

The petrosal and bony labyrinth of extinct horses (Perissodactyla, Equidae) and their implications for perissodactyl evolution (#116824)

1

First submission

Guidance from your Editor

Please submit by **15 May 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

14 Figure file(s)

1 Table file(s)

1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The petrosal and bony labyrinth of extinct horses (Perissodactyla, Equidae) and their implications for perissodactyl evolution

Owen Axel Goodchild¹, Sydney Nicole Rosen², Bastien Mennecart³, Jin Meng⁴, Jérémie Tissier^{Corresp. 4, 5}

¹ Richard Gilder Graduate School, American Museum of Natural History, New York, New York, United States

² Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States

³ Naturhistorisches Museum Basel, Basel, Switzerland

⁴ Department of Vertebrate Paleontology, American Museum of Natural History, New York, New York, United States

⁵ Palaeobiosphere Evolution Unit, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

Corresponding Author: Jérémie Tissier
Email address: jeremy.tissier123@gmail.com

Perissodactyla, or odd-toed ungulates, are represented today by 16 species of rhinos, tapirs, and horses. Perissodactyls were much more diverse in the past, having a rich fossil record spanning from the earliest Eocene (~56 ma) to recent including a myriad of extinct lineages. Despite over a century of study, the inter-relationships of some extinct perissodactyl families remain poorly resolved. New morphological characters are needed to help solve this issue. Recent studies suggest that the ear region, i.e. the petrosal and the bony labyrinth of the inner ear, is a valuable source of morphological characters for mammalian phylogenetic analyses. The petrosal is the bony structure protecting the inner ear, the organs of hearing and balance in mammals. However, perissodactyl petrosals are poorly documented and have not been used in such a phylogenetic frame. In this study, we describe the petrosals and inner ears of five European fossil equid taxa and perform a preliminary phylogenetic analysis. Despite its small sample size, our phylogenetic tree recovers important groupings, which suggests the petrosal is phylogenetically informative in equids. This study supports the relevance of the ear region for phylogeny and its potential to better resolve long-contentious relationships within Perissodactyla.

1 **The petrosal and bony labyrinth of extinct horses**
2 **(Perissodactyla, Equidae) and their implications for**
3 **perissodactyl evolution.**

4

5 Owen Axel Goodchild¹, Sydney Nicole Rosen², Bastien Mennecart³, Jin Meng⁴ &
6 Jérémie Tissier^{4,5}

7

8 ¹ Richard Gilder Graduate School, American Museum of Natural History, New York,
9 New York, USA

10 ² Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA

11 ³ Naturhistorisches Museum Basel, Basel, Switzerland

12 ⁴ Department of Vertebrate Paleontology, American Museum of Natural History, New
13 York, New York, USA

14 ⁵ Palaeobiosphere Evolution Unit, Royal Belgian Institute of Natural Sciences, Brussels,
15 Belgium

16

17

18

19 Corresponding Author:

20 Jeremy Tissier

21 Rue Vautier 29, Brussels, 1000, Belgium

22 Email address: jeremy.tissier123@gmail.com

23

24 **Abstract**

25 Perissodactyla, or odd-toed ungulates, are represented today by 16 species of rhinos,
26 tapirs, and horses. Perissodactyls were much more diverse in the past, having a rich
27 fossil record spanning from the earliest Eocene (~56 ma) to recent including a myriad of
28 extinct lineages. Despite over a century of study, the inter-relationships of some extinct
29 perissodactyl families remain poorly resolved. New morphological characters are
30 needed to help solve this issue. Recent studies suggest that the ear region, i.e. the
31 petrosal and the bony labyrinth of the inner ear, is a valuable source of morphological
32 characters for mammalian phylogenetic analyses. The petrosal is the bony structure
33 protecting the inner ear, the organs of hearing and balance in mammals. However,
34 perissodactyl petrosals are poorly documented and have not been used in such a
35 phylogenetic frame. In this study, we describe the petrosals and inner ears of five
36 European fossil equid taxa and perform a preliminary phylogenetic analysis. Despite its
37 small sample size, our phylogenetic tree recovers important groupings, which suggests
38 the petrosal is phylogenetically informative in equids. This study supports the relevance
39 of the ear region for phylogeny and its potential to better resolve long-contentious
40 relationships within Perissodactyla.

41

42 **Introduction**

43 Today, Perissodactyla Owen 1848, also known as odd-toed ungulates, are represented
44 by 16 living species of rhinoceroses (n5), tapirs (n4), and horses (n7). Perissodactyls
45 have a rich fossil history extending to the early Eocene ~56 million years ago (Ma; Bai,
46 Wang & Meng, 2018). In addition to the ancestors of living perissodactyl groups, the
47 perissodactyl fossil record contains several **totally extinct** families like the clawed
48 Chalicotheriidae or bony-horned Brontotheriidae (Bai, Wang & Meng, 2018). Despite
49 over a century of study, the interrelationships between extinct perissodactyl families and
50 the relationships within those families remain controversial. Phylogenetic analyses using
51 craniodental characters have longstanding issues, such as the internal relationships of
52 Rhinocerotoidea (Tissier et al., 2018; Bai et al., 2020).

53 The **discordance between authors** highlights the necessity to investigate other
54 structures of perissodactyl anatomy for new phylogenetically relevant characters. The
55 petrosal is the paired basicranial bone housing the organs of balance (semicircular
56 canals) and hearing (cochleae) **alongside their associated tissues** in mammals (O'leary,
57 2010). **Among** other placental mammals, the petrosal **and bony labyrinth** are
58 increasingly used in phylogenetic analyses and in understanding the paleobiology of
59 these animals (Mennecart & Costeur, 2016; Mennecart et al., 2016; Aguirre-Fernández
60 et al., 2017; Costeur et al., 2017; Costeur et al., 2018b; Costeur et al., 2018a; Aiglstorfer
61 et al., 2017; Benoit et al., 2020; Mennecart et al., 2020; Evin et al., 2022; Wang et al.,
62 2022; Mennecart et al., 2022; Orliac et al., 2023; Zhang & Tong, 2024). The petrosal
63 and bony labyrinth have historically been a challenge to study because the **bony**

64 **labyrinth is completely enclosed.** Computed Tomography (CT) allows for the
65 visualization **of internal details of the petrosal** and the generation of endocasts of the
66 bony labyrinth within. The petrosal of perissodactyls is relatively poorly known and has
67 yet to be used in large-scale phylogenetic analyses (see Mateus, 2018 for a review).

68 This study aims to describe the petrosal, bony labyrinth, and stapes (when
69 preserved) of **four different extinct equids**, explore their morphological variations, and
70 assess whether the petrosal characters of O'Leary (2010) and Mateus (2018) are
71 phylogenetically informative in these taxa.

72

73 **Materials & Methods**

74 **Taxonomy and specimens**

75 This study involves seven petrosal specimens (Tab. 1; Fig. 1) from five European
76 fossil equids housed in the collections of the Natural History Museum of Basel,
77 Switzerland (NMB). *Anchitherium aurelianense* Cuvier, 1825 is the oldest and **most**
78 **basal** equid in our study (Agustí & Antón, 2002), whose petrosal imaged here comes
79 from the famous Middle Miocene locality of Sansan dated from around 15 Ma (Alberdi,
80 Ginsburg & Rodríguez, 2004). *Hipparrison* belongs to a large group of fossil equids, the
81 Hipparrisonini, from across North America, Asia, Europe, and Africa (Bernor et al., 2021).
82 The two *Hipparrison* specimens **come** from two different sites: Montredon (Vallesian, 11-9
83 Ma; France) and Concud (upper Turolian, ~5 Ma, Spain; Forstén, 1982). All the *Equus*
84 material in our sample comes from the Early Pleistocene (Villafranchian), one from
85 Valdarno (Italy) and three from Senèze (France). They belong to the stenonine lineage
86 that consists of Early Pleistocene European and African *Equus* (Cirilli et al., 2021a). The
87 specimen from Valdarno belongs to *Equus stenonis*, while the specimens from Senèze
88 belong to *Equus senezensis* (Cirilli et al., 2021b). For comparative purposes, we also
89 included the petrosal of *Equus ferus przewalskii*, the only extant wild caballine, as
90 described in Danilo et al. (2015). We also had access to the petrosals of *Equus caballus*
91 (AMNH FM 118) and *Tapirus terrestris* (AMNH FM 14103) described by O'Leary (2010)
92 for comparison.

93

94 **Table 1.**

95

96 **Figure 1.**

97

98 **CT scans and segmentation**

99 The equid material for this project was scanned at the Biomaterials Science
100 Centre of the University of Basel, Switzerland, using a Phoenix Nanotom, GE.
101 Tomograms were segmented using 3D Slicer (Fedorov et al., 2012) to extract the
102 petrosal, the digital endocast of the bony **labyrinth** and the stapes. 3D models
103 representing seven petrosal bones, six bony labyrinths, and three stapes were
104 generated in 3D **slicer**. All tomograms and 3D models of petrosals, bony labyrinths, and

105 stapes are available for download on Morphosource (temporary access link for peer-
106 review:
107 https://www.morphosource.org/projects/000720375/temporary_link/arhmYU7XGzExNGzjpvxn1kcs?locale=en).

109 Measurements

110 Measurements were digitally performed using MeshLab2022.02 (Cignoni et al.,
111 2008). The measurements taken included the height and width of the cochlea used for
112 the calculation of the aspect ratio and the height, width, and length of the semicircular
113 canal used for the calculation of the radius of curvature.

114 Character scores and phylogenetic analysis

115 We constructed a character matrix in Mesquite, combining characters from the
116 petrosal and bony labyrinth, which is provided in Nexus format in supplemental file 1.
117 We scored the 3D models of the petrosal and stapes with characters from Spaulding et
118 al. (2009; available in morphobank: <http://dx.doi.org/10.7934/X188>). We retained the
119 first 34 characters, which exclusively concern the petrosal bone, and the two characters
120 of the stapes (characters 65 and 66 of Spaulding et al. 2009). We excluded characters
121 from the auditory bulla, which was not preserved in our fossil specimens. We added 9
122 characters from Mateus (2018) for a total of 44 petrosal characters. We scored the 3D
123 models of the bony labyrinth according to the 6 discrete characters of Ekdale (2013;
124 available in morphobank: <http://dx.doi.org/10.7934/X1905>). We scored *Equus*
125 *przewalskii* in the matrix based on the descriptions and figures of Danilo et al. (2015)
126 and used the original scores of *Hyopsodus*, *Tapirus terrestris*, and *Equus caballus* from
127 Spaulding et al. (2009) as well as those of *Equus* from the matrix of Ekdale (2013) and
128 of *Hyopsodus* and *Tapirus terrestris* from Mateus (2018). In total, our matrix includes 51
129 characters and 10 terminals.

130 We performed a maximum parsimony (MP) analysis using PAUP4 (Swofford,
131 2002). Given the small number of taxa in our sample, we used the exhaustive search
132 function to search all possible tree topologies to obtain the most parsimonious tree.

133 Anatomical terminology

134 The anatomical terminology used for the description of the stapes follows Orliac
135 and Billet (2016). The terminology used for the petrosal follows O'Leary (2010) and the
136 terminology of the inner ear follows Ekdale (2013).

137 Biostratigraphy

138 The stratigraphical framework is based on the geological timescales and
139 European Land Mammal Ages (ELMA) for the Neogene (Raffi et al. 2020).

140

141 Results

142 Systematic Paleontology

143 Mammalia, Linnaeus 1758

144 Perissodactyla, Owen 1848

145 Equidae, Gray 1821
146 Anchitheriinae, Leidy 1869
147 *Anchitherium*, Meyer 1844
148 *Anchitherium aurelianense*, Cuvier 1825

149 **Material**

150 An isolated right petrosal, NMB.San.15063

151 **Locality and age**

152 Sansan, Gers, France; Miocene, Astaracian (MN 6)

153 **Description and comparison.** The petrosal of *Anchitherium aurelianense*

154 (NMB.San.15063; Fig. 2) is 2.11 cm long anteroposteriorly. The specimen is largely
155 complete, with minor damage to the mastoid region. The bony labyrinth could not be
156 segmented in this specimen due to the absence of contrast between the sediment
157 infilling the bony labyrinth and the petrosal bone.

158 The petrosal of *A. aurelianense* is markedly different in several aspects from that
159 of *Equus caballus* (O'Leary 2010). In anterior view (Fig. 2C), *A. aurelianense* lacks the
160 endocranial projection of the superiormost aspect of the petrosal seen in *Equus*. The
161 *crista interfenestralis* is broader and more rounded than in *E. caballus*. The epitympanic
162 wing is small, forming a low protrusion from the promontorium. The wing is rounded
163 rather than pointed and does not protrude. The subarcuate fossa is very shallow. The
164 opening for the *hiatus fallopii* is much larger than in *E. caballus* and is open in
165 ventrolateral view (Fig. 2A). The opening of the *hiatus fallopii* is confluent with the
166 foramen *acousticum superius* in dorsomedial view (Fig. 2D) due to the partly broken thin
167 wall of the secondary facial foramen. An anterior hole of the *hiatus fallopii* is also
168 present (Fig. 2B). The stapedial muscle fossa is oval-shaped and located in the facial
169 *sulcus*, below the *crista interfenestralis* separating the *fenestra vestibule* and *cochleae*.
170 The *fenestra cochleae* is round, while the *vestibular* is oval. *Anchitherium* possesses a
171 notably smaller *tegmen tympani*. Unlike in *E. caballus*, the *tegmen tympani* is flattened
172 and is not prominent in dorsolateral view (Fig. 2B). The surface of the *tegmen tympani*
173 is smooth, forming an angled surface anteromedially to the mastoid region. The *tegmen*
174 *tympani* lacks raised bumps and the large *hiatus fallopii* opening excavates a portion of
175 its medial edge.

176 The peculiar nature of the *tegmen tympani* in the petrosal of *Anchitherium* recalls
177 the “uninflated” condition seen in the early diverging eutherians like *Protungulatum*. As
178 in *Protungulatum*, the *tegmen tympani* is flat in *Anchitherium*. The surface is moderately
179 raised in dorsomedial view relative to the internal acoustic meatus, while in
180 *Protungulatum* the *tegmen tympani* is flatter in dorsomedial view. The *tegmen tympani*
181 morphology of *Anchitherium* is somewhat intermediate between the uninflated *tegmen*
182 *tympani* of *Protungulatum* and the smaller but inflated *tegmen* of *Hippurion*. It is
183 puzzling then, that the literature reports the earlier diverging equid *Orohippus* with an
184 inflated *tegmen tympani* (Cifelli, 1982). Indeed, all the fossil tapirs Mateus (2018)

185 referred to have an inflated tegmen tympani. See the discussion for further
186 consideration.

187 *A. aurelianense* lacks an anterior process of the *tegmen tympani*. A ventrolateral
188 **tuberosity was present in *A. aurelianense***. Medial to the external acoustic meatus is a
189 relatively deep epitympanic recess. *A. aurelianense* lacks a distinct stylomastoid notch.

