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ABSTRACT
Background. Acanthamoeba spp. are opportunistic protozoa that produce highly
resistant cysts, complicating the treatment of ocular infections.
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Methods. We assessed the anti-Acanthamoeba activity and cytotoxicity of chitosan
nanoparticles loadedwith propolis extracts from three stingless bee species, individually
or combined with chlorhexidine (CHX). Encapsulation efficiency (EE), drug release
kinetics, pH sensitivity, and anti-Acanthamoeba activity against trophozoite and cyst
stages of four Acanthamoeba strains were evaluated. Additionally, cytotoxicity against
Vero cells was examined.
Results. The formulations demonstrated excellent EE (81–92%), with the combinations
of Propolis 2, Propolis 3, and chlorhexidine achieving maximum drug entrapment and
sustained release (>80%). It also exhibited themost effective cysticidal activity (minimal
inhibitory cystic concentration (MICC) 1.25%) against A. polyphaga and the lowest
toxicity (Minimal Cytotoxicity Concentration 2.5%) toward normal mammalian cells.
Drug release conformed to non-Fickian (Case II) diffusion behavior and was enhanced
in acidic pH conditions, which are relevant to disease. Scanning electron microscopy
revealed morphological damage to the cyst walls.
Conclusion. These results highlight that propolis–CHX-loaded chitosan nanoparticles
(CS-NPs) show promise as a targeted, biocompatible therapy against drug-resistant
Acanthamoeba cysts.

Subjects Biochemistry, Biotechnology, Parasitology
Keywords Acanthamoeba spp, Drug development, Nanoparticles, Natural product, Propolis

INTRODUCTION
Acanthamoeba, a free-living amoeba, can be found in several environments, including
water, air, and soil (Bahrami et al., 2025). It has two life stages encompassing the active
trophozoite form that features pseudopodia, and the dormant cyst form, which can
survive under stressful conditions such as nutrient deprivation, extreme temperatures,
and high osmolarity (Wang et al., 2023). Acanthamoeba infections are challenging to
treat due to the mature cyst wall’s double-layered wall (ectocyst and endocyst) structure
following encystation. This structure confers Acanthamoeba resistance to antibiotics,
biocides, chlorination, and extreme conditions such as radiation and other environmental
stresses (Elsheikha, Siddiqui & Khan, 2020; Mitsuwan et al., 2021). Acanthamoeba is highly
pathogenic to humans despite its free-living nature. Granulomatous amoebic encephalitis
and amoebic keratitis are common pathological conditions caused by Acanthamoeba
infections, with Acanthamoeba keratitis (AK) potentially leading to permanent vision loss
(Sangkanu et al., 2021).

Treatment of AK may include a combination of topically applied antimicrobial agents
such as biguanides and diamidines, though these have been shown to have limited efficacy
(Chappell et al., 2001). Many anti-Acanthamoeba agents have been discovered in vitro but
have not progressed towards drug development and translation due to their limitations in
vivo. The robustness of the Acanthamoeba cyst form compounds this challenge (Anwar,
Khan & Siddiqui, 2018; Sharma et al., 2020). Notably, most medications can increase
toxicity levels in humans and lead to unfavorable side effects. Therefore, there is an
immediate need for targeted therapies that can kill Acanthamoeba without harming host
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cells (Walvekar et al., 2020). Besides, substances that enhance the anti-parasitic action of
existing medications against Acanthamoeba would also be significant and valuable from
both clinical and research perspectives (Sangkanu et al., 2024a; Sangkanu et al., 2024b).

Propolis, also known as ‘‘bee glue’’, is a substance produced by bees from a mixture
of plant tissue parts, beeswax, saliva, and plant resins. It physically and microbiologically
protects the hive (Rocha et al., 2023). Propolis contains various chemical compounds
associated with several biological activities, including hepatoprotective, anticancer,
antioxidant, anti-inflammatory, antidiabetic, and antimicrobial effects (Vural et al., 2007;
Khan et al., 2025).

Polymeric nanoparticles (NPs) are extensively used in drug delivery systems due to their
customizable properties, pH-responsive nature, biocompatibility, and biodegradability
(Geszke-Moritz & Moritz, 2024). Chitosan (CS) is a biopolymer derived from chitin, which
is found in crustacean shells due to the N-deacetylation of chitin and resembles cellulose
in terms of general characteristics (Aibani et al., 2021). CS has various pharmacological
applications, including immune stimulation, antioxidant effects, and antimicrobial actions
(Ul-Islam et al., 2024). Due to its mucoadhesive properties, CS is commonly utilized in
ocular drug delivery by enhancing bioavailability through the prolonged release of the
drug on the eye’s surface (Burhan et al., 2021). It also helps reduce the drug drainage time,
thereby improving the drug penetration of drug compounds into the eye (Latifi et al.,
2024). CS exhibits significant properties for wound healing and film-forming applications
(Li et al., 2018). It provides a high level of visible light transmission in composite films,
making them suitable for applications such as contact lens fabrication (Jadhav et al., 2020).
Recent studies have revealed that both CS and nano-CS possess anti-amoebic actions
in a concentration-dependent manner (Ziaei Hezarjaribi et al., 2021). They can target
Acanthamoeba’s trophozoite and cyst stages (Sadeghi et al., 2021). Nanocarriers as drug
delivery systems for propolis have been reported as a therapeutic application (Mendez-
Pfeiffer et al., 2021). The advantages of propolis-encapsulated chitosan nanoparticles (CS-
NPs) include enhanced solubility and improved thermal and storage stability (Elnaggar
et al., 2020; Kim et al., 2023). Propolis-CS nanoformulation has been proven to possess
several potential biological effects, including anti-parasitic activities, particularly against
Toxoplasma gondii and Leishmania, thereby improving their efficacy, in both in vitro and
in vivo studies (Do Nascimento et al., 2016; Kustiawan et al., 2024; Vaseghi et al., 2024).
The anti-Acanthamoeba activity has been demonstrated through investigations of free
propolis extracts, free CS, and CS-loading NPs on Acanthamoeba trophozoites and cysts,
including the encystation and excystation stages (Topalkara et al., 2007; Hezarjaribi et
al., 2021; Kolören et al., 2023; Sama-Ae et al., 2023; Sangkanu et al., 2024a; Sangkanu et al.,
2024b; Khan et al., 2025).

