

Human-mediated dispersal of *Genotrigona thoracica* (Apidae: Meliponini) colonies promotes high genetic diversity and reduces population structuring in managed populations (#124171)

1

First submission

Guidance from your Editor

Please submit by **21 Sep 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

2 Figure file(s)

6 Table file(s)

2 Raw data file(s)

! Custom checks

DNA data checks

Have you checked the authors [data deposition statement](#)?

Can you access the deposited data?

Has the data been deposited correctly?

Is the deposition information noted in the manuscript?

Field study

Have you checked the authors [field study permits](#)?

Are the field study permits appropriate?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. Basic Reporting
- 2. Study design
- 3. Validity of the findings
- 4. General Comments
- 5. Confidential notes to the editor

• You can also annotate the review pdf and upload it as part of your review (optional).

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

Article types: Research and AI Application

BASIC REPORTING

Include the appropriate criteria template based on the type variable

Clear and unambiguous, professional English used throughout.

The article must be written in English and must use clear, unambiguous, technically correct text. The article must conform to professional standards of courtesy and expression.

Literature references, sufficient field background/context provided.

The article should include sufficient introduction and background to demonstrate how the work fits into the broader field of knowledge. Relevant prior literature should be appropriately referenced.

Professional article structure, figures, tables. Raw data shared.

The structure of the article should conform to an acceptable format of 'standard sections' (see our Instructions for Authors for our suggested format). Significant departures in structure should be made only if they significantly improve clarity or conform to a discipline-specific custom.

Figures should be relevant to the content of the article, of sufficient resolution, and appropriately described and labeled.

All appropriate raw data have been made available in accordance with our Data Sharing policy.

Self-contained with relevant results to hypotheses.

The submission should be 'self-contained,' should represent an appropriate 'unit of publication', and should include all results relevant to the hypothesis.

Coherent bodies of work should not be inappropriately subdivided merely to increase publication count.

EXPERIMENTAL DESIGN

Original primary research within [Aims and Scope](#) of the journal.

Research question well defined, relevant & meaningful. It is stated how research fills an identified knowledge gap.

The submission should clearly define the research question, which must be relevant and meaningful. The knowledge gap being investigated should be identified, and statements should be made as to how the study contributes to filling that gap.

Rigorous investigation performed to a high technical & ethical standard.

The investigation must have been conducted rigorously and to a high technical standard. The research must have been conducted in conformity with the prevailing ethical standards in the field.

Methods described with sufficient detail & information to replicate.

Methods should be described with sufficient information to be reproducible by another investigator.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.

Decisions are not made based on any subjective determination of impact, degree of advance, novelty or being of interest to only a niche audience. We will also consider studies with null findings. Replication studies will be considered provided the rationale for the replication, and how it adds value to the literature, is clearly described. Please note that studies that are redundant or derivative of existing work will not be considered. Examples of "acceptable" replication may include software validation and verification, i.e. comparisons of performance, efficiency, accuracy or computational resource usage.

All underlying data have been provided; they are robust, statistically sound, & controlled.

The data on which the conclusions are based must be provided or made available in an acceptable discipline-specific repository. The data should be robust, statistically sound, and controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

The conclusions should be appropriately stated, should be connected to the original question investigated, and should be limited to those supported by the results. In particular, claims of a causative relationship should be supported by a well-controlled experimental intervention. Correlation is not causation.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Human-mediated dispersal of *Geniotrigona thoracica* (Apidae: Meliponini) colonies promotes high genetic diversity and reduces population structuring in managed populations

Orawan Duangphakdee ¹, Ekgachai Jeratthitikul ², Pisit Poolprasert ³, Rujira Pongkitsittiporn ³, Chama Inson ^{3,4},
Atsalek Rattanawannee Corresp. 3, 4

¹ Native Honeybee and Pollinator Research Center, Ratchaburi Campus, King Mongkut's Institute of Technology Thonburi, Thung Khru, Bangkok, Thailand

² Animal Systematic and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Rachadaphise, Bangkok, Thailand

³ Department of Entomology, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok, Thailand

⁴ Research and Lifelong Learning Center for Urban and Environmental Entomology, Kasetsart University Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok, Thailand

Corresponding Author: Atsalek Rattanawannee
Email address: fagralr@ku.ac.th

The stingless bee *Geniotrigona thoracica* is a key managed pollinator in Southeast Asia, valued for its honey, propolis, and colony trade. In Thailand, frequent human-mediated movement of colonies raises concerns about its effects on genetic diversity and population structure. We analysed variation in mitochondrial (*COI* and *16S rRNA*) and nuclear (five microsatellite loci) markers from 70 colonies sampled across 17 meliponaries in seven southern provinces. Microsatellite data revealed high genetic diversity and low nuclear differentiation ($K = 1$; $F_{st} = 0.0024$ – 0.1219 ; all $P > 0.05$), with extensive gene flow ($N_m = 3.60$ – 207.83) among provinces. In contrast, mitochondrial markers indicated moderate-to-high differentiation ($F_{st} = 0.619$), consistent with mito-nuclear discordance arising from sex-biased. Managed colonies exhibited elevated heterozygosity and allelic richness, likely reflecting admixture from colony exchange, while unique haplotypes in certain provinces suggest introductions from external sources. Significant inbreeding was detected only in Yala, possibly linked to habitat loss and reduced effective population size. Our findings indicate that current meliponicultural practices maintain high genetic diversity in *G. thoracica* despite mitochondrial structuring, but increasing colony movement between genetically distinct populations may risk erosion of local adaptations, underscoring the need for genetic screening prior to translocation.

1 **Full title:** Human-mediated dispersal of *Genotrigona thoracica* (Apidae: Meliponini) colonies

2 promotes high genetic diversity and reduces population structuring in managed populations

3 **Short title:** Genetic structure of Thai stingless bee

4

5 Orawan Duangphakdee ¹, Ekgachai Jeratthitikul ², Posit Poolprasert ³, Rujira Pongkitsittiporn ³,

6 Chama Inson ^{3, 4}, and Atsalek Rattanawannee ^{3, 4, *}

7

8 ¹ Native Honeybee and Pollinator Research Center, Ratchaburi Campus, King Mongkut's

9 University of Technology Thonburi, Thung Khru, Bangkok 10140 Thailand

10 ² Animal Systematic and Molecular Ecology Laboratory, Department of Biology, Faculty of

11 Science, Mahidol University, Rama VI Road, Rachadhabhi, Bangkok 10400, Thailand

12 ³ Department of Entomology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan

13 Road, Lat Yao, Chatuchak, Bangkok 10900 Thailand

14 ⁴ Research and Lifelong Learning Center for Urban and Environmental Entomology, Kasetsart

15 University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand

16

17 * Corresponding author: Atsalek Rattanawannee

18 Email: fagralr@ku.ac.th

19 **ABSTRACT**

20

21 The stingless bee *Genotrigona thoracica* is a key managed pollinator in Southeast Asia,
22 valued for its honey, propolis, and colony trade. In Thailand, frequent human-mediated
23 movement of colonies raises concerns about its effects on genetic diversity and population
24 structure. We analysed variation in mitochondrial (*COI* and *16S rRNA*) and nuclear (five
25 microsatellite loci) markers from 70 colonies sampled across 17 meliponaries in seven southern
26 provinces. Microsatellite data revealed high genetic diversity and low nuclear differentiation (K
27 = 1; F_{st} = 0.0024–0.1219; all $P > 0.05$), with extensive gene flow (N_m = 3.60–207.83) among
28 provinces. In contrast, mitochondrial markers indicated moderate-to-high differentiation (F_{st} =
29 0.619), consistent with mito-nuclear discordance arising from sex-biased. Managed colonies
30 exhibited elevated heterozygosity and allelic richness, likely reflecting admixture from colony
31 exchange, while unique haplotypes in certain provinces suggest introductions from external
32 sources. Significant inbreeding was detected only in Yala, possibly linked to habitat loss and
33 reduced effective population size. Our findings indicate that current meliponicultural practices
34 maintain high genetic diversity in *G. thoracica* despite mitochondrial structuring, but increasing
35 colony movement between genetically distinct populations may risk erosion of local adaptations,
36 underscoring the need for genetic screening prior to translocation.

37

38 **Key words:** Stingless bee, *Genotrigona thoracica*, genetic structure, colony translocation

39

40

41

42 **1. INTRODUCTION**

43 Stingless bees, members of the tribe Meliponini, represent a diverse clade of eusocial
44 Hymenoptera widely distributed across tropical and subtropical regions (Quezada-Euán 2018;
45 Wongsa et al. 2024). With approximately 600 described species, they exhibit considerable
46 variation in morphological characteristics, colony structure, and foraging ecology (Hrncir &
47 Maia-Silva 2013; Quezada-Euán 2018; Rattanawanee & Duangphakdee 2019). As dominant
48 pollinators in many tropical ecosystems, stingless bees contribute significantly to the
49 reproductive success of both native flora and cultivated crops (Heard 1999; Wongsa et al. 2023).
50 Their ecological effectiveness is underpinned by traits such as floral constancy, perennial colony
51 maintenance, reduced defensive behavior due to non-functional stingers, and efficient worker
52 recruitment, all of which enhance their value as pollinators in natural and agroecosystem
53 (Bartelli et al. 2014; Wongsa et al. 2023).

54 During the past two decades, the practice of stingless beekeeping, or meliponiculture,
55 gained increasing traction in Thailand among both commercial and small-scale beekeepers,
56 reflecting its dual role in promoting ecological sustainability and generating supplementary
57 income (Rattanawanee & Duangphakdee 2019). To date, at least 33 stingless bee species across
58 10 genera have been reported in Thailand, with *Geniotrigona thoracica* emerging as one of the
59 most successfully managed species for commercial purposes (Rattanawanee & Duangphakdee
60 2019; Wongsa et al. 2023). This species is well managed to standard wooden hive boxes and is
61 increasingly utilized for pollination services in open-field cultivation of economically important
62 crops. Beyond its pollination role, *G. thoracica* is also valued for its high-yield and high-value
63 production of honey and propolis, as well as for the commercial trade of whole colonies
64 (Rattanawanee & Duangphakdee 2019).

65 In domestic markets, the honey produced by *G. thoracica* is typically sold at prices
66 ranging from 1,000 to 1,200 Thai Baht (approximately 30–36 USD) per kilogram, substantially
67 higher than that of honey derived from *Apis mellifera*, and at least twice the price of honey from
68 native species such as *A. cerana*, *A. dorsata*, and *A. florea* (Rattanawannee & Duangphakdee
69 2019). Notably, a premium product known as “emerald honey,” which is produced by *G.*
70 *thoracica* from nectar predominantly collected from *Melaleuca cajuputi* in the southern
71 provinces of Pattani and Narathiwat, can command prices as high as 6,000 Thai Baht
72 (approximately 180 USD) per kilogram (A. Rattanawannee, pers. comm.). Furthermore, fully
73 provisioned *G. thoracica* colonies maintained in wooden hives are commercially valued between
74 6,000 and 8,000 Thai Baht (approximately 180–242 USD) per colony (A. Rattanawannee, pers.
75 comm.). With increasing consumer demand for high-quality stingless bee products,
76 meliponiculture, particularly involving *G. thoracica*, holds substantial promise as a
77 supplementary livelihood strategy for rural communities throughout southern Thailand.