190 The petrosal is narrow in ventromedial view (Fig. 2E), widening into a fan-shaped
191 mastoid region like in *E. caballus* (O'Leary, 2010). The mastoid region is very
192 incomplete. It was considered here to be large as per O'Leary 2010's definition but is
193 notably smaller than that of *E. caballus*.

194 The **mastoid process** is absent in *Anchitherium*, the preserved element of the
195 mastoid is consistent with a wedge shape as described in O'Leary (2010).

196

197 **Figure 2.**

198

199 Equinae, Steinmann and Döderlein 1890

200 Hipparrisonini, Quin 1955

201 *Hipparrison*, Christol 1832

202 *Hipparrison depereti*, Sondaar 1974

203 **Material**

204 An isolated left petrosal, NMB.A.Mo655

205 **Locality and age**

206 Montredon, France; Late Miocene Vallesian (MN 10).

207

208 **Description and comparison.** The Montredon *Hipparrison*, *Hipparrison depereti*, specimen
209 NMB.A.Mo655, is a largely complete petrosal, with minor damage to the tegmen
210 tympani and the mastoid region. Segmentation of its bony labyrinth was made
211 challenging by the presence of very dense infilling (possibly iron). NMB.A.Mo.655 is an
212 isolated petrosal measuring 3.9 cm in length. This petrosal is intermediate between
213 *Anchitherium* and *Equus*. Notably, the petrosal of *H. depereti* is more massively
214 constructed and broader than that of *Anchitherium aurelianense*. There are notable
215 distinctions from *Equus*, however. The *promontorium* gives rise to the epitympanic wing
216 (Fig. 3B), which is small and rounded rather than pointed as in *E. caballus* (O'Leary,
217 2010), but longer than in *Anchitherium*.

218 Between the epitympanic wing and the *tegmen tympani* lies the opening for the
219 *hiatus Fallopii*, which is **smaller in *Hipparrison depereti*** than in *Anchitherium* but larger
220 than in *E. caballus* (O'Leary, 2010). The *hiatus Fallopii* is directly confluent with the
221 foramen *acousticum superius*. The fossa for the *tensor tympani* is located between the
222 *hiatus Fallopii* and the fenestra **vestibule**. The stapedial muscle fossa is deep and round
223 in the facial sulcus, just below the crista **interfenestralis**. The *tegmen tympani* (Fig. 3C,
224 D) is more greatly inflated than in *A. aurelianense* but much less than in *E. caballus*.

225 There is no anterior process of the *tegmen tympani*. In dorsomedial view (Fig. 3E), the
226 surface of the area around the internal acoustic meatus is smooth. However, this
227 specimen has been abraded, making the surface appear more rugose than in life. The
228 subarcuate fossa is wide and shallow, as in *E. caballus* (O'Leary, 2010). In dorsolateral
229 view (Fig. 3C), the ventromedial surface of the petrosal is narrow anteriorly and
230 expands into a fan-shaped mastoid region posteriorly. The medial surface of the
231 petrosal is flat. The basicapsular groove can be seen along the dorsal margin of the
232 petrosal (Fig. 3F). The cochlear aqueduct is a very small hole at the ventromedial
233 margin (Fig. 3E-F), although located more ventrally than in *Tapirus terrestris* (like *E.*
234 *caballus*). The mastoid is incomplete, with the ventral knob-like area well-preserved, but
235 lacking the dorsal point seen in *E. caballus* (O'Leary, 2010).

236

237 **Figure 3.**

238

239 The bony labyrinth of NMB.A.Mo.655 is more poorly preserved than the other
240 specimens in this study, as dense infilling obscured the shape of the semicircular
241 canals. Nevertheless, the gross morphology of the bony labyrinth can be described and
242 discussed. It shows little post-mortem deformation. The bony labyrinth fills much of the
243 volume of the petrosal, but not to the extent observed in *Hyopsodus lepidus* (Ravel &
244 Orliac, 2015). The secondary bony lamina was not observed. This may be due to poor
245 preservation, or a genuine absence. In the bony labyrinth of the earlier diverging equid
246 *Xenicohippus osborni* no secondary bony lamina was observed, although deformation
247 made that observation questionable (Ravel & Orliac, 2015). In the more derived *E.*
248 *caballus*, the secondary bony lamina is weakly developed (Ekdale, 2013). The cochlear
249 spiral is like that of *E. caballus*, here considered high, although notably lower than that
250 observed in *Hyopsodus lepidus* (Ravel & Orliac, 2015). The cochlea completes two and
251 a half turns and is loosely coiled like *E. caballus* (Ekdale, 2013). As in *X. osborni*, the
252 cochlea is elliptical, with the anteroposterior axis longer than the mediolateral axis. The
253 cochlear aqueduct is straight, narrowing as it nears its external aperture as in *E.*
254 *caballus* (Ekdale, 2013), and short. The posterior entry of the lateral semicircular canal
255 is through the posterior ampulla, as in *E. caballus* (Ekdale, 2013). Like both *X. osborni*
256 and *E. caballus*, the arc of the anterior semicircular canal possesses the largest radius
257 and the greatest height of the three (Ravel & Orliac, 2015). The lateral semicircular
258 canal sits higher than the posterior semicircular canal. The posterior and lateral semi-
259 circular canals lay at a right angle to one another (Fig. 4C), while the angle between the
260 posterior and anterior canal is slightly obtuse (Fig. 4D). Anterior and posterior canals
261 are relatively rounded, while the lateral one is ovoid in shape. All the canals are thick in
262 section. The long endolymphatic sac is triangular in shape and posteriorly projected. It
263 starts high, almost at the dorsal end of the common crus. The shape of the fenestrae
264 cannot be described due to preservation. There is no clear distinction between the

265 **vestibula** and the cochlea, maybe due to the preservation of the specimen. The cochlea
266 is **detached** from the **vestibula**.

267

268 **Figure 4.**

269

270 *Hipparion concudense*, Pirlot 1956

271 **Material**

272 An isolated left petrosal, NMB.Ccd.3

273 **Locality and age**

274 Concud 3, Teruel, Spain; Late Miocene, Turolian (MN 12).

275

276 **Description and comparison.** The Concud 3 *Hipparion*, *Hipparion concudense*,
277 specimen is an almost entirely complete petrosal, with only minor damage to the
278 mastoid region. The Concud 3 *Hipparion* **preserved a stapes within the bony labyrinth**
279 *Hipparion concudense* is represented by an isolated petrosal measuring 3.15 cm in
280 length. The petrosal of *H. concudense* is similar in most aspects to its geologically older
281 relative *H. depereti*. The epitympanic wing is a low-rounded structure protruding gently
282 from the anterior portion of the promontorium. The caudal tympanic process, located
283 posterior to the fenestra cochlae, is mediolaterally broad but not to the same extent
284 observed in *E. caballus* (O'Leary, 2010). The mastoid region is large, occupying about
285 **half the size of the bone**. As in both **fossil** and extant equids, the mastoid is irregularly
286 shaped with a **knobby** surface. Likewise, as in the other fossil equids described here,
287 the long mastoid process is absent, leaving only the fan-like proximal portion of the
288 mastoid. The mastoid of *H. concudense* is not as greatly expanded as that of *H.*
289 *depereti*. The thin bony lamina that covers the *hiatus Fallopii* is still preserved and
290 separates the secondary facial foramen from the anterior hole of the *hiatus Fallopii* (Fig.
291 5B). The stapedial muscle fossa is extremely deep, large and oval-shaped, although
292 this may be related to allometry. The facial sulcus is deep.

293 In dorsomedial view (Fig. 5E), the *tegmen tympani* is markedly smaller than *E.*
294 *caballus*, though slightly inflated laterally. The *tegmen tympani* has a flat surface and
295 lacks the large anterior process seen on *E. caballus* (O'Leary, 2010). The basicapsular
296 groove sits along the dorsal edge of the petrosal (Fig. 5D), and the cochlear aqueduct
297 (Fig. 5E-F) sits in a slit situated more ventrally than ventromedially as in *E. caballus*
298 (O'Leary, 2010). In the anterior view (Fig. 5D), the superiormost portion of the petrosal
299 does not project medially, at least not to the extent seen in *E. caballus* (O'Leary, 2010).
300

301 **Figure 5.**

302

303 The bony labyrinth of *Hipparion concudense* is better preserved than that of *H.*
304 *depereti*. Like NMB.A.Mo.655, it shows little post-mortem deformation to the structure of
305 **the semicircular canals**. The secondary bony lamina is **here observed**. The cochlea

306 forms a loose spiral of 2.5 turns like both *H. depereti* and *E. caballus* (Ekdale, 2013).
307 The cochlear aqueduct narrows as it nears the **aperture**, as observed in *H. depereti*.
308 The anterior semicircular canal has both the greatest height and radius of curvature.
309 Like both *H. depereti* and *E. caballus*, the posterior entry of the lateral semicircular
310 canal is through the posterior ampulla, and the lateral semicircular canal sits higher than
311 the posterior semicircular canal. The angle between the posterior and anterior canal
312 (Fig. 6D) is more obtuse than in *Hipparium depereti*. It also differs from *Hipparium*
313 *depereti* by its more posteriorly elongated lateral canal in dorsal view (Fig. 6D). The
314 anterior canal is more rounded than the posterior one. The lateral one is ovoid in shape
315 with a **clear narrowing of the ellipse**. All the canals are relatively thin in section. The long
316 endolymphatic sac is triangular in shape and posteriorly projected. It starts below the
317 common crus, **in its axis**. There is a **hinge** between the **vestibula** and the cochlea. The
318 **cochlea** **is few** detached from the **vestibula**.

319 The stapes of *H. concudense* (Fig. 7A) was preserved inside the **vestibule** of the
320 bony labyrinth, **which happens occasionally**, as reported by Orliac and Billet (2016). It
321 seems to be broken or poorly preserved, lacking most of its medial side (Fig. 7A). The
322 **overall general shape** is quite similar to that of *Equus caballus* illustrated by Doran
323 (1878: pl. 61, fig. 3). In lateral view, the foramen intercrurale is large and rectangular.
324 The *capitulum* cannot be distinguished from the rest of the body of the stapes or is not
325 preserved. The *basis stapedis* is oval-shaped.

326

327 **Figure 6.**

328

329 **Figure 7.**

330

331 Equini Quinn 1955

332 *Equus* Linnaeus 1758

333 *Equus stenonis* Cocchi 1867

334 **Material**

335 An isolated left petrosal, NMB.V.A.2753

336 **Locality and Age**

337 Valdarno, Italy; Early Pleistocene, Villafranchian age (MNQ 18).

338 **Description and comparison.** *Equus stenonis* from Valdarno is represented by an
339 isolated petrosal (NMB.V.A.2753) measuring 3.55 cm in length. The petrosal is well
340 preserved, with the only major damage being to the mastoid process. The Valdarno
341 *Equus* preserved a stapes within the bony labyrinth. In overall **character**, it is strikingly
342 more similar to *E. caballus* (O'Leary, 2010) and *E. senezensis* than to *Hipparium* and
343 especially *Anchitherium*. *E. stenonis* and *E. senezensis* are similar to *E. caballus* in
344 possessing a prominent **anterior projection** of the tegmen tympani, while *Hipparium* and
345 *Anchitherium* have low **tegmen tympani** lacking such pronounced anterior projections.
346 The tegmen tympani has a prominent anterior process ending in a point, as in *E.*

347 *caballus* (O'Leary, 2010). The anterior process of the tegmen tympani of *Equus stenonis*
348 does not extend anterior to the **promontorium**. The caudal tympanic process is wide and
349 **smooth**, with an expansion similar to extant *E. caballus* rather than *Hipparrison* or
350 *Anchitherium*. The mastoid region is large, and as in the other fossil equids the broad
351 proximal area is preserved but not the elongate mastoid process. The subarcuate fossa
352 is wide and shallow as in *E. caballus* (O'Leary, 2010). The surface of the mastoid is
353 **knobby** and irregular like that of *E. caballus*. The mastoid meets and joins the caudal
354 tympanic process such that the mastoid juts out at an angle when viewed in
355 ventrolateral view. Two grooves along the ventromedial edge of the bone demarcate the
356 basicapsular groove, with the cochlear aqueduct laying at the posterior edge of this
357 **groove**. The ventrolateral side (Fig. 8E) is not very well preserved, and the
358 segmentation of this area was difficult due to the preservation of the bulla, which we
359 excluded in the figures. The *hiatus fallopii* is wide open and opens directly into the
360 foramen *acousticum superius*. The facial *sulcus* is barely visible and quite shallow. The
361 petrosal is narrow in ventromedial view (Fig. 8F), **expanding into a fan-shaped mastoid**
362 **process**.

363

364 **Figure 8.**

365

366 The bony labyrinth of *Equus stenonis* is nearly identical to *E. caballus* (Ekdale,
367 2013). The cochlea is loosely coiled forming 2.5 turns. The cochlea takes on an elliptical
368 shape, longer anteroposteriorly than mediolaterally. Like *E. caballus* the posterior entry
369 of the lateral semicircular canal is through the posterior ampulla, the largest semicircular
370 arc radius of curvature is in the anterior semicircular canal, and the lateral semicircular
371 canal sits higher than the posterior semicircular canal. The posterior ampulla is larger
372 than in *Hipparrison* (Fig. 9B-C). However, the anterior canal seems to be more elliptic
373 than the posterior one due to a straight projection **of the canal** when connecting with the
374 common crus. The **lateral one** is slightly ovoid in shape **but larger than in H.**
375 **concudense**. All the canal are relatively thin in section. The small endolymphatic sac is
376 triangular in shape and posteriorly projected, not in line with the common crus. It starts
377 close to the base of the common crus due to a very short and posteriorly projected
378 vestibular aqueduct. **There is a hinge between the vestibula and the cochlea. The**
379 **cochlea is few detached from the vestibula.**

380

381 The stapes of *Equus stenonis* (Fig. 7B) is very similar to that of *H. concudense*,
382 but it is more complete. The foramen *intercrurale* is larger on the lateral side **than**
383 **medial**, as observed in some artiodactyls (Orliac and Billet 2016). The *basis stapedis* is
384 oval-shaped (Fig. 7B). In medial and lateral views (Fig. 7B), the stapes is roughly
385 triangular. The *capitulum stapedis* cannot be differentiated from the rest of the body of
386 the stapes. In medial view, the *foramen intercrurale* is much smaller than on the lateral
387 side.

