

The petrosal and bony labyrinth of extinct horses (Perissodactyla, Equidae) and their implications for perissodactyl evolution (#116824)

1

First revision

Guidance from your Editor

Please submit by **3 Oct 2025** for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

1 Tracked changes manuscript(s)
1 Rebuttal letter(s)
14 Figure file(s)
2 Table file(s)
1 Raw data file(s)
1 Other file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. Basic Reporting
- 2. Study design
- 3. Validity of the findings
- 4. General Comments
- 5. Confidential notes to the editor

• You can also annotate the review pdf and upload it as part of your review (optional).

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

Article types: Research and AI Application

BASIC REPORTING

Include the appropriate criteria template based on the type variable

Clear and unambiguous, professional English used throughout.

The article must be written in English and must use clear, unambiguous, technically correct text. The article must conform to professional standards of courtesy and expression.

Literature references, sufficient field background/context provided.

The article should include sufficient introduction and background to demonstrate how the work fits into the broader field of knowledge. Relevant prior literature should be appropriately referenced.

Professional article structure, figures, tables. Raw data shared.

The structure of the article should conform to an acceptable format of 'standard sections' (see our Instructions for Authors for our suggested format). Significant departures in structure should be made only if they significantly improve clarity or conform to a discipline-specific custom.

Figures should be relevant to the content of the article, of sufficient resolution, and appropriately described and labeled.

All appropriate raw data have been made available in accordance with our Data Sharing policy.

Self-contained with relevant results to hypotheses.

The submission should be 'self-contained,' should represent an appropriate 'unit of publication', and should include all results relevant to the hypothesis.

Coherent bodies of work should not be inappropriately subdivided merely to increase publication count.

EXPERIMENTAL DESIGN

Original primary research within [Aims and Scope](#) of the journal.

Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.

The submission should clearly define the research question, which must be relevant and meaningful. The knowledge gap being investigated should be identified, and statements should be made as to how the study contributes to filling that gap.

Rigorous investigation performed to a high technical & ethical standard.

The investigation must have been conducted rigorously and to a high technical standard. The research must have been conducted in conformity with the prevailing ethical standards in the field.

Methods described with sufficient detail & information to replicate.

Methods should be described with sufficient information to be reproducible by another investigator.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

Decisions are not made based on any subjective determination of impact, degree of advance, novelty or being of interest to only a niche audience. We will also consider studies with null findings. Replication studies will be considered provided the rationale for the replication, and how it adds value to the literature, is clearly described. Please note that studies that are redundant or derivative of existing work will not be considered. Examples of "acceptable" replication may include software validation and verification, i.e. comparisons of performance, efficiency, accuracy or computational resource usage.

All underlying data have been provided; they are robust, statistically sound, & controlled.

The data on which the conclusions are based must be provided or made available in an acceptable discipline-specific repository. The data should be robust, statistically sound, and controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

The conclusions should be appropriately stated, should be connected to the original question investigated, and should be limited to those supported by the results. In particular, claims of a causative relationship should be supported by a well-controlled experimental intervention. Correlation is not causation.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The petrosal and bony labyrinth of extinct horses (Perissodactyla, Equidae) and their implications for perissodactyl evolution

Owen Axel Goodchild ¹, Sydney Nicole Rosen ², Bastien Mennecart ³, Jin Meng ⁴, Jérémie Tissier ^{Corresp. 4, 5}

¹ Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States

² Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States

³ Naturhistorisches Museum Basel, Basel, Switzerland

⁴ Department of Vertebrate Paleontology, American Museum of Natural History, New York, New York, United States

⁵ Palaeobiosphere Evolution Unit, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

Corresponding Author: Jérémie Tissier
Email address: jeremy.tissier123@gmail.com

Perissodactyla, or odd-toed ungulates, are represented today by 16 species of rhinoceroses, tapirs, and horses. Perissodactyls were much more diverse in the past, having a rich fossil record spanning from the earliest Eocene (~56 ma) to recent, including a myriad of extinct lineages. Despite over a century of study, the inter-relationships of some extinct perissodactyl families remain poorly resolved. New morphological characters are needed to help solve this issue. Recent studies suggest that the ear region, i.e., the petrosal and the bony labyrinth of the inner ear, is a valuable source of morphological characters for mammalian phylogenetic analyses. The petrosal is the bony structure protecting the inner ear, the organs of hearing and balance in mammals. However, perissodactyl petrosals are poorly documented and have not been used in such a phylogenetic frame. In this study, we describe the petrosals and inner ears of five European fossil equid taxa and perform a preliminary phylogenetic analysis. Despite its small sample size, our phylogenetic tree recovers important groupings, which suggests the petrosal is phylogenetically informative in equids. This study supports the relevance of the ear region for phylogeny and its potential to better resolve long-contentious relationships within Perissodactyla.

1 **The petrosal and bony labyrinth of extinct horses**
2 **(Perissodactyla, Equidae) and their implications for**
3 **perissodactyl evolution.**

4

5 Owen Axel Goodchild¹, Sydney Nicole Rosen², Bastien Mennecart³, Jin Meng⁴ &
6 Jérémie Tissier^{4,5}

7

8 ¹ Richard Gilder Graduate School, American Museum of Natural History, New York,
9 New York, USA

10 ² Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA

11 ³ Naturhistorisches Museum Basel, Basel, Switzerland

12 ⁴ Department of Vertebrate Paleontology, American Museum of Natural History, New
13 York, New York, USA

14 ⁵ Palaeobiosphere Evolution Unit, Royal Belgian Institute of Natural Sciences, Brussels,
15 Belgium

16

17

18

19 Corresponding Author:

20 Jérémie Tissier

21 Rue Vautier 29, Brussels, 1000, Belgium

22 Email address: jeremy.tissier123@gmail.com

23

24 **Abstract**

25 Perissodactyla, or odd-toed ungulates, are represented today by 16 species of
26 rhinoceroses, tapirs, and horses. Perissodactyls were much more diverse in the past,
27 having a rich fossil record spanning from the earliest Eocene (~56 ma) to recent,
28 including a myriad of extinct lineages. Despite over a century of study, the inter-
29 relationships of some extinct perissodactyl families remain poorly resolved. New
30 morphological characters are needed to help solve this issue. Recent studies suggest
31 that the ear region, i.e., the petrosal and the bony labyrinth of the inner ear, is a
32 valuable source of morphological characters for mammalian phylogenetic analyses. The
33 petrosal is the bony structure protecting the inner ear, the organs of hearing and
34 balance in mammals. However, perissodactyl petrosals are poorly documented and
35 have not been used in such a phylogenetic frame. In this study, we describe the
36 petrosals and inner ears of five European fossil equid taxa and perform a preliminary
37 phylogenetic analysis. Despite its small sample size, our phylogenetic tree recovers
38 important groupings, which suggests the petrosal is phylogenetically informative in
39 equids. This study supports the relevance of the ear region for phylogeny and its
40 potential to better resolve long-contentious relationships within Perissodactyla.
41

42 **Introduction**

43 Today, Perissodactyla [Owen 1848](#), also known as odd-toed ungulates, are represented
44 by 16 living species of rhinoceroses (n5), tapirs (n4), and horses (n7). Perissodactyls
45 have a rich fossil history extending to the early Eocene ~56 million years ago (Ma; Bai,
46 Wang & Meng, 2018). In addition to the ancestors of living perissodactyl groups, the
47 perissodactyl fossil record contains several extinct families like the clawed
48 Chalicotheriidae [or](#) bony-horned Brontotheriidae (Bai, Wang & Meng, 2018). Despite
49 over a century of study, the interrelationships between extinct perissodactyl families and
50 the relationships within those families remain controversial. Phylogenetic analyses using
51 craniodental characters have longstanding issues, such as the internal relationships of
52 Rhinocerotoidea (Tissier et al., 2018; Bai et al., 2020).

53 The discrepancies among these recent phylogenies highlight the necessity to
54 investigate other structures of perissodactyl anatomy for new phylogenetically relevant
55 characters. The petrosal is the paired basicranial bone housing the inner ear, which
56 comprises the organs of balance (semicircular canals) and hearing (cochleae) in
57 mammals (O'leary, 2010). The bony labyrinth is [the inner bony surface](#) of the petrosal
58 bone, and is thus often considered as a good representation of the morphology of the
59 inner ear. In many mammals other than perissodactyls, the petrosal and bony labyrinth
60 are increasingly used in phylogenetic analyses and in understanding the paleobiology of
61 these animals ([Mennecart & Costeur, 2016](#); Mennecart et al., 2016; Aguirre-Fernández
62 et al., 2017; Costeur et al., 2017; [Costeur et al., 2018b](#); [Costeur et al., 2018a](#); Aiglstorfer
63 et al., 2017; Benoit et al., 2020; Mennecart et al., 2020; Evin et al., 2022; Wang et al.,

64 2022; Mennecart et al., 2022; Orliac et al., 2023; Zhang & Tong, 2024). The petrosal
65 and bony labyrinth have historically been a challenge to study because the bony
66 labyrinth is completely enclosed in the petrosal, while the petrosal is often enclosed in
67 the skull. Computed Tomography (CT) allows for the visualization of internal and
68 external details of the petrosal, and the generation of endocasts of the bony labyrinth
69 within. The petrosal of perissodactyls is relatively poorly known and has yet to be used
70 in large-scale phylogenetic analyses (see Mateus, 2018 for a review).

71 This study aims to describe the petrosal, bony labyrinth, and stapes (when
72 preserved) of five different extinct equids, explore their morphological **variations**, and
73 assess whether the petrosal characters presented by O'Leary (2010) and Mateus
74 (2018) are phylogenetically informative **in** these taxa.

75

76 **Materials & Methods**

77 **Taxonomy and specimens**

78 This study involves seven petrosal specimens (Tab. 1; Fig. 1) from five **European**
79 **fossil equids housed in the collections of the Natural History Museum of Basel,**
80 **Switzerland (NMB)** that were previously identified in the collection. We confirmed the
81 identification based on the reported taxonomic diversity from each locality, and by
82 comparison with the petrosal of extant *Equus* (e.g. in O'Leary, 2010 and Danilo et al.,
83 2015), as well as with *Artiodactyla* (O'Leary, 2010), *Tapirus* (O'Leary, 2010; Mateus,
84 2018) and *Ceratotherium* (Robert et al., 2021). We also had access to the petrosals of
85 *Equus caballus* (AMNH FM 118) and *Tapirus terrestris* (AMNH FM 14103) described by
86 O'Leary (2010) for comparison and phylogenetic analysis.

87 *Anchitherium aurelianense* Cuvier, 1825 is the oldest equid in our study (Agustí &
88 Antón, 2002). The petrosal imaged here comes from the famous Middle Miocene
89 locality of Sansan dated to the Astaracian European Land Mammal Age ~15 Ma
90 (Alberdi, Ginsburg & Rodríguez, 2004). Its identification in our study remains **tentative**,
91 as we could not directly compare it with another clearly identified specimen. *Hipparium*
92 belongs to a large group of fossil equids, the Hippariumini, from across North America,
93 Asia, Europe, and Africa (Bernor et al., 2021). The two *Hipparium* specimens in this
94 study come from two different sites: Montredon (Vallesian, 11-9 Ma; France) and
95 Concad (upper Turolian, ~5 Ma, Spain; Forstén, 1982). All the *Equus* material in our
96 sample comes from the Early Pleistocene (Villafranchian), one from Valdarno (Italy) and
97 three from Senèze (France). They belong to the stenonine lineage that consists of Early
98 Pleistocene European and African *Equus* (Cirilli et al., 2021a). The specimen from
99 Valdarno belongs to *Equus stenonis*, while the specimens from Senèze belong to
100 *Equus senezensis* (Cirilli et al., 2021b).

101

102

103 **Table 1.**

104

105 **Figure 1.**

106

107 **CT scans and segmentation**

108 The equid material for this project was scanned at the Biomaterials Science
109 Centre of the University of Basel, Switzerland, using a Phoenix Nanotom, GE.
110 Tomograms were segmented using 3D Slicer (Fedorov et al., 2012) to extract the
111 petrosal, the digital endocast of the bony labyrinth, and the stapes. 3D models
112 representing seven petrosal bones, six bony labyrinths, and three stapes were
113 generated in 3D Slicer. All tomograms and 3D models of petrosals, bony labyrinths, and
114 stapes are available for download on Morphosource ([temporary access link for peer-review](https://www.morphosource.org/projects/000720375/temporary_link/KB8T8eo9geShZZ6F4Cn6Tjz3?locale=en):

115 https://www.morphosource.org/projects/000720375/temporary_link/KB8T8eo9geShZZ6F4Cn6Tjz3?locale=en).

116 **Measurements**

117 Measurements were digitally taken using the “Measuring Tool” MeshLab2022.02
118 (Cignoni et al., 2008). We followed the linear measurement methods outlined in Ekdale
119 (2013, figure 3), and measured the height and width of the cochlea used for the
120 calculation of the aspect ratio and the height, width, and length of the semicircular
121 canals used for the calculation of the radius of curvature (Tab. 2).

122

123 **Table 2.**

124

125 **Character scores and phylogenetic analysis**

126 We constructed a character matrix in Mesquite, combining characters from the
127 petrosal and bony labyrinth, which is provided in Nexus format in Supplemental File 1.
128 The list of characters and characters states is included in the matrix file, and detailed in
129 Supplemental File 2. We scored the 3D models of the petrosal and stapes with
130 characters from Spaulding et al. (2009; available in morphobank:
131 <http://dx.doi.org/10.7934/X188>). We retained 33 characters which exclusively concern
132 the petrosal bone, and the two characters of the stapes (characters 65 and 66 of
133 Spaulding et al. 2009). We excluded characters from the auditory bulla, which was not
134 preserved in our fossil specimens. We added 9 characters from Mateus (2018) for a
135 total of 42 petrosal characters (see Supplemental File 2). We scored the 3D models of
136 the bony labyrinth according to the 6 discrete characters of Ekdale (2013; available in
137 morphobank: <http://dx.doi.org/10.7934/X1905>). We scored *Equus przewalskii* in the
138 matrix based on the descriptions and figures of Danilo et al. (2015) and used the
139 original scores of *Hyopsodus*, *Tapirus terrestris*, and *Equus caballus* from Spaulding et
140 al. (2009) as well as those of *Equus* from the matrix of Ekdale (2013) and of *Hyopsodus*
141 and *Tapirus terrestris* from Mateus (2018). In total, our matrix includes 50 characters (9
142 are parsimony informative in our analysis and 29 are constant) and 10 terminal taxa.
143

144

145 We performed a maximum parsimony (MP) analysis using PAUP4 (Swofford,
146 2002). Given the small number of taxa in our sample, we used the **exhaustive search**
147 function to search all possible tree topologies to obtain the most parsimonious tree(s).
148 *Hyopsodus* was set as outgroup and all characters are considered as unordered. The
149 optimization settings were set on ACCTRAN.

150 We performed a Bootstrap analysis in PAUP4, using 100 replicates with a full
151 heuristic search algorithm. For each bootstrap replication, 1000 heuristic replicates were
152 done, holding 100 trees at each step, with a TBR algorithm and a reconnection limit of
153 8.

154 **Anatomical terminology**

155 The anatomical terminology used for the description of the stapes follows **Orliac**
156 and **Billet (2016)**. The terminology used for the petrosal follows O'Leary (2010) and the
157 terminology of the inner ear follows Ekdale (2013). More specifically, we follow the
158 terminology of Robson and Theodor (2025) for the subarcuate depression of the
159 petrosal (rather than fossa).