In addition to free propolis extracts, there is limited knowledge about the effects of
nanoformulations and propolis extracts on Acanthamoeba infection (Hagras et al., 2022).
Several commercial drugs and natural plant-extract or compound-based nanoformulations
have recently been investigated for their anti-Acanthamoeba activity and anti-adhesion
properties in contact lens models (Elkadery et al., 2019; Anwar et al., 2020). The present
study focused on the encapsulation of propolis within CS-NPs at varying concentrations,
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which were subsequently characterized for their physicochemical properties and analyzed
for efficient release kinetics and effective inhibition of Acanthamoeba.

MATERIALS & METHODS
Reagents and propolis samples for nanoparticle preparation
CS powder was obtained from BFCLAB (Bangalore Fine Chemicals, Bangalore, India) in
Ramohali, Bangalore, and absolute ethanol was sourced from Galaxy Chemicals in Pune,
Maharashtra, India. Propolis produced by three stingless bee strains: Tetrigona apicalis,
Geniotrigona thoracica, and Heterotrigona itama, was collected from a local Bangreen farm
in Mueang, in Nakhon Si Thammarat, Thailand (Location: 8◦26′38.2′′N, 99◦54′7.7′′E) in
February 2023. During the collection period, the weather conditions were characterized by
an average temperature of 27 ◦C and a relative humidity of 92%. Tripolyphosphate (TPP)
and Dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich. Vero cells (ECACC
84113001, RRID: CVCL 0059, Salisbury, UK) were provided by Associate Professor Dr.
Chuchard Punsawad, School of Medicine, Walailak University. Dulbecco’s Modified
Eagle’s medium was sourced from Merck KGaA, Darmstadt, Germany, and 10% fetal
bovine serum, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 2,5-diphenyl tetrazolium bromide)
& Ethylenediaminetetraacetic acid (EDTA) was obtained from Sigma Aldrich, St. Louis,
USA.

Acanthamoeba cultivation
All cultures were performed following biosafety guidelines and were approved by the
Committee of the Biosafety Guidelines for Scientific Research of Walailak University,
Nakhon Si Thammarat, Thailand (Ref. No. WU-IBC-66-020). Acanthamoeba triangularis
WU19001 (AT), a strain from the recreational reservoir at Walailak University, Nakhon
Si Thammarat, Thailand, and A. castellanii ATCC50739 (AC5), kindly provided by Asst.
Prof. Dr. Rachasak Bonhook, as well as A. castellanii ATCC30010 (AC3) and A. polyphaga
ATCC30461 (AP), purchased from American Type Culture Collection (ATCC), were used
in this study. The trophozoites of the Acanthamoeba strain were grown in PYG medium
(20 g proteose peptone, two g yeast extract, 0.98 g MgSO4·7H2O, 0.35 g Na2HPO4·7H2O,
0.34 g KH2PO4, 0.02 g (NH4)2Fe (SO4)2·6H2O, 18 g glucose) for three days at room
temperature (37 ◦C). The cyst form was cultivated in Neff’s medium (containing g/L; 7.45
g KCl, 2.44 g (2-amino-2-methyl-1,3-propanediol), 0.09 g NaHCO3, 1.97 g MgSO4.7H2O,
0.06 g CaCl2.2H2O, and distilled water DW) at 37 ◦C for at least seven days.

Preparation of ethanolic propolis extracts from stingless bee species
Propolis, or bee glue, derived from three stingless bee strains: T. apicalis, G. thoracica, and
H. itama (Figs. 1A–1C), was collected from a Nakhon Si Thammarat, Thailand farm. All
samples of propolis were macerated using a mortar and pestle. Then, 50 g of powdered
propolis was soaked in 200 mL of 95% ethanol (EtOH) at 1:4 g/v for 2 weeks. The propolis
extraction was stirred with a spatula twice a week. The solid residues were discarded using
two layers of sterile gauze, and the supernatants were then filtered using Whatman filter
paper no. 1 (Whatman, Buckinghamshire, United Kingdom). The ethanolic propolis
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Figure 1 Propolis samples from stingless bees: (A) Tetrigona apicalis, (B)Geniotrigona thoracica, (C)
Heterotrigona itama.

Full-size DOI: 10.7717/peerj.20493/fig-1

extracts (EPE) were evaporated under vacuum with a rotary evaporator at 40 ◦C until dry
to extract crude compounds. The dried extracts were preserved at 4 ◦C and resuspended
in 100% DMSO at a concentration of 100 mg/mL before use.

Synthesis of chitosan nanoparticles via ionic gelation with sodium
tripolyphosphate
CS-NPs were synthesized using the bottom-upmethod by dissolving chitosan (twomg/mL)
in 1% acetic acid with a magnetic stirrer, followed by filtration with a pore size of 0.45
µm, also known as the ionic crosslinking method. A sodium tripolyphosphate (TPP)
solution (0.75 mg/mL) prepared in deionized water was added dropwise with vigorous
stirring (1,000 rpm, 15 min) at a rate of one mL/min. A spontaneous formation of the
nanoparticles occurred due to the electrostatic attraction between the positive charge on
the chitosan’s primary unprotonated amino groups and the negative charge on TPP. The
suspension was stirred further for another 30–60 min in order for the suspension to be
stable. The purified powder was further characterized (Garg et al., 2019).