388

389 **Figure 9.**

390

391 *Equus senezensis*, Azzaroli 1964392 **Material**393 Three petrosals, including the left and right petrosals and one stapes of a single
394 individual (NMB.Se.141) and an isolated left petrosal (NMB.Se.554).395 **Locality and Age**

396 Seneze, France; Early Pleistocene, Villafranchian (MNQ 18).

397 **Description & comparison.** *Equus senezensis* was represented by three petrosals,
398 two of which represent the left and right petrosals of a single individual NMB.Se.141,
399 and one from NMB.Se.554. The petrosals vary in size from 3.60 to 3.94 cm
400 anteroposteriorly. They differ from that of *Equus caballus* (O'Leary, 2010) in several
401 ways. Between the *fenestra cochleae* and the *fenestra vestibuli* is a *crista*
402 *interfenestralis* that is pronounced but not as sharp in comparison to *E. caballus*
403 (O'Leary, 2010). The fossa for *tensor tympani* is a large, oval, and deep depression
404 (Fig. 10D). It significantly excavates the surrounding *tegmen tympani*. The epitympanic
405 wing is present and protrudes from the *promontory* but is very small. There is a distinct
406 anterior hole for the *hiatus Fallopii* and it is relatively large (Fig. 10B). A posteromedial
407 flange extends from the *promontorium* such that the *promontorium* is surrounded by a
408 complete, flat flange of bone similar to that of *E. caballus* (O'Leary, 2010), though it
409 appears to extend even further posteriorly. The fossa for the *tensor tympani* is shallow
410 and oval (Fig. 11B). The *tegmen tympani* is flat and moderately inflated, contributing to
411 about one-fifth the total width of the ventrolateral view though slightly more inflated than
412 that of *E. caballus* (O'Leary, 2010). The anterior process of the *tegmen tympani* is larger
413 than that of *E. caballus* and extends anterior to the *promontorium* before terminating in
414 a less pronounced point (O'Leary, 2010). The mastoid region is large and wedge-
415 shaped, irregular, and knobby, though it appears rounder than that of *E. caballus*
416 (O'Leary, 2010). The facial sulcus and stapedial muscle fossa cannot be observed.417 The ventromedial edge of the bone has a basicapsular groove, and at its
418 posterior edge houses a small cochlear aqueduct (Fig. 11E). The slit for the cochlear
419 aqueduct is smaller in NMB.Se.554 (Fig. 11E) than in NMB.Se.141 (Fig. 10E). In the
420 ventromedial view, the petrosal is narrow and widens into a fan-shaped mastoid region
421 with bumps and projections. The ventromedial surface is relatively flat (Fig. 11C). There
422 are vascular grooves on the dorsolateral side of the *tegmen tympani* (Fig. 10C). The
423 cochlear aqueduct is a small hole at the ventromedial margin but is found within a large
424 slit (Fig. 10D-E).425 We can observe patterns of intra-individual variation due to asymmetry in the
426 petrosal of *Equus senezensis*. The two petrosals of NMB.Se.141 differ indeed in some
427 respects such as the subarcuate fossa, which is smaller in the right petrosal than in the

428 left one. Such variation is consistent with Danilo et al (2015)'s study of modern *Equus*,
429 where the size, morphology, elongation, and depth of the subarcuate fossa can be
430 highly variable among individuals.

431

432 **Figure 10.**

433

434 **Figure 11.**

435
436 The basal portion of the cochlear coil of *Equus senezensis* (NMB.Se.141 and
437 NMB.Se.554; Fig. 12-13) begins slightly straight before forming a pronounced curve that
438 becomes the spiral shape of the cochlea **detaching** the cochlea from the **vestibula**. The
439 latter part of the coil begins as a loose spiral that becomes tighter towards the apex.
440 The coil remains tightly wound consistently after about the first quarter of the first basal
441 turn. The cochlea completes about 2.5 turns and is more tightly **coiled compared to**
442 *Equus caballus* (Ekdale, 2013). The left cochlea of *Equus senezensis* has a high aspect
443 ratio of 0.65 to 0.82 in contrast to the low aspect ratio of *E. caballus* (0.41; Ekdale 2013,
444 tab. 2).

445 NMB.Se.554 has the spherical and elliptical recesses separated by **a constriction**
446 **of the vestibule that forms a bony ring**. This condition is observed in both *E. caballus*
447 (Ekdale, 2013) and *E. senezensis* but is more pronounced in this individual than in
448 NMB.Se.141. The entry of the lateral semicircular canal into the posterior one is through
449 the posterior ampulla. The bony ring is quite pronounced and nearly parallel to the plane
450 of the lateral semicircular canal. However, the posterior canal seems to be more elliptic
451 than the anterior one due to a straight **projection of the canal** when connecting with the
452 common crus. The lateral one is relatively rounded. All the canals are relatively thin in
453 section. The large endolymphatic sac is rectangular in shape and posteriorly projected,
454 not in line with the common crus. It starts almost at mid-height of the common crus due
455 to a slightly posteriorly projected vestibular aqueduct. **There is a hinge between the**
456 **vestibula and the cochlea. The cochlea is few detached from the vestibula.**

457

458 **Figure 12.**

459

460 **Figure 13.**

461

462 The stapes of *Equus senezensis* was preserved inside the vestibule of the left
463 petrosal NMB.Se.141 (Fig. 7C). It is overall quite similar to *Equus caballus* (Doran
464 1878), or the other two stapes described here, but is not well preserved. The *processus*
465 *muscularis stapedis* is difficult to identify, but seems to be visible on the posterolateral
466 face of the stapes (Fig. 7C). As in the other species, the *foramen intercrurale* is smaller
467 on the medial side than on the lateral side. The *capitulum* cannot be identified.

468

469 **Preliminary Phylogenetic Analysis**

470 Using our combined dataset (see Material and Methods), we obtained a single
471 most-parsimonious tree of 25 steps (Fig. 14), with a consistency index (CI) of 0.88, a
472 retention index (RI) of 0.82, and a homoplasy index (HI) of 0.12. Of the 51 characters in
473 the analysis, 29 are constant and only 10 are parsimony informative. The clade Equidae
474 is supported by five synapomorphies in ACCTRAN optimization:

- 475 - the absence of anterior process of the *tegmen tympani*,
- 476 - the apex of the anterior process of the *tegmen tympani* pointed when present,
- 477 - the lateral semicircular canal higher than the posterior,
- 478 - the cochlear spiral high,
- 479 - and the cochlear aqueduct is in the ventral face.

480 The clade Equinae is supported by four synapomorphies:

- 481 - the presence of the ventrolateral tuberosity of the petrosal,
- 482 - the pars cochlearis protrudes ventromedially,
- 483 - the caudal tympanic process long,
- 484 - and the subarcuate fossa wide.

485 None of the Equinae have autapomorphies, whereas *Architherium* has three. *Equus* is
486 monophyletic and supported by one unambiguous synapomorphy: the presence of an
487 anterior process of the *tegmen tympani* (character 11). All perissodactyls, including
488 *Tapirus*, differ from *Hyopsodus* by seven characters. Finally, this topology differs from
489 the literature in recovering *E. senezensis* more closely related to extant horses (*E.*
490 *caballus* and *E. przewalskii*) than to *E. stenonis* (Cirilli et al., 2021a) and by the
491 paraphyly of *Hipparium*. In our analysis, *Hipparium concudense* differs from *H. depereti*
492 by the absence of extension of the fossa for *tensor tympani*.

493

494 **Figure 14.**

495

496 **Discussion**

497 Among both extant tapirs and horses, characters of the petrosal have been observed to
498 be individually variable. Among equids, Danilo et al. (2015) described the petrosals of
499 14 *Equus przewalskii* individuals of varying ages, sexes, and sizes (Danilo et al., 2015)
500 while Costeur et al. (2017) also observed it in an ontogenetic series of *Bos*. They
501 showed that the depth of the petrosal groove, the shape of the internal acoustic meatus,
502 as well as the shape, size, and elongation of the subarcuate fossa were individually
503 variable depending on the age of the individual. Mateus (2018) showed that in *Tapirus*
504 *terrestris* the depth and size of the subarcuate fossa are individually variable like in *E.*
505 *przewalskii* as well as the position of the caudal tympanic process and the *hiatus fallopii*.
506 The subarcuate fossa accounted for one character in Spaulding et al., (2009) and two in
507 Mateus (2018). All the perissodactyls in our analysis shared a deep subarcuate fossa.

508 *Tapirus terrestris* and *Anchitherium aurelianense* were both scored as small for the size
509 of the subarcuate fossa while all the other taxa were scored as large. For all the other
510 variable characters from Mateus (2018), every taxon in our analysis had a terminal
511 position of the *hiatus fallopii*, and only *T. terrestris* was scored with a ventrally
512 positioned caudal tympanic process.

513 We have to keep in mind that the petrosal bone, contrary to the bony labyrinth, is
514 a structure that ossifies in parallel to the surrounding skull bones (Mennecart & Costeur
515 2016, Costeur et al. 2017). Then this bone may greatly suffer from allometry (ontogenetic
516 and evolutionary) complexifying the interpretation of the evolutionary polarity of the
517 characters. On the contrary, the bony labyrinth is an organ that fully ossifies during fetus
518 stages in placental mammals (e.g. Mennecart & Costeur 2016, Costeur et al. 2017).
519 Shape and size remain similar during all the life of the animal, providing exceptional
520 results considering micro-and macroevolutionary processes (Evin et al. 2022,
521 Mennecart et al. 2022). This organ may represent a structure with a neutral evolution
522 (Mennecart et al. 2022), where gradual changes can be observed. The ear region of
523 extinct perissodactyls remains poorly understood, relative to artiodactyls. The petrosal
524 of extinct perissodactyls was only described for three Equoids (Kits, 1956; Cifelli, 1982;
525 O'Leary 2010), four tapiromorphs (Savage, et al., 1965; Radinsky & Expeditions (1921-
526 1930), 1965; Colbert, 2006; Li and Wang, 2010; O'Leary, 2010), one brontothere
527 (Mader, 2009), and one Ancylopod (Bai, Wang & Meng, 2010) so far. The petrosal of
528 rhinocerotoids is especially poorly understood. O'Leary (2010) described the incomplete
529 petrosal of *Dicerorhinus sumatrensis*, while Robert et al. (2021) investigated the
530 petrosal and bony labyrinth of *Ceratotherium simum simum*, and Manning (1985)
531 reported an isolated petrosal of *Metamynodon*. Moreover, recent molecular
532 investigations have suggested that the extinct South American Native Ungulates
533 (SANUs) were related to perissodactyls (Welker et al., 2015). Morphological
534 phylogenies without molecular constraints have struggled to recover this result
535 (Kramarz & Macphee, 2023). Morphological data from the petrosal and bony labyrinth of
536 SANUs has clarified the internal relationships of SANUs (Perini et al., 2022).
537 Comparisons between the petrosal of SANUs and other placentals has been limited
538 thus far, and have not included perissodactyls (Billet & Muizon, 2013). The ear region'
539 insight into phylogeny among perissodactyls may, therefore, also be key to illuminating
540 their potential relationships to SANUs and other extinct hooved mammal groups like
541 phenacodontids and cambaytheres.

542

543 **Conclusions**

544 The results of our preliminary phylogenetic analyses suggest that the ear region is
545 informative for perissodactyl phylogeny and invites future research. This limited analysis
546 suggests that the petrosal morphology may be informative in family and genus-level
547 cladistics, but it currently lacks precision for generic level distinctions considering its

548 inability to recover the **monophyly of the genus *Hipparrison***. Further investigation is
549 necessary to better understand the **phylogenetical interest of the selected character in**
550 **regards to their allometric constrains and variation**. Moreover, the bony labyrinth has
551 been proven to be a structure that **evolves mostly neutrally**. Including more bony
552 labyrinth characters, may be usefull for a better understanding of the **perissodactyls**
553 evolutionary history and to **obtain finer results**. Obviously, a much larger sampling would
554 be needed to fully investigate the phylogeny of Equidae or other perissodactyls, but we
555 believe **that petrosal and inner ear's morphology should be** a valuable addition in future
556 larger-scale phylogenetic analysis. Although only ten characters were **here** parsimony
557 informative, we think that with a larger **scale** taxonomic sample, more characters would
558 become phylogenetically informative.

559

560

561 **Acknowledgements**

562 This study would not have been possible without the support of Loïc Costeur (Natural
563 History Museum of Basel), and we are thus highly indebted to him for providing access
564 to the specimens studied here and for allowing us to CT-scan them, as a part of his
565 project SCN125-BC funded by the Swiss Academy of Sciences (SCNAT). We are also
566 extremely grateful to Georg Schulz (Department of Biomedical Engineering, University
567 of Basel) for CT-scanning the specimens for us. The authors would like to thank Alana
568 Gishlick and Ruth O'Leary (American Museum of Natural History) for access to and
569 curation of some comparison specimens in this study. Additionally, we would like to
570 thank R. Benjamin Sulser, John J. Flynn, Jocelyn A. Sessa, Bryce E. Koester, Jason P.
571 Downs, and Edward "Ted" B. Daeschler for useful interactions with the authors that
572 helped this project develop. We are very thankful for the support of the Research
573 Experiences for Undergraduates (REU) program of the U.S. National Science
574 Foundation for supporting O. Goodchild and S. Rosen at the American Museum of
575 Natural History.

576

577

578

579 **References**

580 Aguirre-Fernández G, Mennecart B, Sánchez-Villagra MR, Sánchez R, Costeur L. 2017.
581 A dolphin fossil ear bone from the northern Neotropics—insights into habitat
582 transitions in iniid evolution. *Journal of Vertebrate Paleontology* 37:e1315817. DOI:
583 10.1080/02724634.2017.1315817.

584 Agustí J, Antón M. 2002. *Mammoths, sabertooths, and hominids: 65 million years of*
585 *mammalian evolution in Europe*. New York: Columbia University Press.

586 Aiglstorfer M, Costeur L, Mennecart B, Heizmann EPJ. 2017. *Micromeryx? eiselei*—A
587 new moschid species from Steinheim am Albuch, Germany, and the first
588 comprehensive description of moschid cranial material from the Miocene of
589 Central Europe. *PLOS ONE* 12:e0185679. DOI: 10.1371/journal.pone.0185679.

590 Alberdi MT, Ginsburg L, Rodríguez J. 2004. *Anchitherium aurelianense* (Mammalia,
591 Equidae) (Cuvier, 1825) dans l'Orléanien (Miocène) de France.

592 Bai B, Meng J, Zhang C, Gong Y-X, Wang Y-Q. 2020. The origin of Rhinocerotoidea
593 and phylogeny of Ceratomorpha (Mammalia, Perissodactyla). *Communications*
594 *Biology* 3:1–16. DOI: 10.1038/s42003-020-01205-8.

595 Bai B, Wang Y, Meng J. 2010. New Craniodental Materials of *Litolophus gobiensis*
596 (Perissodactyla, “Eomoropidae”) from Inner Mongolia, China, and Phylogenetic
597 Analyses of Eocene Chalicotheres. *American Museum Novitates* 2010:1–27. DOI:
598 10.1206/678.1.

599 Bai B, Wang Y-Q, Meng J. 2018. The divergence and dispersal of early perissodactyls
600 as evidenced by early Eocene equids from Asia. *Communications Biology* 1:1–10.
601 DOI: 10.1038/s42003-018-0116-5.

602 Benoit J, Legendre LJ, Farke AA, Neenan JM, Mennecart B, Costeur L, Merigeaud S,
603 Manger PR. 2020. A test of the lateral semicircular canal correlation to head
604 posture, diet and other biological traits in “ungulate” mammals. *Scientific Reports*
605 10:19602. DOI: 10.1038/s41598-020-76757-0.