160 **Biostratigraphy**

161 The stratigraphical framework is based on the geological timescales and
162 European Land Mammal Ages (ELMA) for the Neogene (Raffi et al. 2020).

163

164 **Results**

165 **Systematic Paleontology**

166 **Mammalia**, Linnaeus 1758

167 **Perissodactyla**, Owen 1848

168 **Equidae**, Gray 1821

169 **Anchitheriinae**, Leidy 1869

170 **Anchitherium**, Meyer 1844

171 **Anchitherium aurelianense**, Cuvier 1825

172 **Material**

173 An isolated right petrosal, NMB.San.15063

174 **Locality and age**

175 Sansan, Gers, France; Miocene, Astaracian (MN 6)

176 **Description and comparison.** The petrosal of *Anchitherium aurelianense*
177 (NMB.San.15063; Fig. 2) is 2.11 cm long anteroposteriorly. The specimen is largely
178 complete, with minor damage to the mastoid region. The bony labyrinth could not be
179 segmented in this specimen due to the absence of contrast between the sediment
180 infilling the bony labyrinth and the petrosal bone.

181 The petrosal of *A. aurelianense* is markedly different in several aspects from that
182 of *Equus caballus* (O'Leary 2010). In anterior view (Fig. 2C), *A. aurelianense* lacks the
183 endocranial projection of the superiormost aspect of the petrosal seen in *Equus*. The
184 *crista interfenestralis* is broader and more rounded than in *E. caballus*. The epitympanic

185 wing is small, forming a low protrusion from the promontorium. The wing is rounded
186 rather than pointed and does not protrude. The subarcuate depression is very
187 shallow. The *hiatus Fallopii* is small and opens on the ventromedial border of the
188 petrosal, close to the *tegmen tympani* (Fig. 2B). The stapedial muscle fossa is oval-
189 shaped and located in the facial *sulcus*, below the *crista interfenestralis* separating the
190 *fenestrae vestibuli* and *cochleae*. The *fenestra cochleae* is round, while the *fenestra*
191 *vestibuli* is oval. *Anchitherium* possesses a notably smaller *tegmen tympani* than *Equus*
192 *caballus* (O'Leary 2010). Unlike in *E. caballus*, the *tegmen tympani* is flattened and is
193 not prominent in dorsolateral view (Fig. 2B). The surface of the *tegmen tympani* is
194 smooth, forming an angled surface anteromedial to the mastoid region. The *tegmen*
195 *tympani* lacks raised bumps and the *hiatus Fallopii* excavates a portion of its medial
196 edge.

197 The dorsomedial surface of the petrosal in *A. aurelianense* is largely smooth, like
198 *E. caballus* (O'Leary 2010), but with some rugosity along the anterior margin and along
199 the floor of the groove anterior to the internal acoustic meatus (Fig. 2D). Since this
200 petrosal was found as an isolated element we interpret this rugosity as the result of
201 taphonomic weathering. The *crista transversa* is a sinuous ridge of bone between the
202 superior and inferior acoustic foramina, as in *E. caballus*, but is thicker. The cochlear
203 aqueduct is small and slit-like (Fig. 2D-E). The vestibular aqueduct forms a round, open
204 hole (Fig 2D).

205 The peculiar nature of the *tegmen tympani* in the petrosal of *Anchitherium* recalls
206 the “uninflated” condition seen in the early diverging eutherians like *Protungulatum*
207 (O'Leary 2010). As in *Protungulatum*, the *tegmen tympani* is flat in *Anchitherium*. The
208 surface is moderately raised in dorsomedial view relative to the internal acoustic
209 meatus, while in *Protungulatum* the *tegmen tympani* is flatter in dorsomedial view. The
210 *tegmen tympani* morphology of *Anchitherium* is somewhat intermediate between the
211 uninflated *tegmen tympani* of *Protungulatum* and the smaller but inflated *tegmen*
212 *tympani* of *Hipparium*. It is puzzling then, that the literature reports the earlier diverging
213 equid *Orohippus* as having an inflated *tegmen tympani* (Cifelli, 1982). Indeed, all the
214 fossil tapirs Mateus (2018) referred to have an inflated *tegmen tympani*. See the
215 discussion for further consideration.

216 *A. aurelianense* lacks an anterior process of the *tegmen tympani*. A ventrolateral
217 tuberosity was present in *A. aurelianense* (Fig. 2A-C). Medial to the external acoustic
218 meatus is a relatively deep epitympanic recess (Fig. 2A). *A. aurelianense* lacks a
219 distinct stylomastoid notch.

220 The petrosal is narrow in ventromedial view (Fig. 2E), widening into a fan-shaped
221 mastoid region like in *E. caballus* (O'Leary, 2010). The mastoid region is very
222 incomplete. It was considered here to be large as per O'Leary 2010's definition but is
223 notably smaller than that of *E. caballus*. The preserved element of the mastoid is
224 consistent with a wedge shape as described in O'Leary (2010).

225

226 **Figure 2.**

227

228 Equinae, Steinmann and Döderlein 1890

229 Hipparrisonini, Quin 1955

230 *Hipparrison*, Christol 1832

231 *Hipparrison depereti*, Sondaar 1974

232 **Material**

233 An isolated left petrosal, NMB.A.Mo655

234 **Locality and age**

235 Montredon, France; Late Miocene Vallesian (MN 10).

236

237 **Description and comparison.** The Montredon *Hipparrison*, *Hipparrison depereti*, specimen
238 NMB.A.Mo655, is a largely complete petrosal, with minor damage to the *tegmen*
239 *tympani* and the mastoid region. Segmentation of its bony labyrinth was made
240 challenging by the presence of very dense infilling (possibly iron). NMB.A.Mo.655 is an
241 isolated petrosal measuring 3.9 cm in length. This petrosal is intermediate between
242 *Anchitherium* and *Equus*. Notably, the petrosal of *H. depereti* is more massively
243 constructed and broader than that of *Anchitherium aurelianense*. There are notable
244 distinctions from *Equus*, however. The *promontorium* gives rise to the epitympanic wing
245 (Fig. 3B), which is small and rounded rather than pointed as in *E. caballus* (O'Leary,
246 2010), but longer than in *Anchitherium*.

247 Between the epitympanic wing and the *tegmen tympani* lies the opening for the
248 *hiatus Fallopii* (Fig. 3B), which is very small. The fossa for the *tensor tympani* is located
249 between the *hiatus Fallopii* and the *fenestra vestibuli*. The *fenestra cochleae* is round,
250 and the *fenestra vestibuli* is oval. The stapedial muscle fossa is deep and round in the
251 facial sulcus, just below the *crista interfenestralis*. The stylomastoid notch is thin and
252 rather shallow. The *tegmen tympani* (Fig. 3C, D) is more greatly inflated than in *A.*
253 *aurelianense* but much less than in *E. caballus*. There is no anterior process of the
254 *tegmen tympani*. In dorsomedial view (Fig. 3E), the surface of the area around the
255 internal acoustic meatus is smooth. However, this specimen has been abraded, making
256 the surface appear more rugose than in life. The subarcuate depression is wide and
257 shallow, as in *E. caballus* (O'Leary, 2010) and the petromastoid canal is absent. In
258 dorsolateral view (Fig. 3C), the petrosal is narrow anteriorly and expands into a fan-
259 shaped mastoid region posteriorly. The medial surface of the petrosal is flat. The
260 *basicapsular groove* can be seen along the dorsal margin of the petrosal (Fig. 3F). The
261 cochlear aqueduct is a very small hole at the ventromedial margin (Fig. 3E-F), although
262 located more ventrally than in *Tapirus terrestris* (like *E. caballus*). The vestibular
263 aqueduct is visible but the mastoid part of the petrosal is broken. The ventral knob-like
264 area is well-preserved, but lacking the dorsal point seen in *E. caballus* (O'Leary, 2010).

265

266 **Figure 3.**

267

268 The bony labyrinth of NMB.A.Mo.655 is more poorly preserved than the other
269 specimens in this study, as dense infilling obscured its shape. Nevertheless, the gross
270 morphology of the bony labyrinth can be described and discussed. It shows little post-
271 mortem deformation. The bony labyrinth fills much of the volume of the petrosal, but not
272 to the extent observed in *Hyopsodus lepidus* (Ravel & Orliac, 2015). The presence of a
273 secondary bony lamina is unclear; due to poor preservation or a genuine absence. In
274 the bony labyrinth of the earlier diverging equid *Xenicohippus osborni* no secondary
275 bony lamina was observed, although deformation made that observation questionable
276 (Ravel & Orliac, 2015). In the more derived *E. caballus*, the secondary bony lamina is
277 weakly developed (Ekdale, 2013). The cochlear spiral aspect ratio (0.55) is higher than
278 that of *E. caballus*, although notably lower than that observed in *Hyopsodus lepidus*
279 (Ravel & Orliac, 2015). The cochlea completes two and a half turns and is loosely coiled
280 (Fig. 4B) like *E. caballus* (Ekdale, 2013). As in *X. osborni*, the cochlea is elliptical, with
281 the anteroposterior axis longer than the mediolateral axis. The cochlear aqueduct is
282 straight, narrowing as it nears its external aperture as in *E. caballus* (Ekdale, 2013), and
283 short. The lateral semicircular canal widens anteriorly to form a lateral ampulla (Fig. 4A).
284 Posteriorly, the lateral semicircular canal and posterior semicircular canal appear to
285 form a secondary common crus (Fig. 4), unlike *E. caballus*, although this may be an
286 artefact of poor resolution in the model. (Ekdale, 2013). Like both *X. osborni* and *E.*
287 *caballus*, the arc of the anterior semicircular canal possesses the largest radius and the
288 greatest height of the three (Ravel & Orliac, 2015). The lateral semicircular canal
289 attaches more dorsally to the vestibule than the posterior semicircular canal. The angles
290 between the posterior and lateral semi-circular canals, and between the anterior and
291 lateral semi-circular canals lay at a right angle to one another (Fig. 4C). The angle
292 between the posterior and anterior canal is slightly obtuse (Fig. 4D). The anterior and
293 posterior canals are relatively rounded, while the lateral one is ovoid in shape. The long
294 endolymphatic sac is triangular in shape and posteriorly projected. It starts high, almost
295 at the dorsal end of the common crus, but this could also be due to the poor
296 preservation of the specimen. There is no clear distinction between the fenestrae
297 vestibuli and cochleae, due to the preservation of the specimen. The cochlea is not in
298 contact with the vestibule.

299

300 **Figure 4.**

301

302 *Hipparium concudense*, Pirlot 1956

303 **Material**

304 An isolated left petrosal, NMB.Ccd.3

305 **Locality and age**

306 Concud 3, Teruel, Spain; Late Miocene, Turolian (MN 12).

307

308 **Description and comparison.** The Concud 3 *Hipparrison*, *Hipparrison concudense*,
309 specimen is an almost entirely complete petrosal, with only minor damage to the
310 mastoid region, measuring 3.15 cm in length. It preserved a stapes fallen within the
311 bony labyrinth. The petrosal of *H. concudense* is similar in most aspects to its
312 geologically older relative *H. depereti*. The epitympanic wing is a low-rounded structure
313 protruding gently from the anterior portion of the promontorium. The caudal tympanic
314 process, located posterior to the *fenestra cochlae*, is mediolaterally broad but not to the
315 same extent observed in *E. caballus* (O'Leary, 2010). The mastoid region is large,
316 occupying about half the bone. As in both extinct and extant equids, the mastoid is
317 shaped as a knob. Likewise, as in the other fossil equids described here, the mastoid
318 region is incomplete, leaving only the fan-like proximal portion of the mastoid. The
319 mastoid of *H. concudense* is not as greatly expanded as that of *H. depereti*. The thin
320 bony lamina that covers the *hiatus Fallopii* is still preserved and separates the
321 secondary facial foramen from the anterior hole of the *hiatus Fallopii* (Fig. 5B). The
322 stapedial muscle fossa is extremely deep, large and oval-shaped, although this may be
323 related to allometry. The facial sulcus is deep.

324 In ventrolateral or tympanic view, the promontorium is smooth, with no sign of a
325 sulcus for the stapedial artery (Fig. 5B). The promontorium has a slight bulge to
326 accommodate the cochlea within, like *H. depereti* (Fig. 5C-F). The *fenestra cochleae* is
327 similar in shape and relative size to that of *E. caballus* (O'Leary, 2010), oval shaped and
328 smaller than the *fenestra vestibuli*. The *fenestra vestibuli* is more reniform than that of
329 *H. depereti* (Fig. 3B; 5B). The *crista interfenestralis* is broader than *E. caballus*, but not
330 as broad as *Anchitherium aurelianense* (Fig. 1A; 5B).

331 In dorsomedial view (Fig. 5E), the *tegmen tympani* is markedly smaller than *E.*
332 *caballus*, though slightly inflated laterally. The *tegmen tympani* has a flat surface and
333 lacks the large anterior process seen on *E. caballus* (O'Leary, 2010). The *basicapsular*
334 *groove* sits along the *dorsal edge of the petrosal* (Fig. 5D), and the cochlear aqueduct
335 (Fig. 5E-F) sits in a slit situated more ventrally than ventromedially as in *E. caballus*
336 (O'Leary, 2010). The vestibular aqueduct exits in a very similar position as in *E. caballus*
337 on the dorsomedial face of the petrosal (Fig. 5E). In the anterior view (Fig. 5D), the
338 superiormost portion of the petrosal does not project medially, at least not to the extent
339 seen in *E. caballus* (O'Leary, 2010).

340

341 **Figure 5.**

342

343 The bony labyrinth of *Hipparrison concudense* is better preserved than that of *H.*
344 *depereti*. Like NMB.A.Mo.655, it shows little post-mortem deformation. A faint
345 secondary bony lamina extends along the first 2/3rds of the basilar turn. The cochlea
346 forms a loose spiral of 2.5 turns, like both *H. depereti* and *E. caballus* (Ekdale, 2013).
347 The cochlear aqueduct narrows as it nears the aperture of the petrosal, as observed in

348 *H. depereti*. The anterior semicircular canal has both the greatest height and radius of
349 curvature. Like *E. caballus*, the posterior entry of the lateral semicircular canal is
350 through the posterior ampulla, and the lateral semicircular canal attaches more dorsally
351 to the vestibule than the posterior semicircular canal. The lateral semicircular canal sits
352 at a right angle relative to both the anterior and posterior semicircular canals. The angle
353 between the posterior and anterior canal (Fig. 6D) is more obtuse than in *Hipparium*
354 *depereti*. It also differs from *Hipparium depereti* by its more posteriorly elongated lateral
355 canal in dorsal view (Fig. 6D). The anterior canal is more rounded than the posterior
356 one. The lateral one is ovoid in shape rather than a semicircle. The long endolymphatic
357 sac is triangular in shape and posteriorly projected. It starts below the common crus,
358 and runs mostly parallel to it. There is an inflection between the vestibule and the
359 cochlea. The cochlea is few detached (short distance between the start of the first turn
360 and the start of the second turn) from the vestibule.

361 The stapes of *H. concudense* (Fig. 7A) was preserved inside the vestibule of the
362 bony labyrinth, which happens occasionally, as reported by Orliac and Billet (2016). It
363 seems to be broken or poorly preserved, lacking most of its medial side (Fig. 7A). The
364 general shape is quite similar to that of *Equus caballus* illustrated by Doran (1878: pl.
365 61, fig. 3). In lateral view, the foramen intercrurale is large and rectangular. The
366 capitulum cannot be distinguished from the rest of the body of the stapes or is not
367 preserved. The basis stapedis is oval-shaped.