Encapsulation of molecular weight-variant propolis and CHX into
CS-NPs
The synthesized CS-NPs were loaded with propolis for use in drug delivery applications.
Three variations of the propolis drug were tested, differing in molecular weight as follows:
Propolis 1 (15.11 g), Propolis 2 (18.73 g), and Propolis 3 (14.48 g). For encapsulation,
the propolis extract was dispersed in ethanol (100 mg/mL in 95% ethanol) and added to
CS-NPs (dispersed in twomg/mL in deionized water), which were dispersed in water. After
mixing both solutions, the mixture was kept in a shaker for 2 h. This solution underwent
centrifugation at 800 rpm for 30 mins at 4 ◦C, and the obtained pellet was further analyzed.
Different combinations of drugs used for the encapsulation process are listed in Table 1.

In the formulation containing CHX, a 0.128 mg/mL CHX solution (prepared in
deionized water) was added dropwise to the CS-NPs suspension during mixing. It was
followed by 2 h of incubation at 150 rpm to ensure uniform loading (Ferreira et al., 2019).
In addition to the propolis drug, CHX was used in a few combinations to analyze the
binding efficiency. EE was calculated as per Eq. (1) in the manuscript, with quantification
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Table 1 Formulations of chitosan nanoparticles loaded with different propolis extracts and chlorhexi-
dine.

Chitosan nanoparticles Extract-drug combination (1 g each)

C1 Propolis 1+2+3
C2 Propolis 1+2
C3 Propolis 1+3
C4 Propolis 2+3
C5 Propolis 1
C6 Propolis 2
C7 Propolis 3
C8 Propolis 1+2+3+C hlorhexidine
C9 Propolis 1+2+ Chlorhexidine
C10 Propolis 1+3+ Chlorhexidine
C11 Propolis 2+3+ Chlorhexidine

Notes.
‘‘C’’ –Chitosan Formulation; Sources of Propolis 1: Tetrigona apicalis; Propolis 2: Geniotrigona thoracica; Propolis 3: Het-
erotrigona itama.

via UV-Vis spectrophotometry (Kinglab Model KLUV-2100, India) at 260 nm post-
centrifugation (10,000× g, 15 min, 4 ◦C). The amount of EPE and CHX in CS-NPs was
determined indirectly by quantifying the free (unencapsulated) drug in the supernatant
after centrifugation, using UV-vis spectrophotometry. Figure 2 presents a schematic
diagram of the chitosan–propolis drug encapsulation.

Encapsulation Efficiency=
Amount of Drug Encapsulated in Nanoparticle

Initial Amount of Drug
∗100. (1)

Transmission electron microscopy analysis of chitosan nanoparticles
After encapsulation, the chitosan nanoparticles’ internal morphology and structural
characteristics were examined using transmission electron microscopy (TEM) (FEI –
TECNAI G2-20 TWIN model). TEM provided high-resolution images to assess particle
size, shape, and uniformity of the nanoparticle formulations.

pH-responsive drug release kinetics of propolis-loaded chitosan
nanoparticles
The characterization of the sustained-release behavior of nanoparticles was conducted
under conditions that mimicked human physiology over a specified duration, as the actual
drug release kinetics were studied under those conditions. The pH was varied during the
study to assess the material’s efficacy. Propolis was incorporated into the CS-NPs at a
similar concentration to study the release kinetics by varying the pH from acidic to neutral
(pH 3, 5, and 7). Briefly, the nanoparticles with propolis dispersed in phosphate buffer
solution (PBS) at pH values of 3, 5, and 7 were used to investigate the drug release kinetics.
The NPs were directly dispersed in 50 mL PBS (pH 3, 5, or 7) at 37 ◦C with gentle stirring
at 100 rpm. At each predetermined time interval (every 30 min), a small aliquot (one mL)
was withdrawn from the nanoparticle dispersion in the release medium (PBS at pH 3, 5,
or 7). The aliquot was then centrifuged at 10,000× g for 10 min at 4 ◦C to sediment the

Marimuthu et al. (2025), PeerJ, DOI 10.7717/peerj.20493 6/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.20493


Figure 2 Schematic representation of the chitosan-propolis drug loading.
Full-size DOI: 10.7717/peerj.20493/fig-2

nanoparticles, allowing for the measurement of the released drug in the clear supernatant
using a Nanodrop (Thermo Scientific Nanodrop 2000 Spectrophotometer; Thermo Fisher
Scientific, Waltham, MA, USA) at 260 nm. The separated nanoparticles (pellet from the
centrifuged aliquot) were not returned to the release medium. Instead, an equal volume
(1 mL) of fresh PBS was immediately added back to the main dispersion vessel to maintain
the total volume and sink conditions, preventing drug saturation and ensuring accurate
cumulative release profiling. The release kinetics were calculated using the Peppas model
for analysis, and the mathematical formula was applied (Saravanabhavan et al., 2019).

Minimal inhibitory concentration determination
The propolis (11 samples; see Table 1) was dissolved in 0.1% acetic acid at a concentration of
100mg/mL. Theminimal inhibitory concentration (MIC) assay was performed as described
previously by Chimplee et al. (2024). Briefly, 50 µL of the EPE samples (10% drug-loaded
CS-NPs at 100 mg/mL) were serially diluted two-fold to achieve final concentrations (%
drug-loaded CS-NPs) ranging from 0.04% to 5%. Then, 50 µL of 2 × 105 cells/mL of
trophozoites and cysts were inoculated into each well of a 96-well plate. CHX (0.001–0.128
mg/mL) and acetic acid (0.05%) served as positive and negative controls, respectively.
After 24 h of incubation at room temperature, the viability of Acanthamoeba was calculated
using Eq. (2). The minimal inhibitory trophozoite concentration (MITC) and minimal
inhibitory cystic concentration (MICC) were defined as the lowest concentrations that
inhibited > 90% of the viable growth of trophozoites and cysts, respectively.

