landrein S. 2022.
684 Highlighting the plight of threatened lianas: Distribution, dynamics, and potential habitat
685 areas of a critically endangered species. *Global Ecology and Conservation* 36:e02130.
686 DOI: 10.1016/j.gecco.2022.e02130.

687 Spicer ME, Woods CL. 2022. A case for studying biotic interactions in epiphyte ecology and
688 evolution. *Perspectives in Plant Ecology, Evolution and Systematics* 54:125658. DOI:
689 10.1016/j.ppees.2021.125658.

690 Staub CG, Stevens FR, Waylen PR. 2014. The geography of rainfall in Mauritius: Modelling the
691 relationship between annual and monthly rainfall and landscape characteristics on a small
692 volcanic island. *Applied Geography* 54:222–234. DOI: 10.1016/j.apgeog.2014.08.008.

693 Stone MJ, Shoo L, Stork NE, Sheldon F, Catterall CP. 2020. Recovery of decomposition rates
694 and decomposer invertebrates during rain forest restoration on disused pasture.
695 *Biotropica* 52:230–241. DOI: 10.1111/btp.12682.

696 Stuntz S, Ziegler C, Simon U, Zott G. 2002. Diversity and structure of the arthropod fauna
697 within three canopy epiphyte species in central Panama. *Journal of Tropical Ecology*
698 18:161–176. DOI: 10.1017/S0266467402002110.

699 Swaine MD, Hall JB. 1983. Early succession on cleared forest land in Ghana. *The Journal of*
700 *Ecology* 71:601–627. DOI: 10.2307/2259737.

701 Tsen EWJ, Sitzia T, Webber BL. 2016. To core, or not to core: the impact of coring on tree
702 health and a best-practice framework for collecting dendrochronological information
703 from living trees. *Biological Reviews* 91:899–924. DOI: 10.1111/brv.12200.

704 UN. 2015. *Transforming our world: the 2030 agenda for sustainable development*. New York,
705 USA: UN General Assembly.

706 Vargas BDC, Grombone-Guaratini MT, Morellato LPC. 2020. Lianas research in the Neotropics:
707 overview, interaction with trees, and future perspectives. *Trees: Structure and Function*
708 35:333–345. DOI: 10.1007/s00468-020-02056-w.

709 Vie J-C, Hilton-Taylor C, Stuart SN. 2009. *Wildlife in a changing world: an analysis of the 2008*
710 *IUCN Red List of Threatened Species*. Gland, Switzerland: IUCN.

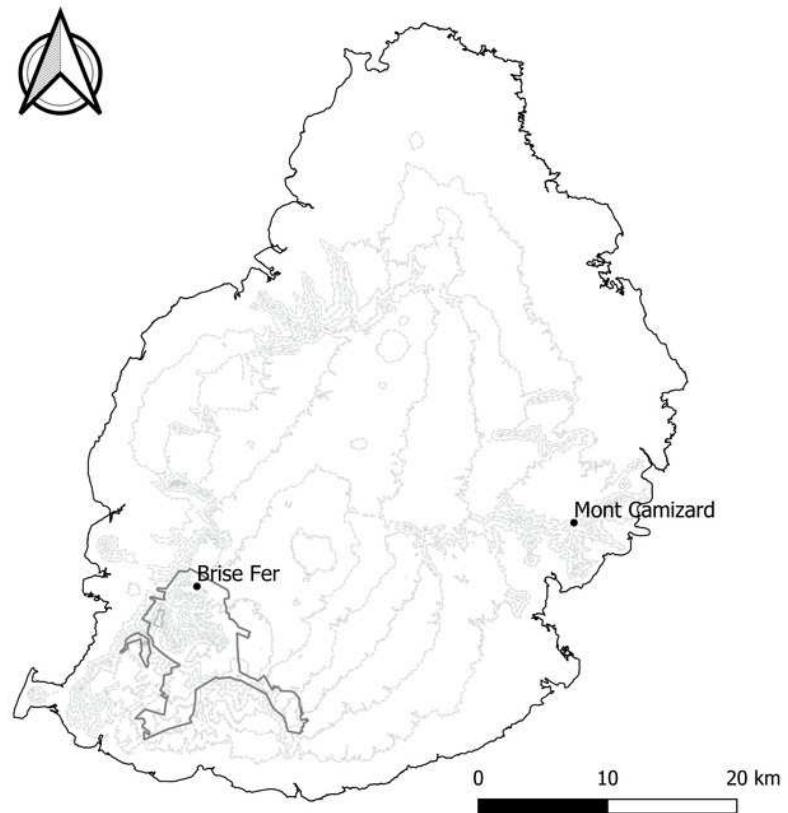
711 Wickham H. 2016. *ggplot2: Elegant graphics for data analysis*. New York, USA: Springer.