368

369 **Figure 6.**

370

371 **Figure 7.**

372

373 *Equini* Quinn 1955

374 *Equus* Linnaeus 1758

375 *Equus stenonis* Cocchi 1867

376 **Material**

377 An isolated left petrosal, NMB.V.A.2753

378 **Locality and Age**

379 Valdarno, Italy; Early Pleistocene, Villafranchian age (MNQ 18).

380 **Description and comparison.** *Equus stenonis* from Valdarno is represented by an
381 isolated petrosal (NMB.V.A.2753) measuring 3.55 cm in length. The petrosal is well
382 preserved, with the only major damage being to the mastoid region. The Valdarno
383 *Equus* preserved a stapes within the bony labyrinth. In overall character, the petrosal is
384 strikingly more similar to *E. caballus* (O'Leary, 2010) and *E. senezensis* than to
385 *Hipparium* and especially *Anchitherium*. *E. stenonis* and *E. senezensis* are similar to *E.*
386 *caballus* in possessing a prominent anterior process of the tegmen tympani, while
387 *Hipparium* and *Anchitherium* have low tegmina tympani lacking such a pronounced
388 anterior process. This anterior process ends in a point, as in *E. caballus* (O'Leary,

389 2010). The anterior process of the *tegmen tympani* of *Equus stenonis* does not extend
390 anterior to the promontorium. The caudal tympanic process is wide and smooth (Fig.
391 8B), with an expansion similar to extant *E. caballus* rather than *Hipparrison* or
392 *Anchitherium*. The mastoid region is large, with a broad proximal area like the other
393 equids in this study. The subarcuate depression is wide and shallow as in *E. caballus*
394 (O'Leary, 2010). The vestibular aqueduct opens in a slit lateral to the subarcuate
395 depression and posteromedial to the cochlear aqueduct. The mastoid meets and joins
396 the caudal tympanic process such that the mastoid juts out at an angle when viewed in
397 ventrolateral view (Fig. 8F). Two grooves along the ventromedial edge of the bone
398 demarcate the basicapsular groove (Fig. 8 D-E), with the cochlear aqueduct laying at
399 the posterior edge of this groove. The ventrolateral side (Fig. 8B) is not very well
400 preserved, and the segmentation of this area was difficult due to the preservation of the
401 bulla, which we excluded in the figures. The *hiatus Fallopii* is not well preserved but may
402 lie between the epitympanic wing and the *tegmen tympani* (Fig. 8B). The *facial sulcus* is
403 barely visible and quite shallow. The petrosal is narrow in ventromedial view, expanding
404 into a fan-shaped mastoid process (Fig. 8F). The promontorium is barely distinguished
405 but seems elongated and bordered by a long posteromedial flange. The *fenestrae*
406 *vestibuli* and *cochleae* are similar-sized.

407

408 **Figure 8.**

409

410 The bony labyrinth of *Equus stenonis* is nearly identical to *E. caballus* (Ekdale,
411 2013). The cochlea is loosely coiled, forming 2.5 turns. The cochlea takes on an
412 elliptical shape, longer anteroposteriorly than mediolaterally. A faint bony lamina
413 extends along the first 2/3rds of the basilar turn of the cochlea (Fig. 9). Like *E. caballus*
414 the posterior entry of the lateral semicircular canal is through the posterior ampulla (Fig.
415 9C), the largest semicircular arc radius of curvature is in the anterior semicircular canal,
416 and the lateral semicircular canal attaches more dorsally to the vestibule than the
417 posterior semicircular canal (Fig. 9C). The posterior ampulla is larger than in *Hipparrison*
418 (Fig. 9B-C). However, the anterior canal seems to be more elliptic than the posterior
419 one due to a straight projection of the anterior canal when connecting with the common
420 crus (Fig. 9B). The lateral canal is slightly ovoid in shape (Fig. 9D) and larger than in *H.*
421 *concu dense*. The small endolymphatic sac is triangular in shape and posteriorly
422 projected, not in line with the common crus (Fig. 9B). It starts close to the base of the
423 common crus due to a very short and posteriorly projected vestibular aqueduct (Fig.
424 9C). There is an inflection between the vestibule and the cochlea. The cochlea is few
425 detached (short distance between the start of the first turn and the start of the second
426 turn) from the vestibule (Fig. 9A). The cochlear vein is preserved (Fig. 9B-C), ventral to
427 the cochlear aqueduct, as in *E. caballus* (Ekdale, 2013).

428

429 The stapes of *Equus stenonis* (Fig. 7B) is very similar to that of *H. concudense*,
430 but it is more complete. The *foramen intercrurale* is larger on the lateral side than on the
431 medial side, as observed in some artiodactyls (Orliac and Billet 2016). The *basis*
432 *stapedis* is oval-shaped (Fig. 7B). In medial and lateral views (Fig. 7B), the stapes is
433 roughly triangular. The *capitulum stapedis* cannot be differentiated from the rest of the
434 body of the stapes. In medial view, the *foramen intercrurale* is much smaller than on the
435 lateral side.

436

437 **Figure 9.**

438

439 *Equus senezensis*, Azzaroli 1964

440 **Material**

441 Three petrosals, including the left and right petrosals and one stapes of a single
442 individual (NMB.Se.141) and an isolated right petrosal (NMB.Se.554).

443 **Locality and Age**

444 Senèze, France; Early Pleistocene, Villafranchian (MNQ 18).

445 **Description & comparison.** *Equus senezensis* was represented by three petrosals,
446 two of which represent the left and right petrosals of a single individual NMB.Se.141,
447 and one from NMB.Se.554. The petrosals vary in size from 3.60 to 3.94 cm
448 anteroposteriorly. They differ from that of *Equus caballus* (O'Leary, 2010) in several
449 ways. Between the *fenestra cochleae* and the *fenestra vestibuli* is a *crista*
450 *interfenestralis* that is pronounced, but less distinct than in *E. caballus* (O'Leary, 2010).
451 The fossa for the *tensor tympani* muscle is a large, oval, and deep depression (Fig.
452 10D). It significantly excavates the surrounding *tegmen tympani* (Fig. 10B). The
453 epitympanic wing is present and protrudes from the *promontorium* but is very small (Fig.
454 10B). There is a distinct anterior hole for the *hiatus Fallopii* and it is relatively large (Fig.
455 10B). A posteromedial flange extends from the *promontorium* such that the
456 *promontorium* is surrounded by a complete, flat flange of bone similar to that of *E.*
457 *caballus* (O'Leary, 2010), though it appears to extend even further posteriorly. On the
458 second specimen (NMB.Se.554), the fossa for the *tensor tympani* muscle is shallower,
459 and oval (Fig. 11B). The *tegmen tympani* is flat and moderately inflated, contributing to
460 about one-fifth the total width of the ventrolateral view though slightly more inflated than
461 that of *E. caballus* (O'Leary, 2010). The anterior process of the *tegmen tympani* is larger
462 than that of *E. caballus* and extends anterior to the *promontorium* before terminating in
463 a less pronounced point (O'Leary, 2010). The mastoid region is large and wedge-
464 shaped, irregular, and knobby, though it appears rounder than that of *E. caballus*
465 (O'Leary, 2010). The facial sulcus and stapedial muscle fossa cannot be observed.

466 The ventromedial edge of the bone has a basicapsular groove, and at its
467 posterior edge houses a small cochlear aqueduct (Fig. 11E). The slit for the cochlear
468 aqueduct is smaller in NMB.Se.554 (Fig. 11E) than in NMB.Se.141 (Fig. 10E). The

469 vestibular aqueduct opens in a slit lateral to the subarcuate depression and
470 posteromedial to the cochlear aqueduct (Fig. 10E, 11E). In the ventromedial view, the
471 petrosal is narrow and widens into a fan-shaped mastoid region with bumps and
472 projections. The ventromedial surface is relatively flat (Fig. 11C). There are vascular
473 grooves on the dorsolateral side of the *tegmen tympani* (Fig. 10C). The cochlear
474 aqueduct is a small hole at the ventromedial margin but is found within a large slit (Fig.
475 10D-E).

476 We can observe patterns of intra-individual variation due to asymmetry in the
477 petrosal of *Equus senezensis*. The two petrosals of NMB.Se.141 differ indeed in some
478 respects, such as the subarcuate depression, which is smaller in the right petrosal than
479 in the left one (see additional specimen available on Morphosource project:
480 https://www.morphosource.org/projects/000720375/temporary_link/KB8T8eo9geShZZ6F4Cn6Tjz3?locale=en). Such variation is consistent with Danilo et al (2015)'s study of
482 modern *Equus*, where the size, morphology, elongation, and depth of the subarcuate
483 depression can be highly variable among individuals.

484

485 **Figure 10.**

486

487 **Figure 11.**

488

489 The basal portion of the cochlear coil of *Equus senezensis* (NMB.Se.141 and
490 NMB.Se.554; Fig. 12-13) begins slightly straight before forming a pronounced curve that
491 becomes the spiral shape of the cochlea separating the cochlea from the vestibule. The
492 latter part of the coil begins as a loose spiral that becomes tighter towards the apex.
493 The coil remains tightly wound consistently after about the first quarter of the first basal
494 turn. The cochlea completes about 2.5 turns (Fig. 12A, 13A) and is more tightly coiled
495 than *Equus caballus* (Ekdale, 2013). The cochlea of *Equus senezensis* has an aspect
496 ratio ranging from low (0.44) to high (0.58; Tab. 2.) in contrast to the low aspect ratio of
497 *E. caballus* (0.41; Ekdale 2013, tab. 2). There is no secondary bony lamina on the
498 cochlea of either the left or right bony labyrinth of NMB.Se.141 (Fig 12A, 13A), but
499 NMB.Se.554 does preserve a faint secondary bony lamina like *E. stenonis*, and *E.
500 caballus* (Ekdale, 2013).

501 NMB.Se.554 has the spherical and elliptical recesses separated by a narrowing
502 of the vestibule. This condition is observed in both *E. caballus* (Ekdale, 2013) and *E.
503 senezensis* but is more pronounced in this individual than in NMB.Se.141. The entry of
504 the lateral semicircular canal into the posterior one is through the posterior ampulla (Fig.
505 12B, 13B). The bony ring is quite pronounced and nearly parallel to the plane of the
506 lateral semicircular canal. The posterior canal seems to be more elliptic than the
507 anterior one. The lateral one is relatively rounded (Fig. 12D, 13D). The large
508 endolymphatic sac is rectangular in shape and posteriorly projected, not in line with the
509 common crus (Fig. 12B, 13B). It starts almost at mid-height of the common crus due to

510 a slightly posteriorly projected vestibular aqueduct. There is an inflection between the
511 **vestibule** and the cochlea. The cochlea is **few detached** (short distance between the
512 start of the first turn and the start of the second turn) from the vestibule.

513

514 **Figure 12.**

515

516 **Figure 13.**

517

518 The stapes of *Equus senezensis* was preserved inside the vestibule of the left
519 petrosal NMB.Se.141 (Fig. 7C). It is overall quite similar to *Equus caballus* (Doran
520 1878), or the other two stapes described here, but is not well preserved. The *processus*
521 *muscularis stapedis* is difficult to identify, but seems to be visible on the posterolateral
522 face of the stapes (Fig. 7C). As in the other species, the *foramen intercrurale* is smaller
523 on the medial side than on the lateral side. The *capitulum* cannot be identified.

524

525 **Preliminary Phylogenetic Analysis**

526 Using our combined dataset (see Material and Methods), we obtained 11 most-
527 parsimonious trees of 24 steps, with a consistency index (CI) of 0.88, a retention index
528 (RI) of 0.80, and a homoplasy index (HI) of 0.13. These 11 trees are included in the
529 **nexus** file provided in Supplemental File 1. The strict consensus tree is shown in Fig.
530 14. Of the 50 characters in the analysis, 29 are constant and only 9 are parsimony
531 informative. The clade Equidae is supported by six synapomorphies in ACCTRAN
532 optimization:

- 533 - the absence of anterior process of the *tegmen tympani*,
- 534 - the apex of the anterior process of the *tegmen tympani* is large (when it is
535 present)
- 536 - the apex of the anterior process of the *tegmen tympani* pointed (when it is
537 present),
- 538 - the ventrolateral tuberosity of petrosal is present
- 539 - the lateral semicircular canal attaches more dorsally to the vestibule than the
540 posterior canal,
- 541 - and the cochlear aqueduct is on the ventral face of the petrosal.

542 The clade Equinae is supported by three synapomorphies:

- 543 - the pars cochlearis protrudes ventromedially,
- 544 - the caudal tympanic process long,
- 545 - and the subarcuate depression wide.

546 *Anchitherium* has two autapomorphies, whereas *Equus stenonis* has one. *Equus* is
547 monophyletic and supported by one unambiguous synapomorphy: the presence of an
548 anterior process of the *tegmen tympani* (character 11). All perissodactyls, including
549 *Tapirus*, differ from *Hyopsodus* by eight characters (characters 3, 20, 24, 25, 27, 29, 43

550 and 50). In our analysis, *Hipparrison* is paraphyletic, and *H. concudense* differs from *H.*
551 *depereti* by the absence of extension of the fossa for the *tensor tympani* muscle.
552

553 **Figure 14.**

554

555 **Discussion**

556 Among both extant tapirs and horses, characters of the petrosal have been observed to
557 be variable among individuals. Among equids, Danilo et al. (2015) described the
558 variability of 14 petrosals of *Equus przewalskii* belonging to individuals of varying ages,
559 sexes, and sizes (Danilo et al., 2015) while Costeur et al. (2017) also observed this
560 variability in an ontogenetic series of *Bos*. They showed that the depth of the petrosal
561 groove, the shape of the internal acoustic meatus, as well as the shape, size, and
562 elongation of the subarcuate depression were individually variable depending on the
563 age of the individual. Mateus (2018) showed that in *Tapirus terrestris* the depth and size
564 of the subarcuate depression as well as the position of the caudal tympanic process and
565 the *hiatus Fallopii*, are individually variable as in *E. przewalskii*. The subarcuate
566 depression accounted for three characters in Spaulding et al., (2009) and one in Mateus
567 (2018). All the perissodactyls in our analysis shared a shallow subarcuate depression.
568 *Tapirus terrestris* and *Anchitherium aurelianense* were both scored as small for the size
569 of the subarcuate depression while all the other perissodactyl taxa were scored as
570 large.

571 We have to keep in mind that the petrosal bone, contrary to the bony labyrinth, is
572 a structure that ossifies in parallel to the surrounding skull bones (Mennecart & Costeur
573 2016, Costeur et al. 2017). Because of this, this bone may greatly suffer from allometry
574 (ontogenetic and evolutionary) complexifying the interpretation of the evolutionary polarity
575 of the characters. The bony labyrinth is an organ that fully ossifies during fetus stages in
576 placental mammals (e.g. Mennecart & Costeur 2016, Costeur et al. 2017). Shape and
577 size remain similar during the life of the animal, providing reliable results considering
578 micro-and macroevolutionary processes (Evin et al. 2022, Mennecart et al. 2022). This
579 organ may represent a structure with a neutral evolution in artiodactyls (Mennecart et al.
580 2022), where gradual changes can be observed.