Viability(%)=
Survival of Treated Cells

Survival of Negative Control
∗100. (2)
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Minimal parasiticidal concentration determination
The minimal parasiticidal concentration (MPC) was determined as previously described
(Chimplee et al., 2024). The concentrations at MITC, MICC, and above were further
assessed using parasiticidal activity for 72 h incubation. Viability was counted and calculated
using Eq. (2). MPC was the lowest concentration that inhibited > 99.99% of viable growth
after 72 h (Chimplee et al., 2024).

Cytotoxicity assay—minimal cytotoxicity concentration
The minimal cytotoxicity concentration (MCC) was performed as previously described
(Chimplee et al., 2022; Sama-Ae et al., 2023; Chimplee et al., 2024). The cytotoxicity of
propolis and drug combination in CS-NPs was assessed using Vero cells. The cell line was
cultured in Dulbecco’s Modified Eagle’s medium containing 10% fetal bovine serum and
1% penicillin-streptomycin, incubated at 37 ◦C in an atmosphere containing 5% CO2.

Once the cells reached 90% confluence, they were detached with trypsin-
ethylenediaminetetraacetic acid (EDTA) and incubated again for 5 min. Vero cells (1. 5×
104 cells/mL) were seeded in 96-well plates and incubated for 24 h before propolis-drug-
loaded CS-NPs (0.039–5.00%) treatment. After 24 h, the cytotoxicity was assessed using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 -2,5-diphenyl tetrazolium bromide) assay. In
brief, 100 mL of MTT reagent (0.5 mg/mL) was added to each well, and the cultures
were incubated for an additional hour. The MTT reagent was removed and replaced with
100% DMSO to ensure that solubilization was complete. Absorbance at 570 and 650 nm
(reference wavelengths) was measured on a microplate reader. The survival percentage was
calculated using the following equation:

Survival (%)=
ABt 570 nm−ABt 650 nm
ABu 570 nm−ABu 650 nm

∗100. (3)

ABt and ABu denote the absorbance of treated and untreated cells (0.1% acetic acid),
respectively. MCC was the lowest concentration, inhibiting less than 20% cell viability.

Scanning electron microscopy analysis of morphological
changes in Acanthamoeba polyphaga cysts after treatment
To observe the morphological changes in treated Acanthamoeba using SEM, the cyst form
ofA. polyphagawas treated with single EPE or a combination of EPE and CHX at 1.25% and
5%, as previously described (Chimplee et al., 2022; Chimplee et al., 2024). After incubation,
cells were collected by centrifugation at 1,520×g for 5 min and resuspended in phosphate
buffer saline (PBS; Oxoid Holdings, Hampshire, UK). CHX (0.128 mg/mL) and 0.05%
acetic acid were used as positive and negative controls, respectively. Samples were fixed
with 2.5% glutaraldehyde overnight, dehydrated with a series of graded alcohols (20%,
40%, 60%, 80%, 90%, and 100% ethanol), mounted on aluminum stubs, and allowed
to dry using a critical-point dryer. Samples were then coated with gold particles, and the
morphology of A. polyphaga cysts after the treatments was subsequently examined under
SEM (SEM-Zeiss, Munich, Germany).
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Statistical analysis
All the studies were carried out in triplicate, and the data were interpreted using
OriginPro Software Version 8 (OriginLab Corporation, Northhampton, MA, USA).
Two-tailed Student Independent t-tests were conducted, and the data were presented as
mean ± standard deviation, with p< 0.05 considered statistically significant, wherever
applicable.

RESULTS
Transmission electron microscopy analysis of chitosan nanoparticles
encapsulating EPE
TEM was employed to examine the size, shape, and surface morphology of chitosan
nanoparticles (CS-NPs) encapsulating ethanolic propolis extracts (EPE). As shown in
(Figs. 3A–3K), the TEM micrographs revealed that the nanoparticles were predominantly
of irregular shapes, with a tendency to aggregate. This aggregation may be attributed
to electrostatic interactions and hydrogen bonding between chitosan and bioactive
compounds in the EPE. Despite the heterogeneity in shape, the nanoparticles remained
within the nanoscale range, typically around 20–30 nm in diameter. This nanoscale
dimension is critical for enhancing drug solubility, bioavailability, and cellular uptake. The
degree of dispersion and clustering varied across the samples, likely reflecting the influence
of different EPE-drug combinations on nanoparticle formation. The apparent contrast
and defined boundaries observed in the images confirm the successful encapsulation of
EPE into CS-NPs. These findings support the potential of chitosan-based nanocarriers for
delivering propolis-derived compounds for therapeutic applications.

Encapsulation efficiency of EPE-CHX formulations in chitosan
nanoparticles
The encapsulation efficiencies (EEs) of various EPE and CHX formulations with CS-NPs,
as mentioned in Table 1, were found to differ under the test conditions. C11 exhibited
better drug entrapment than other formulations tested, with a maximum EE of 92.06%
(Fig. 4). In contrast, C8 demonstrated the lowest efficiency at 81.38%, suggesting lower
drug retention in the NPs. All formulations achieved EEs over 85%, with consistently high
values for C1 (90.28%), C2 (88.50%), C3 (89.72%), C5 (89.73%), C6 (89.39%), and C7
(88.54%). The efficiencies of C4 (84.03%), C9 (85%), and C10 (82.98%) were lower than
those of the other combinations, which may be related to differences in drug-polymer
interactions.