606 Bernor RL, Kaya F, Kaakinen A, Saarinen J, Fortelius M. 2021. Old world hipparion
607 evolution, biogeography, climatology and ecology. *Earth-Science Reviews*
608 221:103784. DOI: 10.1016/j.earscirev.2021.103784.

609 Billet G, Muizon CD. 2013. External and internal anatomy of a petrosal from the late
610 Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia). *Journal of*
611 *Vertebrate Paleontology* 33:455–469. DOI: 10.1080/02724634.2013.722153.

612 Cifelli RL. 1982. The Petrosal Structure of *Hyopsodus* with Respect to That of Some
613 Other Ungulates, and Its Phylogenetic Implications. *Journal of Paleontology*
614 56:795–805.

615 Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. 2008.
616 MeshLab: an Open-Source Mesh Processing Tool.

617 Cirilli O, Pandolfi L, Rook L, Bernor RL. 2021a. Evolution of Old World *Equus* and origin
618 of the zebra-ass clade. *Scientific Reports* 11:10156. DOI: 10.1038/s41598-021-
619 89440-9.

620 Cirilli O, Saarinen J, Pandolfi L, Rook L, Bernor RL. 2021b. An updated review on
621 *Equus stenonis* (Mammalia, Perissodactyla): New implications for the European
622 early Pleistocene *Equus* taxonomy and paleoecology, and remarks on the Old
623 World *Equus* evolution. *Quaternary Science Reviews* 269:107155. DOI:
624 10.1016/j.quascirev.2021.107155.

625 Colbert MW. 2006. *Hesperaletes* (Mammalia: Perissodactyla), a new tapiroid from the
626 middle Eocene of southern California. *Journal of Vertebrate Paleontology* 26:697–
627 711. DOI: 10.1671/0272-4634(2006)26[697:HMPANT]2.0.CO;2.

628 Costeur L, Andrea V, Célia B, Mennecart B. 2018a. On some ruminant petrosal bones
629 and their bony labyrinth from Senèze (Villafranchian, France). *Revue de*
630 *Paleobiologie* 37:443–456. DOI: 10.5281/zenodo.2545101.

631 Costeur L, Grohé C, Aguirre-Fernández G, Ekdale E, Schulz G, Müller B, Mennecart B.
632 2018b. The bony labyrinth of toothed whales reflects both phylogeny and habitat
633 preferences. *Scientific Reports* 8:7841. DOI: 10.1038/s41598-018-26094-0.

634 Costeur L, Mennecart B, Müller B, Schulz G. 2017. Prenatal growth stages show the
635 development of the ruminant bony labyrinth and petrosal bone. *Journal of Anatomy*
636 230:347–353. DOI: 10.1111/joa.12549.

637 Danilo L, Remy J, Vianey-Liaud M, Mérigeaud S, Lihoreau F. 2015. Intraspecific
638 Variation of Endocranial Structures in Extant Equus: A Prelude to Endocranial
639 Studies in Fossil Equoids. *Journal of Mammalian Evolution* 22:561–582. DOI:
640 10.1007/s10914-015-9293-x.

641 Doran, A. H. 1878. XVIII. Morphology of the mammalian Ossicula auditūs. *Transactions*
642 *of the Linnean Society of London. 2nd Series. Zoology*, 1(7), 371-497.

643 Ekdale EG. 2013. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental
644 Mammals. *PLOS ONE* 8:e66624. DOI: 10.1371/journal.pone.0066624.

645 Evin A, David L, Souron A, Mennecart B, Orliac M, Lebrun R. 2022. Size and shape of
646 the semicircular canal of the inner ear: A new marker of pig domestication?
647 *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*
648 338:552–560. DOI: 10.1002/jez.b.23127.

649 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C,
650 Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis

651 R. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging
652 Network. *Magnetic Resonance Imaging* 30:1323–1341. DOI:
653 10.1016/j.mri.2012.05.001.

654 Forstén A. 1982. *Hipparion primigenium melendezi* Alberdi reconsidered. *Annales
655 Zoologici Fennici* 19:109–113.

656 Kitts D. 1956. American *Hyracotherium* (Perissodactyla, Equidae). *Bulletin of the
657 American Museum of Natural History* 110.

658 Kramarz AG, Macphee RDE. 2023. Did some extinct South American native ungulates
659 arise from an afrothere ancestor? A critical appraisal of Avilla and Mothé's (2021)
660 Sudamerungulata – Panameridiungulata hypothesis. *Journal of Mammalian
661 Evolution* 30:67–77. DOI: 10.1007/s10914-022-09633-5.

662 Mader BJ. 2009. Details of the cranial anatomy of a primitive diplacodont brontothere,
663 cf. *Protitanotherium*, from the Wiggins Formation of Wyoming (Mammalia,
664 Perissodactyla, Brontotheriidae). *Journal of Vertebrate Paleontology* 29:1224–
665 1232. DOI: 10.1671/039.029.0414.

666 Manning, E. M. 1997. An early Oligocene rhinoceros jaw from the marine Byram
667 Formation of Mississippi. *Mississippi Geology*, 18(2)..

668 Mateus, A. L. D. 2018. The anatomical description of the osseous inner ear of tapirus
669 and the evolution of the petrosal in perissodactyla. Ph.D. dissertation, Minas
670 Gerais: Universidade Federal de Minas Gerais.

671 Mennecart B, Dziomber L, Aiglstorfer M, Bibi F, DeMiguel D, Fujita M, Kubo MO,
672 Laurens F, Meng J, Métais G, Müller B, Ríos M, Rössner GE, Sánchez IM, Schulz
673 G, Wang S, Costeur L. 2022. Ruminant inner ear shape records 35 million years of

674 neutral evolution. *Nature Communications* 13:7222. DOI: 10.1038/s41467-022-
675 34656-0.

676 Mennecart B, Guignard C, Dziomber L, Schulz G, Müller B, Costeur L. 2020. Allometric
677 and Phylogenetic Aspects of Stapes Morphology in Ruminantia (Mammalia,
678 Artiodactyla). *Frontiers in Earth Science* 8. DOI: 10.3389/feart.2020.00176.

679 Mennecart B, Rössner GE, Métais G, DeMiguel D, Schulz G, Müller B, Costeur L. 2016.
680 The petrosal bone and bony labyrinth of early to middle Miocene European deer
681 (Mammalia, Cervidae) reveal their phylogeny. *Journal of Morphology* 277:1329–
682 1338. DOI: 10.1002/jmor.20579.

683 O'leary MA. 2010. An Anatomical and Phylogenetic Study of the Osteology of the
684 Petrosal of Extant and Extinct Artiodactylans (Mammalia) and Relatives. *Bulletin of
685 the American Museum of Natural History* 2010:1–206. DOI: 10.1206/335.1.

686 Orliac MJ, Maugoust J, Balcarcel A, Gilissen E. 2023. Paleoneurology of Artiodactyla,
687 an Overview of the Evolution of the Artiodactyl Brain. In: Dozo MT, Paulina-
688 Carabajal A, Macrini TE, Walsh S eds. *Paleoneurology of Amniotes : New
689 Directions in the Study of Fossil Endocasts*. Cham: Springer International
690 Publishing, 507–555. DOI: 10.1007/978-3-031-13983-3_13.

691 Perini FA, Macrini TE, Flynn JJ, Bamba K, Ni X, Croft DA, Wyss AR. 2022. Comparative
692 Endocranial Anatomy, Encephalization, and Phylogeny of Notoungulata
693 (Placentalia, Mammalia). *Journal of Mammalian Evolution* 29:369–394. DOI:
694 10.1007/s10914-021-09583-4.

695 Radinsky LB. 1965. Early Tertiary Tapiroidea of Asia. *Bulletin of the American Museum
696 of Natural History* 129:2.

697 Raffi, I., Wade, B. S., Pälike, H., Beu, A. G., Cooper, R., Crundwell, M. P., ... &

698 Vernyhorova, Y. V. 2020. The Neogene period. In *Geologic time scale 2020* (pp.

699 1141-1215). Elsevier.

700 Ravel A, Orliac MJ. 2015. The inner ear morphology of the 'condylarthran' *Hyopsodus*

701 *lepidus*. *Historical Biology* 27:957–969. DOI: 10.1080/08912963.2014.915823.

702 Robert MP, Carstens A, de Beer FC, Hoffman JW, Steenkamp G. 2021. Micro-anatomy

703 of the ear of the southern white rhinoceros (*Ceratotherium simum simum*).

704 *Anatomia, Histologia, Embryologia* 50:316–323. DOI: 10.1111/ahe.12632.

705 Spaulding M, O'Leary MA, Gatesy J. 2009. Relationships of Cetacea (Artiodactyla)

706 Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils

707 and Character Evolution. *PLOS ONE* 4:e7062. DOI:

708 10.1371/journal.pone.0007062.

709 Swofford D. 2002. PAUP* 4.0 : Phylogenetic Analysis Using Parsimony

710 Tissier, J., Becker, D., Codrea, V., Costeur, L., Fărcaş, C., Solomon, A., Venczel, M., &

711 Maridet, O. (2018). New data on Amyodontidae (Mammalia, Perissodactyla) from

712 Eastern Europe: Phylogenetic and palaeobiogeographic implications around the

713 Eocene-Oligocene transition. *PLoS One*, 13(4), e0193774.

714 Wang S-Q, Ye J, Meng J, Li C, Costeur L, Mennecart B, Zhang C, Zhang J, Aiglstorfer

715 M, Wang Y, Wu Y, Wu W-Y, Deng T. 2022. Sexual selection promotes giraffoid

716 head-neck evolution and ecological adaptation. *Science* 376:eabl8316. DOI:

717 10.1126/science.abl8316.

718 Welker, F., Collins, M. J., Thomas, J. A., Wadsley, M., Brace, S., Cappellini, E., ... &

719 MacPhee, R. D. 2015. Ancient proteins resolve the evolutionary history of Darwin's

720 South American ungulates. *Nature*, 522(7554), 81-84.

721 Zhang B, Tong H. 2024. The comparative anatomy of the petrosal bone and bony

722 labyrinth of four small-sized deer. *The Anatomical Record* 307:566–580. DOI:

723 10.1002/ar.25303.

Table 1(on next page)

Petrosal specimens examined in the study

Specimen #	Taxon	Locality	Age	Left or right	Bony Labyrinth	Stapes
NMB.San.15063	<i>Anchitherium aurelianense</i>	Sansan, Gers France	Astaracian (MN 6)	Right	No (no contrast)	No
NMB.A.Mo.655	<i>Hipparium depereti</i>	Montredon, Occitanie, France	Vallesian (MN 10)	Left	Yes	No
NMB.Ccd.3	<i>Hipparium concudense</i>	Concud 3, Teruel, Spain	Turolian (MN 12)	Left	Yes	Yes
NMB.V.A.2753	<i>Equus stenonis</i>	Valdarno, Tuscany, Italy	Villafranchian (MN17)	Left	Yes	Yes
NMB.Se.141	<i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	Left	Yes	Yes
NMB.Se.141	<i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	Right	Yes	No
NMB.Se.554	<i>Equus senezensis</i>	Senèze, Alpes-de-Haute-Provence, France	Villafranchian (MN 17)	Left	Yes	No

1 Table 1. Petrosal specimens examined in the study.

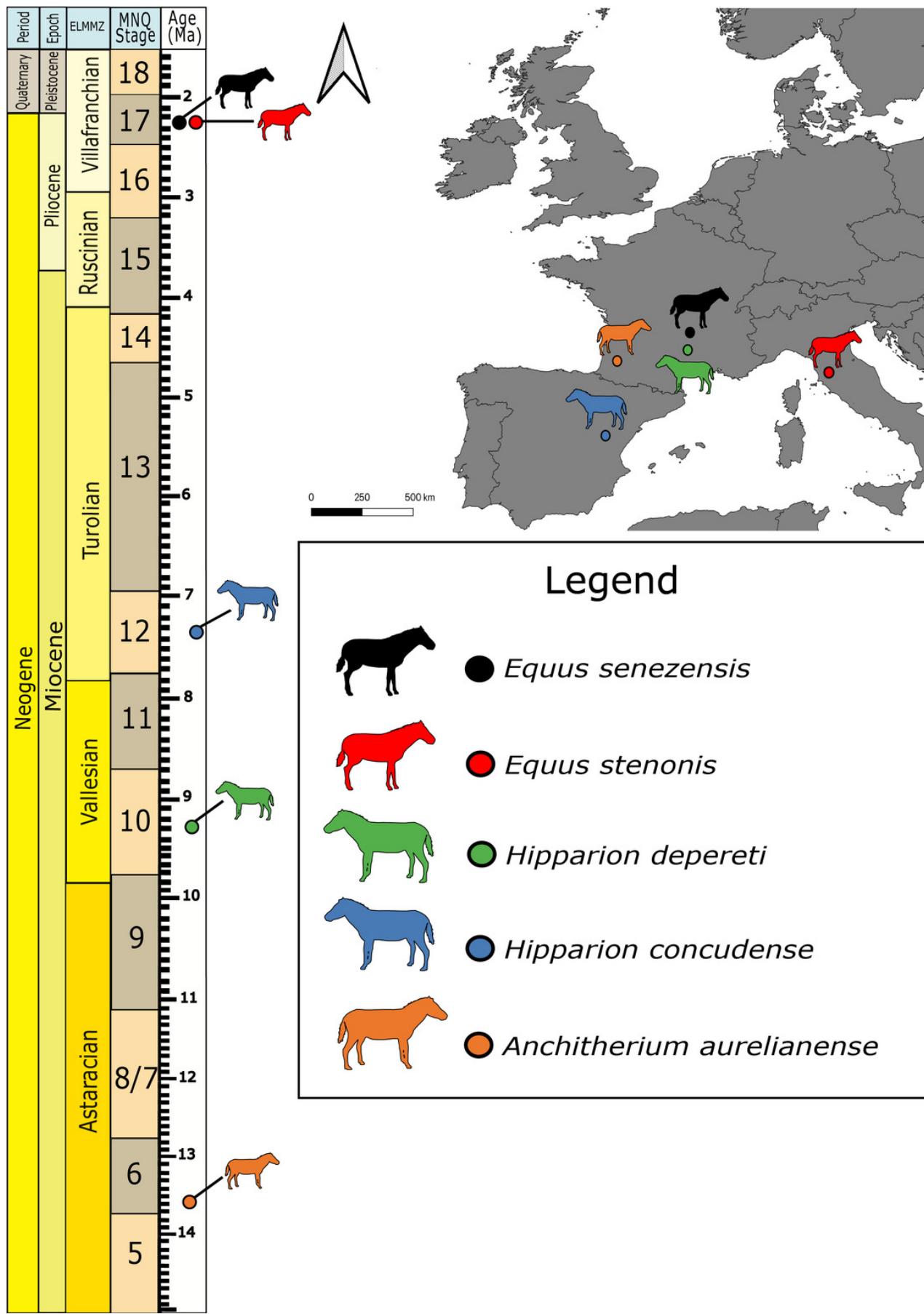

2

Figure 1

Map of fossil sites for equid specimens in this study (right) and the corresponding stratigraphic and biostratigraphic ages of those sites (left).