581 The ear region of extinct perissodactyls remains poorly understood, relative to
582 artiodactyls. The petrosal of extinct perissodactyls was only described for three equoids
583 (Kits, 1956; Cifelli, 1982; O'Leary 2010), four tapiromorphs (Savage, et al., 1965;
584 Radinsky & Expeditions (1921-1930), 1965; Colbert, 2006; Li and Wang, 2010; O'Leary,
585 2010), one brontothere (Mader, 2009), and one aNCYLOPOD (Bai, Wang & Meng, 2010)
586 so far. The petrosal of rhinocerotoids is especially poorly understood. O'Leary (2010)
587 briefly described the incomplete petrosal of *Dicerorhinus sumatrensis* in their
588 morphological characters matrix, while Robert et al. (2021) investigated the petrosal and

589 bony labyrinth of *Ceratotherium simum simum*, and Manning (1985) reported an
590 isolated petrosal of *Metamynodon*.

591 Moreover, recent molecular investigations have suggested that the extinct South
592 American Native Ungulates (SANUs) were related to perissodactyls (Welker et al.,
593 2015) but comparisons between the petrosals of SANUs and other placentals have
594 been limited thus far, and have not included perissodactyls (Billet & Muizon, 2013). The
595 contribution of the ear region into the phylogeny of perissodactyls may, therefore, also
596 be key to illuminating their potential relationships to SANUs and other extinct hoofed
597 mammal groups like phenacodontids and cambaytheres.

598

599 **Conclusions**

600 The result of our preliminary phylogenetic analysis suggests that the ear region is
601 informative for perissodactyl phylogeny and invites future research. This limited analysis
602 suggests that the petrosal morphology may be informative in family and genus-level
603 cladistics, but it currently lacks precision for detecting generic level distinctions
604 considering its inability to recover the monophyly of the genus *Hipparrison*. Yet, it is also
605 possible that the two species *H. depereti* and *H. concudense* do not belong to the same
606 genus, since *Hipparrison* may actually be paraphyletic according to another phylogenetic
607 analysis (Sun et al. 2025). Further investigation is necessary to better understand the
608 phylogenetic utility of the selected character in regards to their allometric constraints and
609 variation. Moreover, the bony labyrinth has been proven to be a structure that evolves
610 mostly neutrally in ruminants. Including more bony labyrinth characters, may be useful
611 for a better understanding of the perissodactyls' evolutionary history and to obtain more
612 refined results. Obviously, a much larger sampling would be needed to fully investigate
613 the phylogeny of Equidae or other perissodactyls, but we believe that the petrosal and
614 inner ear's morphology could be a valuable addition in future larger-scale phylogenetic
615 analysis. Although only ten characters were parsimony informative, we think that with a
616 more diverse taxonomic sample, more characters would become phylogenetically
617 informative.

618

619

620 **Acknowledgements**

621 This study would not have been possible without the support of Loïc Costeur (Natural
622 History Museum of Basel), and we are thus highly indebted to him for providing access
623 to the specimens studied here and for allowing us to CT-scan them. We are also
624 extremely grateful to Georg Schulz (Department of Biomedical Engineering, University
625 of Basel) for CT-scanning the specimens for us. The authors would like to thank Alana
626 Gishlick and Ruth O'Leary (American Museum of Natural History) for access to and
627 curation of some comparison specimens in this study. Additionally, we would like to
628 thank R. Benjamin Sulser, John J. Flynn, Jocelyn A. Sessa, Bryce E. Koester, Jason P.

629 Downs, and Edward “Ted” B. Daeschler for useful interactions with the authors that
630 helped this project develop. We gratefully acknowledge Eric G. Ekdale and Selina Viktor
631 Robson for their comments, which greatly improved our manuscript, and the editor
632 Blanca Moncunill-Solé for her work.

633

634

635

636 **References**

637 Aguirre-Fernández G, Mennecart B, Sánchez-Villagra MR, Sánchez R, Costeur L. 2017.
638 A dolphin fossil ear bone from the northern Neotropics—insights into habitat
639 transitions in iniid evolution. *Journal of Vertebrate Paleontology* 37:e1315817. DOI:
640 10.1080/02724634.2017.1315817.

641 Agustí J, Antón M. 2002. *Mammoths, sabertooths, and hominids: 65 million years of
642 mammalian evolution in Europe*. New York: Columbia University Press.

643 Aiglstorfer M, Costeur L, Mennecart B, Heizmann EPJ. 2017. *Micromeryx? eiselei*—A
644 new moschid species from Steinheim am Albuch, Germany, and the first
645 comprehensive description of moschid cranial material from the Miocene of
646 Central Europe. *PLOS ONE* 12:e0185679. DOI: 10.1371/journal.pone.0185679.

647 Alberdi MT, Ginsburg L, Rodríguez J. 2004. *Anchitherium aurelianense* (Mammalia,
648 Equidae) (Cuvier, 1825) dans l’Orléanien (Miocène) de France.

649 Bai B, Meng J, Zhang C, Gong Y-X, Wang Y-Q. 2020. The origin of Rhinocerotoidea
650 and phylogeny of Ceratomorpha (Mammalia, Perissodactyla). *Communications
651 Biology* 3:1–16. DOI: 10.1038/s42003-020-01205-8.

652 Bai B, Wang Y, Meng J. 2010. *New Craniodental Materials of *Litolophus gobiensis**
653 (Perissodactyla, “Eomoropidae”) from Inner Mongolia, China, and Phylogenetic
654 Analyses of Eocene Chalicotheres. *American Museum Novitates* 2010:1–27. DOI:
655 10.1206/678.1.

656 Bai B, Wang Y-Q, Meng J. 2018. The divergence and dispersal of early perissodactyls
657 as evidenced by early Eocene equids from Asia. *Communications Biology* 1:1–10.
658 DOI: 10.1038/s42003-018-0116-5.

659 Benoit J, Legendre LJ, Farke AA, Neenan JM, Mennecart B, Costeur L, Merigeaud S,
660 Manger PR. 2020. A test of the lateral semicircular canal correlation to head
661 posture, diet and other biological traits in “ungulate” mammals. *Scientific Reports*
662 10:19602. DOI: 10.1038/s41598-020-76757-0.

663 Bernor RL, Kaya F, Kaakinen A, Saarinen J, Fortelius M. 2021. Old world hippo
664 evolution, biogeography, climatology and ecology. *Earth-Science Reviews*
665 221:103784. DOI: 10.1016/j.earscirev.2021.103784.

666 Billet G, Muizon CD. 2013. External and internal anatomy of a petrosal from the late
667 Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia). *Journal of*
668 *Vertebrate Paleontology* 33:455–469. DOI: 10.1080/02724634.2013.722153.

669 Cifelli RL. 1982. The Petrosal Structure of *Hyopsodus* with Respect to That of Some
670 Other Ungulates, and Its Phylogenetic Implications. *Journal of Paleontology*
671 56:795–805.

672 Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. 2008.
673 MeshLab: an Open-Source Mesh Processing Tool.

674 Cirilli O, Pandolfi L, Rook L, Bernor RL. 2021a. Evolution of Old World *Equus* and origin
675 of the zebra-ass clade. *Scientific Reports* 11:10156. DOI: 10.1038/s41598-021-
676 89440-9.

677 Cirilli O, Saarinen J, Pandolfi L, Rook L, Bernor RL. 2021b. An updated review on
678 *Equus stenonis* (Mammalia, Perissodactyla): New implications for the European

679 early Pleistocene *Equus* taxonomy and paleoecology, and remarks on the Old
680 World *Equus* evolution. *Quaternary Science Reviews* 269:107155. DOI:
681 10.1016/j.quascirev.2021.107155.

682 Colbert MW. 2006. *Hesperaletes* (Mammalia: Perissodactyla), a new tapiroid from the
683 middle Eocene of southern California. *Journal of Vertebrate Paleontology* 26:697–
684 711. DOI: 10.1671/0272-4634(2006)26[697:HMPANT]2.0.CO;2.

685 Costeur L, Andrea V, Célia B, Mennecart B. 2018a. On some ruminant petrosal bones
686 and their bony labyrinth from Senèze (Villafranchian, France). *Revue de
687 Paleobiologie* 37:443–456. DOI: 10.5281/zenodo.2545101.

688 Costeur L, Grohé C, Aguirre-Fernández G, Ekdale E, Schulz G, Müller B, Mennecart B.
689 2018b. The bony labyrinth of toothed whales reflects both phylogeny and habitat
690 preferences. *Scientific Reports* 8:7841. DOI: 10.1038/s41598-018-26094-0.

691 Costeur L, Mennecart B, Müller B, Schulz G. 2017. Prenatal growth stages show the
692 development of the ruminant bony labyrinth and petrosal bone. *Journal of Anatomy*
693 230:347–353. DOI: 10.1111/joa.12549.

694 Danilo L, Remy J, Vianey-Liaud M, Mérigeaud S, Lihoreau F. 2015. Intraspecific
695 Variation of Endocranial Structures in Extant *Equus*: A Prelude to Endocranial
696 Studies in Fossil Equoids. *Journal of Mammalian Evolution* 22:561–582. DOI:
697 10.1007/s10914-015-9293-x.

698 Doran, A. H. 1878. XVIII. Morphology of the mammalian Ossicula auditūs. *Transactions
699 of the Linnean Society of London. 2nd Series. Zoology*, 1(7), 371-497.

700 Ekdale EG. 2013. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental
701 Mammals. *PLOS ONE* 8:e66624. DOI: 10.1371/journal.pone.0066624.

702 Evin A, David L, Souron A, Mennecart B, Orliac M, Lebrun R. 2022. Size and shape of
703 the semicircular canal of the inner ear: A new marker of pig domestication?
704 *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*
705 338:552–560. DOI: 10.1002/jez.b.23127.

706 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C,
707 Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis
708 R. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging
709 Network. *Magnetic Resonance Imaging* 30:1323–1341. DOI:
710 10.1016/j.mri.2012.05.001.

711 Forstén A. 1982. *Hipparion primigenium melendezi* Alberdi reconsidered. *Annales
712 Zoologici Fennici* 19:109–113.

713 Kitts D. 1956. American *Hyracotherium* (Perissodactyla, Equidae). *Bulletin of the
714 American Museum of Natural History* 110.

715

716 Mader BJ. 2009. Details of the cranial anatomy of a primitive diplacodont brontothere,
717 cf. *Protitanotherium*, from the Wiggins Formation of Wyoming (Mammalia,
718 Perissodactyla, Brontotheriidae). *Journal of Vertebrate Paleontology* 29:1224–
719 1232. DOI: 10.1671/039.029.0414.

720 Manning, E. M. 1997. An early Oligocene rhinoceros jaw from the marine Byram
721 Formation of Mississippi. *Mississippi Geology*, 18(2).

722 Mateus, A. L. D. 2018. The anatomical description of the osseous inner ear of tapirus
723 and the evolution of the petrosal in perissodactyla. Ph.D. dissertation, Minas
724 Gerais: Universidade Federal de Minas Gerais.

725 Mennecart B, Dziomber L, Aiglstorfer M, Bibi F, DeMiguel D, Fujita M, Kubo MO,
726 Laurens F, Meng J, Métais G, Müller B, Ríos M, Rössner GE, Sánchez IM, Schulz
727 G, Wang S, Costeur L. 2022. Ruminant inner ear shape records 35 million years of
728 neutral evolution. *Nature Communications* 13:7222. DOI: 10.1038/s41467-022-
729 34656-0.

730 Mennecart B, Guignard C, Dziomber L, Schulz G, Müller B, Costeur L. 2020. Allometric
731 and Phylogenetic Aspects of Stapes Morphology in Ruminantia (Mammalia,
732 Artiodactyla). *Frontiers in Earth Science* 8. DOI: 10.3389/feart.2020.00176.

733 Mennecart B, Rössner GE, Métais G, DeMiguel D, Schulz G, Müller B, Costeur L. 2016.
734 The petrosal bone and bony labyrinth of early to middle Miocene European deer
735 (Mammalia, Cervidae) reveal their phylogeny. *Journal of Morphology* 277:1329–
736 1338. DOI: 10.1002/jmor.20579.

737 O'leary MA. 2010. An Anatomical and Phylogenetic Study of the Osteology of the
738 Petrosal of Extant and Extinct Artiodactylans (Mammalia) and Relatives. *Bulletin of
739 the American Museum of Natural History* 2010:1–206. DOI: 10.1206/335.1.

740 Orliac MJ, Maugoust J, Balcarcel A, Gilissen E. 2023. Paleoneurology of Artiodactyla,
741 an Overview of the Evolution of the Artiodactyl Brain. In: Dozo MT, Paulina-
742 Carabajal A, Macrini TE, Walsh S eds. *Paleoneurology of Amniotes : New
743 Directions in the Study of Fossil Endocasts*. Cham: Springer International
744 Publishing, 507–555. DOI: 10.1007/978-3-031-13983-3_13.

745

746 Radinsky LB. 1965. Early Tertiary Tapiroidea of Asia. *Bulletin of the American Museum
747 of Natural History* 129:2.

748 Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., ... &

749 Vernyhorova, Y. V. 2020. The Neogene period. In *Geologic time scale 2020* (pp.

750 1141-1215). Elsevier.

751 Ravel A, Orliac MJ. 2015. The inner ear morphology of the 'condylarthran' *Hyopsodus*

752 *lepidus*. *Historical Biology* 27:957–969. DOI: 10.1080/08912963.2014.915823.

753 Robert MP, Carstens A, de Beer FC, Hoffman JW, Steenkamp G. 2021. Micro-anatomy

754 of the ear of the southern white rhinoceros (*Ceratotherium simum simum*).

755 *Anatomia, Histologia, Embryologia* 50:316–323. DOI: 10.1111/ahe.12632.

756 Robson SV, Theodor JM. 2025. Is *Bunomeryx* (Artiodactyla, Homacodontidae) an early

757 tylopod? A re-evaluation of evidence from the otic region, and a clarification of

758 some key anatomical terms. *Journal of Vertebrate Paleontology*, e2443094. DOI:

759 10.1080/02724634.2024.2443094

760 Spaulding M, O'Leary MA, Gatesy J. 2009. Relationships of Cetacea (Artiodactyla)

761 Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils

762 and Character Evolution. *PLOS ONE* 4:e7062. DOI:

763 10.1371/journal.pone.0007062.

764 Sun, BY., Liu, Y., Wang, SQ, & Deng, T. 2025. Occurrence of "*Hippotherium*" in the Old

765 World: a revision of two hipparion species in Eurasia. *Vertebrata PalAsiatica* 1: 57-

766 80. DOI: 10.19615/j.cnki.2096-9899.241120

767 Swofford D. 2002. PAUP* 4.0 : Phylogenetic Analysis Using Parsimony

768 Tissier, J., Becker, D., Codrea, V., Costeur, L., Fărcaş, C., Solomon, A., Venczel, M., &

769 Maridet, O. (2018). New data on Amynodontidae (Mammalia, Perissodactyla) from

770 Eastern Europe: Phylogenetic and palaeobiogeographic implications around the
771 Eocene-Oligocene transition. *PLoS One*, 13(4), e0193774.

772 Wang S-Q, Ye J, Meng J, Li C, Costeur L, Mennecart B, Zhang C, Zhang J, Aiglstorfer
773 M, Wang Y, Wu Y, Wu W-Y, Deng T. 2022. Sexual selection promotes giraffoid
774 head-neck evolution and ecological adaptation. *Science* 376:eabl8316. DOI:
775 10.1126/science.abl8316.

776 Welker, F., Collins, M. J., Thomas, J. A., Wadsley, M., Brace, S., Cappellini, E., ... &
777 MacPhee, R. D. 2015. Ancient proteins resolve the evolutionary history of Darwin's
778 South American ungulates. *Nature*, 522(7554), 81-84.