Drug loading capacity of EPE-CHX formulations in chitosan
nanoparticles
The drug loading capacity (DLC) of various EPE and CHX formulations with CS-NPs, as
mentioned in Table 1, differed under the test conditions. The minimum loading capacity
was observed in the C8 combination (54%), while the highest value was obtained in the
C11 (61.3%). Only a slight difference was observed between C1 (60%) and C11 values.
The remaining combinations fall within the same range from 55% to 59%. C2 (59%), C3
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Figure 3 Transmission electronmicroscopy (TEM) analysis of chitosan nanoparticles coated with
propolis drug, whereby (A–K) corresponds to the various drug-nanoparticle combinations.

Full-size DOI: 10.7717/peerj.20493/fig-3

(59.6%), C4 (56%), C5 (59.6%), C6 (59.3%), C7 (59%), C9 (56.6%), C10 (55%). This
difference is observed because drug loading capacity is directly related to encapsulation
efficiency and follows a similar pattern.

Triphasic drug release kinetics of propolis—chlorhexidine
formulations in chitosan nanoparticles
The drug-release kinetics of the chitosan-propolis-chlorhexidine exhibited a linear fitting
curve profile with three phases: an early lag phase (0–20% release), followed by a sharp
intermediate release phase (20–80% release), and then a plateau phase (80–100% release)
(Fig. 5). In controlled drug delivery systems, the release typically follows a multi-phase
pattern, which includes an initial burst release, a sustained release phase, and a terminal
plateau. This pattern ensures a rapid onset of action followed by prolonged therapeutic
levels. The combinations of propolis and CHX (C1-C11) showed distinct drug release
profiles over 25 h. Their increased release over time indicates cumulative drug release.
For example, combinations like C1 and C2 exhibit a faster release rate, suggesting a
stronger initial burst and possibly quicker action. In contrast, combinations from C9 to
C11 demonstrate more controlled and sustained release kinetics.
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Figure 4 Encapsulation efficiencies of various propolis and chlorhexidine formulations with chitosan
nanoparticles, whereby the error bars are presented as mean± standard deviation (SD). ‘‘C’’, Chitosan
formulation.

Full-size DOI: 10.7717/peerj.20493/fig-4

Influence of pH on the release behavior of chitosan-based
propolis–CHX nanoparticles
Our investigations also revealed that the release kinetics were significantly influenced by
the pH of the surrounding medium (Fig. 6). Drug activity or release was higher in highly
acidic conditions (pH 3) but dropped noticeably as the environment became more neutral,
as observed at pH 5 and 7. Additionally, propolis, a resin-like compound rich in flavonoids
and phenolics, behaved differently depending on pH. These compounds remained more
stable and dissolved better in mildly acidic conditions, while they degraded in alkaline
environments (Gokce et al., 2014). Chitosan’s swelling and propolis’s chemical stability
favor acidic conditions, making this formulation ideal for targeting inflamed or infected
tissues, or the stomach, where pH tends to be lower.

MIC and MPC profiles of EPE and CHX nanoparticle formulations
against trophozoite and cyst stages of Acanthamoeba
The single EPE-loaded-CS-NPs (C5-C7) exhibited more potent cyst inhibition than
trophozoites (Table 2). The T. apicalis CS-NP (C5) demonstrated the most potent activity
against A. castellanii ATCC50739 trophozoite inhibition at MITC 5%. In contrast, G.
thoracica (C6) and H. itama (C7) loaded-CS-NPs exerted the highest inhibitory effect
against A. polyphaga ATCC30461 cyst at MICC 5%. The combination of their EPEs (C1):
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Figure 5 Drug release kinetics of various propolis and chlorhexidine formulations with chitosan
nanoparticles. ‘‘A’’, the release kinetics of different models studied; ‘‘B’’, linear fit of the drug release
kinetics; ‘‘C’’, Chitosan formulation.

Full-size DOI: 10.7717/peerj.20493/fig-5

T. apicalis, G. thoracica, and H. itama, loaded CS-NPs could inhibit various Acanthamoeba
species, both trophozoites and cysts. The EPE combination exhibited anti-Acanthamoeba
activity against trophozoites of A. castellanii ATCC50739 and A. triangularis at MITC 5%,
and against cysts of A. castellanii ATCC30010 and A. polyphaga at MICC 5%. The cyst
viability of A. castellanii ATCC50739 was inhibited by greater than 90% when combining
T. apicalis and G. thoracica extracts-loaded CS-NPs (C2) at MICC 5%. The combination
of EPEs with CHX showed greater activity against cysts than trophozoites. T. apicalis,
G. thoracica, and H. itama with CHX-loaded CS-NPs (C8) displayed significant activity
against the cysts of A. castellanii ATCC30010 and A. polyphaga at MICC of 5%. Cysts of A.
castellanii ATCC30010 and A. triangularis were inhibited by the combination of T. apicalis,
H. itama, and CHX (C10, MICC= 5%). Additionally, A. castellanii ATCC30010 cysts were
inhibited by the combination of T. apicalis, G. thoracica, and CHX (C9, MICC= 5%). The
combination of G. thoracica, H. itama, and CHX (C11) exhibited the best activity against
cysts of A. polyphaga at the lowest MICC of 1.25%. All treatments showed amoebicidal
activity against both forms at MPC values greater than 5% (Table 2).
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Figure 6 Drug release kinetics of C1 combination with chitosan nanoparticles at different pH levels.
Full-size DOI: 10.7717/peerj.20493/fig-6

Table 2 Propolis-drug-loaded chitosan nanoparticles toward Acanthamoeba sp. and normal mammalian cells.