78 The commercial exchange and relocation of stingless bee colonies facilitate their
79 movement beyond native geographic boundaries (Chapman et al. 2018; Jaffé et al. 2016b). This
80 anthropogenic activity has been associated with ecological concerns, particularly the risk of
81 introducing non-native species into novel environments, which may negatively impact
82 indigenous bee communities and disrupt local biodiversity and ecological functions (Beekman et
83 al. 2008; Byatt et al. 2015; Inoue & Yokoyama 2010; Kondo et al. 2009; Soland-Reckeweg et al.
84 2009). Moreover, translocating colonies across regions increases the likelihood of disseminating
85 parasites and pathogens that can threaten both wild and managed bee populations (Byatt et al.
86 2015; Chapman et al. 2018; Lozier & Zayed 2017; Meixner et al. 2015; Oldroyd & Nanork
87 2009). Understanding the genetic composition and population structure of stingless bees is

88 therefore critical for developing sustainable management strategies (Koffler et al. 2017; Lozier &
89 Zayed 2017). Such genetic insights can inform domestication efforts and assist beekeepers in
90 minimizing the risks of inbreeding and genetic erosion, which are common challenges in
91 meliponiculture (Chapman et al. 2018).

92 The movement of bee colonies beyond their native hybrid zones and natural geographic
93 boundaries can lead to genetic consequences such as hybridization and mating interference
94 (Byatt et al. 2015). Hybridization involves the genetic exchange between previously
95 reproductively isolated populations (Byatt et al. 2015), potentially resulting in the erosion of
96 unique genetic lineages and the homogenization of distinct ecotypes (Frankham et al. 2010). This
97 process may ultimately lead to the loss of locally adapted genotypes through genomic swamping
98 (Frankham et al. 2010). Mating interference, on the other hand, arises from interspecific
99 reproductive interactions that negatively impact reproductive success (Byatt et al. 2015; de la
100 Rúa et al. 2009), such as reduced fertility (Byatt et al. 2015; Chapman et al. 2018; Koeniger &
101 Koeniger 2000; Remnant et al. 2014) or unsuccessful mating attempts, thereby diminishing the
102 overall fitness of native bee populations (Groening & Hochkirch 2008).

103 Previous research has shown that the extent of inbreeding and genetic differentiation
104 among wild and managed stingless bee populations varies considerably across species and
105 geographic regions (Chapman et al. 2018; Landaverde-González et al. 2017; Rattanawanee et
106 al. 2020; Santiago et al. 2016). This variability underscores the importance of species and
107 context-specific assessments (Chapman et al. 2018), as findings from one system may not be
108 applicable to another. Importantly, empirical evidence suggests that human-mediated
109 management practices may exert a stronger influence on population genetic structure than natural
110 factors such as dispersal ability, habitat loss, elevation gradients, or climatic conditions

111 (Greenleaf et al. 2007; Kükrer et al. 2021). These observations highlight the need for careful
112 consideration of beekeeping interventions to avoid compromising genetic integrity and local
113 adaptation in stingless bee populations (Jaffé et al. 2016b).

114 The genetic structure of a population is shaped by the dynamic interplay of evolutionary
115 processes, including natural selection, genetic drift, gene flow, and mutation, all of which
116 influence the distribution and frequency of genetic variation within and among populations
117 (Bluher et al. 2020; Hartl & Clark 1997). In the context of managed pollinators, these forces can
118 be further modified by anthropogenic factors such as selective breeding, artificial colony
119 propagation, and human-mediated dispersal. In this study, we examined the genetic architecture
120 of *G. thoracica* (Apidae: Meliponini), a stingless bee species of economic and ecological
121 importance that is extensively cultivated for honey production across various regions of
122 Thailand. Our objectives were to determine whether managed populations of *G. thoracica*
123 exhibit significant genetic differentiation from one another, and to evaluate whether they display
124 elevated levels of inbreeding. By analyzing mitochondrial and microsatellite markers, this
125 research provides critical insights into the extent to which meliponicultural practices influence
126 the genetic diversity and structure of *G. thoracica*. These findings have direct implications for
127 the sustainable management and conservation of stingless bees, particularly in the context of
128 colony trade, domestication, and the maintenance of genetically healthy populations for long-
129 term apicultural success.

130

131 **2. MATERIALS AND METHODS**

132 **Sampling and DNA extraction**

133 Seventy adult worker bees were sampled from 17 meliponaries situated in the southern
134 region of Thailand (Table S1; Fig 1). Each of the bees represented one individual per colony.
135 Collections were performed at the entrance tubes of each nest to ensure colony-specific
136 sampling. All specimens were immediately preserved in absolute ethanol and stored at -20 °C
137 prior to laboratory analysis. The geographic coordinates of each sampling site were recorded
138 using a GPS handheld device (Garmin eTrex 20X Handheld GPS). The thorax was used for
139 genomic DNA extraction using a DNeasy® Blood & Tissue kit (Qiagen, Germantown, MD, US)
140 following to the instructions of manufacturer.

141 **Ethics statement**

142 This study did not require any special permits, as it involved no endangered or protected
143 species. Only a limited number of specimens were collected, and all procedures adhered to
144 ethical standards in accordance with established research protocols. Animal handling and
145 experimental methods complied with the ethical guidelines approved by the Animal Experiment
146 Committee of Kasetsart University, Thailand (Approval No. ACKU68-AGR-005).

147

148 **Microsatellite analysis**

149 We genotyped a single worker from each colony using a panel of five microsatellite loci,
150 including TC3.302 and TC4.287 originally developed for *Trigona carbonaria* (Green et al.
151 2001), A43 and A113 derived from *Apis mellifera* (Estoup et al. 1995), and B124 isolated from
152 *Bombus terrestris* (Estoup et al. 1993). PCR amplifications were performed according to the
153 published protocols specific to each marker. Amplified fragments were submitted to Macrogen
154 Inc. (Seoul, South Korea) for fragment analysis. The resulting electropherograms were manually
155 inspected and allele sizes were determined using Peak Scanner Software v1.0 (Thermo Fisher
156 Scientific), ensuring consistency and accuracy in allele scoring for genetic analyses.

157 Genetic diversity parameters, including the number of alleles (N), the effective number of
158 alleles (N_e), and both observed (H_o) and expected heterozygosity (H_e), were calculated for each
159 population and locus using Option 5 of the GENEPOP software package (Rousset 2008). To
160 evaluate deviations from Hardy–Weinberg equilibrium (HWE), we performed exact tests for
161 HWE and assessed genotypic linkage disequilibrium among loci across populations within
162 GENEPOP.

163 To investigate the genetic structure of the populations, we employed a Bayesian
164 clustering approach using STRUCTURE version 2.3.3 (Pritchard et al. 2000). Analyses were
165 conducted under an admixture model with correlated allele frequencies. Each run comprised a
166 burn-in period of 100,000 steps followed by 1,000,000 Markov Chain Monte Carlo (MCMC)
167 iterations. We tested values of K (the number of genetic clusters) ranging from 1 to 10, with ten
168 independent replicates for each K to ensure consistency. The optimal number of clusters was
169 determined using the ΔK method proposed by Evanno et al. (2005) as implemented in Structure
170 Harvester (Earl & von Holdt 2012).

171

172 **Mitochondrial DNA analysis**

173 Two mitochondrial gene fragments—cytochrome c oxidase subunit I (*COI*) and large
174 ribosomal subunit rRNA (*16S rRNA*)—were amplified and sequenced by Macrogen Inc. (South
175 Korea). Amplification of the *COI* gene employed primers LoboF1 and LoboR1 (Lobo et al.
176 2013), while *16S rRNA* was targeted using primers 16sar-L-my and 16Sbr-H-my (Lydeard et al.
177 1996). Forward and reverse sequence reads were assembled and manually edited using MEGA11
178 software (Tamura et al. 2021). All resulting sequences have been deposited in the GenBank
179 under the accession numbers provided in Table S1. Sequence alignments for each gene were
180 performed independently in MAFFT v.7.49 (Katoh & Standley 2013) by using the L-INS-i

181 algorithm for all genes. Following alignment and trimming, the final sequence lengths were 649
182 bp for *COI* and 499 bp for *16S rRNA*.

183 Nucleotide base compositions for the partial *COI* and *16S rRNA* gene sequences were
184 analyzed using MEGA11 (Tamura et al. 2021). Genetic diversity parameters, including the
185 number of polymorphic sites (*S*), average number of nucleotide differences (*k*), number of
186 haplotypes (*No*), haplotype diversity (*hd*), and average pairwise nucleotide differences (*Pi*), were
187 subsequently calculated using DNAsp version 5.0 (Librado & Rozas 2009).

188 To infer the historical demographic patterns of *G. thoracica* populations in Thailand, we
189 performed neutrality tests including Tajima's *D* (Tajima 1989) and Fu's *Fs* (Fu 1997) using
190 ARLEQUIN v3.5 (Excoffier & Lischer 2010). Tajima's *D* was used to detect departures from
191 neutrality, where positive values may indicate population structure or contraction, and negative
192 values suggest population expansion. Fu's *Fs* was applied to assess the excess of rare alleles,
193 with large negative values interpreted as evidence of the recent population growth. Additionally,
194 Ramos-Onsins and Rozas's *R₂* statistic (Ramos-Onsins & Rozas 2002) was calculated in DNAsp
195 v5.0 (Librado & Rozas 2009). The statistical significance of all tests was evaluated using 1,000
196 coalescent simulations.

197 To evaluate the impact of stingless beekeeping practices, particularly colony
198 translocation, on the genetic structure of *G. thoracica*, an analysis of molecular variance
199 (AMOVA) (Excoffier et al. 1992) was conducted using the full mitochondrial dataset in
200 ARLEQUIN version 3.5.2.2 (Excoffier & Lischer 2010). Pairwise *F_{st}* values were calculated to
201 estimate genetic distances between populations and incorporated into the AMOVA, with
202 statistical significance assessed through 1,000 permutations at a threshold of $\alpha = 0.05$. In

203 addition, *F*-statistics were employed to quantify the extent of genetic differentiation, with
204 significance likewise evaluated using 1,000 random permutations.

205 Phylogenetic trees were reconstructed using maximum-likelihood (ML) and Bayesian
206 inference (BI) analyses using the dataset of 70 workers of *G. thoracica* collected from southern
207 Thailand and one sample from Malaysia as ingroups, along with other seven stingless bee
208 species as outgroups. Details of the taxon sampling used in the phylogenetic analysis are
209 provided in Table S1. The concatenated alignment was used for unique haplotype identification
210 as implement in DNAsp v5.0. Then, the concatenated alignment of the unique haplotype was
211 divided into four partitions (three partitions for each of three *COI* codons and one partition for
212 *16S rRNA* gene). The best-fit substitution model for each partition was determined using
213 Partition Finder2 v.2.3.4 (Lanfear et al. 2016) under the corrected Akaike Information Criterion
214 (AICc). The best-fit model was identified as GTR+I for the first and second codon partitions of
215 *COI*, HKY+G for the third codon partition of *COI*, and GTR+I+G for *16S rRNA*. These models
216 were applied to each gene for subsequent phylogenetic analysis.