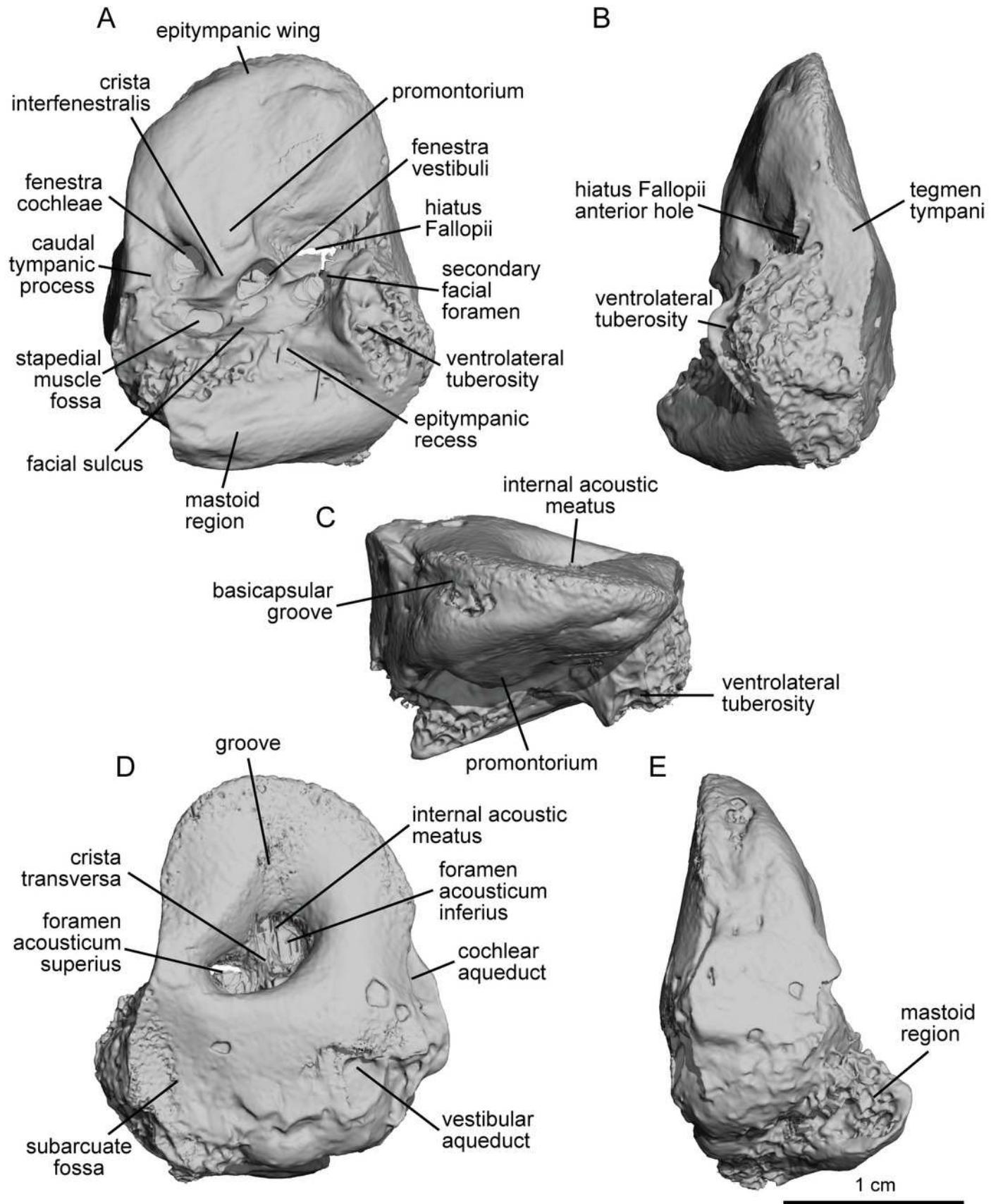

ELMMZ= European Large Mammal Mega-Zone, MNQ= Mammal Neogene/Quaternary Biostratigraphic Stage. Silhouettes from Phylopic made by Julian Bayona.

Figure 2

Right petrosal (NMB.San.15063) of *Anchitherium aurelianense* from Sansan.

(A) Ventrolateral view. (B) Ventromedial view. (C) Anterior view. (D) dorsomedial view. (E) Dorsolateral view. The specimen has been reversed from the original for comparison.

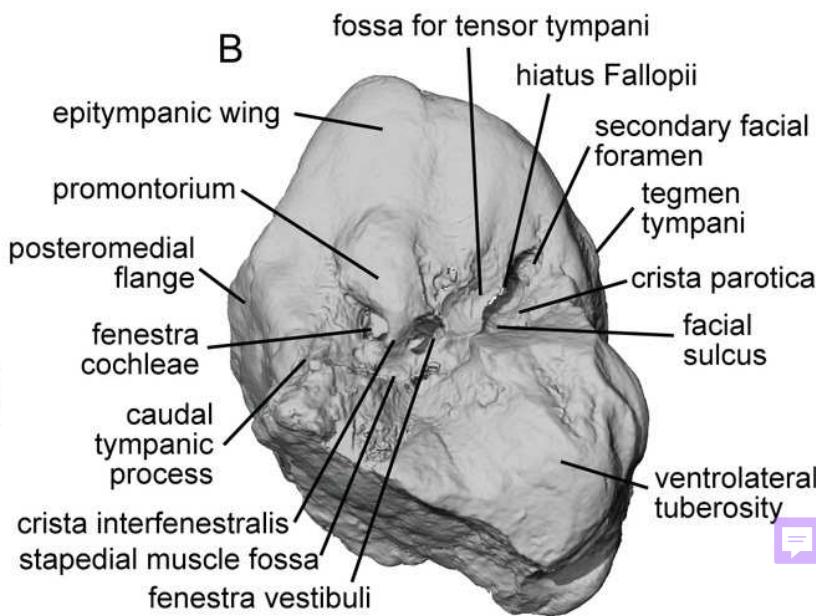
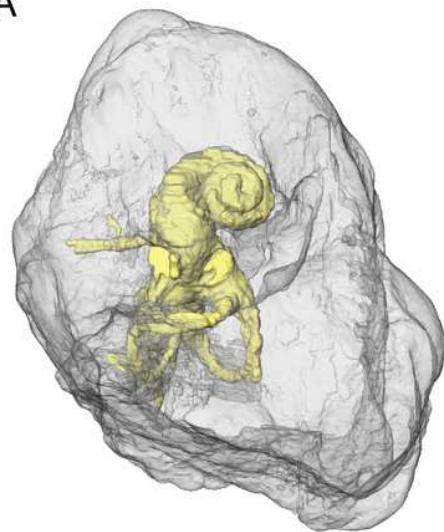
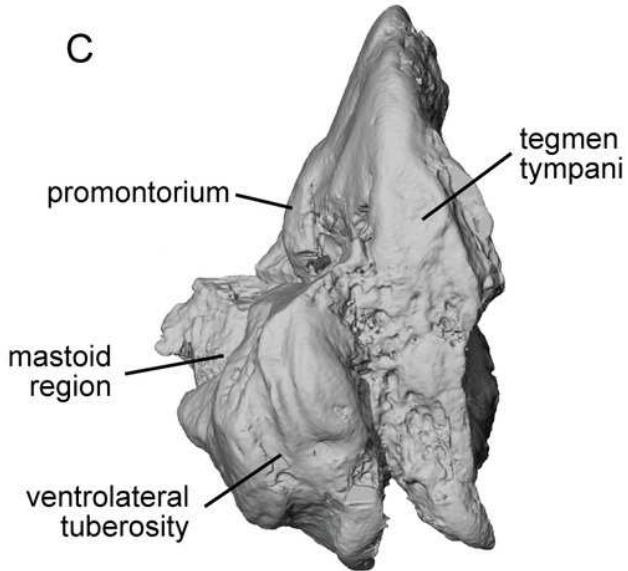
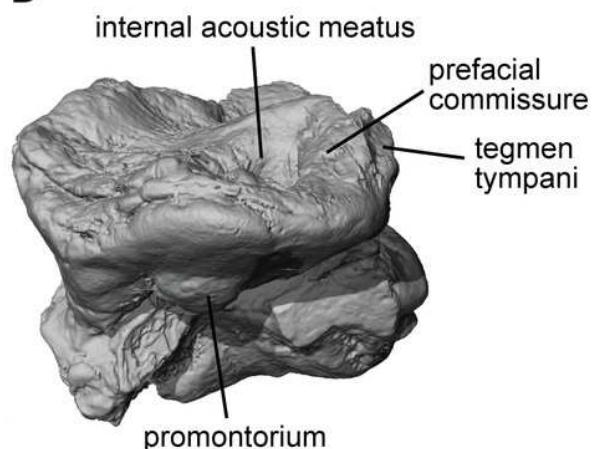
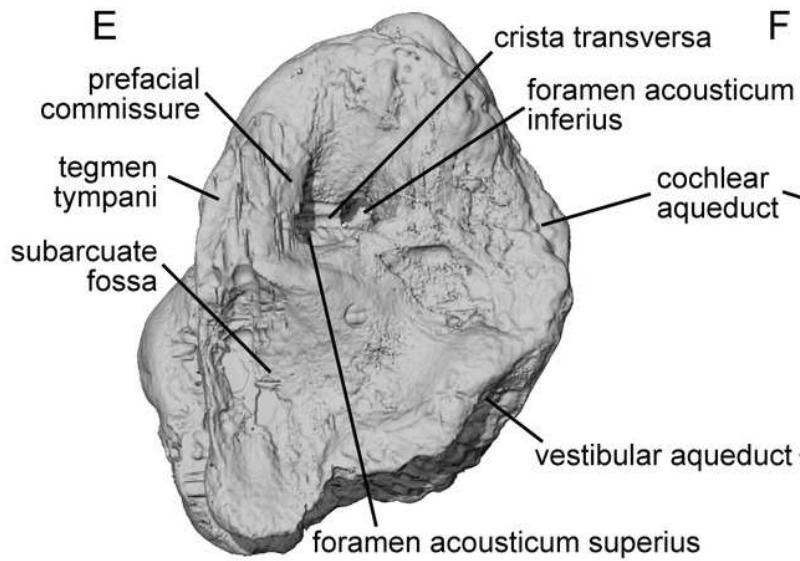



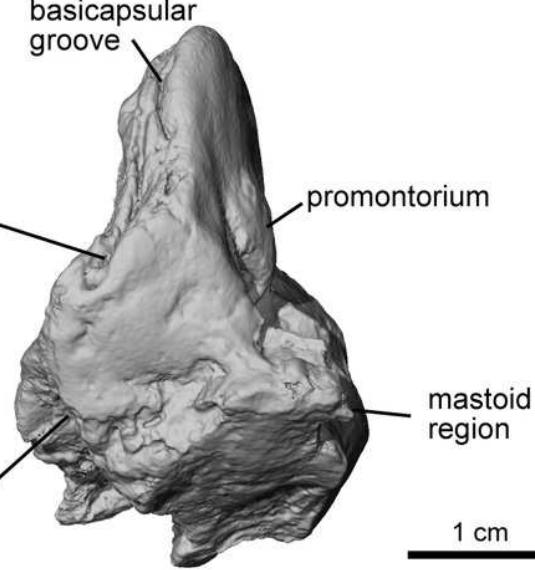
Figure 3


Left petrosal (NMB.A.Mo.655) of *Hipparium depereti* from Montredon.

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view.

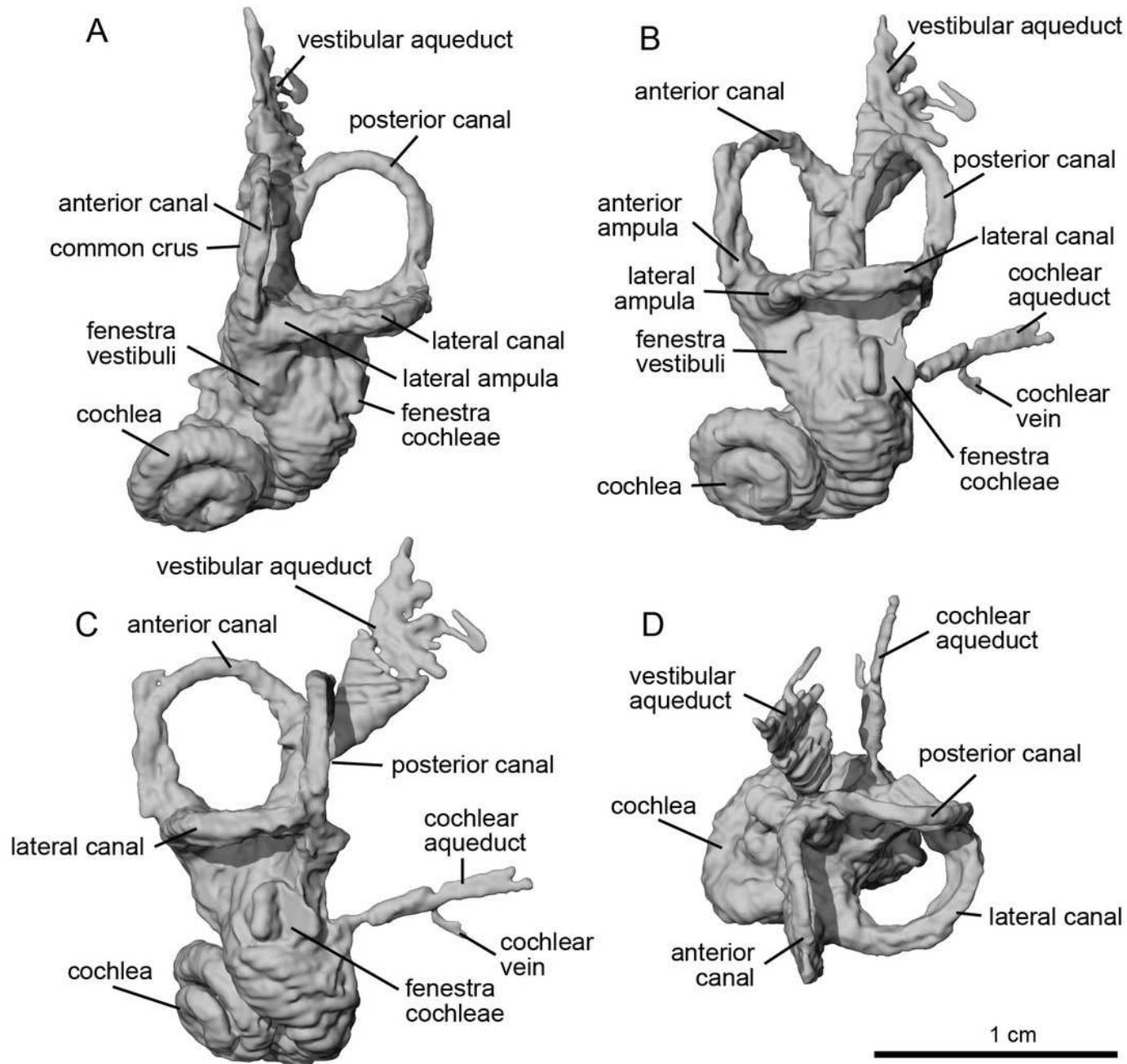

A


C


D

E

F



1 cm

Figure 4

Endocast of bony labyrinth of *Hippurion depereti* (NMB.A.Mo.655) from Montredon.