Drug-loading chitosan
nanoparticles

MIC (%)a MCC (%)b

A. castellanii
ATCC30010

A. castellanii
ATCC50739

A. polyphaga
ATCC30461

A. triangularis
WU19001

Vero cells

MITC MICC MITC MICC MITC MICC MITC MICC

C1 (P1+P2+P3) >5 5 5 >5 >5 5 5 >5 0.156
C2 (P1+P2) >5 >5 >5 5 >5 >5 >5 >5 0.039
C3 (P1+P3) >5 >5 >5 >5 >5 >5 >5 >5 ND
C4 (P2+P3) >5 >5 >5 >5 >5 >5 >5 >5 ND
C5 (P1) >5 >5 5 >5 >5 >5 >5 >5 0.039
C6 (P2) >5 >5 >5 >5 >5 5 >5 >5 0.078
C7 (P3) >5 >5 >5 >5 >5 5 >5 >5 0.156
C8 (P1+P2+P3+CHX) >5 5 >5 >5 >5 5 >5 >5 0.156
(P1+P2+CHX) >5 5 >5 >5 >5 >5 >5 >5 0.313
C10 (P1+P3+CHX) >5 5 >5 >5 >5 >5 >5 5 0.313
C11 (P2+P3+CHX) >5 >5 >5 >5 >5 1.25 >5 >5 2.5
CHX 0.008 >0.128 0.0016 0.0032 0.0016 >0.128 0.008 0.064 ND

Notes.
Note: ‘‘C’’—Chitosan Formulation; All treatments exhibited MPC (Minimum Parasiticidal Concentration) values greater than 5%. P1: Tetrigona apicalis, P2: Geniotrigona tho-
racica, P3: Heterotrigona itama, CHX: Chlorhexidine, ND: undetected.

aMITC (Minimum Inhibitory Trophozoite Concentration) and MICC (Minimum Inhibitory Cystic Concentration) refer to the lowest concentrations that reduced trophozoite
and cyst viability by more than 90%, respectively.

bMCC (Minimum Cytotoxicity Concentration) is the lowest concentration at which host cell viability was reduced by less than 20%.
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SEM analysis of structural damage in Acanthamoeba polyphaga cysts
following treatment with propolis-CS nanoparticles and chlorhexidine
EPEs and their CS-NP combinations appeared to have a greater inhibitory effect against
A. polyphaga cysts. SEM was utilized in this study to determine how the combination of
CS-NPs affected cyst structure (Fig. 7). SEM images displayed the typical morphological
characteristics of A. polyphaga cyst, such as polygonal shape, smooth surface, and thin
ridges on the wrinkled surface observed in untreated cysts (Fig. 7A) and the negative control
(Fig. 7B). Cysts treated with CHX exhibited a rough surface with thick, wrinkled ridges
and shrank into a smaller shape, indicating damaged cell characteristics (Fig. 7C). Cysts
treated with the combination of EPEs and CHX (Figs. 7D–7F) showedmore morphological
changes than those treated with a single propolis treatment (Figs. 7G–7L) when compared
to the negative control (Fig. 7B). In this combination (MICC, 5%), cysts treated with G.
thoracica and H. itama-loaded CS-NPs (C4; P2+P3) shrank and developed thick, wrinkled
ridges on their surface (Fig. 7G), which resembled the morphology of cysts treated with
single EPE treatments (C5-C7; P1, P2, P3, and Figs. 7D–7F). Cysts became round, lacking
the ridge layer on the cell surface, and exhibited small perforations in the walls when
treated with the combination of three EPEs (MICC 5% of C1; P1+P2+P3 and Fig. 7H).
The combination of all three EPEs with CHX demonstrated more substantial potential for
damaging the cyst cell walls, reducing them to small, irregular shapes with perforations
and shrinkage (MICC 5% of C8; P1+P2+P3+CHX and Fig. 7I). The combinations of two
propolis treatments and a drug at MICC 5% (C10; P1+P3+CHX) caused cysts to exhibit
morphological changes characterized by irregular shapes without wrinkled ridges on the
surface (Fig. 7K). It was noted that cyst morphology at MICC 5% (C9; P1+P2+CHX) and
MICC 1.25% (C11; P2+P3+CHX) shows distinct shrinking cells with thick wrinkled ridges
of surface (Figs. 7J and 7L). However, the latter displayed smaller sizes, larger pores, and
numerous blunt ends on the cell surface, indicating promising activity with the lowest
MICC when their combinations were used.

Cytotoxicity assessment of propolis-chlorhexidine CS-NP formulations
on Vero cells
Among all tested formulations, the C11 (P2+P3+CHX) exhibited the lowest cytotoxicity
against the Vero cell line, maintaining >80% cell viability at an MCC of 2.5% drug-loaded
CS-NP (Table 2). In contrast, C9-C10 (P1+P2/P1+P3+CHX), C1 (P1+P2+P3), C7-C8 (P3
and P1+P2+P3+CHX), C6 (P2), and C2 (P1+P2), C5 (P1) displayed increased cytotoxicity
with MCC values as low as 0.313%, 0.156%, 0.078%, and 0.039%, respectively (Table 2).