217 All phylogenetic reconstructions were conducted online using the CIPRES Science
218 Gateway platform (Miller et al. 2010). The ML analysis was implemented in IQ-TREE version
219 2.2.2.7 (Minh et al. 2020), incorporating 10,000 ultrafast bootstrap replicates (UFBoot) to
220 evaluate the robustness of the inferred topology (Hoang et al. 2018). The BI analysis was
221 performed with MrBayes version 3.2.7 (Ronquist et al. 2012), utilizing four Markov Chain
222 Monte Carlo (MCMC) chains run for 10,000,000 generations, with sampling occurring every
223 1,000 generations. All estimated parameters demonstrated effective sample sizes (ESS)
224 exceeding 200. The resulting phylogenetic trees from both BI and ML analyses were visualized
225 and edited using FigTree v.1.4.4 (<http://tree.bio.ed.ac.uk/software/figtree/>). Clades were regarded

226 as strongly supported when exhibiting ultrafast bootstrap values $\geq 95\%$ and Bayesian posterior
227 probabilities ≥ 0.95 (Hoang et al. 2018; San Mauro & Agorreta 2010).

228 A haplotype network was constructed using the median-joining algorithm (Bandelt et al.
229 1999) as implemented in PopART version 1.7 (Leigh & Bryant 2015) to visualize genealogical
230 relationships among mitochondrial DNA haplotypes. This method combines features of
231 minimum-spanning trees and parsimony-based algorithms to generate the shortest and most
232 parsimonious connections between haplotypes (Bandelt et al. 1999). The network illustrates
233 mutational steps between haplotypes and enables the identification of ancestral and derived
234 lineages, thereby facilitating the interpretation of population structure and historical demography.

235 In addition of our 70, six COI sequences and four *16S rRNA* of *G. thoracica* collected from
236 Malaysia published elsewhere (Cameron et al. 2007; Jaapar et al. 2025; Kek et al. 2017; Kwong
237 et al. 2017; Rasmussen & Cameron 2010) were also included in haplotype network analysis (See
238 list in Table S1).

239

240 3. RESULTS

241 Microsatellite diversity

242 Table 1 summarizes the genetic diversity parameters, including the total number of
243 alleles (N_o), effective number of alleles (N_e), allele frequencies, and both observed (H_o) and
244 expected (H_e) heterozygosity across all loci and populations. Analysis using the Bayesian
245 clustering method in STRUCTURE revealed no distinct genetic structuring among stingless bee
246 subpopulations collected from different provinces. The optimal number of genetic clusters was
247 inferred to be $K = 1$ under the admixture model, as supported by the highest posterior probability
248 [$\text{Ln}(P) = -1614.68$, $\text{Var Ln}(P) = 9.68$]. Tests for Hardy–Weinberg equilibrium (HWE) indicated

249 significant deviations ($P < 0.05$) in six of the 35 population–locus pairs analyzed. Notably,
250 individuals from Narathiwat province showed a significant heterozygote excess at locus A43.
251 Linkage disequilibrium analysis identified 12 significant pairwise associations among the 105
252 possible population–locus combinations. However, no consistent patterns of linkage
253 disequilibrium were found among microsatellite loci in the total sample set (P -values ranging
254 from 0.0820 to 0.9776), suggesting loci independence across the population.

255 The local inbreeding coefficient (F_{is}) exhibited positive values across all examined
256 populations, with the exception of those from Chumphon ($F_{is} = -0.038$) and Phatthalung ($F_{is} = -$
257 0.091). Notably, a statistically significant excess of homozygosity was observed exclusively in
258 the Yala subpopulation (Table 2).

259 Pairwise multilocus F_{st} values indicated low genetic differentiation among populations,
260 ranging from 0.0024 between Phatthalung and Pattani to 0.1219 between Ratchaburi and Pattani,
261 with no comparisons showing statistically significant divergence ($P > 0.05$). The highest
262 estimates of genetic differentiation were observed in comparisons involving Ratchaburi,
263 specifically with Pattani (0.1219), Narathiwat (0.1196), and Yala (0.1167) (Table 3). These
264 generally low F_{st} values are likely attributable to extensive gene flow, as evidenced by the
265 estimated number of migrants per generation (N_m), which varied from 3.60 to 207.83 across
266 population pairs (Table 3). These results imply that over three reproductive queens are
267 exchanged between populations each generation, indicating substantial levels of interpopulation
268 genetic connectivity.

269

270 **Mitochondrial DNA diversity**

271 After trimming the PCR primers, high quality mitochondrial sequences were recovered
272 for both the cytochrome c oxidase subunit I (*COI*; 650 bp) and 16S ribosomal RNA (*16S rRNA*;
273 489 bp) gene regions. Analysis of nucleotide composition revealed a strong AT-bias
274 characteristic of insect mitochondrial genomes, with A+T contents of 74.9% for *COI* and 77.9%
275 for *16S rRNA*, respectively. Multiple sequence alignments and pairwise comparisons of *COI*
276 sequences identified 14 parsimony-informative sites, consisting predominantly of transitions (n =
277 12; 85.71%) and fewer transversions (n = 2; 14.29%). For the *16S rRNA* gene, 10 parsimony-
278 informative sites were observed, comprising four transitions and six transversions. Haplotype
279 analyses revealed high levels of mitochondrial diversity, with 22 unique *COI* haplotypes and 16
280 distinct *16S rRNA* haplotypes identified. Estimates of genetic diversity indicated high haplotype
281 diversity for *COI* ($hd = 0.947 \pm 0.012$) and moderate diversity for *16S rRNA* ($hd = 0.405 \pm$
282 0.075), whereas nucleotide diversity remained low across both loci (*COI*: $Pi = 0.0034 \pm 0.0003$;
283 *16S rRNA*: $Pi = 0.0022 \pm 0.0006$) (Table 4).

284 The mitochondrial *COI* and *16S rRNA* gene fragments were concatenated into a single
285 alignment comprising 1,139 base pairs. A total of 38 distinct haplotypes were identified across
286 the dataset (Table 4). Of these, 16 haplotypes were shared by at least two individuals, while the
287 remaining 22 haplotypes were singletons, each detected in only one individual. The most
288 frequently observed haplotype (H8) was present in nine specimens, which were sampled from
289 Narathiwat, Pattani, and Songkhla provinces. No significant association was detected between
290 nucleotide diversity (Pi) and sample size (Pearson's $r = 0.212$, $P = 0.154$), validating the use of
291 Pi for comparative analyses across populations. Summary statistics for mitochondrial genetic
292 diversity are provided in Table 4.

293 To evaluate the neutrality of the *G. thoracica* population, summary statistics including
294 Tajima's *D*, Fu's *Fs*, and Ramos-Onsins and Rozas' *R₂* were calculated, with results summarized
295 in Table 4. When analyzing all specimens collectively, both Tajima's *D* and Fu's *Fs* values
296 exhibited a negative but statistically non-significant values ($P > 0.05$) across all mitochondrial
297 genes, indicating an absence of excess rare alleles within the population. Furthermore, the *R₂*
298 values obtained from the Ramos-Onsins and Rozas test were consistently small and positive
299 across all gene datasets, which is generally consistent with a scenario of recent population
300 expansion in *G. thoracica*.

301 Upon dividing the samples into seven distinct provincial populations, the majority of
302 Tajima's *D* and Fu's *Fs* statistics were negative, while the Ramos-Onsins and Rozas' *R₂* values
303 were positive. Nevertheless, none of these results reached statistical significance (Table 4).
304 Overall, the findings suggest a lack of clear evidence for recent population expansion among
305 most *G. thoracica* populations in Thailand.

306 AMOVA results based on mitochondrial gene sequences revealed that the majority of
307 genetic variation occurred among populations within provinces. For the *COI* gene, 30.95% of the
308 variation was partitioned among populations within provinces ($F_{st} = 0.5912, P < 0.01$), while
309 22.21% was attributed to variation within populations. Similarly, for the *16S rRNA* gene, 32.81%
310 of the variation was found among populations within provinces ($F_{st} = 0.6491, P < 0.01$), with
311 21.13% occurring within populations (Table 5). When both mitochondrial genes were
312 concatenated, 36.75% of the total genetic variation was observed among populations within
313 provinces ($F_{st} = 0.6186, p < 0.01$), whereas variation among provinces and within populations
314 accounted for 27.41% and 24.13%, respectively (Table 5).

315 Phylogenetic analyses were performed using 39 unique haplotype datasets of *G.*
316 *thoracica* from Thailand (38 haplotypes) and Malaysia (one haplotype) as ingroups, and other
317 seven bee species as outgroups. Tree topologies derived from both Maximum Likelihood (ML)
318 and Bayesian Inference (BI) approaches were broadly congruent, differing only in the
319 arrangement of terminal clades. Given the similarity, only the ML topology is presented (Fig.
320 1A). The resulting phylogeny strongly supports the monophyly of *G. thoracica* (bpp = 1.0; BS =
321 100%), which forms a well-supported sister lineage to *Heterotrigona* species (*H. itama*, *H.*
322 *bakeri*, and *H. erythrogastera*), with maximal posterior probability (bpp = 1.0) and high, though
323 slightly lower, bootstrap support (BS = 97%). Geographic distribution of all *G. thoracica*
324 samples is shown in Figure 1B. Within the *G. thoracica* clade, there was no evidence of
325 geographic structuring or genetic divergence. Bees from different geological sampling sites were
326 grouped and mixed within one large clade. Nevertheless, only one subclade was weakly formed
327 with insufficient nodal support (BS = 78%, bpp = 0.63) containing specimens from all sampled
328 provinces and one individual from Malaysia.

329 Median-joining haplotype networks for *COI* and *16S rRNA* genes (Fig. 1C and 1D)
330 revealed patterns consistent with the corresponding phylogenetic trees, though the *16S rRNA*
331 network exhibited lower resolution. The *COI* network comprised 22 haplotypes arranged in a
332 star-like configuration, with two predominant haplotypes (C9, C5) present in all provinces except
333 Ratchaburi. Two haplotypes from Malaysia were slightly separated from the major group. They
334 connected with haplotype C9, differing by 10 mutational steps for haplotype C21 and 14 steps
335 for haplotype C22.

336 In general, the *16S rRNA* network also showed a star-like configuration. However, most
337 *16S rRNA* haplotypes were confined to single provinces. Only haplotype S3 was found across all

338 provinces, shared by 56 individuals (80 % of the total), along with haplotype S6, which was
339 shared between Chumphon and Yala (Fig. 1D).