712 Wolf JHD. 1994. Factors controlling the distribution of vascular and non-vascular epiphytes in
713 the northern Andes. *Vegetatio* 112:15–28. DOI: 10.1007/BF00045096.

714 Wysocki A, Wierzcholska S, Proćków J, Konowalik K. 2024. Host tree availability shapes
715 potential distribution of a target epiphytic moss species more than direct climate effects.
716 *Scientific reports* 14:18388. DOI: 10.1038/s41598-024-69041-y.

717 Yanoviak SP. 2015. Effects of lianas on canopy arthropod community structure. In: Schnitzer,
718 Bongers F, Burnham RJ, Putz eds. *Ecology of Lianas*. 343–361. DOI:
719 10.1002/9781118392409.ch24.

720 Zhu H. 2008. Species composition and diversity of lianas in tropical forests of Southern Yunnan
721 (Xishuangbanna), South-Western China. *Journal of Tropical Forest Science* 20:111–122.


722 Zott G. 2013. The systematic distribution of vascular epiphytes - a critical update. *Botanical
723 Journal of the Linnean Society* 171:453–481. DOI: 10.1111/boj.12010.

724

Figure 1

The study sites of Brise Fer and Mount Camizard in Mauritius with 100 m contour lines indicated.

The Black River Gorges National Park is outlined. Mount Camizard is found within protected Mountain Reserves.

Figure 2

Illustration of phorophytes sampled in Mount Camizard .

(a) One *Harungana madagascariensis* of 9.5 cm, with (b) the closest individual (2.3 m) of another native species (*Euphorbia pyrifolia*) of similar diameter (9.5 cm), and (c) the closest individual (here at 1 m distance) of another native species (*Diospyros tessellaria*) of similar age (trunk diameter = 0.97 cm) (section 3.2.3 explains how similar ages were determined).

Photos: François Baguette.

Figure 3

Illustration of phorophytes sampled in Brise Fer.