779 Zhang B, Tong H. 2024. The comparative anatomy of the petrosal bone and bony
780 labyrinth of four small-sized deer. *The Anatomical Record* 307:566–580. DOI:
781 10.1002/ar.25303.

Table 1(on next page)

Petrosal specimens examined in the study

Specimen and taxon	Locality	Age	Left or right	Bony Labyrinth	Stapes	Image dimensions	Inter-slice spacing (mm)
NMB.San.15063 <i>Anchitherium aurelianense</i>	Sansan, Gers France	Astaracian (MN 6)	Right	No (no contrast)	No	397x519x311	0.055x 0.055x 0.055
NMB.A.Mo.655 <i>Hipparium depereti</i>	Montredon, Occitanie, France	Vallesian (MN 10)	Left	Yes	No	672x729x600	0.056249x 0.056249x 0.056250
NMB.Ccd.3 <i>Hipparium concudense</i>	Concud 3, Teruel, Spain	Turolian (MN 12)	Left	Yes	Yes	410x656x530	0.056249x 0.056249x 0.056250
NMB.V.A.2753 <i>Equus stenonis</i>	Valdarno, Tuscany, Italy	Villafranchian (MN17)	Left	Yes	Yes	865x877x751	0.05625x 0.05625x 0.05625
NMB.Se.141 <i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	Left	Yes	Yes	594x707x623	0.056249x 0.056249x 0.056250
NMB.Se.141 <i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	RightLeft	Yes	No	583x893x561	0.056249x 0.056249x 0.056250
NMB.Se.554 <i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	LeftRight	Yes	No	714x694x699	0.055x 0.055x 0.055

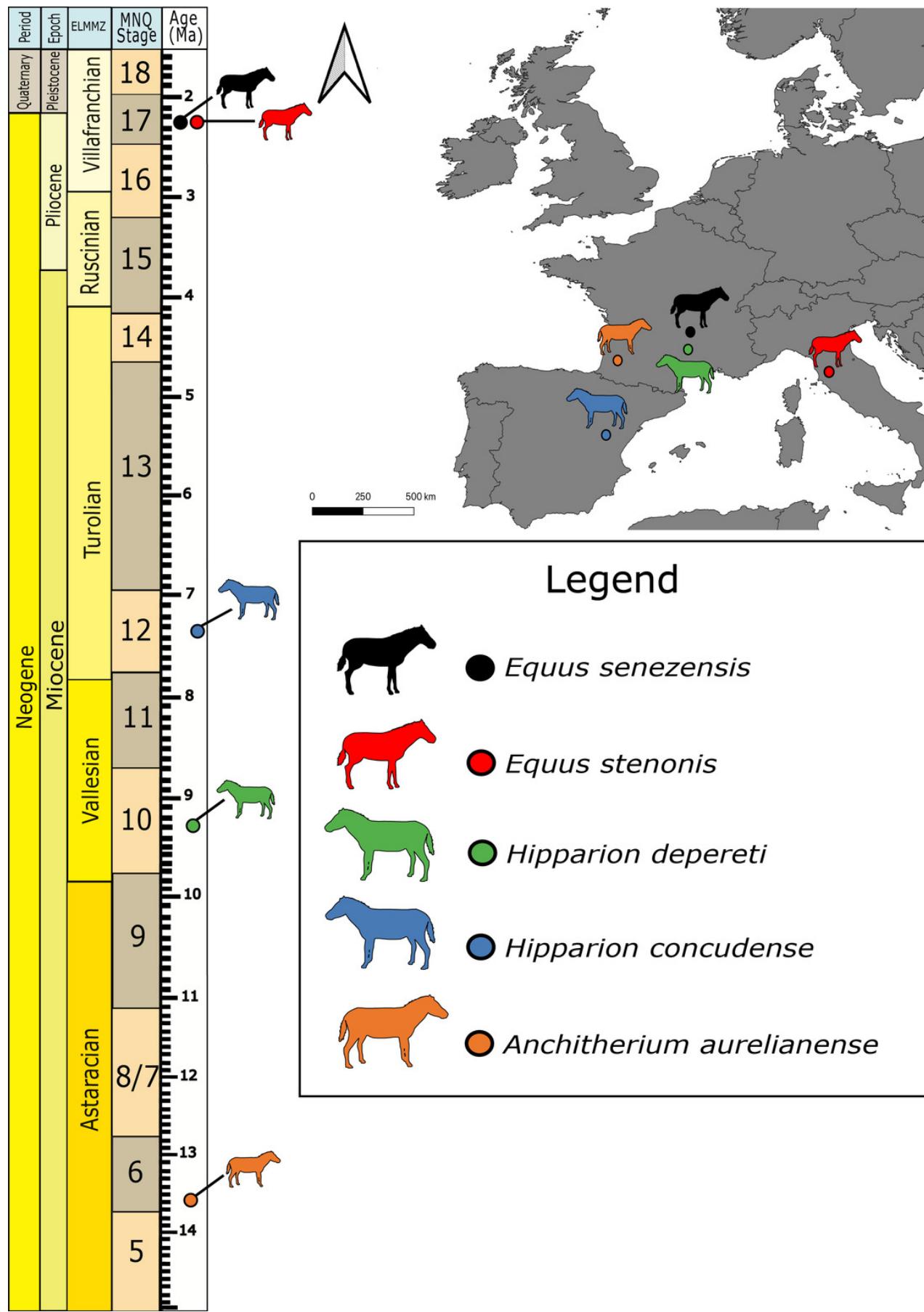
1 Table 1. Petrosal specimens examined in the study.

2

Table 2(on next page)

Bony labyrinth measurements of fossil equids

1 Table 2. Bony labyrinth measurements of fossil equids


Specimen #	Taxon	Source	ASC H/W aspect ratio	PSC H/W aspect ratio	LSC H/W aspect ratio	Number of cochlear turns	Cochlea aspect ratio
AMNH FM 55267	<i>Xenicohippus osborni</i>	Ravel & Orliac, 2015	1.00	0.98	1.13	—	—
NMB.A.Mo.655	<i>Hipparrison depereti</i>	This study	1.13	1.25	0.83	2.5	0.55
NMB.Ccd.3	<i>Hipparrison concu dense</i>	This study	0.99	1.12	0.97	2.5	0.5
NMB.V.A.2753	<i>Equus stenonis</i>	This study	1.17	1.13	1.01	2.5	0.56
NMB-Se-554	<i>Equus senezensis</i>	This study	0.87	0.89	0.97	2.5	0.44
NMB-Se-141(left)	<i>Equus senezensis</i>	This study	1.05	1.09	1.05	2.5	0.58
NMB-Se-141(right)	<i>Equus senezensis</i>	This study	1.01	0.98	1.12	2.5	0.51
TMM-M-171	<i>Equus caballus</i>	Ekdale 2013	0.93	1.15	1.04	2.5	0.41

2

Figure 1

Map of fossil sites for equid specimens in this study (right) and the corresponding stratigraphic and biostratigraphic ages of those sites (left).

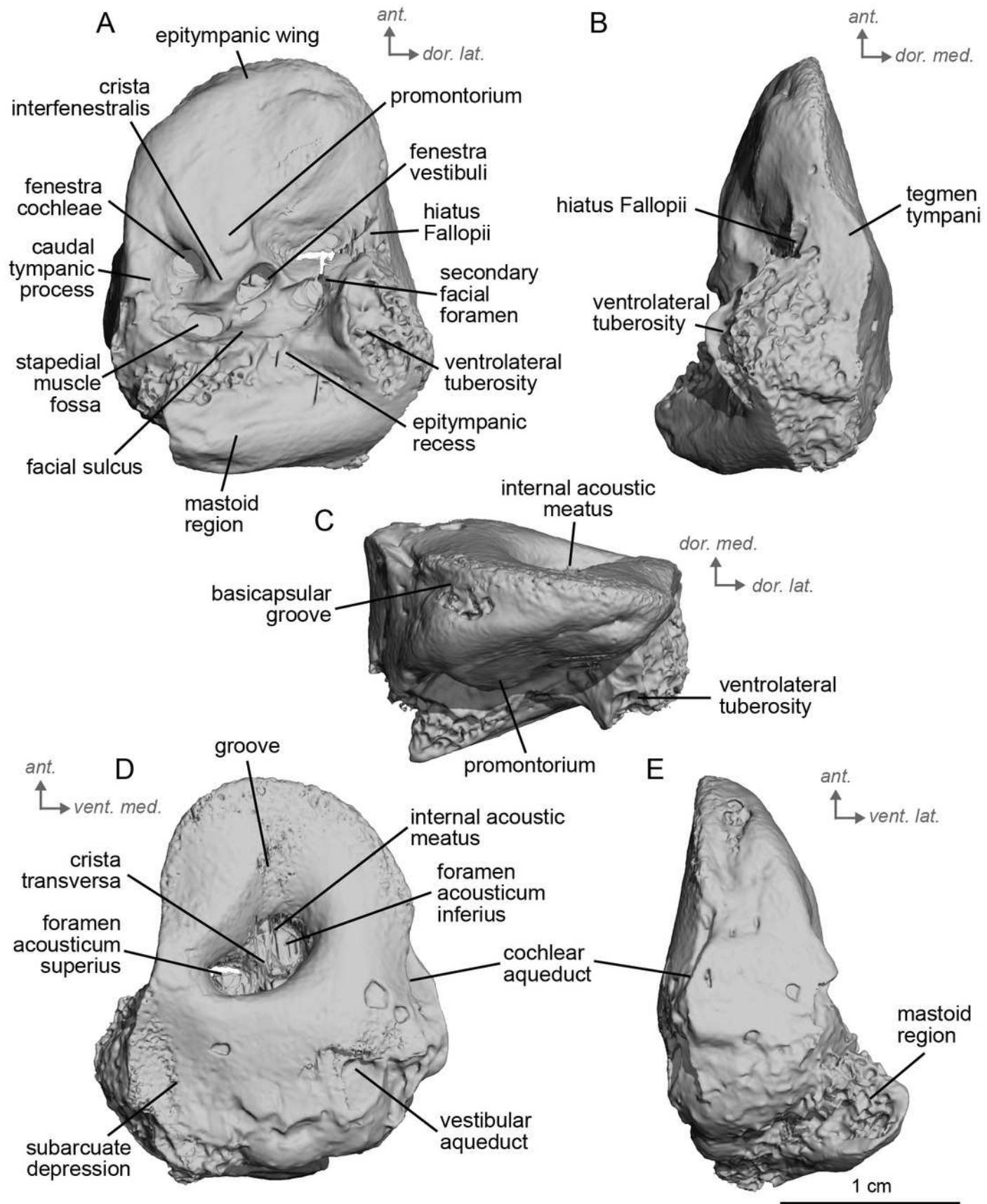

ELMMZ= European Large Mammal Mega-Zone, MNQ= Mammal Neogene/Quaternary Biostratigraphic Stage. Silhouettes from Phylopic made by Julian Bayona.

Figure 2

Right petrosal (NMB.San.15063) of *Anchitherium aurelianense* from Sansan (mirrored).

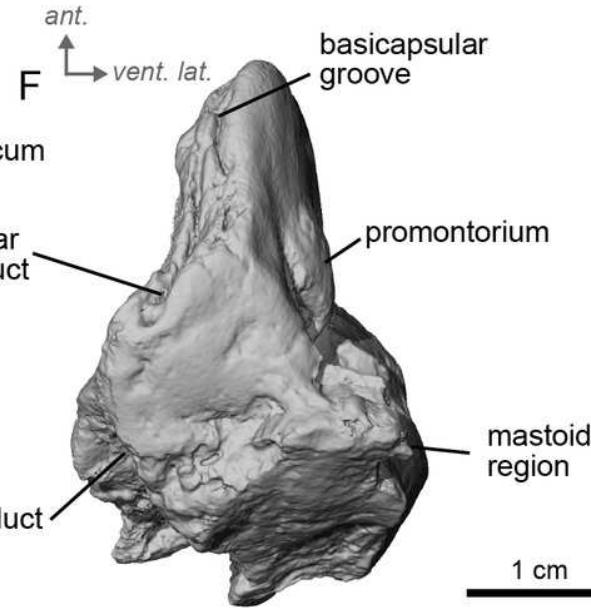
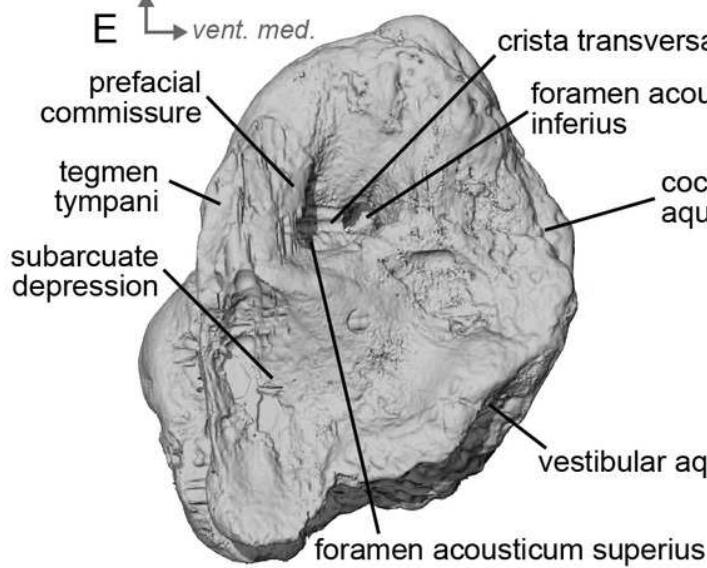
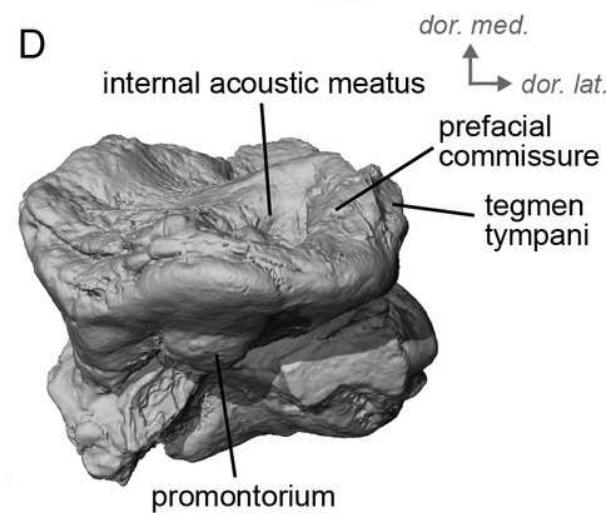
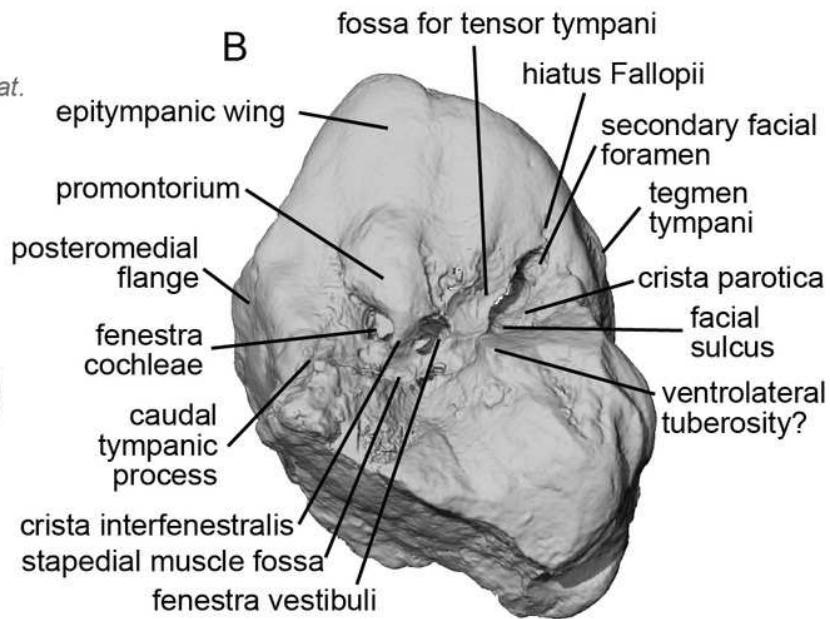
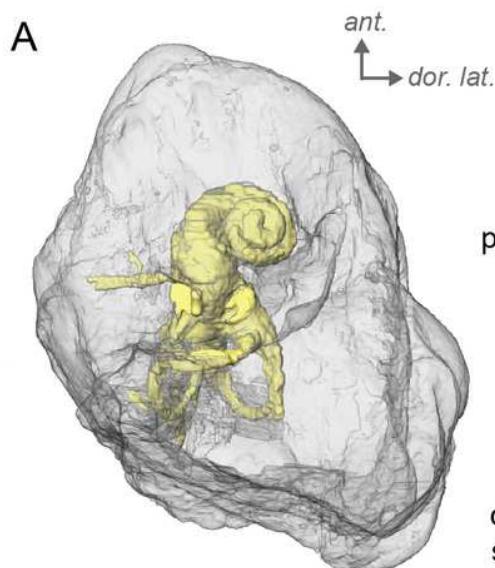





(A) Ventrolateral view. (B) Ventromedial view. (C) Anterior view. (D) dorsomedial view. (E) Dorsolateral view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 3

Left petrosal (NMB.A.Mo.655) of *Hipparium depereti* from Montredon.