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view.

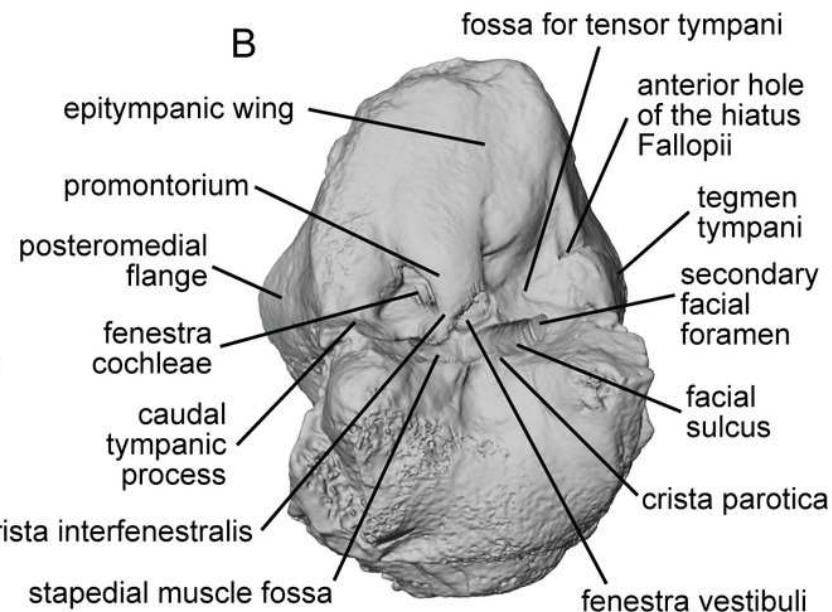
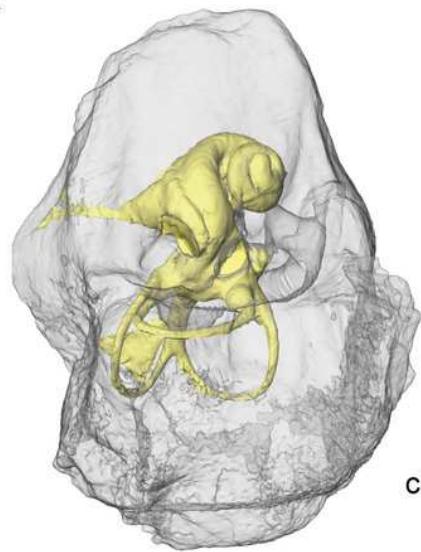
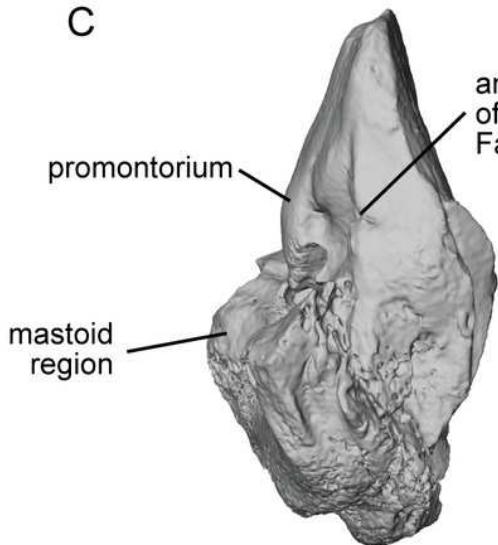
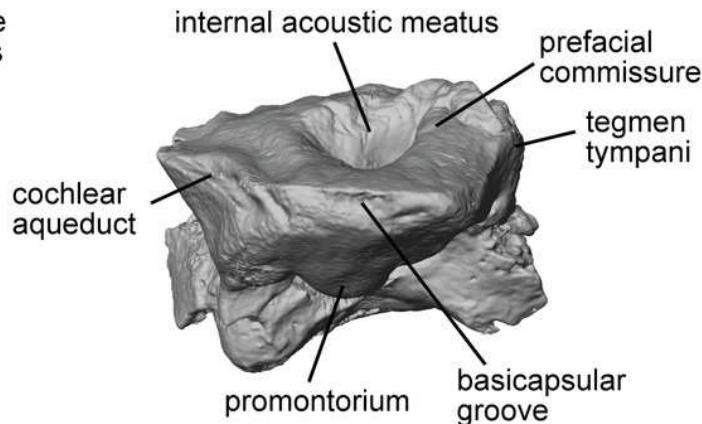
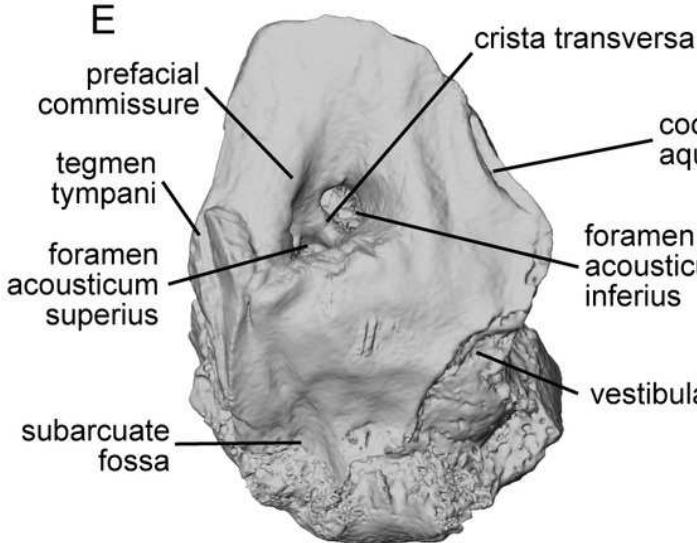



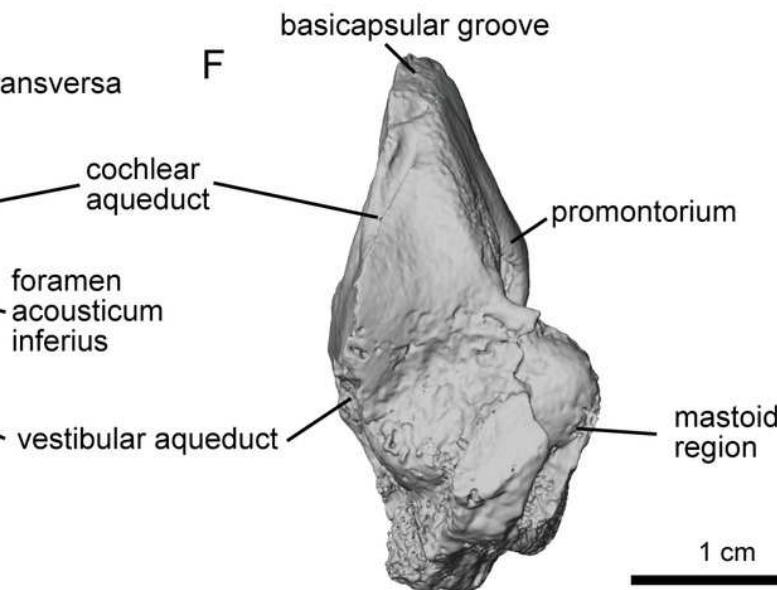
Figure 5


Left petrosal (NMB.Ccd.3) of *Hipparion concudense* from Concud3.

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view.


A


C


D

E

F

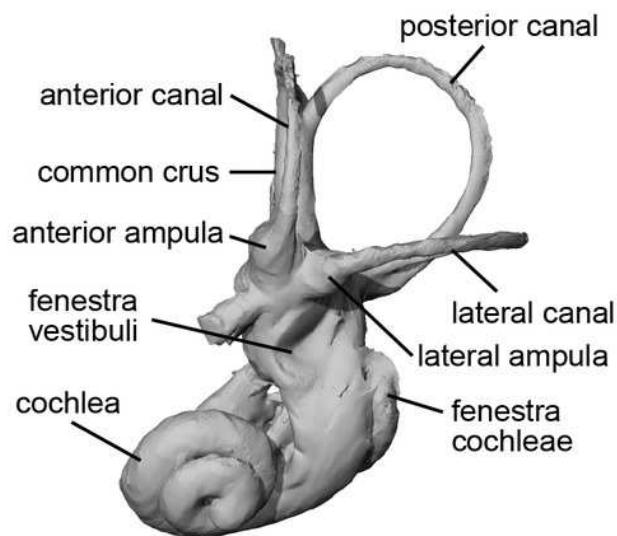
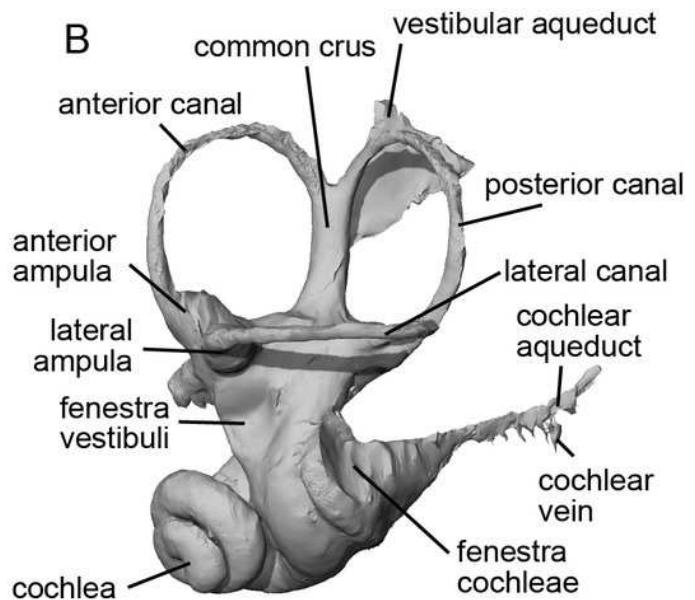
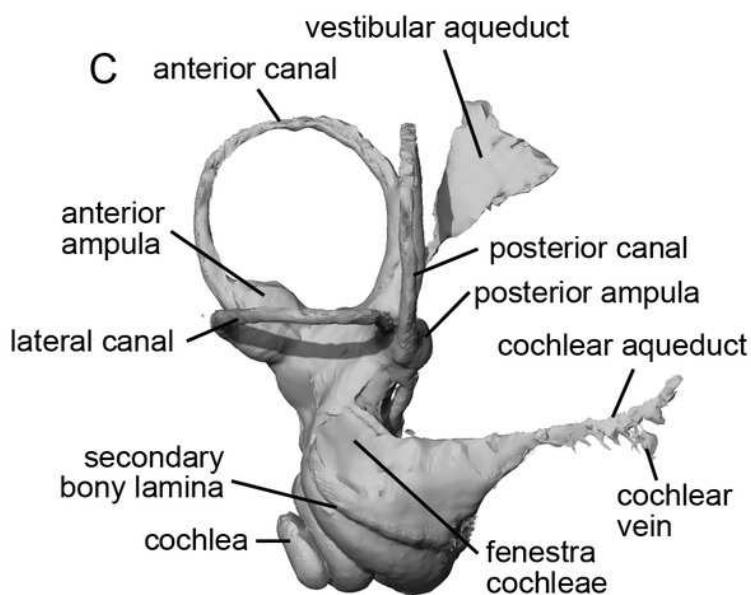
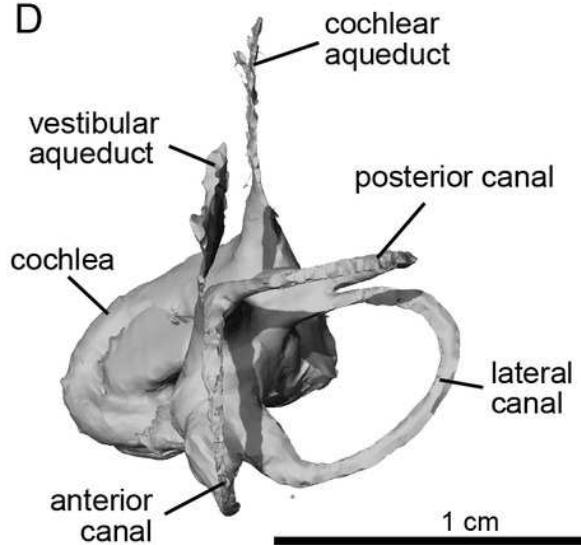

1 cm

Figure 6


Endocast of the bony labyrinth of *H. concudense* (NMB.Ccd.3) from Concud3.

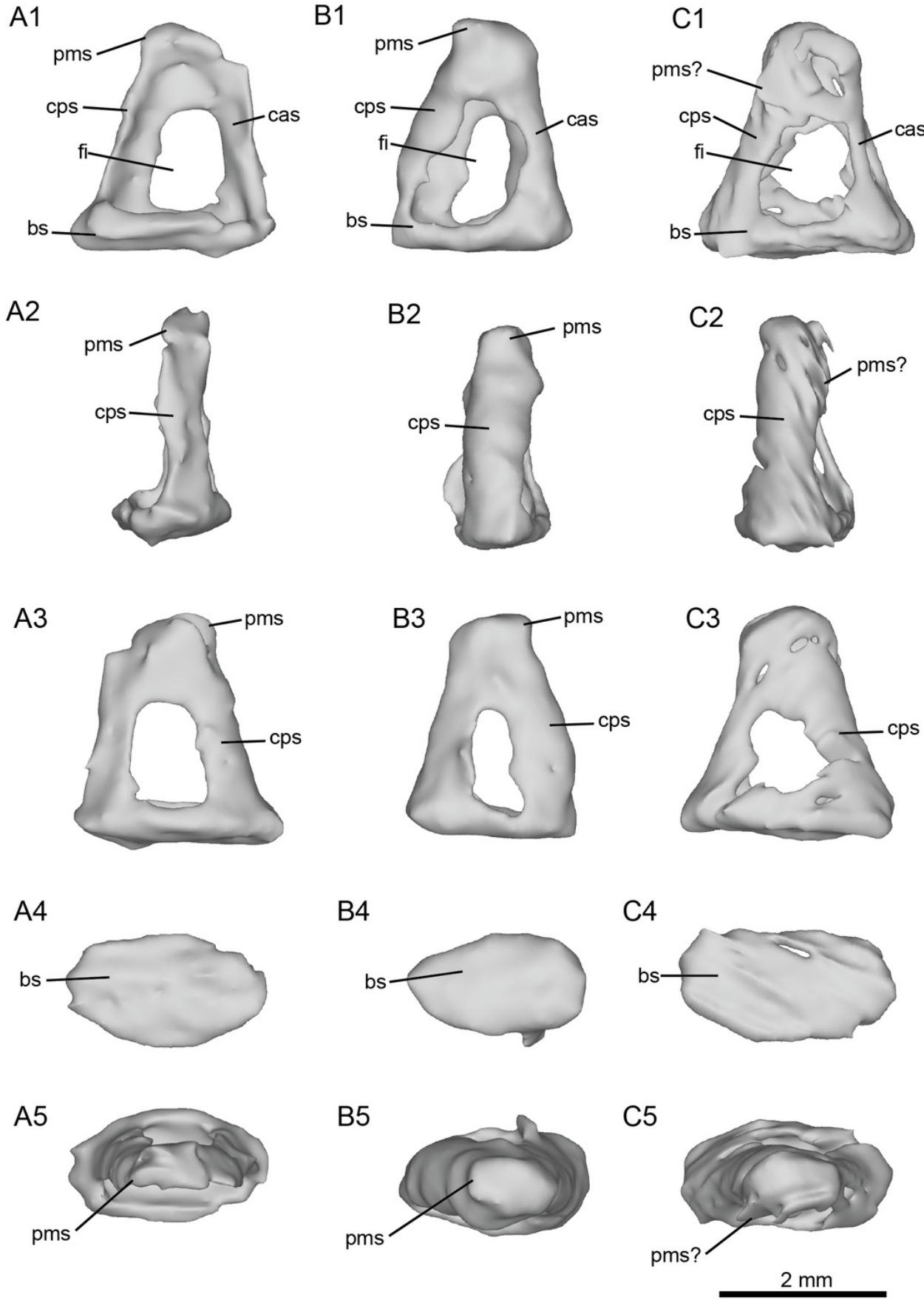
(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view.