DISCUSSION
The variations in the density and dispersion of particles among samples provide evidence
of differing drug loading efficacy and possible structural changes due to the variable
composition of propolis (Bankova, 2005). The observed aggregation may result from
electrostatic interactions or hydrogen bonding between propolis and CS components,
affecting drug release kinetics (Elkhateeb et al., 2022). Several physicochemical factors
influence the encapsulation efficiencies (EEs) of CS-NPs formulated with propolis. Due to
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Figure 7 SEM images (A–L) showing the morphological effects of different formulations on Acan-
thamoeba. (A) Untreated control; (B) negative control (0.05% acetic acid); (C) positive control (0.128
mg/mL CHX). (D–F) Single-component treatments: C5 (5% P1), C6 (5% P2), C7 (5% P3). (G) Binary
combination C4 (5% P2+P3); (H) ternary combination C1 (5% P1+P2+P3). (I–K) Combinations with
CHX: C8 (5% P1+P2+P3+CHX), C9 (5% P1+P2+CHX), C10 (5% P1+P3+CHX). (L) Reduced-dose
combination C11 (1.25% P2+P3+CHX).

Full-size DOI: 10.7717/peerj.20493/fig-7

its cationic nature, CS can establish electrostatic interactions with negatively charged
bioactive compounds in propolis, including flavonoids and polyphenols, which aid
drug entrapment (Kim et al., 2012). Additionally, the concentration of these bioactive
compounds, while interacting with the polymer matrix, may also impact the EE. The ratio
of polymer to drug is another crucial factor, as higher concentrations of CS-NPs enhance
the EE, providing greater availability of the polymer; in this case, a 5% drug loading was
used. However, a high concentration of CS can increase viscosity, complicating drug
loading (Rahman et al., 2020). The solubility and dispersion of propolis compounds are
also important factors. It has been reported that propolis is most bioactive under acidic
conditions and breaks down when the pH rises (Rinaudo, 2006). Together, these materials
create a synergistic effect that responds strongly to pH changes. CS solubility improves in
a mildly acidic environment (pH 4-5), strongly favoring effective encapsulation, while a
shift in pH may weaken polymer-drug interactions and reduce drug retention (Errico et
al., 2020). Moreover, preparation conditions such as stirring speed, sonication time, and
crosslinking agents directly affect the size and stability of the NPs. Generally, smaller and
monodispersed NPs demonstrate a greater capacity for drug encapsulation (Dong et al.,
2024). The drug release phase is crucial for determining the effectiveness and safety of a
formulation, as it affects how the active compounds are delivered over time. The early
lag phase may be attributed to the time-evolving swelling and hydration of the chitosan
matrix, which temporarily retards drug diffusion due to the tight polymeric network and
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hydrophobic interactions between chitosan, propolis, and chlorhexidine. This lag phase
is characteristic of polymeric nanoparticle systems, wherein the solvent must initially
penetrate the matrix for the drug to begin dissolving and diffusing. The first release phase
may also result from the drugs’ adherence to the chitosan nanoparticles’ outer surface. The
second phase, or burst release phase, indicates a shift toward diffusion-controlled kinetics,
with the swollen chitosan matrix developing increasingly open pathways that allow for the
rapid escape of the entrapped drugs. This phenomenonmay be facilitated by the progressive
solubilization of the components of propolis and the hydrophilicity of CHX, both of which
increase drug mobility as the polymer breaks down. The plateau phase at the end signifies
close-to-complete drug release, which is constrained by the remnant bonds between the
drugs and chitosan, as well as the exhaustion of accessible reservoirs. Since the drug release
was found to be for 24 h and more than 80% of the drug was released during this time,
the results were in par with those observed by Dattu & Gaikwad (2022) and comparatively
better than the one observed by Sevinç-Özakar et al. (2022) where the maximum release of
pure drug was observed within 8 h. This reinforces the idea that extending observations
to 25 h guarantees that the whole release process, including any late phase slow release, is
considered, confirming claims of sustained release and guaranteeing dosage efficacy (Dattu
& Gaikwad, 2022).