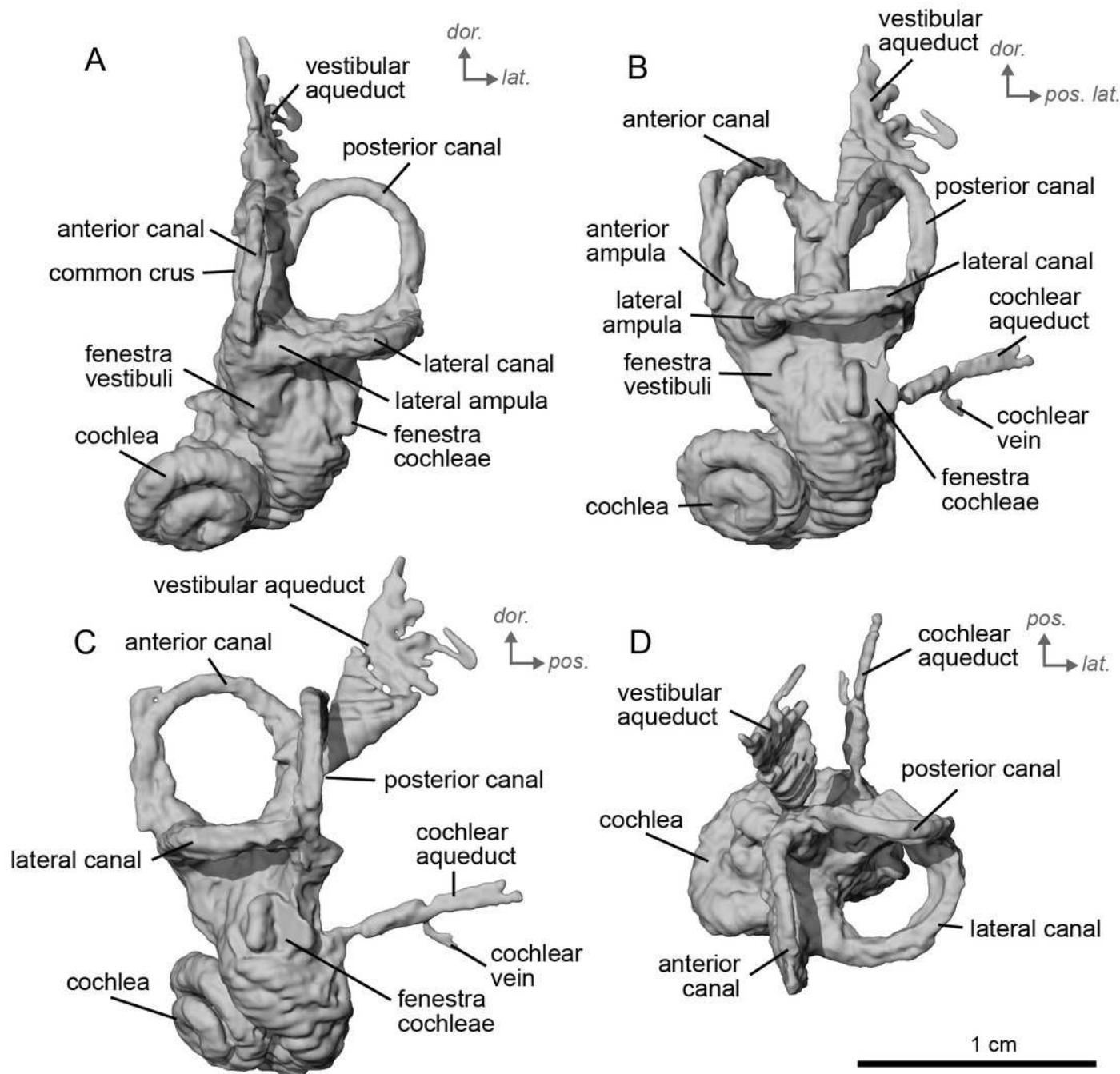

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 4

Endocast of the left bony labyrinth of *Hippurion depereti* (NMB.A.Mo.655) from Montredon.

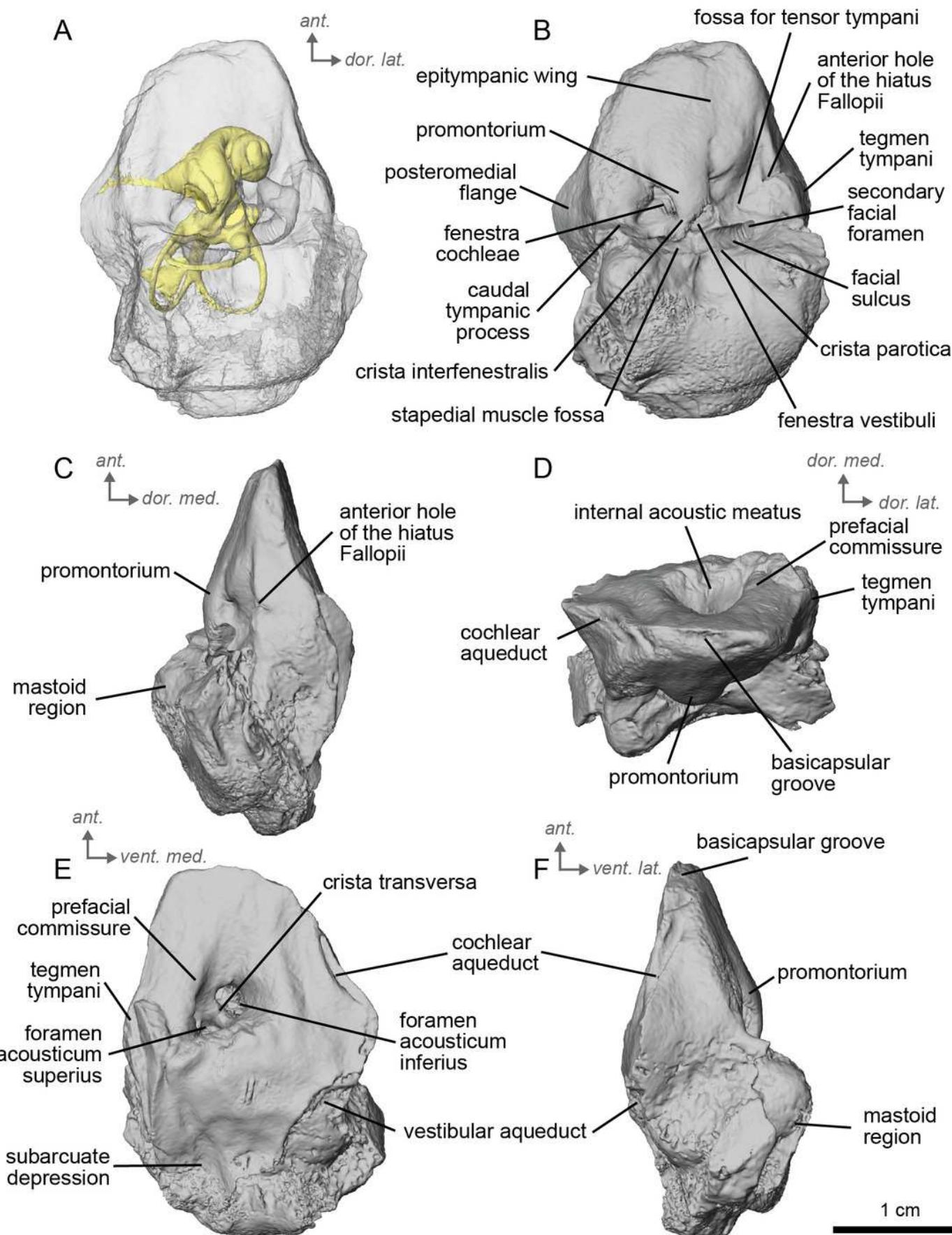

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view. *Dor.* = dorsal, *lat.* = lateral, *pos.* = posterior.

Figure 5

Left petrosal (NMB.Ccd.3) of *Hipparion concudense* from Concud3.

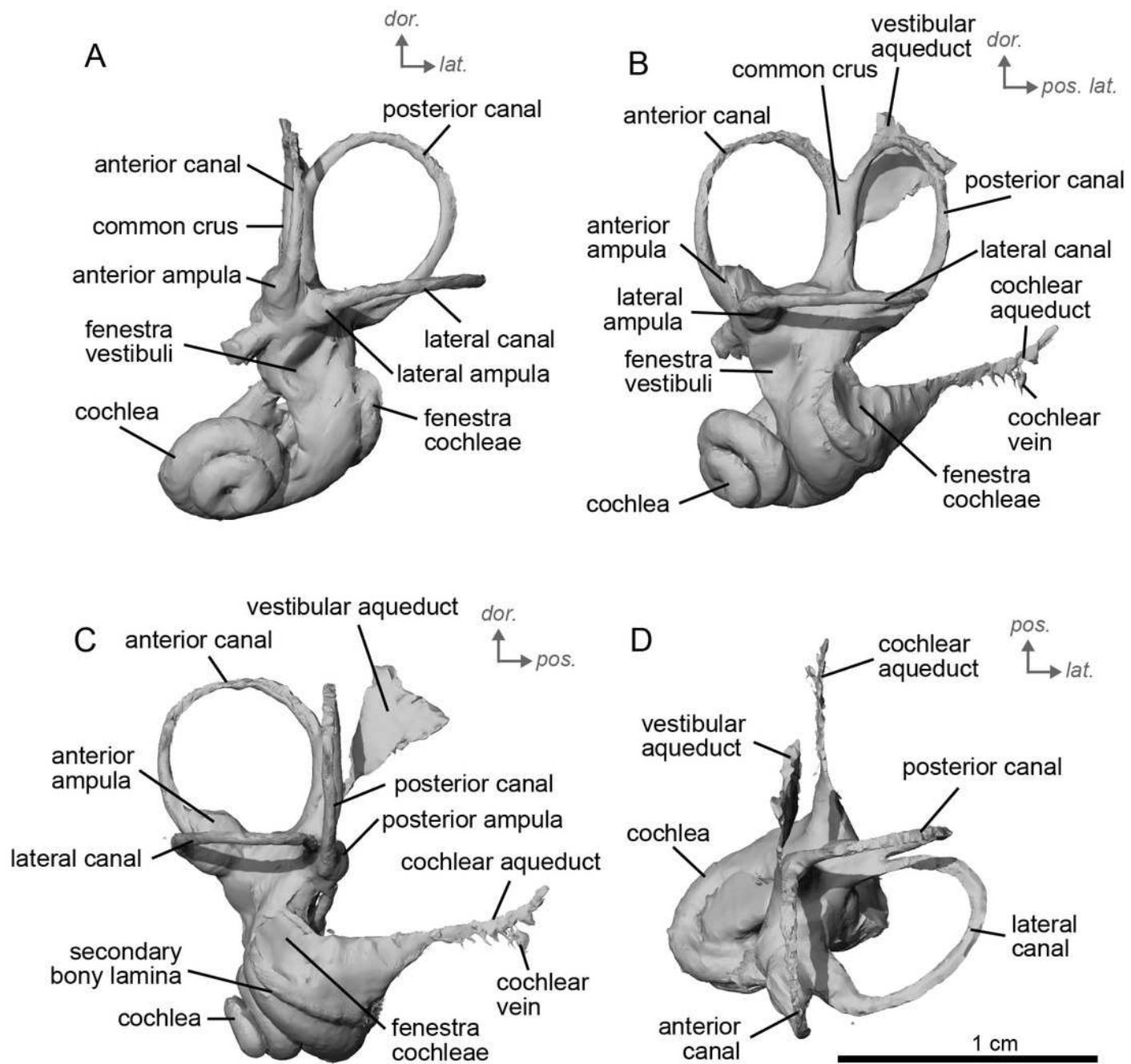

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 6

Endocast of the left bony labyrinth of *H. concudense* (NMB.Ccd.3) from Concud3.