340

341

342

343 **4. DISCUSSION**

344 Previous research has frequently linked artificial selection in managed breeding systems
345 to elevated inbreeding and diminished genetic variation relative to wild progenitors (Bruford et
346 al. 2003; Muir et al. 2008; Wang et al. 2014). In contrast, our data show that managed *G.*
347 *thoracica* populations in Thailand sustain substantial mitochondrial and nuclear genetic
348 diversity, despite exhibiting pronounced genetic differentiation. This pattern indicates that
349 prevailing stingless bee colony management practices in Thailand exert negligible effects on the
350 overall genetic variability of *G. thoracica*.

351 Over the last century, apicultural management has significantly shaped the distribution
352 and genetic structure of social bees worldwide, including various species of honey bee, bumble
353 bee, and stingless bee (Bryant & Krosch 2016; Chahbar et al. 2013; Chapman et al. 2018;
354 Francisco et al. 2014; Jaffé et al. 2016b; Jensen et al. 2005; Rangel et al. 2016). The stingless bee
355 *G. thoracica* is a particularly valuable focal species for assessing these impacts, given the rapid
356 expansion of hive trading within Southeast Asia, especially in Thailand and Malaysia
357 (Rattanawanee & Duangphakdee 2019). Anthropogenic hive translocation may provide genetic
358 and adaptive benefits by increasing allelic diversity and facilitating responses to environmental
359 pressures (Chapman et al. 2018; Todesco et al. 2016; Wongsa et al. 2024); however, it can also
360 generate maladaptive hybrids when reproductive barriers exist, and may result in the loss of

361 regionally adapted genotypes (Byatt et al. 2015; Todesco et al. 2016; Wongsa et al. 2024). In
362 southern Thailand, a major center of stingless beekeeping for over two decades, *G. thoracica*
363 populations now exhibit genetic patterns indicative of admixture from multiple geographic
364 origins. While the genetic changes are apparent, their phenotypic implications remain uncertain.
365 Notably, in stingless bees, male attendance at mating aggregations is not always linked to
366 hybridization (Law et al. 2024), as illustrated by *Tetragonula carbonaria* males that visit *T.*
367 *hockingsi* aggregations without exhibiting short-range attraction to the latter's queens (Paul et al.
368 2023).

369 This study found no evidence that geographical or physical barriers, such as mountain
370 ranges, urban or agricultural landscapes, or forest cover, significantly influence the population
371 structure of Thai *G. thoracica*. Similar patterns, where gene flow occurs despite the absence of
372 clear dispersal barriers, have been documented in *Trigona nigerrima*, *Trigona corvina*, and
373 *Scaptotrigona mexicana* in Mexico (Rodríguez et al. 2024; Solórzano-Gordillo et al. 2015),
374 *Tetragonula carbonaria* and *Tetragonula hockingsi* in Australia (Brito et al. 2014; Law et al.
375 2024), *Trigona spinipes* in Brazil (Jaffé et al. 2016a) and *Heterotrigona itama* in Thailand
376 (Wongsa et al. 2024). The observed structuring of *G. thoracica* populations is more likely driven
377 by the inherently low dispersal capacity of virgin queens and drones, together with ecological
378 variation among local habitats.

379 Analyses of population genetic structure indicated that several *G. thoracica* populations
380 exhibited limited differentiation from geographically distant groups. Such genetic homogeneity
381 is likely maintained through ongoing gene flow, potentially consistent with a stepping-stone
382 dispersal process (Kimura & Weiss 1964). Anthropogenic factors, particularly the deliberate
383 relocation of colonies by beekeepers, appear to further reinforce interpopulation connectivity.

384 This inference is supported by Bayesian phylogenetic analyses of concatenated mitochondrial
385 COI and 16S rRNA sequences, which grouped 68 of the sampled colonies into a single well-
386 supported clade, with only two colonies forming a separate lineage (Fig. 1A). Moreover, the
387 most common haplotypes, C5 (*COI*) and S3 (*16S rRNA*), were shared across all sampling
388 locations (Fig. 1C and 1D), suggesting extensive haplotype mixing among regions. These results
389 suggest that both natural dispersal and anthropogenic colony translocation are important drivers
390 of population structure in this stingless bee species. The elevated occurrence of unique
391 haplotypes in Yala and Chumphon further suggests that colonies may have been introduced from
392 other regions, artificially enhancing local genetic diversity.

393 Across most comparisons, genetic diversity metrics did not differ significantly among
394 groups (Table 2 and 5). Consistent with our expectations, relatively high levels of genetic
395 diversity, as measured by expected heterozygosity, were detected in all provinces of southern
396 Thailand, where *G. thoracica* colonies are predominantly managed. This pattern was further
397 supported by the elevated values of both expected heterozygosity (H_e) and allelic richness (N_e)
398 observed in all managed apiaries (Table 2). The enhanced diversity in managed colonies is likely
399 the consequence of admixture over time, driven by the exchange of colonies among beekeepers
400 from different localities, which introduces novel alleles into populations (Carvalho-Zilse et al.
401 2009; Chapman et al. 2018; Wongsa et al. 2024). This inference is reinforced by pairwise per-
402 generation migration rate (Nm) estimates, all of which exceeded three (ranging from 3.60 to
403 207.83), indicating substantial queen dispersal among populations (Table 3). Specifically, the
404 data suggest that more than three reproductive queens per generation are exchanged between
405 each pair of populations. In line with these findings, low genetic differentiation (F_{st}) values were
406 observed among geographic localities, and AMOVA results for mitochondrial markers revealed

407 no clear geographic partitioning of genetic variation in *G. thoracica* (Table 5). This contrasts
408 with the study of Rattanawannee et al. (2017), which identified two distinct genetic groups of the
409 stingless bee *Tetragonilla collina* in Thailand using geometric morphometric and mitochondrial
410 *COI* sequence analyses. They proposed that, for this subterranean-nesting species, present-day
411 ecological factors, such as seasonal flooding, exert a stronger influence on spatial distribution
412 than historical biogeography.

413 Although comparative studies between wild and managed stingless bee populations
414 remain scarce, previous work on *Tetragonisca angustula* (Santiago et al. 2016) and
415 *Heterotrigona itama* (Wongsa et al. 2024) reported no detectable differences in genetic diversity
416 between the two management types. In the present study, nearly all F_{is} values across the defined
417 genetic groups were positive yet statistically non-significant (Table 2). Notably, the absence of
418 significant F_{is} values in managed colonies was unexpected, as such conditions could be
419 indicative of elevated relatedness among colonies within an apiary, a pattern that may arise from
420 colony propagation practices by beekeepers, as previously proposed (Santiago et al. 2016). In
421 contrast, the Yala population exhibited positive and significant F_{is} values suggestive of
422 inbreeding, potentially attributable to habitat loss and landscape alterations that may reduce
423 effective population sizes, increase genetic relatedness, and diminish genetic diversity (Lozier &
424 Zayed 2017). To improve understanding of genetic diversity and inbreeding dynamics in *G.*
425 *thoracica*, broader sampling efforts are required, both in terms of the number of colonies and the
426 range of localities represented. In certain localities, only a single colony was sampled, limiting
427 the precision of diversity estimates. Expanding sample sizes would enable more robust statistical
428 inferences and facilitate the assessment of whether habitat degradation is exerting a negative
429 influence on the genetic diversity of *G. thoracica*.

430 Bayesian clustering of nuclear genotypes in STRUCTURE supported a single genetic
431 cluster ($K = 1$), whereas AMOVA of concatenated mitochondrial sequences revealed moderate-
432 to-high population differentiation ($F_{st} = 0.619$). This discrepancy exemplifies mito-nuclear
433 discordance, a pattern frequently associated with sex-biased dispersal. In stingless bees, colony
434 founding by queens typically occurs through short-range budding events, averaging
435 approximately 700 m from the natal nest, while males may disperse up to 20 km prior to mating
436 (Quezada-Euán 2018). Such asymmetry in dispersal capacity can generate stronger genetic
437 structuring in maternally inherited mitochondrial DNA compared to biparentally inherited
438 nuclear loci (Law et al. 2024; Peters et al. 1999; Quezada-Euán 2018; Quezada-Euán et al.
439 2022). Comparable trends have been reported in *S. mexicana*, where male-biased dispersal has
440 been invoked to explain genetic admixture within drone aggregations (Rodríguez et al. 2024). In
441 stingless bee, drones depart their natal colonies to join “drone congregations” situated near nests
442 with virgin queens (Quezada-Euán 2018), which may contain several hundred individuals
443 originating from multiple and often geographically distant colonies (dos Santos et al. 2016;
444 Kraus et al. 2008; Mueller et al. 2012). Although meliponine drones generally exhibit shorter
445 effective dispersal ranges than their honey bee (*Apis* spp.) counterparts (Kraus et al. 2005;
446 Oldroyd et al. 1998; Oldroyd & Wongsiri 2006), the low genetic differentiation and minimal
447 pairwise genetic distances observed between Chumphon and Narathiwat suggest that ongoing
448 male-mediated dispersal likely contributes to gene flow between these populations (Table 3; Fig.
449 1).

450 In commercial meliponiculture, artificial colony division is commonly employed to
451 increase colony numbers within an apiary. This practice involves transferring a combination of
452 young and old brood combs, together with honey and pollen pots, from a strong donor colony

453 into a new hive box, thereby establishing a daughter colony (Quezada-Euán 2018; Santiago et al.
454 2016). Such management interventions can alter the distribution of mitochondrial haplotypes
455 within a population, with some haplotypes increasing in frequency while others decline or
456 disappear entirely (Santiago et al. 2016). In the present study, this pattern was evident in the
457 Chumporn and Pattani populations, which exhibited pronounced population structuring and a
458 reduced number of haplotypes dominated by a few high-frequency variants (Table 4; Fig. 1).
459 Because mitochondrial haplotypes are maternally inherited, they may be transferred between
460 populations if a colony from one source successfully establishes as a daughter colony within
461 another population (Chapman et al. 2018), thereby contributing to mitochondrial structuring
462 (Francisco et al. 2014).

463 In natural populations, elevated mitochondrial structure has often been attributed to the
464 short dispersal range of reproductive swarms, a phenomenon reflecting female queen philopatry.
465 This behavior arises because daughter colonies require immediate access to resources, such as
466 propolis and food, provided by the maternal nest to initiate construction of a new hive (Inoue et
467 al. 1984). As a result, the limited dispersal of queens constrains gene flow and reinforces
468 population structure (Santiago et al. 2016). In managed settings, repeated colony division from a
469 restricted pool of source colonies within an apiary can produce a genetic pattern analogous to
470 that generated by queen philopatry (Santiago et al. 2016). High levels of mitochondrial
471 structuring have similarly been documented in wild populations of multiple stingless bee species,
472 including *Melipona beecheii* (Quezada-Euán 2018; Quezada-Euán et al. 2007), *Partamona*
473 *helleri* (Brito & Arias 2010), *Plebeia remota* (Francisco & Arias 2010; Francisco et al. 2013),
474 *Tetragonula pagdeni* (Thummajitsakul et al. 2011), *Scaptotrigona hellwegeri* (Quezada-Euán et

475 al. 2012), *Partamona mulata* (Brito et al. 2013), *Melipona subnitida* (Bonatti et al. 2014), and
476 *Tetragonisca angustula* (Francisco et al. 2017).