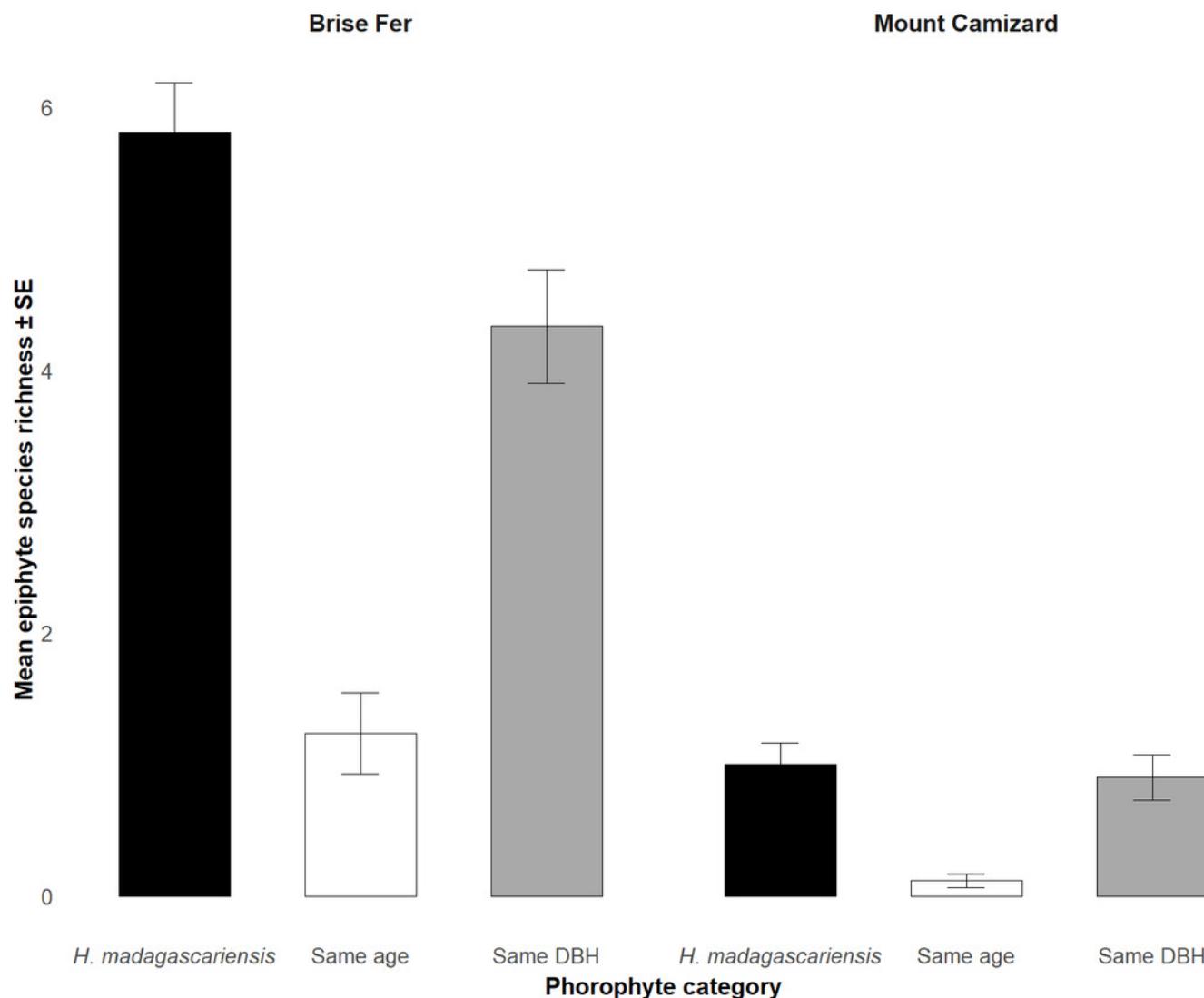

(a) One large *Harungana madagascariensis* of 30 cm trunk diameter, with (b) the closest individual (12 m away) of another native species (*Psiloxylon mauritianum*) of similar trunk diameter (31.9 cm), and (c) the closest individual (indicated by arrow) of another native species (*Eugenia kanakana*) of similar age (trunk diameter = 4.5 cm) (section 3.2.3 explains how similar ages were determined). Photos: François Baguette.

Figure 4

Species richness (\pm SE) on *Harungana madagascariensis* and other potential phorophytes in Brise Fer and Mount Camizard where native forests are undergoing ecological restoration after weeding.