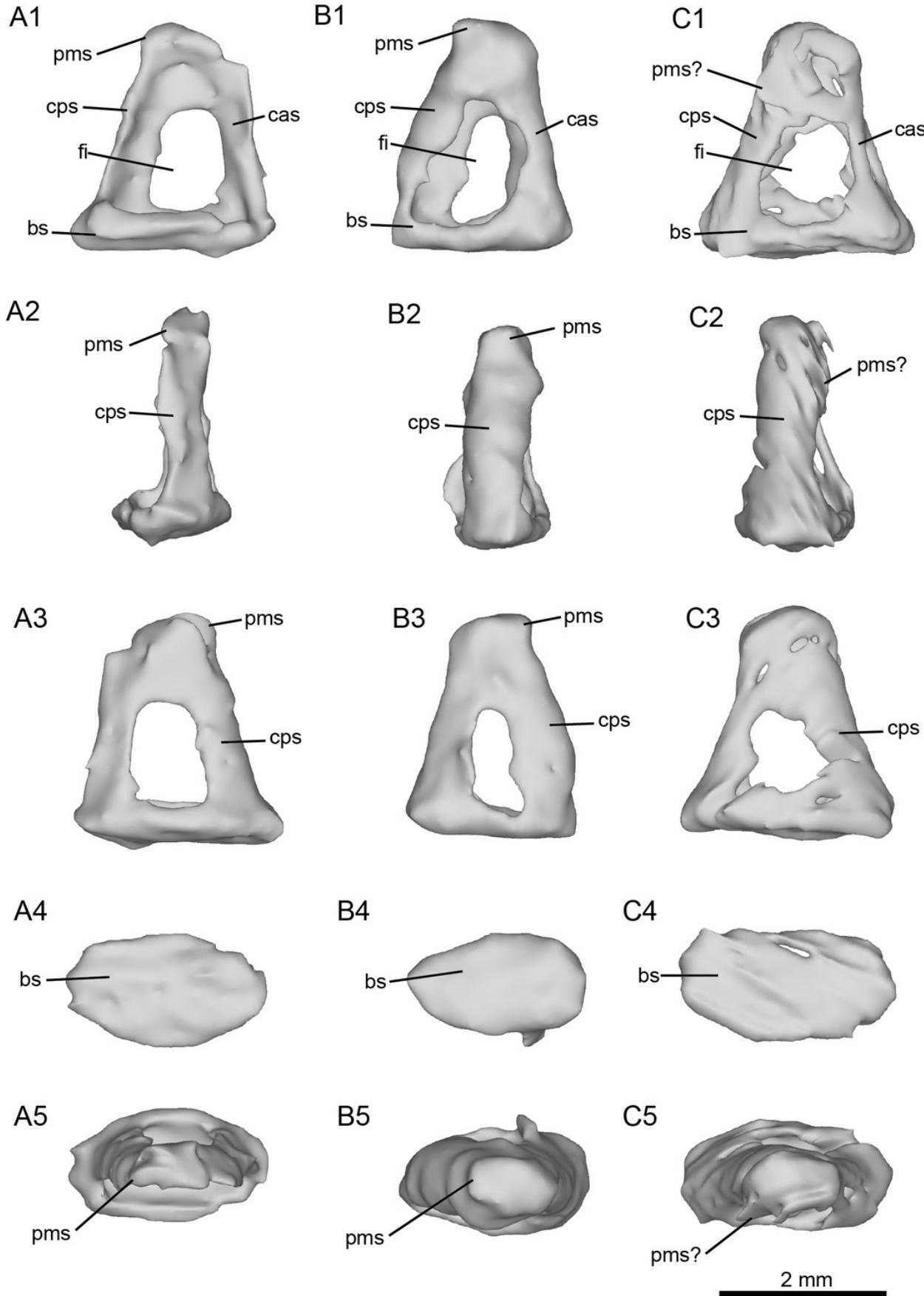

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view. *Dor.* = dorsal, *lat.* = lateral, *pos.* = posterior.

Figure 7

Left stapes preserved within the petrosals of fossil equids.

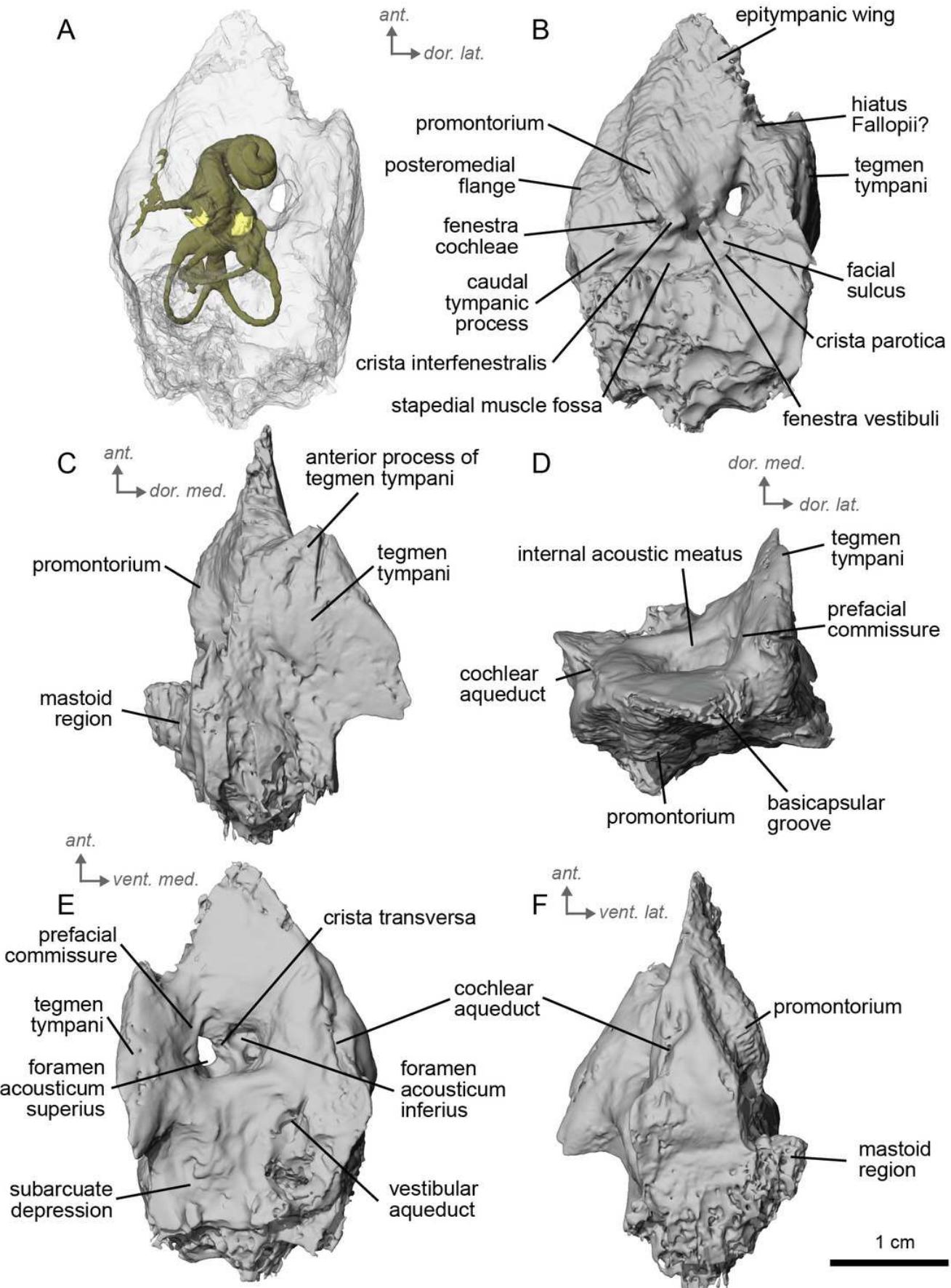

(A) *Hipparrison concudense* (NMB.Ccd.3). (B) *Equus stenorhinus* (NMB.V.A.2753). (C) *Equus senezensis* (NMB.Se.141). Abbreviations: bs, *basis stapedis*; cas, *crus anterius stapedis*; cps, *crus posterius stapedis*; fi, *foramen intercrurale*; pms, *processus muscularis stapedis*.

Figure 8

Left petrosal (NMB.V.A.2753) of *Equus stenonis* from Valdarno.

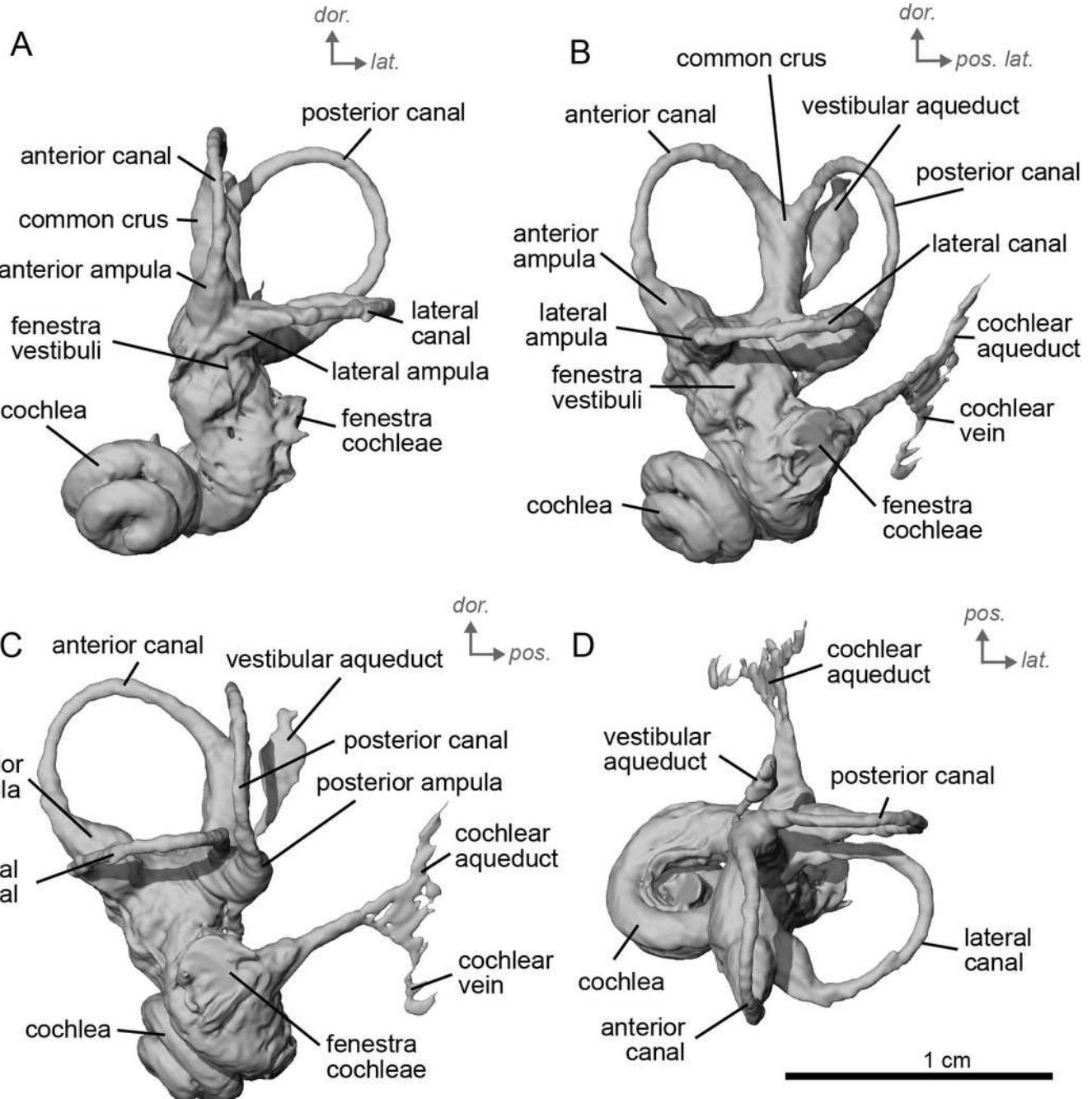

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 9

Endocast of the left bony labyrinth of *E. stenonis* (NMB.V.A.2753) from Valdarno.

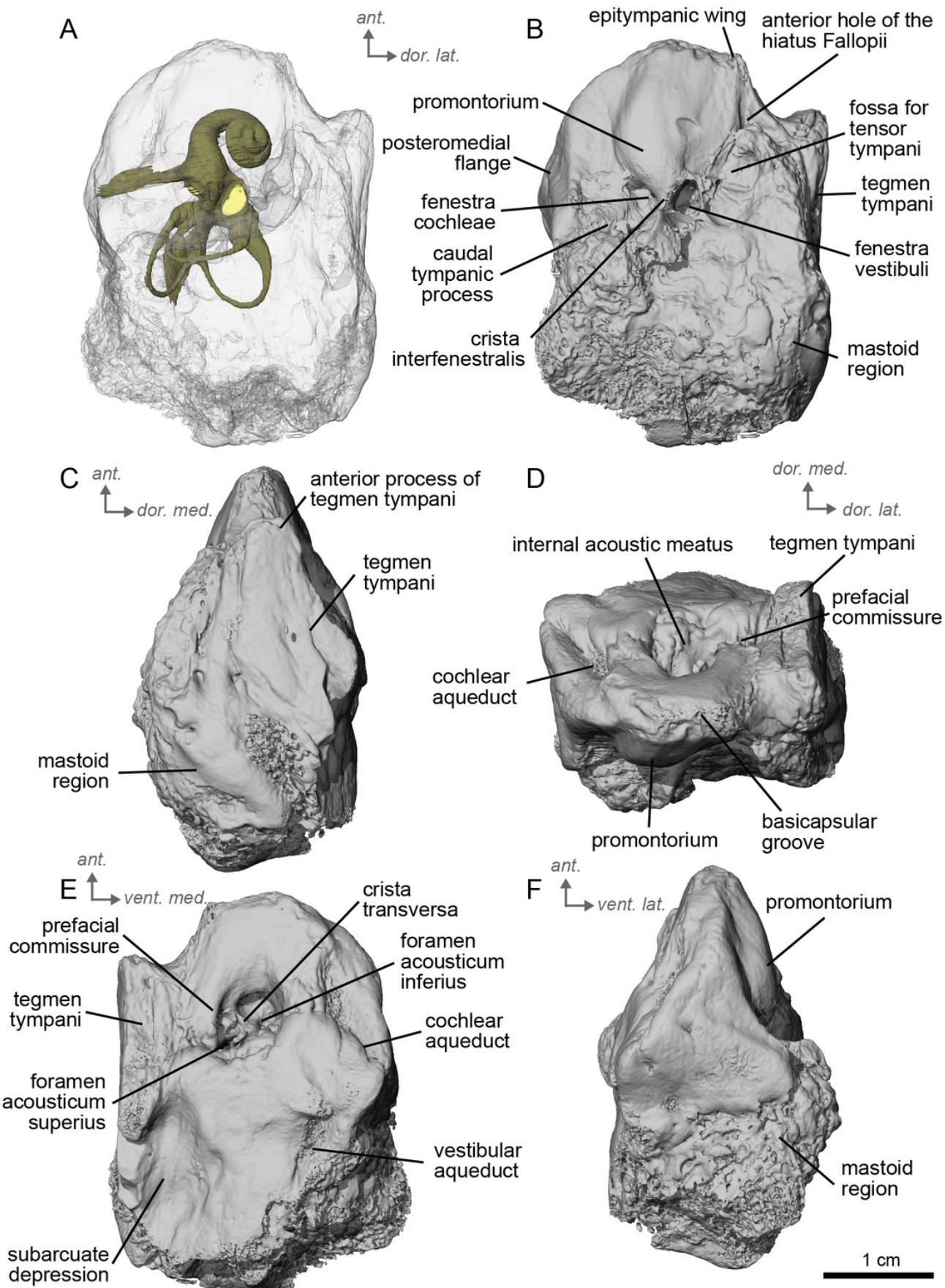

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view. *Dor.* = dorsal, *lat.* = lateral, *pos.* = posterior.

Figure 10

Left petrosal (NMB.Se.141) of *Equus senezensis* from Senèze.