477 In conclusion, our results indicate that most *G. thoracica* populations in Thailand exhibit
478 substantial genetic differentiation. While current levels of colony trade and translocation appear
479 not to have disrupted population structure, an escalation of such practices among genetically
480 distinct populations could pose adverse genetic consequences. Preserving the integrity of local
481 gene pools thus requires minimizing genetic admixture. We therefore recommend conducting
482 targeted genetic assessments prior to the introduction of new ecotypes, and ensuring that colony
483 transfers are restricted to populations with demonstrable genetic similarity.

484

485 **Compliance with ethical standards**

486 **Data availability statement:** All relevant data are within the paper.

487 **Conflict of interest:** The authors declare that the research was conducted in the absence of any
488 commercial or financial relationships that could be construed as a potential conflict of interest.

489 **Funding:** This study was supported by a grant from the Kasetsart University Research and
490 Development Institute (KURDI) (grant number FF(KU) 51.68), King Mongkut's University of
491 Technology Thonburi (KMUTT), and National Science, Research and Innovation Fund (NSRF)
492 Fiscal year 2024 (FRB670016/0164).

493 **Acknowledgments:** We are grateful to the Department of Entomology, Faculty of Agriculture
494 and the Research and Lifelong Learning Center for Urban and Environmental Entomology,
495 Kasetsart University, Bangkok, Thailand, for laboratory support.

496

497

498

499

500

501 **REFERENCES**

502

503 Bandelt HJ, Forster P, and Röhl A. 1999. Median-joining networks for inferring intraspecific
504 phylogenies. *Molecular Biology and Evolution* 16:37–48.
505 10.1093/oxfordjournals.molbev.a026036

506 Bartelli BF, Santos AOR, and Nogueira-Ferreira FH. 2014. Colony performance of *Melipona*
507 *quadrifasciata* (Hymenoptera, Meliponina) in a greenhouse of *Lycopersicon esculentum*
508 (Solanaceae). *Sociobiology* 61:60–67. 10.13102/sociobiology.v61i1.60-67

509 Beekman M, Gloag RS, Even N, Wattanachaiyingchareon W, and Oldroyd BP. 2008. Dance
510 precision of *Apis florea*—clues to the evolution of the honeybee dance language?
511 *Behavioral Ecology and Sociobiology* 62:1259–1265. 10.1007/s00265-008-0554-z

512 Bluher SE, Miller SE, and Sheehan MJ. 2020. Fine-scale population structure but limited genetic
513 differentiation in a cooperatively breeding paper wasp. *Genome Biology and Evolution*
514 12:701–714. <https://doi.org/10.1093/gbe/evaa070>

515 Bonatti V, Simões ZLP, Franco FF, and Franco TM. 2014. Evidence of at least two
516 evolutionary lineages in *Melipona subnitida* (Apidae, Meliponini) suggested by mtDNA
517 variability and geometric morphometrics of forewings. *Naturwissenschaften* 101:17–24.
518 10.1007/s00114-013-1123-5

519 Brito RM, and Arias MC. 2010. Genetic structure of *Partamona helleri* (Apidae, Meliponini)
520 from Neotropical Atlantic rainforest. *Insectes Sociaux* 57:413–419. 10.1007/s00040-010-
521 0098-x

522 Brito RM, Francisco FO, Françoso E, Santiago LR, and Arias MC. 2013. Very low
523 mitochondrial variability in a stingless bee endemic to cerrado. *Genetics and Molecular*
524 *Biology* 36:124–128. 10.1590/S1415-47572013000100018

525 Brito RM, Francisco FO, Ho SYW, and Oldroyd BP. 2014. Genetic architecture of the
526 *Tetragonula carbonaria* species complex of Australian stingless bees (Hymenoptera,

527 Apidae, Meliponini). *Biological Journal of the Linnean Society* 113:149–161.
528 <https://doi.org/10.1111/bij.12292>

529 Bruford MW, Bradley DG, and Luikart G. 2003. DNA markers reveal the complexity of
530 livestock domestication. *Nature Reviews Genetics* 4:900–910.
531 <https://doi.org/10.1038/nrg1203>

532 Bryant LM, and Krosch MN. 2016. Lines in the land: A review of evidence for eastern
533 Australia's major biogeographical barriers to closed forest taxa. *Biological Journal of the*
534 *Linnean Society* 119:238–264. <https://doi.org/10.1111/bij.12821>

535 Byatt MA, Chapman NC, Latty T, and Oldroyd BP. 2015. The genetic consequences of
536 anthropogenic movement of bees. *Insectes Sociaux* 63:15–24.
537 <https://doi.org/10.1007/s00040-015-0441-3>

538 Cameron SA, Hines HM, and Williams PH. 2007. A comprehensive phylogeny of the bumble
539 bees (*Bombus*). *Biological Journal of the Linnean Society* 91:161–188. [10.1111/j.1095-8312.2007.00784.x](https://doi.org/10.1111/j.1095-8312.2007.00784.x)

541 Carvalho-Zilse GA, Costa-Pinto MFF, Nunes-Silva CG, and Kerr WE. 2009. Does beekeeping
542 reduce genetic variability in *Melipona scutellaris* (Apidae, Meliponini)? *Genetics and*
543 *Molecular Research* 8:758–765. [10.4238/vol8-2kerr006](https://doi.org/10.4238/vol8-2kerr006)

544 Chahbar N, Muñoz I, Dall'Olio R, De la Rúa P, Serrano J, and Doumandji S. 2013. Population
545 structure of north African honey bees Is influenced by both biological and anthropogenic
546 factors. *Journal of Insect Conservation* 17:385–392. <https://doi.org/10.1007/s10841-012-9520-1>

548 Chapman NC, Byatt M, Cocenza RDS, Nguyen LM, Heard TA, Latty T, and Oldroyd BP. 2018.
549 Anthropogenic hive movements are changing the genetic structure of a stingless bee
550 (*Tetragonula carbonaria*) population along the east coast of Australia. *Conservation*
551 *Genetics* 19:619–627. [10.1007/s10592-017-1040-9](https://doi.org/10.1007/s10592-017-1040-9)

552 de la Rúa P, Jaffé R, Dall' Olio R, Muñoz I, and Serrano J. 2009. Biodiversity, conservation and
553 current threats to European honeybees. *Apidologie* 40:263–284.
554 <https://doi.org/10.1051/apido/2009027>

555 dos Santos CF, Francisco FO, Imperatriz-Fonseca VL, and Arias MC. 2016. Eusocial bee male
556 aggregations: spatially and temporally separated but genetically homogenous.

557 *Entomologia Experimentalis et Applicata* 158:320–326.

558 <https://doi.org/10.1111/eea.12407>

559 Earl DA, and von Holdt BM. 2012. STRUCTURE HARVESTER: a website and program for
560 visualizing STRUCTURE output and implementing the Evanno method. *Conservation*
561 *Genetics Resources* 4:359–361. <https://doi.org/10.1007/s12686-011-9548-7>

562 Estoup A, Garnery L, Solignac M, and Cornuet JM. 1995. Microsatellite variation in honey bee
563 (*Apis mellifera* L.) populations: hierarchical genetic structure and test of the infinite allele
564 and stepwise mutation models. *Genetics* 140:679–695. 10.1093/genetics/140.2.679

565 Estoup A, Solignac M, Harry H, and Cornuet JM. 1993. Characterization of (GT) n and (CT) n
566 microsatellites in two insect species: *Apis mellifera* and *Bombus terrestris*. *Nucleic Acids*
567 *Research* 21:1427–1431. 10.1093/nar/21.6.1427

568 Evanno G, Regnaut S, and Goudet J. 2005. Detecting the number of clusters of individuals using
569 the software STRUCTURE: a simulation study. *Molecular Ecology* 14:2611–2620.
570 10.1111/j.1365-294X.2005.02553.x

571 Excoffier L, and Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform
572 population genetics analyses under Linux and Windows. *Molecular Ecology Resources*
573 10:564–567. 10.1111/j.1755-0998.2010.02847.x

574 Excoffier L, Smouse PE, and Quattro JM. 1992. Analysis of molecular variance inferred from
575 metric distances among DNA haplotypes: application to human mitochondrial DNA
576 restriction data. *Genetics* 131:479–491. 10.1093/genetics/131.2.479

577 Francisco FO, and Arias MC. 2010. Inferences of evolutionary and ecological events that
578 influenced the population structure of *Plebeia remota*, a stingless bee from Brazil.
579 *Apidologie* 41:216–224. 10.1051/apido/2009079

580 Francisco FO, Santiago LR, and Arias MC. 2013. Molecular genetic diversity in populations of
581 the stingless bee *Plebeia remota*: a case study. *Genetics and Molecular Biology* 36:118–
582 123. 10.1590/S1415-47572013000100017

583 Francisco FO, Santiago LR, Brito RM, Oldroyd BP, and Arias MC. 2014. Hybridization and
584 asymmetric introgression between *Tetragonisca angustula* and *Tetragonisca fiebrigi*.
585 *Apidologie* 45:1–9. <https://doi.org/10.1007/s13592-013-0224-7>

586 Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, and Arias MC. 2017. Population
587 structuring of the ubiquitous stingless bee *Tetragonisca angustula* in southern Brazil as

588 revealed by microsatellite and mitochondrial markers. *Insect Science* 24:877–890.

589 10.1111/1744-7917.12371

590 Frankham R, Ballou JD, and Briscoe DA. 2010. *Introduction to Conservation Genetics*.

591 Cambridge: Cambridge University Press.

592 Fu XY. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking

593 and background selection. *Genetics* 147:915–925.

594 <https://doi.org/10.1093/genetics/147.2.915>

595 Green CL, Franck P, and Oldroyd BP. 2001. Characterization of microsatellite loci for *Trigona*

596 *carbonaria*, a stingless bee endemic to Australia. *Molecular Ecology Notes* 1:89–92.

597 <https://doi.org/10.1046/j.1471-8278.2001.00041.x>

598 Greenleaf S, Williams N, Winfree R, and Kremen C. 2007. Bee foraging ranges and their

599 relationship to body size. *Oecologia* 153:589–596. 10.1007/s00442-007-0752-9

600 Groening J, and Hochkirch A. 2008. Reproductive interference between animal species.

601 *Quarterly Review of Biology* 83:257–282. 10.1086/590510

602 Hartl DL, and Clark GC. 1997. *Principles of Population Genetics*. Sunderland: Sinauer

603 Associates.

604 Heard TA. 1999. The role of stingless bees in crop pollination. *Annual Review of Entomology*

605 44:183–206. 10.1146/annurev.ento.44.1.183

606 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, and Vinh LS. 2018. UFBoot2: improving

607 the ultrafast bootstrap approximation. *Molecular Biology and Evolution* 35:518–522.