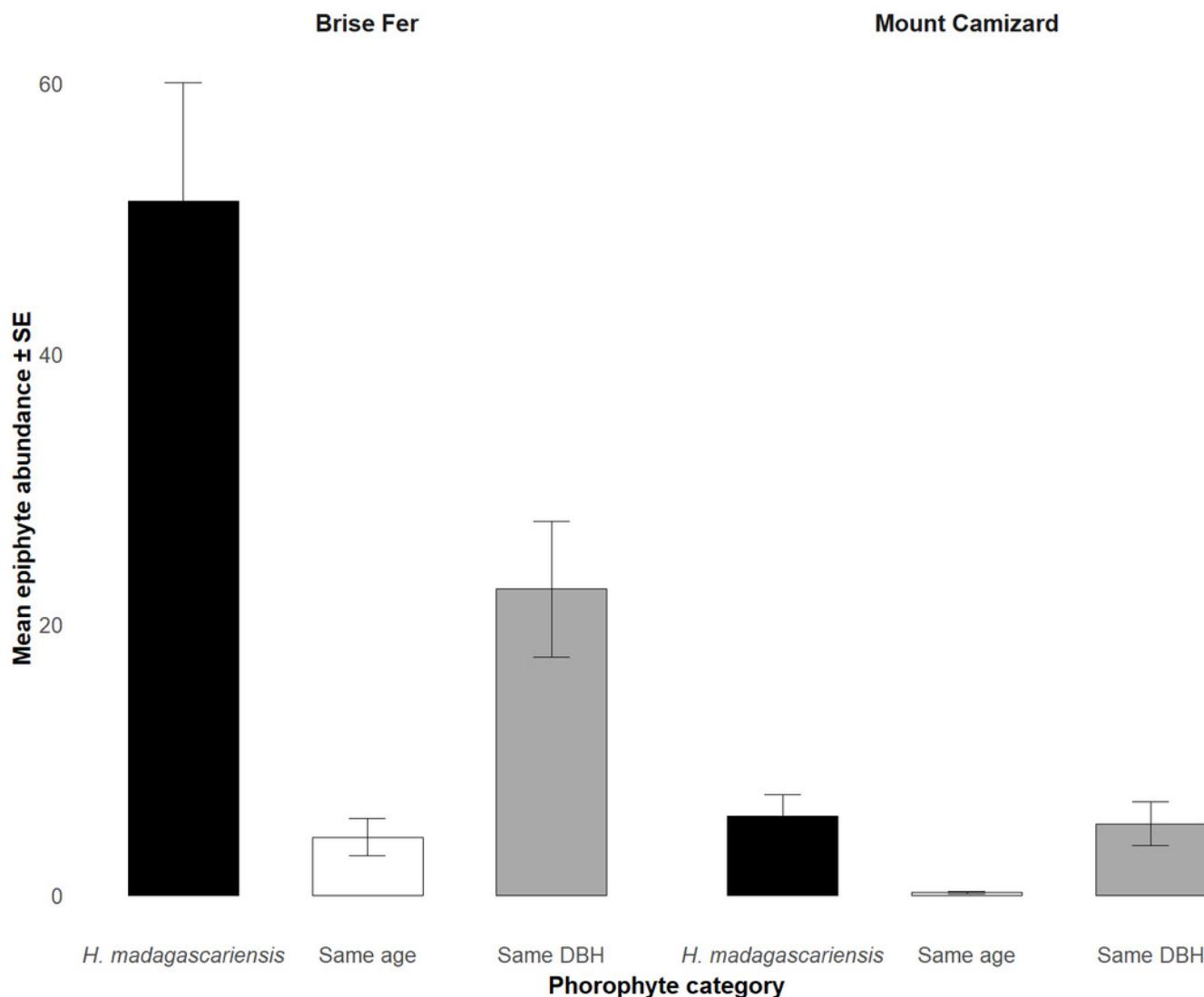

'Same DBH' stands for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and 'Same age' refers to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled. "Epiphyte" refers to both epiphyte and liana species.

Figure 5

Abundances of native epiphytes (\pm SE) on *Harungana madagascariensis* and other phorophytes in Brise Fer and Mount Camizard where native forests are under ecological restoration after weeding.