A


B

C

D



1 cm

Figure 7

Left stapes preserved within the petrosals.

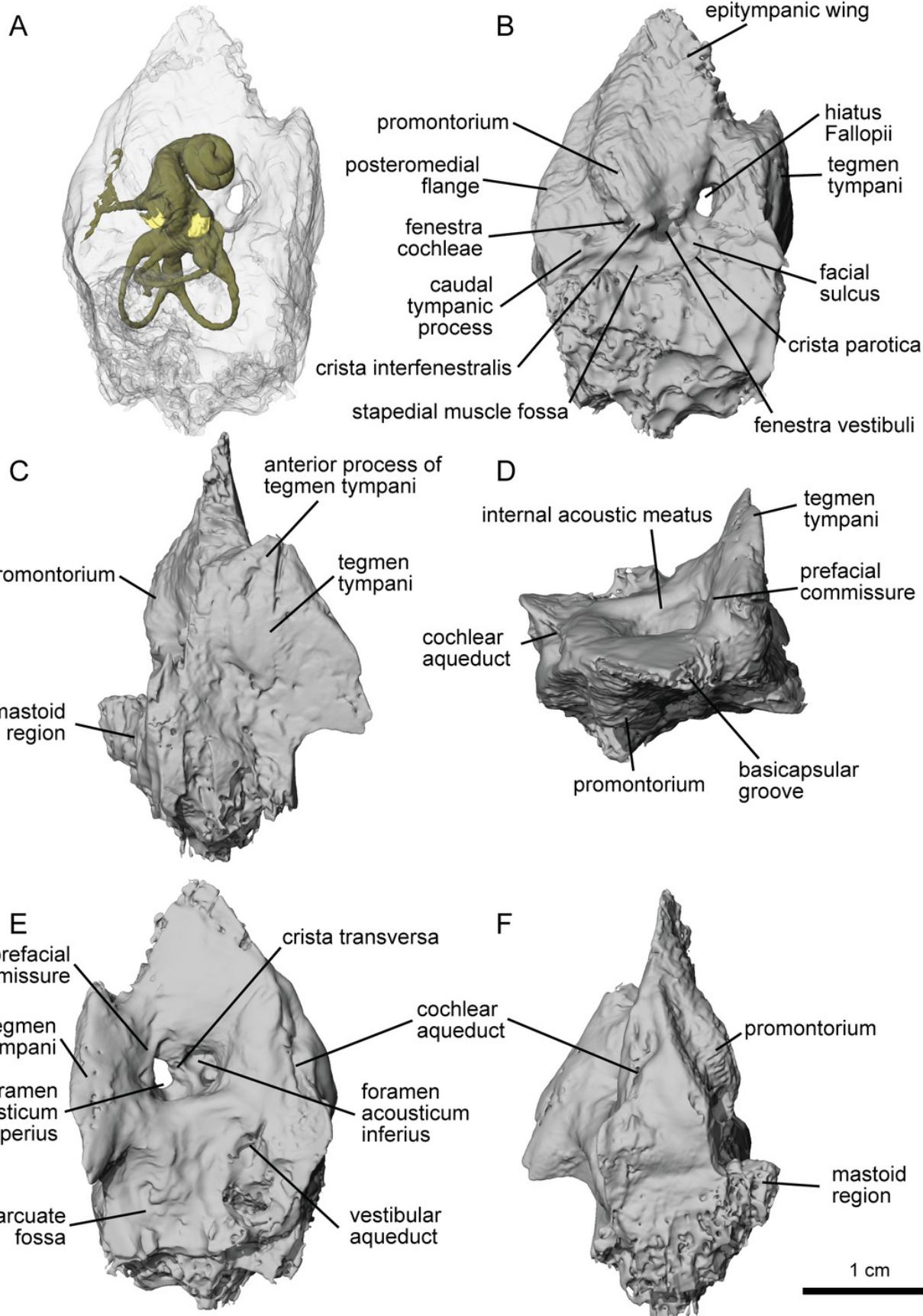

(A) *Hipparium concudense* (NMB.Ccd.3). (B) *Equus stenorhinus* (NMB.V.A.2753). (C) *Equus senezensis* (NMB.Se.141). Abbreviations: bs, *basis stapedis*; cas, *crus anterius stapedis*; cps, *crus posterius stapedis*; fi, *foramen intercrurale*; pms, *processus muscularis stapedis*.

Figure 8

Left petrosal (NMB.V.A.2753) of *Equus stenonis* from Valdarno.

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view.

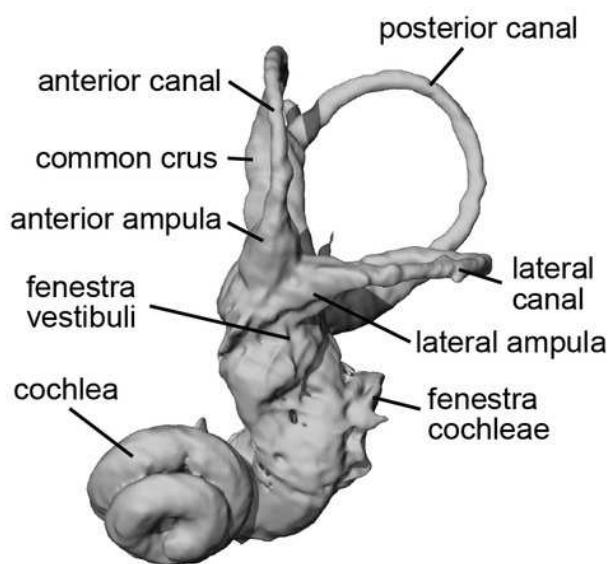
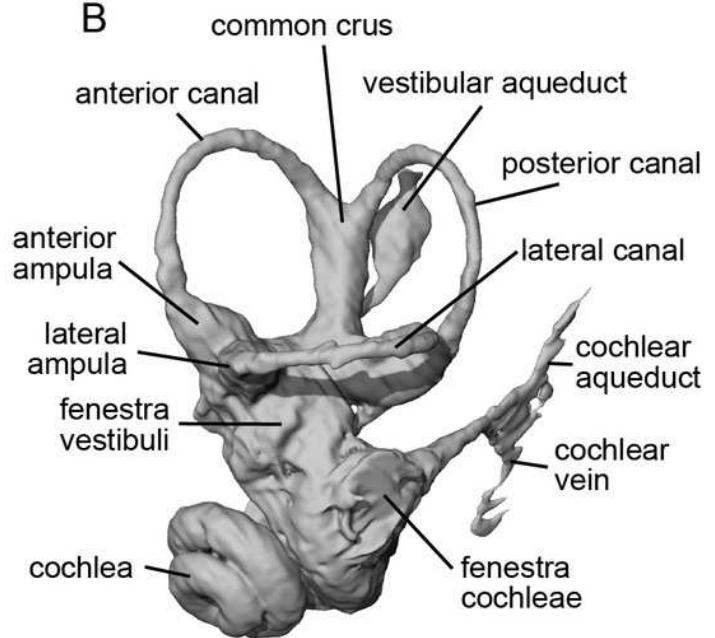
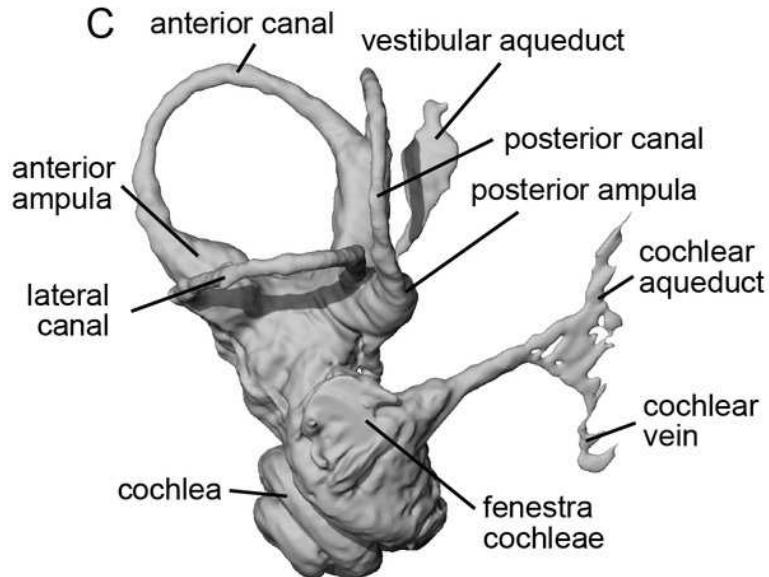
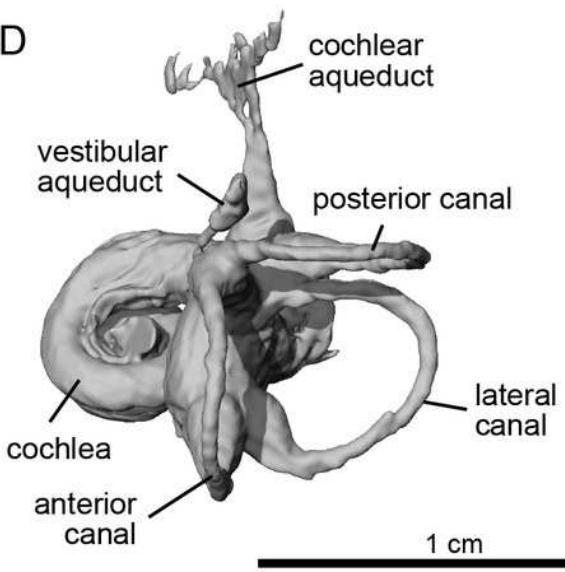


Figure 9


Endocast of the bony labyrinth of *E. stenonis* (NMB.V.A.2753) from Valdarno.

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view.


A


B

C

D

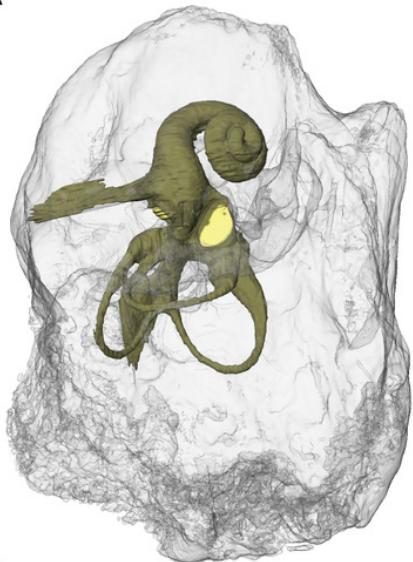
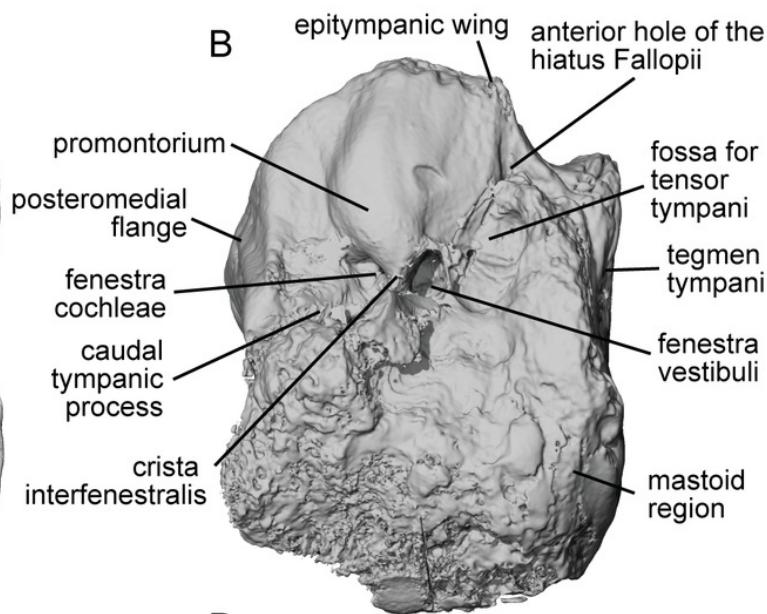
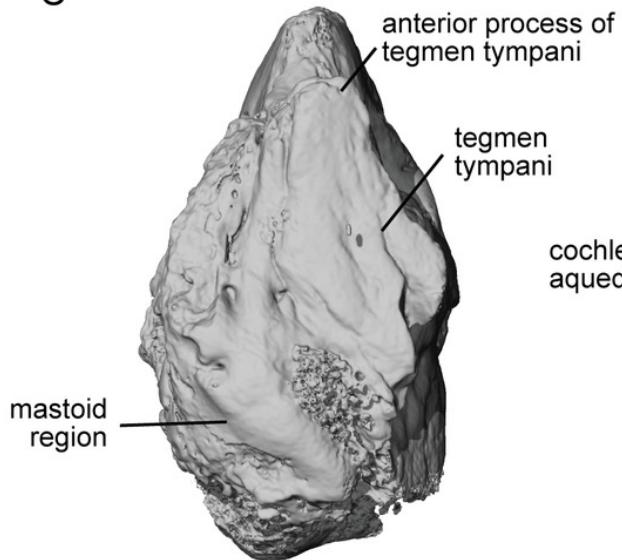
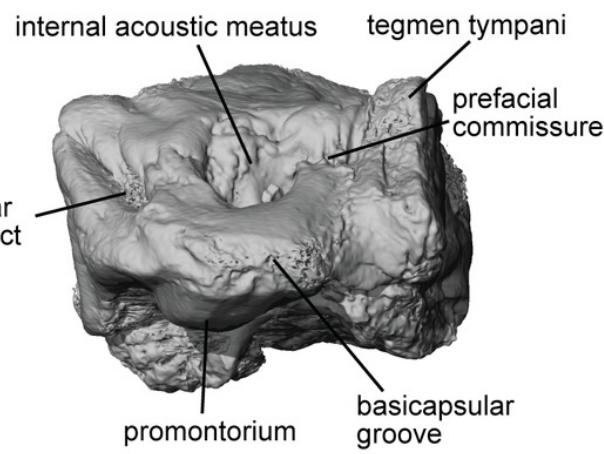