608 10.1093/molbev/msx281

609 Hrncir M, and Maia-Silva C. 2013. On the diversity of foraging-related traits in stingless bees.

610 In: Vit P, Pedro S, and Roubik D, eds. *Pot-Honey*. New York: Springer, 201–215.

611 Inoue MN, and Yokoyama J. 2010. Competition for flower resources and nest sites between

612 *Bombus terrestris* (L.) and Japanese native bumblebees. *Applied Entomology and*

613 *Zoology* 45:29–35. 10.1303/aez.2010.29

614 Inoue T, Sakagami SF, Salmah S, and Yamane S. 1984. The process of colony multiplication in

615 the Sumatran stingless bee *Trigona (Tetragonula) laeviceps*. *Biotropica* 16:100–111.

616 <https://doi.org/10.2307/2387841>

617 Jaapar F, Badrulisham AS, Zulidzham MS, Reward NF, Muzammil N, Jajuli R, and Yaakop S.

618 2025. Inconsistent changes on infuscation and length of the forewing of *Heterotrigona*

619 *itama* populations supported by COI phylogeny. *Journal of Apicultural Research*
620 64:722–731. 10.1080/00218839.2024.2323882

621 Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, and Jha S. 2016a.
622 Landscape genetics of a tropical rescue pollinator. *Conservation Genetics* 17:267–278.
623 10.1007/s10592-015-0779-0

624 Jaffé R, Pope N, Acosta AL, Alves DA, Arias MC, de la Rúa P, Francisco FO, Giannini TC,
625 González-Chaves A, Imperatriz Fonseca VL, Tavares MG, Jha S, and Carvalheiro LG.
626 2016b. Bee keeping practices and geographic distance, not land use, drive gene flow
627 across tropical bees. *Molecular Ecology* 25:5345–5358. 10.1111/mec.13852

628 Jensen AB, Palmer KA, Boomsma JJ, and Pedersen BV. 2005. Varying degrees of *Apis mellifera*
629 *ligustica* introgression in protected populations of the black honeybee, *Apis mellifera*
630 *mellifera*, in northwest Europe. *Molecular Ecology* 14:93–106.
631 <https://doi.org/10.1111/j.1365-294X.2004.02399.x>

632 Katoh K, and Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7:
633 Improvements in performance and usability. *Molecular Biology and Evolution* 30:772–
634 780. <https://doi.org/10.1093/molbev/mst010>

635 Kek SP, Chin NL, Tan SW, Yusof YA, and Chua LS. 2017. Molecular identification of honey
636 entomological origin based on bee mitochondrial 16S rRNA and COI gene sequences.
637 *Food Control* 78:150–159. <https://doi.org/10.1016/j.foodcont.2017.02.025>

638 Kimura M, and Weiss GH. 1964. The stepping stone model of population structure and the
639 decrease of genetic correlation with distance. *Genetics* 49:561–576.
640 10.1093/genetics/49.4.561

641 Koeniger N, and Koeniger G. 2000. Reproductive isolation among species of the genus *Apis*.
642 *Apidologie* 31:313–339. 10.1051/apido:2000125

643 Koffler S, Kleinert P, de Matos A, and Rodolfo J. 2017. Quantitative conservation genetics of
644 wild and managed bees. *Conservation Genetics* 18:689–700. 10.1007/s10592-016-0904-8

645 Kondo NI, Yamanaka D, Kanbe Y, Kunitake YK, Yoneda M, Tsuchida K, and Goka K. 2009.
646 Reproductive disturbance of Japanese bumble bees by the introduced European bumble
647 bee *Bombus terrestris*. *Naturwissenschaften* 96:467–475. 10.1007/s00114-008-0495-4

648 Kraus FB, Koeniger N, Tingek S, and Moritz RFA. 2005. Temporal genetic structure of a drone
649 congregation area of the giant Asian honeybee (*Apis dorsata*). *Naturwissenschaften*
650 92:578–581. <https://doi.org/10.1007/s00114-005-0044-3>

651 Kraus FB, Weinhold S, and Moritz RFA. 2008. Genetic structure of drone congregations of the
652 stingless bee *Scaptotrigona mexicana*. *Insectes Sociaux* 55:22–27.
653 <https://doi.org/10.1007/s00040-007-0966-1>

654 Kükrer M, Kence M, and Kence A. 2021. Honey bee diversity is swayed by migratory
655 beekeeping and trade despite conservation practices: genetic evidence for the impact of
656 anthropogenic factors on population structure. *Frontiers in Ecology and Evolution*
657 9:556816. 10.3389/fevo.2021.556816

658 Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, Jaffe R, and Moran NA.
659 2017. Dynamic microbiome evolution in social bees. *Science Advances* 3:e1600513.
660 10.1126/sciadv.1600513

661 Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, and Husemann M. 2017.
662 Fragmentation in the clouds? the population genetics of the native bee *Partamona*
663 *bilineata* (Hymenoptera: Apidae: Meliponini) in the cloud forests of Guatemala.
664 *Conservation Genetics* 18:631–643. 10.1007/s10592-017-0950-x

665 Lanfear R, Frandsen PB, Wright AM, Senfeld T, and Calcott B. 2016. Partition Finder 2: New
666 methods for selecting partitioned models of evolution for molecular and morphological
667 phylogenetic analyses. *Molecular Biology and Evolution* 34:772–773.
668 10.1093/molbev/msw260

669 Law G, da Silva CRB, Vlasich-Brennan I, Taylor BA, Harpur BA, Heard T, Nacko S, Riegler M,
670 Dorey JB, Stevens MI, Lo N, and Gloag R. 2024. Gene flow between populations with
671 highly divergent mitogenomes in the Australian stingless bee, *Tetragonula hockingsi*.
672 *Ecology and Evolution* 14:e70475. <https://doi.org/10.1002/ece3.70475>

673 Leigh JW, and Bryant D. 2015. PopART: Full-feature software for haplotype network
674 construction. *Methods in Ecology and Evolution* 6:1110–1116.
675 <https://doi.org/10.1111/2041-210X.12410>

676 Librado P, and Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
677 polymorphism data. *Bioinformatics* 25:1451–1452. 10.1093/bioinformatics/btp187

678 Lobo J, Costa PM, Teixeira MAL, Ferreira MSG, Costa MH, and Costa FO. 2013. Enhanced
679 primers for amplification of DNA barcodes from a broad range of marine metazoans.
680 *BMC Ecology* 13:34. 10.1186/1472-6785-13-34

681 Lozier JD, and Zayed A. 2017. Bee conservation in the age of genomics. *Conservation Genetics*
682 18:713–729. 10.1007/s10592-016-0893-7

683 Lydeard C, Mulvey M, and Davis GM. 1996. Molecular systematics and evolution of
684 reproductive traits of North American freshwater unionacean mussels (Mollusca:
685 Bivalvia) as inferred from *16S rRNA* gene sequences. *Philosophical Transactions of the
686 Royal Society of London Series B: Biological Sciences* 351:1593–1603.
687 10.1098/rstb.1996.0143

688 Meixner MD, Kryger P, and Costa C. 2015. Effects of genotype, environment and their
689 interactions on honey bee health in Europe. *Current Opinion in Insect Science* 10:177–
690 184. 10.1016/j.cois.2015.05.010

691 Miller MA, Pfeiffer W, and Schwartz T. 2010. Creating the CIPRES Science Gateway for
692 inference of large phylogenetic trees. *Gateway Computing Environments Workshop
693 (GCE):1–8.* <https://doi.org/10.1109/gce.2010.5676129>

694 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, and
695 Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic
696 inference in the genomic era. *Molecular Biology and Evolution* 37:1530–1534.
697 10.1093/molbev/msaa015

698 Mueller MY, Moritz RFA, and Kraus FB. 2012. Outbreeding and lack of temporal genetic
699 structure in a drone congregation of the neotropical stingless bee *Scaptotrigona
700 mexicana*. *Ecology and Evolution* 2:1304–1311. <https://doi.org/10.1002/ece3.203>

701 Muir WM, Wong GS, Zhang Y, Wang J, Groenen MAM, Crooijmans RPMA, Megens HJ,
702 Zhang H, Okimoto R, Vereijken A, Jungerius A, Albers GAA, Lawley CT, Delany ME,
703 MacEachern S, and Cheng HH. 2008. Genome-wide assessment of worldwide chicken
704 SNP genetic diversity indicates significant absence of rare alleles in commercial breeds.
705 *Proceedings of the National Academy of Sciences* 105:17312–17317.
706 <https://doi.org/10.1073/pnas.0806569105>

707 Oldroyd BP, Clifton MJ, Parker K, Wongsiri S, Rinderer TE, and Crozier RH. 1998. Evolution
708 of mating behavior in the genus *Apis* and an estimate of mating frequency in *Apis cerana*

709 (Hymenoptera: Apidae). *Annals of the Entomological Society of America* 91:700–709.
710 10.1093/aesa/91.5.700

711 Oldroyd BP, and Nanork P. 2009. Conservation of Asian honey bees. *Apidologie* 40:296–312.
712 10.1051/apido/2009021

713 Oldroyd BP, and Wongsiri S. 2006. *Asian Honey Bees: Biology, Conservation, and Human*
714 *Interactions*. Cambridge: Harvard University Press.

715 Paul G, Bartels L, Bueno FGB, Law G, Heard T, Chapman N, Buchmann G, Lim J, and Gloag
716 R. 2023. Shifting range in a stingless bee leads to pre-mating reproductive interference
717 between species. *Conservation Genetics* 24:449–459 <https://doi.org/10.1007/s10592-023-01512-7>

719 Peters JM, Queller DC, Imperatriz-Fonseca VL, Roubik DW, and Strassmann JE. 1999. Mate
720 number, kin selection and social conflicts in stingless bees and honeybees. *Proceedings*
721 *of the Royal Society B: Biological Sciences* 266:379.
722 <https://doi.org/10.1098/rspb.1999.0648>

723 Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using
724 multilocus genotype data. *Genetics* 155:945–959. 10.1093/genetics/155.2.945

725 Quezada-Euán JJG. 2018. *Stingless Bees of Mexico: The Biology, Management and*
726 *Conservation of an Ancient Heritage*. New York: Springer.