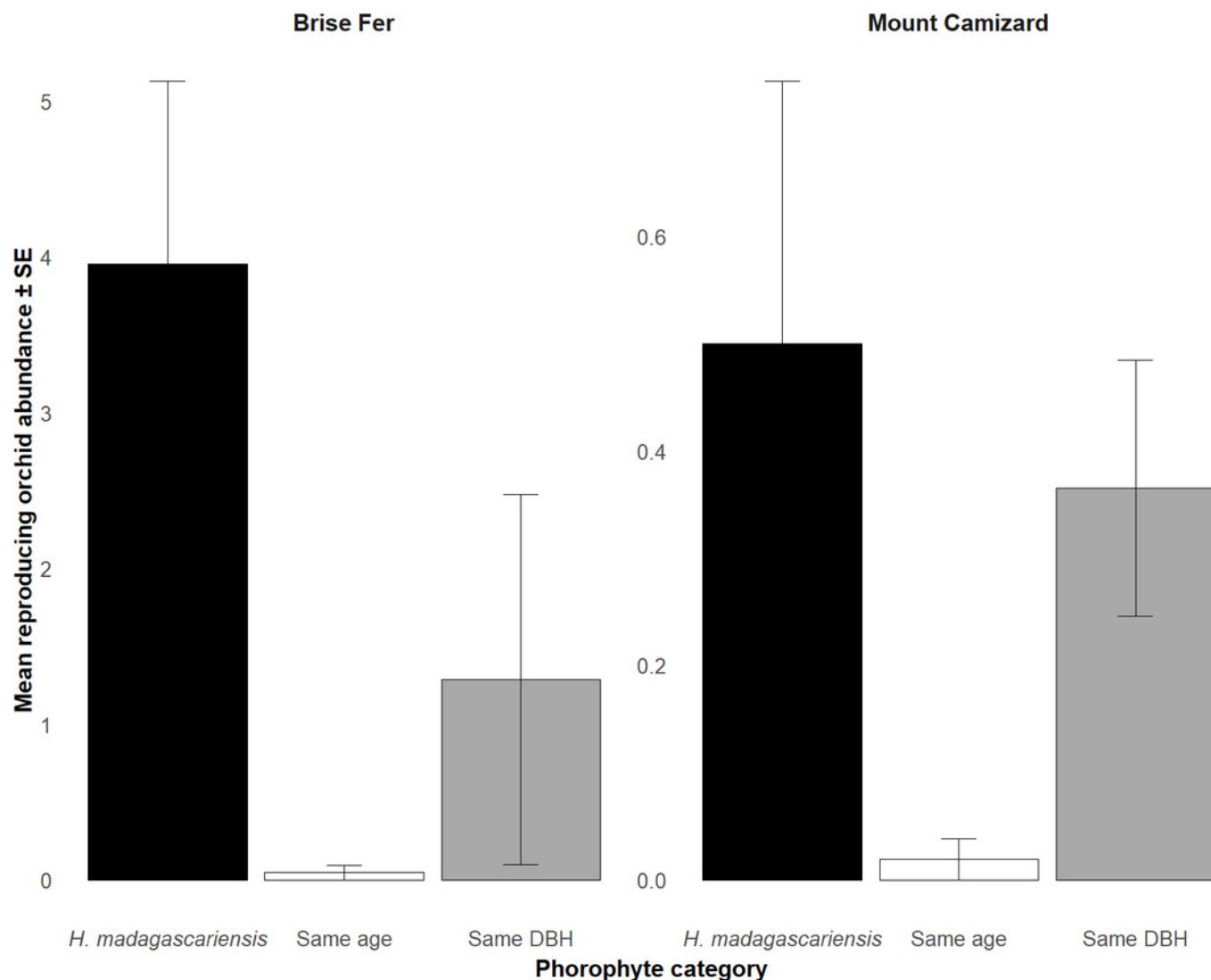

'Same DBH' stands for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and 'Same age' refers to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled. "Epiphyte" refers to both epiphyte and liana species.

Figure 6

Abundance of reproducing orchids (\pm SE) on *Harungana madagascariensis* and other phorophytes in Brise Fer and Mount Camizard where native forests are under ecological restoration after weeding.

'Same DBH' stands for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and 'Same age' refers to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled.