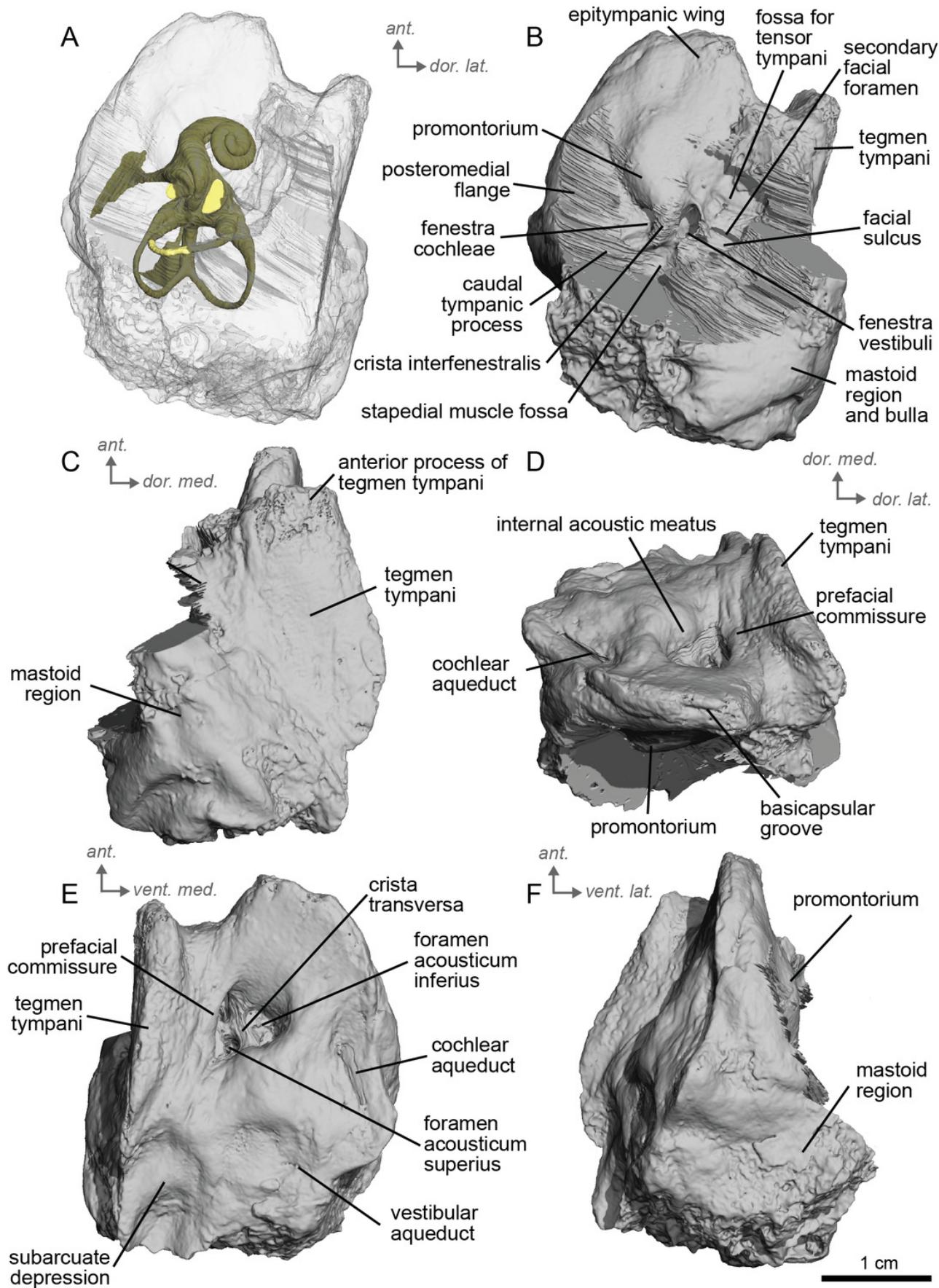

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 11

Right petrosal (NMB.Se.554) of *Equus senezensis* from Senèze (mirrored).

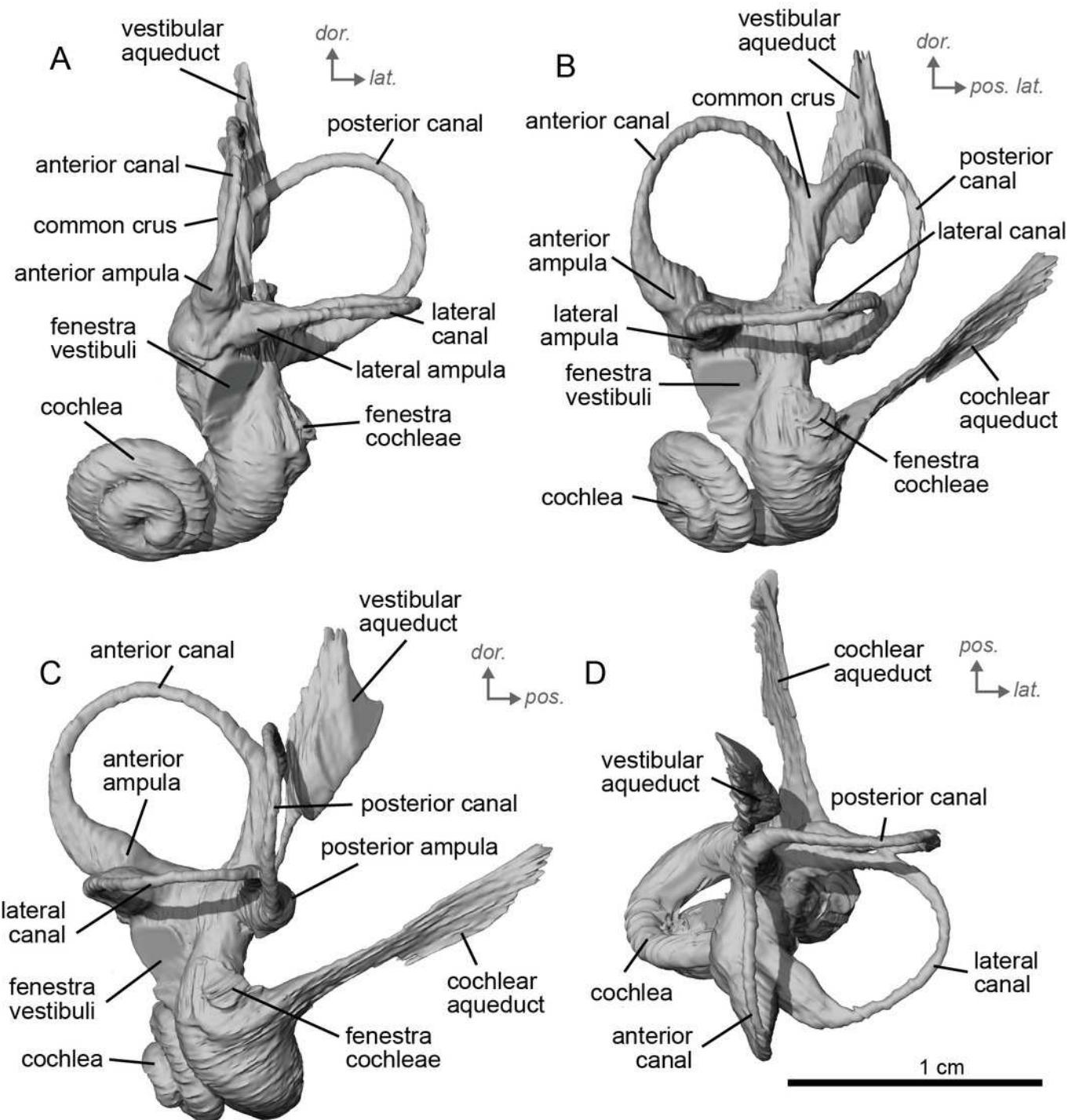

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view. *Ant* = anterior, *dor.* = dorsal, *lat.* = lateral, *med.* = medial, *vent.* = ventral.

Figure 12

Endocast of the left bony labyrinth of *Equus senezensis* (NMB.Se.141) from Senèze.

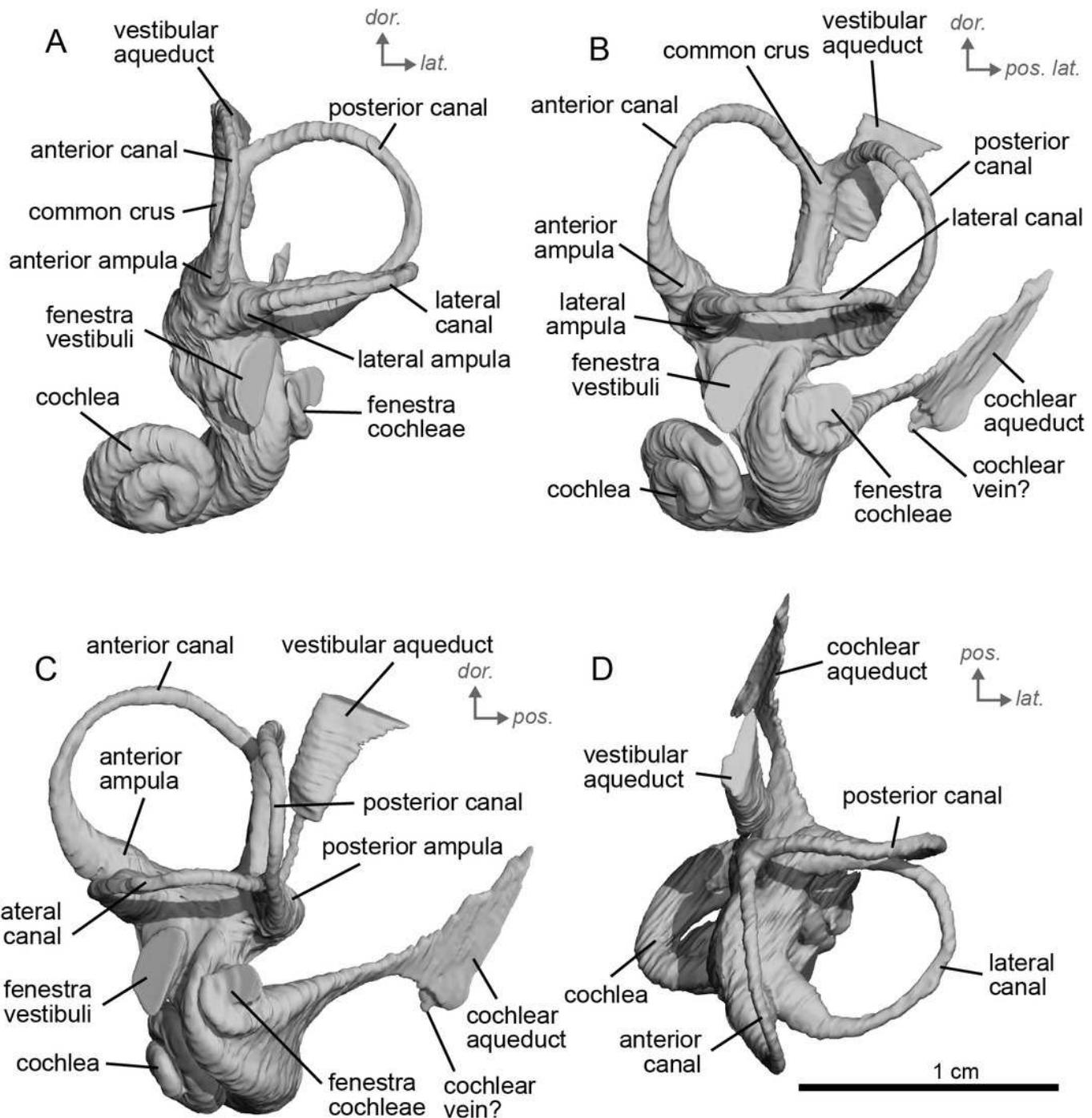

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view. *Dor.* = dorsal, *lat.* = lateral, *pos.* = posterior.

Figure 13

Endocast of the right bony labyrinth of *Equus senezensis* (NMB.Se.554) from Senèze (mirrored).

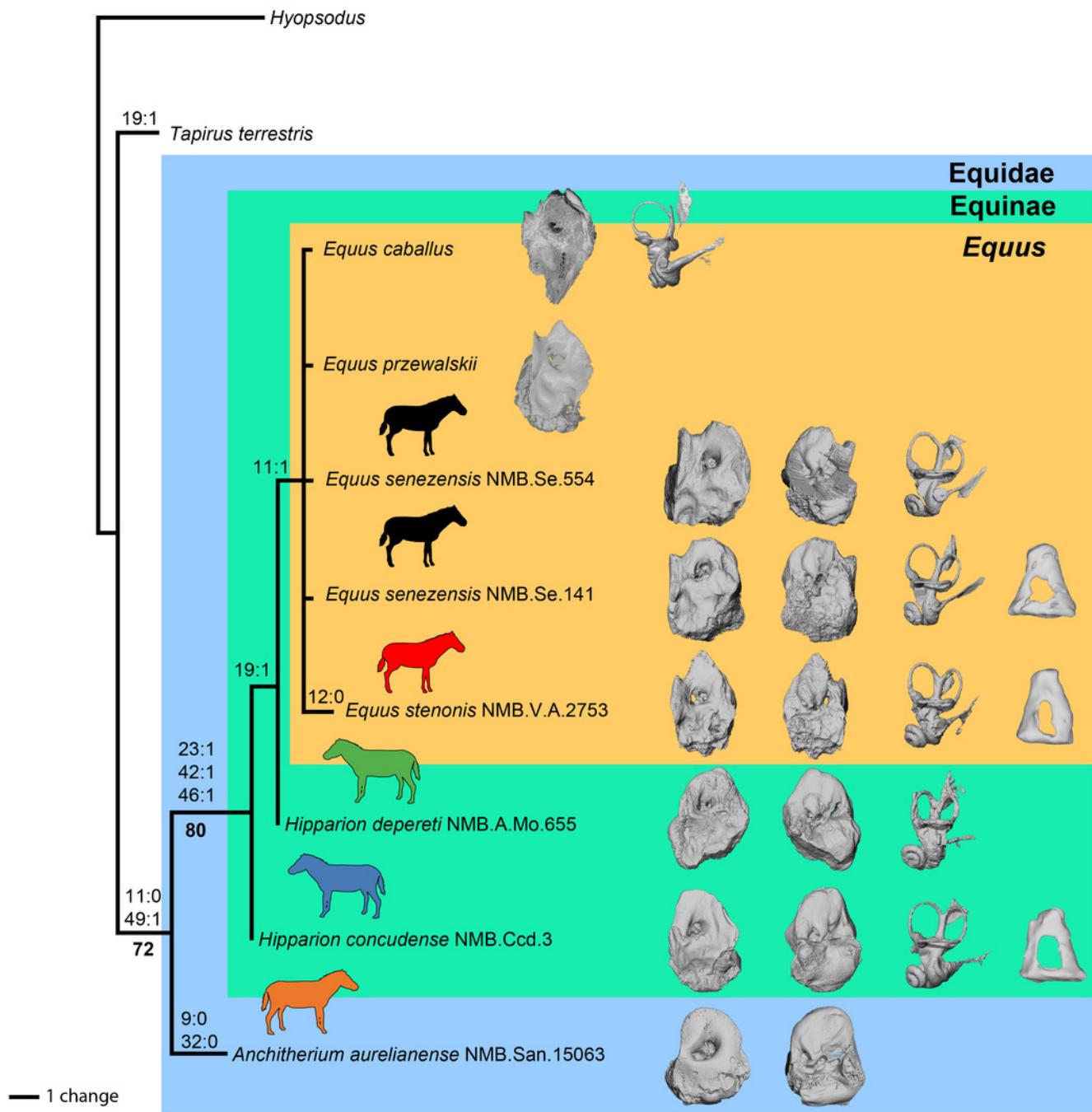

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view. *Dor.* = dorsal, *lat.* = lateral, *pos.* = posterior.

Figure 14

Phylogeny of the studied Equidae based on ear region characters.

Strict consensus tree of 11 trees of 24 steps (CI=0.88, HI=0.13, RI=0.80) with *Hyopsodus* used as outgroup, obtained by an exhaustive search with a parsimony algorithm in PAUP*4. Non-ambiguous apomorphies are indicated as “character number:state” at nodes. Bootstrap support values above 50 are reported in bold font below nodes. Silhouettes of horses from Phylopic made by Julian Bayona.