727 Quezada-Euán JJG, May-itzá WDJ, Rincón M, De La Rúa P, and Paxton RJ. 2012. Genetic and
728 phenotypic differentiation in endemic *Scaptotrigona hellwegeri* (Apidae: Meliponini):
729 implications for the conservation of stingless bee populations in contrasting
730 environments. *Insect Conservation and Diversity* 5:433–443.
731 <https://doi.org/10.1111/j.1752-4598.2011.00179.x>

732 Quezada-Euán JJG, May-Itzá WJ, de la Rúa P, and Roubik DW. 2022. From neglect to stardom:
733 How the rising popularity of stingless bees threatens diversity and meliponiculture in
734 Mexico. *Apidologie* 53:70. <https://doi.org/10.1007/s13592-022-00975-w>

735 Quezada-Euán JJG, Paxton RJ, Palmer KA, May-Itzá WJ, Tay WT, and Oldroyd BP. 2007.
736 Morphological and molecular characters reveal differentiation in a Neotropical social
737 bee, *Melipona beecheii* (Apidae: Meliponini). *Apidologie* 38:247–258.
738 <https://doi.org/10.1051/apido:2007006>

739 Ramos-Onsins SE, and Rozas J. 2002. Statistical properties of new neutrality tests against
740 population growth. *Molecular Biology and Evolution* 19:2092–2100.
741 10.1093/oxfordjournals.molbev.a004034

742 Rangel J, Giresi M, Pinto MA, Baum KA, Rubink WL, Coulson RN, and Johnston JS. 2016.
743 Africanization of a feral honey bee (*Apis mellifera*) population in south Texas: Does a
744 decade make a difference? *Ecology and Evolution* 6:2158–2169.
745 <https://doi.org/10.1002/ece3.1974>

746 Rasmussen C, and Cameron SA. 2010. Global stingless bee phylogeny supports ancient
747 divergence, vicariance, and long distance dispersal. *Biological Journal of the Linnean
748 Society* 99:206–232. <https://doi.org/10.1111/j.1095-8312.2009.01341.x>

749 Rattanawanee A, and Duangphakdee O. 2019. Southeast Asian meliponiculture for sustainable
750 livelihood. In: Ranz RER, ed. *Modern Beekeeping*: IntechOpen.

751 Rattanawanee A, Duangphakdee O, Chanchao C, Teerapakpinyo C, Warrit N, Wongsiri S, and
752 Oldroyd BP. 2020. Genetic characterization of exotic commercial honey bee
753 (Hymenoptera: Apidae) populations in Thailand reveals high genetic diversity and low
754 population substructure. *Journal of Economic Entomology* 113:34–42.
755 10.1093/jee/toz298

756 Rattanawanee A, Jerathitikul E, Duangphakdee O, and Oldroyd BP. 2017. Mitochondrial
757 sequencing and geometric morphometrics suggest two clades in the *Tetragonilla collina*
758 (Apidae: Meliponini) population of Thailand. *Apidologie* 48:719–731.
759 <https://doi.org/10.1007/s13592-017-0517-3>

760 Remnant EJ, Koetz A, Tan K, Hinson E, Beekman M, and Oldroyd BP. 2014. Reproductive
761 interference between honeybee species in artificial sympatry. *Molecular Ecology*
762 23:1096–1107. <https://doi.org/10.1111/mec.12669>

763 Rodríguez A, Baena-Díaz F, Maldonado-Sánchez D, Macías-Ordóñez R, and Gutiérrez-
764 Rodríguez C. 2024. Genetic diversity of the stingless bee *Scaptotrigona mexicana*
765 (Guérin) in the gulf of Mexico slope. *Neotropical Entomology* 54:1–12.
766 <https://doi.org/10.1007/s13744-024-01213-x>

767 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
768 Suchard MA, and Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic

769 inference and model choice across a large model space. *Systematic Biology* 61:539–542.

770 10.1093/sysbio/sys029

771 Rousset F. 2008. genepop'007: a complete re-implementation of the genepop software for

772 Windows and Linux. *Molecular Ecology Resources* 8:103–106. 10.1111/j.1471-

773 8286.2007.01931.x

774 San Mauro D, and Agorreta A. 2010. Molecular systematics: a synthesis of the common methods

775 and the state of knowledge. *BMC Cellular and Molecular Biology Letters* 15:311–341.

776 10.2478/s11658-010-0010-8

777 Santiago LR, Francisco FO, Jaffé R, and Arias MC. 2016. Genetic variability in captive

778 populations of the stingless bee *Tetragonisca angustula*. *Genetica* 144:397–405.

779 10.1007/s10709-016-9908-z

780 Soland-Reckeweg G, Heckel G, Neumann P, Fluri P, and Excoffier L. 2009. Gene flow in

781 admixed populations and implications for the conservation of the Western honeybee, *Apis*

782 *mellifera*. *Journal of Insect Conservation* 13:317–328. 10.1007/s10841-008-9175-0

783 Solórzano-Gordillo EJ, Cabrera-Marín NV, Mérida J, Vandame R, and Sánchez D. 2015.

784 Genetic diversity of two stingless bees, *Trigona nigerrima* (Cresson 1878) and *Trigona*

785 *corvina* (Cockerell 1913), in coffee dominated landscapes in Southern Mexico. *Acta*

786 *Zoológica Mexicana* 31:74–79. 10.21829/azm.2015.311507

787 Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA

788 polymorphism. *Genetics* 123:585–595. <https://doi.org/10.1093/genetics/123.3.585>

789 Tamura K, Stecher G, and Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis

790 version 11. *Molecular Biology and Evolution* 38:3022–3027. 10.1093/molbev/msab120

791 Thummajitsakul S, Klinbunga S, and Sittipraneed S. 2011. Genetic differentiation of the

792 stingless bee *Tetragonula pagdeni* in Thailand using SSCP analysis of a large subunit of

793 mitochondrial ribosomal DNA. *Biochemical Genetics* 49:499–510. 10.1007/s10528-011-

794 9425-9

795 Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn

796 MA, Caseys C, Bock DG, and Rieseberg HL. 2016. Hybridization and extinction.

797 *Evolutionary Applications* 9:892–908. <https://doi.org/10.1111/eva.12367>

798 Wang GD, Xie HB, Peng MS, Irwin D, and Zhang YP. 2014. Domestication genomics: evidence
799 from animals. *Annual Review of Animal Biosciences* 2:65–84. 10.1146/annurev-animal-
800 022513-114129

801 Wongsa K, Duangphakdee O, and Rattanawanee A. 2023. Pollination efficacy of stingless bees,
802 *Tetragonula pagdeni* Schwarz (Apidae: Meliponini), on greenhouse tomatoes (*Solanum*
803 *lycopersicum* Linnaeus). *PeerJ* 11:e15367. 10.7717/peerj.15367

804 Wongsa K, Jerathitikul E, Poolprasert P, Duangphakdee O, and Rattanawanee A. 2024.
805 Genetic structure of the commercial stingless bee *Heterotrigona itama* (Apidae:
806 Meliponini) in Thailand. *PLoS ONE* 19:e0312386.
807 <https://doi.org/10.1371/journal.pone.0312386>

808
809
810

811

Table 1(on next page)

Microsatellite analysis

Number of alleles detected (N_o), number of effective alleles (N_e), observed (H_o) and expected heterozygosity (H_e) at five microsatellite loci in *Genotrigona thoracica* populations of Thailand. The number of colonies analyzed from each province is shown in the brackets.

1 **Table 1** Number of alleles detected (N_o), number of effective alleles (N_e), observed (H_o) and expected heterozygosity (H_e) at five
 2 microsatellite loci in *Geniotrigona thoracica* populations of Thailand. The number of colonies analyzed from each province is shown
 3 in the brackets.

Locus	Ratchaburi (n = 7)	Chumporn (n = 7)	Songkhla (n = 12)	Phattalung (n = 5)	Yala (n = 6)	Pattani (n = 13)	Narathiwat (n = 23)	All Populations (n = 73)
TC3.302								
N_o	2	4	5	3	6	3	5	8
N_e	1.153	1.849	2.286	1.852	3.999	1.977	2.713	2.308
H_o	0.143	0.429	0.667	0.6	0.667	0.308	0.478	0.466
H_e	0.133	0.459	0.562	0.46	0.749	0.494	0.631	0.567
TC4.287								
N_o	3	3	5	2	5	4	6	10
N_e	1.343	2.178	3.064	1.923	3.79	2.38	2.821	2.628
H_o	0.286	0.714	1	0.58	0.667	0.615	0.652	0.685
H_e	0.255	0.541	0.674	0.48	0.736	0.58	0.646	0.619
A43								
N_o	5	4	4	4	3	3	4	6
N_e	3.062	2.8	3.097	2.941	2.88	2.086	2.829	3.543
H_o	0.571	0.429	0.583	0.6	0.67	0.615	0.478	0.507
H_e	0.673	0.643	0.677	0.66	0.652	0.521	0.646	0.718
A113								
N_o	3	2	3	2	2	3	3	5
N_e	2.279	1.849	1.767	1.471	1.946	1.476	1.715	1.775
H_o	0.429	0.714	0.5	0.4	0.483	0.231	0.565	0.507
H_e	0.561	0.459	0.434	0.32	0.486	0.322	0.417	0.437
B124								
N_o	2	2	3	3	2	3	4	4
N_e	1.96	1.96	2.072	2.381	1.8	2.299	2.807	2.35
H_o	0.286	0.486	0.334	0.58	0	0.615	0.609	0.566

H_e	0.489	0.489	0.517	0.48	0.444	0.565	0.644	0.574
4								
5								

Table 2(on next page)

Multilocus microsatellite variation data

Multilocus microsatellite variation in Thailand's commercial *Genotrigona thoracica* populations. n =number of colonies. The mean observed (N_o) and effective (N_e) number of alleles, observed (H_o) and expected heterozygosity (H_e) with standard error (SD), fixation index between individuals and total data set (F_{it}), and fixation index between individuals and the local population (F_{is}). * = $P<0.05$.

1 **Table 2** Multilocus microsatellite variation in Thailand's commercial *Geniotrigona thoracica* populations

Province	<i>n</i>	<i>N_o</i>	<i>N_e</i>	<i>H_o</i>	<i>H_e</i>	<i>F_{it}</i>	<i>F_{is}</i>
Ratchaburi	7	3.00±1.225	1.959±0.766	0.343±0.163	0.422±0.223	0.122	0.162
Chumporn	7	3.00±1.00	2.127±0.399	0.554±0.147	0.518±0.077	0.074	-0.038
Songkhla	12	4.00±1.00	2.46±0.598	0.617±0.247	0.573±0.104	0.085	0.033
Phattalung	5	2.80±0.84	2.114±0.564	0.552±0.086	0.480±0.121	-0.182	-0.091
Yala	6	3.60±1.82	2.883±1.015	0.497±0.289	0.613±0.141	0.258*	0.224*
Pattani	13	3.20±0.45	2.044±0.356	0.477±0.191	0.496±0.103	0.091	0.079
Narathiwat	23	4.40±1.14	2.577±0.484	0.556±0.078	0.597±0.101	0.113	0.089
Mean±SD		10.43±6.32	3.428±0.594	2.309±0.338	0.514±0.088	0.529±0.069	0.132±0.066
							0.102±0.068

2

3 *n* = number of colonies. The mean observed (N_o) and effective (N_e) number of alleles, observed (H_o) and expected heterozygosity (H_e)
 4 with standard error (SD), fixation index between individuals and total data set (F_{it}), and fixation index between individuals and the
 5 local population (F_{is}). * = $P < 0.05$.

6

7

Table 3(on next page)

Pairwise genetic differentiation and estimated gene flow per generation values

Pairwise genetic differentiation (F_{st}) and estimated gene flow per generation (N_m) among *Geniotrigona thoracica* apiaries across different provinces in Thailand based on five microsatellite markers.