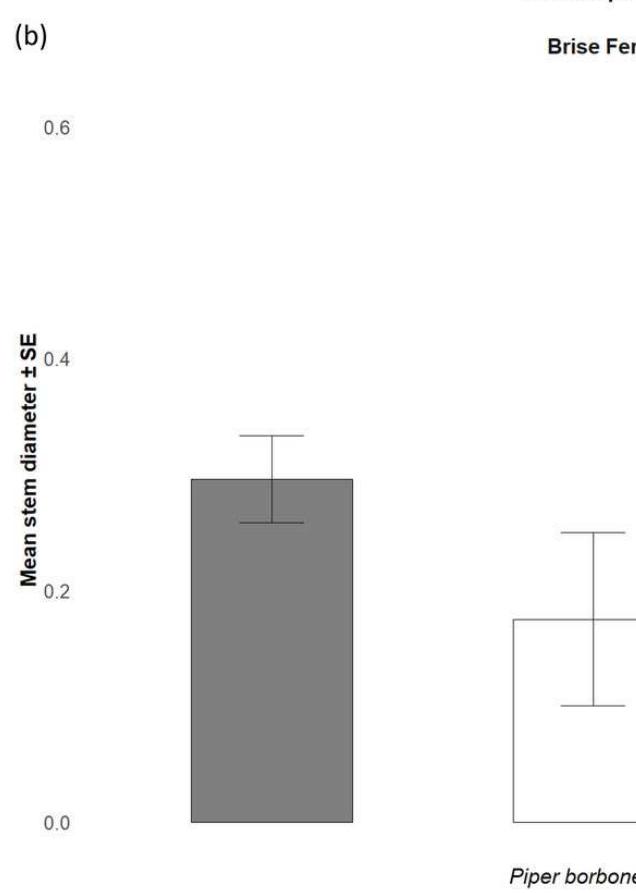
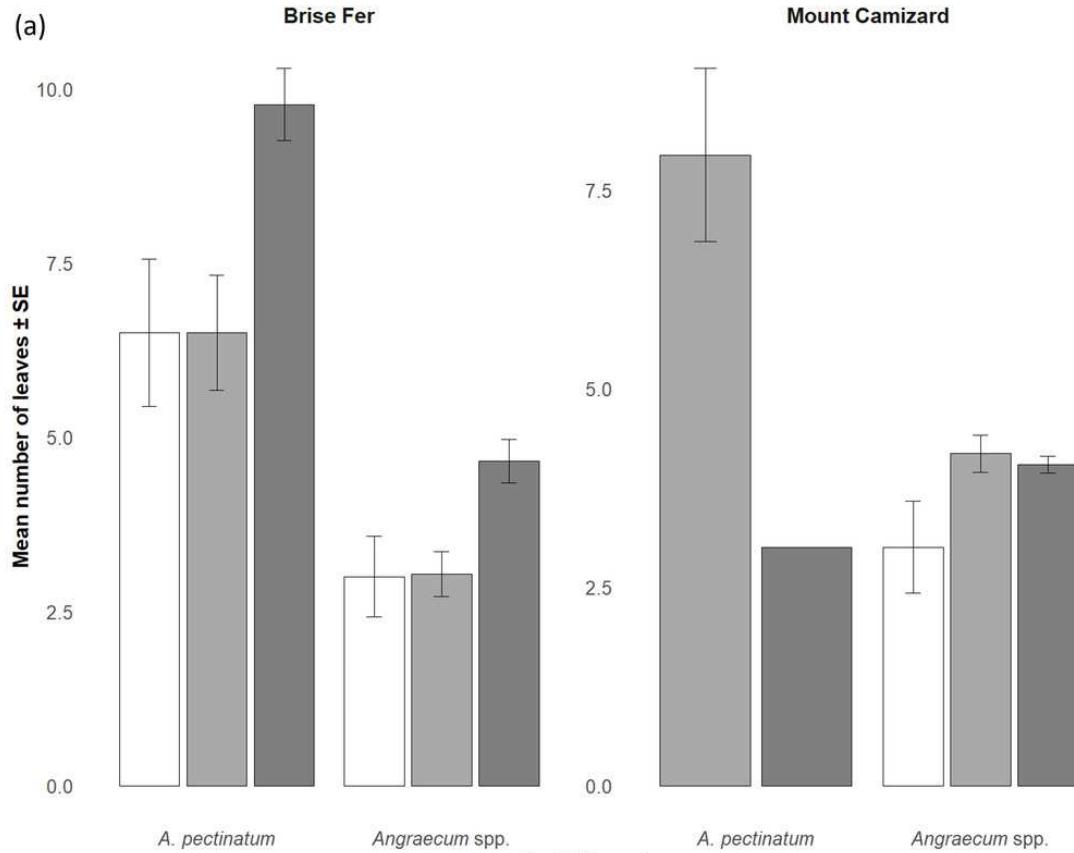



Figure 7

Size of selected epiphytes and lianas on *Harungana madagascariensis* and other phorophytes in Brise Fer and Mount Camizard where native forests are under ecological restoration after weeding.