A characteristic blend of non-Fickian diffusion and polymer breakdown (Case II
transport) is observed, typical of swellable matrices like chitosan when interacting with
hydrophilic drugs (Gokce et al., 2014;Herdiana et al., 2022). The release kinetics align more
closely with the Korsmeyer-Peppas model, as the release from the study follows Case II
transport. Other factors that could influence drug release include the crosslinking density
of the nanoparticles, such as the concentration of tripolyphosphate (TPP), drug-polymer
interactions, and the physicochemical properties of the propolis components (e.g., wax
concentration) and chlorhexidine (e.g., charge and solubility) (Unagolla & Jayasuriya,
2018; Pan et al., 2020; Shahid et al., 2022), which require further investigation in future
studies. Similarly, pH plays a critical role in releasing the drug from the CS particles,
which may extend the application of our prepared model. The pH-sensitive nature of
the release kinetics was consistent with the physicochemical properties of CS, which arise
from its protonatable amino groups on the glucosamine units. When the pH is low (pH
< 6.5), the amino groups become protonated, resulting in chitosan’s solubility and the
polymer matrix’s swelling. This swelling facilitates drug release through a combination of
diffusion and erosion of the polymer. Conversely, when the pH is neutral to alkaline, the
amino groups lose their protons, which reduces solubility, decreases swelling, and creates
a denser matrix that slows down drug diffusion. These findings align with our earlier
studies and those of other researchers, who observed that the solubility they observed the
solubility of CS is highly pH-dependent, dissolving at pH < 6.5 and precipitating at alkaline
and neutral pH (Sama-Ae et al., 2023; Shanmuga et al., 2024). Acanthamoeba produces an
enzyme called neuraminidase, which is active at an optimal pH of 5 and a temperature of
around 25–30 ◦C. Sialic acid in human cells protects the corneal epithelium, which the
neuraminidase produced by live Acanthamoeba will destroy, and it is found similar to the
neuraminidase of Trypanosoma cruzi (Lorenzo-Morales, Khan & Walochnik, 2015).
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In the present study, EPE, particularly those produced by G. thoracica (P2) andH. itama
(P3) stingless bees, in combinationwith the drugCHX formulated inCS particles, improved
the potency against Acanthamoeba spp. cysts, with a minimum inhibitory concentration
(MIC) ranging from 1.25% to 5% on A. polyphaga and A. castellanii ATCC30010. The CS
nanoformulation of EPE and its combinations continue to pave the way for discovering
potential activities against Acanthamoeba infections. A recent study showed that propolis
extract from Kermanshah city, Iran, exhibited the highest inhibitory activity, with an MIC
ranging from 0.0625 to 0.125 mg/mL against trophozoites of A. castellanii ATCC30010
and ATCC50739, but the lowest activity was observed against cysts (MIC one mg/mL)
(Mendez-Pfeiffer et al., 2021; Sama-Ae et al., 2023). EPE from Erzurum, Turkey, can kill
A. castellanii ATCC30010 trophozoites at a concentration of 3–6 mg/mL (Kolören et al.,
2023). Turkish EPE from Trabzon City demonstrated trophozoite inhibitory activity at
2–6 mg/mL and a cysticidal effect at 8–62.25 mg/mL on A. castellanii (Topalkara et al.,
2007). The combination of free Iranian EPE and the drug (eye drop solution) revealed
inhibition of encystation (MIC; EPE 0.016 mg/mL and drug 6.25%) and excystation
(MIC; 0.512 mg/mL and drug 50%) (Sangkanu et al., 2024a; Sangkanu et al., 2024b). The
concentration of free EPE or its combination is effective in treating cystic and cysticidal
effects. Thus, the encapsulation of EPE, combined with nanocarriers, specifically targets
and enhances therapeutic efficacy. CS is a useful potential nanocarrier and can significantly
encapsulate natural products in its formulation. Nigella sativa aqueous extract combined
with CS encapsulation (N. sativa 60 mg/mL and CS 0.1 mg/mL) demonstrated synergistic
therapeutic effectiveness against Acanthamoeba astronyxis T7 genotype, isolated from
cornea-infected AK patients, increasing the curative rate to 100% in grades 1, 2, and 3 of
corneal opacity after 10 days of treatment in an albino rat model (Elkadery et al., 2019).

The EPE and CHX combination-loaded CS-NPs exhibited greater inhibition of cysts,
indicating that the drug-CS-NPs likely target cysts more than trophozoites. The cyst walls
of Acanthamoeba contain a mixture of protein (33%) and polysaccharide (35%), with
the ectocyst walls predominantly composed of glucose, a precursor of cellulose, which is
incorporated into the walls as 1,4-β-glucan (Anwar, Khan & Siddiqui, 2018). The positive
charge of the amine group in CS is thought to interact electrochemically with the negative
charge of alcohol in 1,4-β-glucan or the negative R-group of proteins in the cyst wall
(Jaiswal et al., 2017). The cationic structure of CHX, similar to CS, along with the alcohol
groups present in the formulated structures, can precipitate proteins and denature lipids
present in the Acanthamoeba cysts, enhancing the action against the cyst forms (Ferreira
et al., 2019). When the ability of CHX to dissolve is reduced, the release happens more
slowly due to the formation of a precipitate on the surface of the solid layer. The longer
release time helps CHX increase its killing capacity. In addition to the EPE and CHX
combination, the CS-NPs displayed improved anti-cyst activity at the lowest MICC of
1.25%. The most significant safety concern on Vero cells was observed at the highest
MCC of 2.5% in the C11 combination set. The 50% cell cytotoxic concentration (CC50)
of an EPE-CS mixture (0.109 ± 8.36 mg/mL) against Vero cells was twofold higher than
that of free EPE (0.231 ± 11.46 mg/mL), indicating safety for normal mammalian cells
(Alkhalefa et al., 2022). In addition to Vero cytotoxicity, in vitro studies showed that EPE
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and CS were not toxic to intestinal epithelial cells, increased bacterial intestinal microflora
viability, and promoted normal periodontal ligament stem cells (Jie, Jun & Saman, 2022;
Mostafa et al., 2022). In the mixture of EPE-antibiotics (colistin)-integrated CS in vivo, a
histological study demonstrated that after seven days of EPE-colistin CS-NPs treatment,
there was a remarkable improvement in the tissue of various investigated organs. No signs
of toxicity were observed, particularly in the liver and kidney tissues, after 30 days of
treatment (Elnaggar et al., 2020). The EPE and CHX combination (C11) exhibited greater
inhibitory effects and lower toxicity on normal mammalian cells, suggesting a more specific
targeting of the cyst forms of Acanthamoeba, as its nano-formulated structure revealed the
best entrapment (92.06%) and drug release (>80%). Subsequently, it could be applied to
further drug discovery designs against Acanthamoeba infections.

CONCLUSIONS
The results indicate that electrostatic interactions between the cyst wall’s positively charged
CS and negatively charged components facilitated targeted delivery and enhanced drug
retention. The CS-EPE-CHX formulation (C11) achieved the highest entrapment efficiency
(92.06%) and sustained drug release (>80%), demonstrating its enhanced performance
for in vivo application. The CS-NPs followed a non-Fickian (Case II) release pattern,
confirming that diffusion and polymer matrix relaxation played roles in the controlled
release. EPE (G. thoracica and H. itama) and CHX (C11) exhibited potent, specific
anti-Acanthamoeba activity against A. polyphaga cysts while being harmless to normal
mammalian cells. Overall, this CS-EPE-CHX nanoparticle system improved drug loading,
release, and delivery while being safer and more effective. These findings suggest that this
nano formulation could be a promising treatment option for Acanthamoeba infections,
particularly those involving hard-to-kill cyst forms, and lay the groundwork for developing
future therapies.
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