1 **Table 3** Pairwise genetic differentiation (F_{st}) and estimated gene flow per generation (N_m) among *Geniotrigona thoracica* apiaries
2 across different provinces in Thailand based on five microsatellite markers.

	Ratchaburi	Chumporn	Songkhla	Phattalung	Yala	Pattani	Narathiwat
Ratchaburi	–	7.82	5.56	6.72	3.78	3.6	3.68
Chumporn	0.0601	–	22.12	8.86	14.7	42.6	85.7
Songkhla	0.0825	0.0221	–	23.89	17.81	138.39	25.69
Phattalung	0.0692	0.0534	0.0205	–	21.72	207.83	12.59
Yala	0.1167	0.0329	0.0273	0.0225	–	19.34	33.51
Pattani	0.1219	0.0116	0.0036	0.0024	0.0252	–	10.39
Narathiwat	0.1196	0.0058	0.0191	0.0382	0.0147	0.0459	–

3

4

5

6

7

8

9

10

11

12

Table 4(on next page)

Summary of molecular diversity indices and population expansion test statistics of mitochondrial DNA sequences

Summary of molecular diversity indices and population expansion test statistics of mitochondrial cytochrome c oxidase subunit-I (COI) and large ribosomal subunit rRNA gene (16S rRNA) genes. Number of individuals (N), number of haplotypes (No), number of polymorphic (segregation) sites (S), average number of nucleotide differences (k), haplotype diversity (hd) and nucleotide diversity (P_i) with standard deviation (SD), Tajima's D , Fu's Fs and Ramos-Onsins and Rozas' R_2 .

1 **Table 4** Summary of molecular diversity indices and population expansion test statistics of mitochondrial cytochrome c oxidase
 2 subunit-I (COI) and large ribosomal subunit rRNA gene (16S rRNA) genes. Number of individuals (*N*), number of haplotypes (*No*),
 3 number of polymorphic (segregation) sites (*S*), average number of nucleotide differences (*k*), haplotype diversity (*hd*) and nucleotide
 4 diversity (*P_i*) with standard deviation (SD), Tajima's *D*, Fu's *Fs* and Ramos-Onsins and Rozas' *R₂*.

Gene		<i>N</i>	<i>No</i>	<i>S</i>	<i>k</i>	<i>hd</i> (\pm SD)	<i>P_i</i> (\pm SD)	<i>D</i>	<i>Fs</i>	<i>R₂</i>
<i>COI</i>	Province									
<i>16s rRNA</i>	Ratchaburi	7	4	3	1.048	0.810(0.130)	0.0016 (0.0004)	-0.654	-1.390	0.170
	Chumporn	7	5	5	2.041	0.905(0.103)	0.0031(0.0007)	-0.099	-1.548	0.185
	Songkhla	12	6	8	1.712	0.818(0.096)	0.0026(0.0009)	-1.412	-1.748	0.147
	Phattalung	5	5	8	3.400	1.000(0.126)	0.0059(0.0013)	-0.807	-2.004	0.174
	Yala	6	6	6	2.200	1.000(0.096)	0.0034(0.0004)	-0.932	-1.087	0.076
	Pattani	12	8	5	1.924	0.924(0.057)	0.0029(0.0003)	0.598	-1.167	0.184
	Narathiwat	21	12	9	1.933	0.933(0.031)	0.0030(0.0003)	-0.771	-1.669	0.097
	<i>All samples</i>	70	22	22	2.186	0.947(0.012)	0.0034(0.0003)	-1.674	-1.159	0.047
Concatenate	Province									

d genes

Ratchaburi	7	6	5	1.619	0.952(0.096)	0.0014(0.0002)	-1.024	-0.969	0.1098
Chumporn	7	7	13	5.429	1.000(0.076)	0.0048(0.0011)	0.126	0.304	0.1681
Songkhla	12	6	12	2.788	0.818(0.096)	0.0024(0.0007)	-1.254	-0.479	0.1135
Phattalung	5	5	16	7.000	1.000(0.126)	0.0062(0.0014)	-0.649	-0.832	0.1348
Yala	6	6	7	2.533	1.000(0.096)	0.0022(0.0003)	-1.011	-0.995	0.0909
Pattani	12	8	5	1.924	0.924(0.057)	0.0017(0.0002)	0.598	0.563	0.1842
Narathiwat	21	14	13	2.486	0.957(0.026)	0.0022(0.0003)	-1.118	-0.863	0.0912
<i>All samples</i>	70	38	40	3.288	0.970(0.010)	0.0029(0.0003)	-2.002	-1.715	0.0395

5

6

7

8

9

10

11

12

13

Table 5(on next page)

Analysis of molecular variance

Analysis of molecular variance (AMOVA) was conducted on *Genotrigona thoracica* populations using mitochondrial cytochrome c oxidase subunit I (COI) and large ribosomal subunit rRNA gene (16S rRNA) sequences, with populations grouped according to seven distinct geographical provinces in Thailand.

1 **Table 5** Analysis of molecular variance (AMOVA) was conducted on *Geniotrigona thoracica*
 2 populations using mitochondrial cytochrome c oxidase subunit I (COI) and large ribosomal
 3 subunit rRNA gene (16S rRNA) sequences, with populations grouped according to seven distinct
 4 geographical provinces in Thailand.

Gene	Source of variation	df	Sum of squares	Variance components	Percentage of variation	Statistics
COI						
	Among provinces	6	271.787	3.9813	24.64	$F_{ct}=0.2134$
	Among populations	11	243.659	5.3448	30.95	$F_{sc}=0.3920^*$
	Within province					
	Within population	60	184.135	3.5185	22.21	$F_{st}=0.5912^{**}$
16S rRNA						
	Among provinces	6	39.649	0.6146	31.24	$F_{ct}=0.3241$
	Among populations	11	28.729	0.6179	32.81	$F_{sc}=0.5818^{**}$
	Within province					
	Within population	60	27.326	0.4405	21.13	$F_{st}=0.6491^{**}$
Concatenated dataset						
	Among provinces	6	489.536	5.6717	27.41	$F_{ct}=0.3314$
	Among populations	11	454.426	7.9671	36.75	$F_{sc}=0.4972^{**}$
	Within province					
	Within population	60	368.482	4.8685	24.13	$F_{st}=0.6186^{**}$

5

6

7

8

9

10

11

12

13

14

15

16

17

18

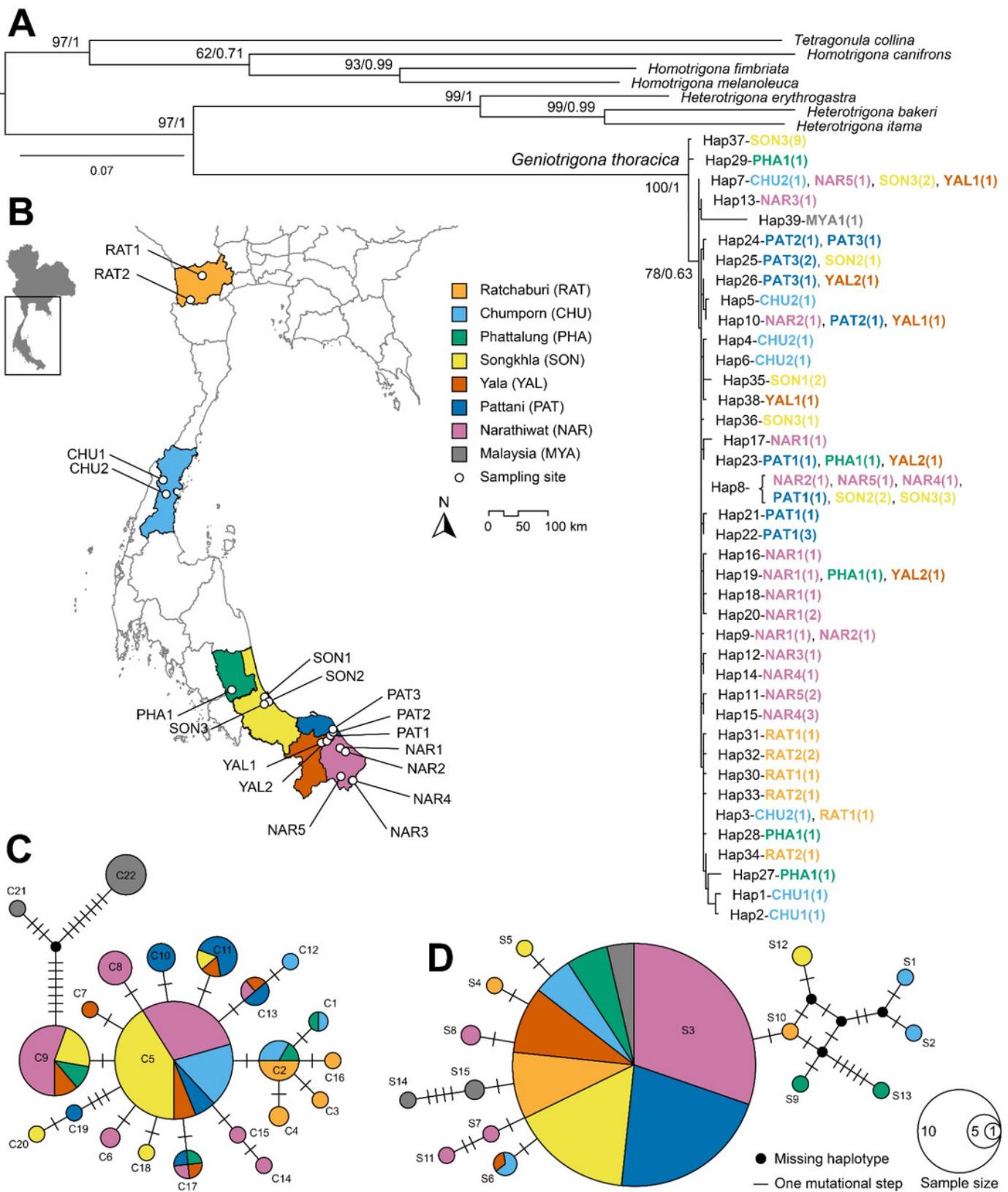
19

20

21

22

23


24

25

Figure 1

Phylogenetic tree and haplotype network analyses

(A) Maximum Likelihood phylogenetic tree of *Geniotrigona thoracica* and related species inferred from a 1,149 bp concatenated alignment of mitochondrial *COI* and *16S rRNA* gene sequences. Numerical values at nodes indicate bipartition posterior probabilities (bpp) from Bayesian inference (BI) analysis and bootstrap support values (BS) from Maximum Likelihood (ML) analysis, and presented as BI/ML. The scale bar denotes branch length. (B) Map of southern Thailand showing sampling localities of *G. thoracica*, with locality abbreviations corresponding to those listed in Table S1. Median-joining network for *COI* (C) and *16S rRNA* gene sequences (D). Each circle represents a unique haplotype, with the size of the circle proportional to the number of individuals sharing that haplotype. Colors indicate the geographic origin of the samples. The lines connecting the haplotypes represent mutational steps, with each small hash mark signifying a single mutation.