(a) Mean number of leaves of *Angraecum pectinatum* and other *Angraecum* spp. (\pm SE). For Mount Camizard, no *A. pectinatum* were sampled on 'same age' phorophytes (white bars).

(b) Mean stem diameter of *Piper borbonense* (\pm SE). Dark grey bars represent individuals growing on *H. madagascariensis*, lighter grey bars represent phorophytes of 'Same DBH', standing for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and white bars represent phorophytes of 'Same age' referring to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled on both graphs.

Figure 8

Control of *Harungana madagascariensis* within native forests undergoing restoration for conservation of biodiversity done alongside maintenance weeding of invasive alien plant species.

(a) Ring-barked *H. madagascariensis* observed at Mount Camizard during data collection for this study. (b) Cut stem of *H. madagascariensis* observed in a different restoration area managed by a different organization located in Ferney valley in Mauritius.

Table 1(on next page)

Diversity indices of native epiphytes and lianas on potential phorophytes in Brise Fer and Mount Camizard where native forests are undergoing ecological restoration after weeding.

'*Harungana*' stands for *Harungana madagascariensis* ; 'Same DBH' stands for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and 'Same age' refers to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled.

Diversity_Index	Brise Fer			Mount Camizard		
	<i>Harungana</i>	Same	Same	<i>Harungana</i>	Same	Same age
		DBH	age		DBH	
Fisher α	3.41	4.02	2.78	1.30	1.53	1.50
Simpson (D)	0.69	0.71	0.65	0.64	0.68	0.64
Shannon and Weaver (H')	1.64	1.84	1.37	1.23	1.44	1.14
Margalef (K)	2.74	3.06	1.93	1.09	1.27	1.00

Table 2(on next page)

Native epiphytes and lianas significantly associated with potential phorophytes in Brise Fer where native forest is undergoing ecological restoration after weeding of invasive alien plants.

'*Harungana*' stands for *Harungana madagascariensis*; 'Same DBH' stands for other potential native phorophytes having comparable diameter at breast height and paired with each *H. madagascariensis* sampled; and 'Same age' refers to other potential native phorophytes having comparable age and paired with each *H. madagascariensis* sampled.

Species	Site	Associated phorophyte(s)	Chi-square (χ^2)	p value
<i>Angraecum pectinatum</i>	Brise Fer	<i>Harungana</i>	0.919	< 0.05
<i>Cnestis glabra</i>	Brise Fer	<i>Harungana</i>	0.612	< 0.05
<i>Nephrolepis cordifolia</i>	Brise Fer	<i>Harungana</i>	0.593	< 0.05
<i>Angraecum mauritianum</i>	Brise Fer	<i>Harungana</i>	0.504	< 0.05
<i>Polystachia concreta</i>	Brise Fer	<i>Harungana</i>	0.430	< 0.05
<i>Bulbophyllum</i> sp.	Brise Fer	<i>Harungana</i>	0.309	< 0.05
<i>Asplenium nidus</i> var. <i>nidus</i>	Brise Fer	Similar DBH	0.412	< 0.05
<i>Urera acuminata</i>	Brise Fer	Similar DBH	0.404	< 0.05
<i>Hymenophyllaceae</i>	Brise Fer	Similar DBH	0.378	< 0.05
<i>Piper borbonense</i>	Brise Fer	<i>Harungana</i> + Similar DBH	0.748	< 0.05
<i>Microsorum punctatum</i>	Brise Fer	<i>Harungana</i> + Similar DBH	0.614	< 0.05
<i>Selaginella</i> sp.	Brise Fer	<i>Harungana</i> + Similar DBH	0.488	< 0.05
<i>Nephrolepis biserrata</i>	Brise Fer	<i>Harungana</i> + Similar DBH	0.408	< 0.05
<i>Rumohra adiantiformis</i>	Brise Fer	<i>Harungana</i> + Similar DBH	0.345	< 0.05
<i>Lepisorus spicata</i>	Brise Fer	<i>Harungana</i> + Similar DBH + Similar age	0.647	< 0.05