1 cm

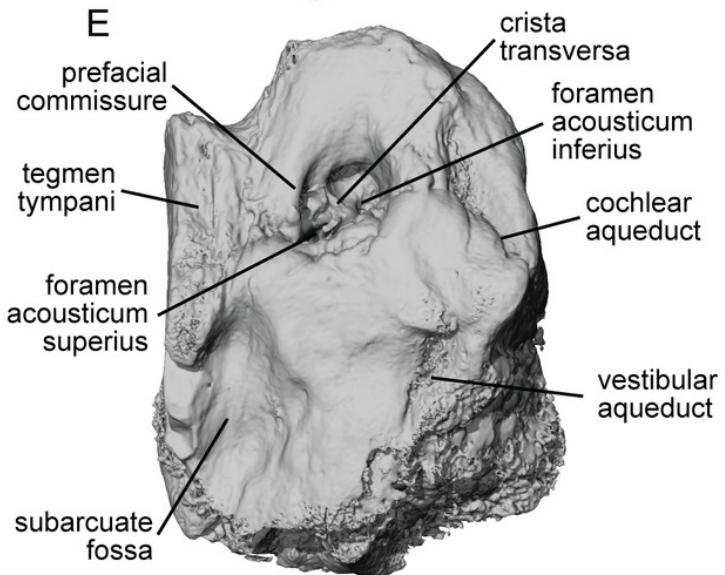
Figure 10

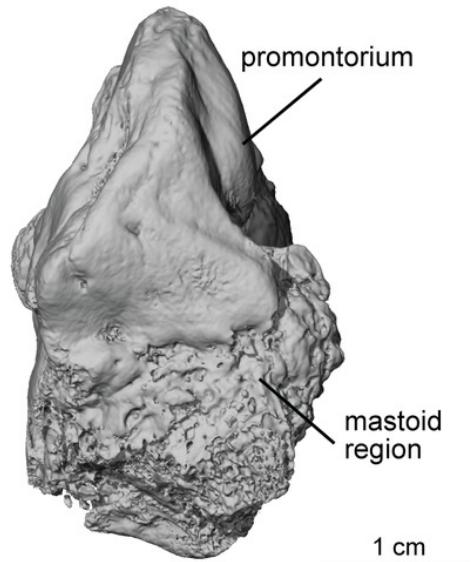

Left petrosal (NMB.Se.141) of *Equus senezensis* from Senèze.

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view.


A


B


C


D

E

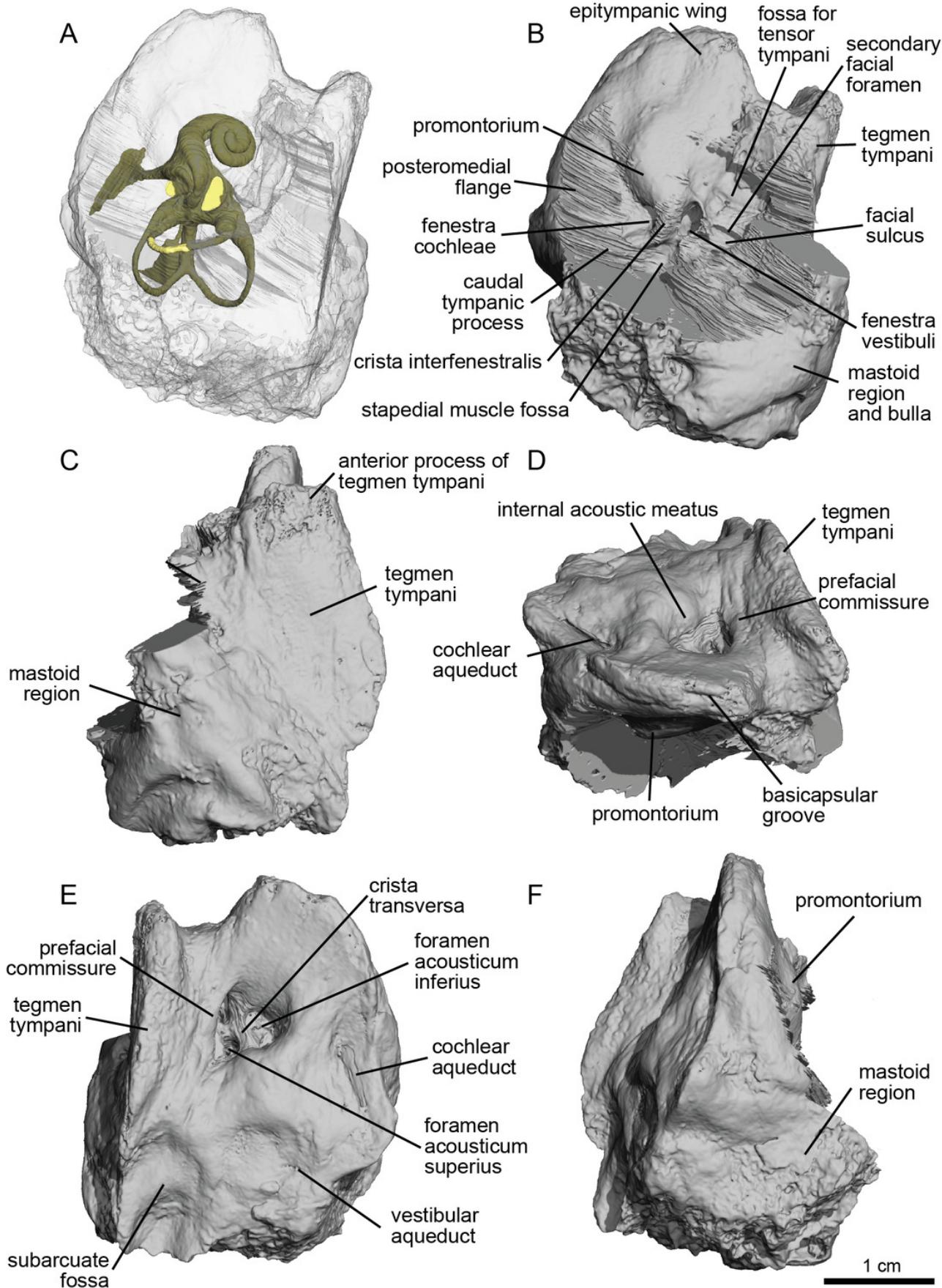

F

Figure 11

Left petrosal (NMB.Se.554) of *Equus senezensis* from Senèze.

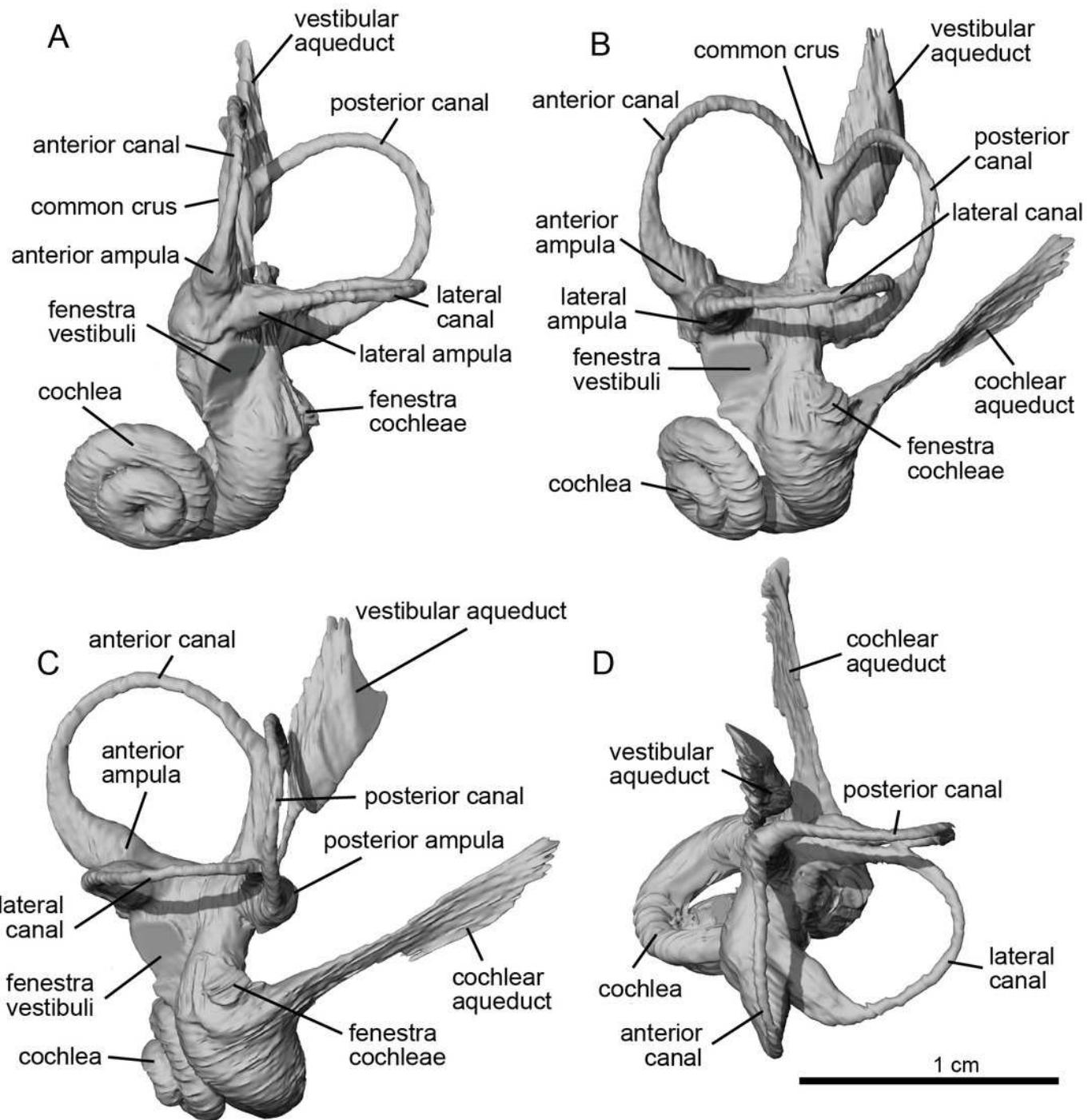

(A) Ventrolateral transparent view. (B) Ventrolateral opaque view. (C) dorsolateral view. (D) Anterior view. (E) Dorsomedial view. (F) Ventromedial view.

Figure 12

Endocast of the bony labyrinth of *Equus senezensis* (NMB.Se.141) from Senèze.


(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view.

Figure 13

Endocast of the bony labyrinth of *Equus senezensis* (NMB.Se.554) from Senèze.

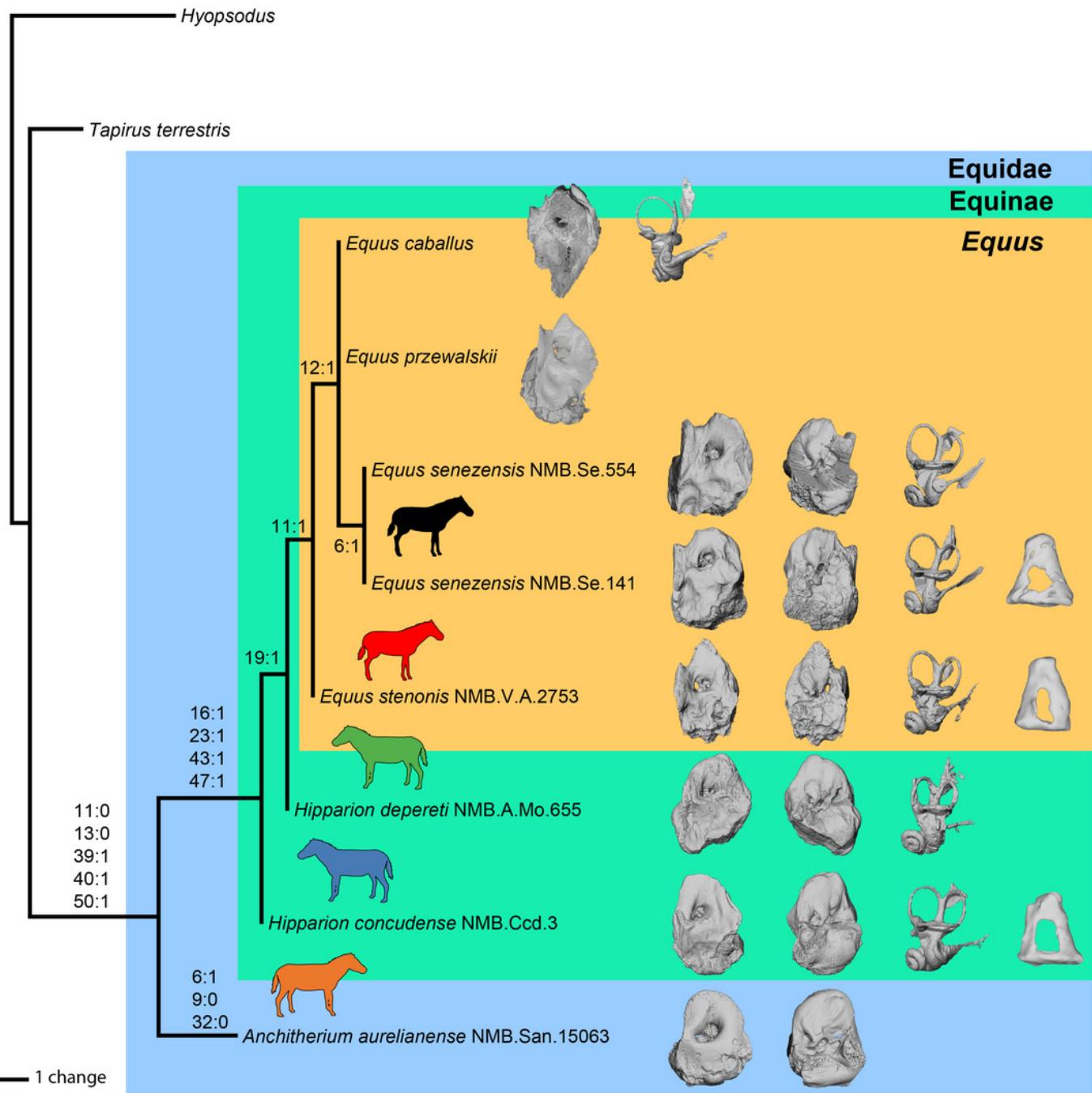

(A) Anterior view. (B) Posterior view. (C) Lateral view. (D) Dorsal view.

Figure 14

Phylogeny of the studied Equidae based on ear region characters.

Single most-parsimonious tree of 25 steps (CI=0.88, HI=0.12, RI=0.82) with *Hyopsodus* considered as outgroup, obtained by an exhaustive search with a parsimony algorithm in PAUP*4. Apomorphies are indicated as “character number:state” at nodes. Silhouettes of horses from Phylopic made by Julian Bayona.

