

Multiomics analysis provides insights into flavonoids accumulation and biosynthesis in different planting years and locality of *Gongronemopsis tenacissima* (Dai-Bai-Jie) (#109469)

1

First submission

Guidance from your Editor

Please submit by **17 Mar 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

8 Figure file(s)

3 Table file(s)

1 Raw data file(s)

1 Other file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Multiomics analysis provides insights into flavonoids accumulation and biosynthesis in different planting years and locality of *Gongronemopsis tenacissima* (Dai-Bai-Jie)

Mengqi Wang ¹, Yunxia Gu ¹, Liming Shan ¹, Chunyu Li ¹, Ertai Yuan ¹, Ge Li ^{Corresp. 2}, Xiaoli Liu ^{Corresp. 1}

¹ College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China

² Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China

Corresponding Authors: Ge Li, Xiaoli Liu

Email address: lige19800221@163.com, kmxunzi@aliyun.com

The dried root of *Gongronemopsis tenacissima* (Roxb.) was the important Dai ethnic medicine, which is employed in folkloric medicine mainly for detoxification purposes. Due to the extensive utilization, the wild resources are becoming increasingly scarce. The plants have been domesticated in China. However, the accumulation patterns of the secondary metabolites and the main detoxifying component, flavonoids, as well as biosynthesis of flavonoids remain unclear. The differences in flavonoid accumulation and transcriptional regulatory mechanisms underlying the differential accumulation of flavonoid in Dai-Bai-Jie, cultivation for one, two, and three years in high altitude, as well as three years in low altitudes were investigated using transcriptome and widely targeted metabolome methods. A total of 1495 metabolites were identified by UPLC-MS/MS from Dai-Bai-Jie, and 943 differential accumulation metabolites were detected among four groups. All the flavonoids were grouped into six clusters by k-means cluster analysis. There is a regulatory relationship between genes such as PAL, CYP73A, 4CL, FLS and flavonoid components in Dai-Bai-Jie. However, significant differences in the Shannon, Chao1, or ACE indices of rhizosphere microorganisms across different plantation ages and localities were not detected. This study elucidates the regulatory mechanisms of flavonoids and the scientificity of harvesting years.

1 Multiomics analysis provides insights into flavonoids
2 accumulation and biosynthesis in different planting years
3 and locality of *Gongronemopsis tenacissima* (Dai-Bai-Jie)

4 Mengqi Wang¹, Yunxia Gu¹, Liming Shan¹, Chunyu Li¹, Ertai Yuan¹, Ge Li^{2*}, Xiaoli Liu^{1*}

5 1. College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming,
6 Yunnan, China

7 2. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking
8 Union Medical College, Jinghong, Yunnan, China

9

10 Corresponding Author:

11 Ge Li

12 Xuanwei Road, Jinghong, Xishuangbanna, Yunnan, 666100, China

13 Email address: lige19800221@163.com

14

15 Xiaoli Liu

16 Yuhua road 1076, Kunming, Yunnan, 650500, China

17 Email address: kmxuzi@aliyun.com

18

19 **Abstract**

20 The dried root of *Gongronemopsis tenacissima* (Roxb.) was the important Dai ethnic medicine,
21 which is employed in folkloric medicine mainly for detoxification purposes. Due to the extensive
22 utilization, the wild resources are becoming increasingly scarce. The plants have been
23 domesticated in China. However, the accumulation patterns of the secondary metabolites and the
24 main detoxifying component, flavonoids, as well as biosynthesis of flavonoids remain unclear.
25 The differences in flavonoid accumulation and transcriptional regulatory mechanisms underlying
26 the differential accumulation of flavonoid in Dai-Bai-Jie, cultivation for one, two, and three years
27 in high altitude, as well as three years in low altitudes were investigated using transcriptome and
28 widely targeted metabolome methods. A total of 1495 metabolites were identified by UPLC-
29 MS/MS from Dai-Bai-Jie, and 943 differential accumulation metabolites were detected among
30 four groups. All the flavonoids were grouped into six clusters by k-means cluster analysis. There
31 is a regulatory relationship between genes such as PAL, CYP73A, 4CL, FLS and flavonoid
32 components in Dai-Bai-Jie. However, significant differences in the Shannon, Chao1, or ACE
33 indices of rhizosphere microorganisms across different plantation ages and localities were not
34 detected. This study elucidates the **regulatory mechanisms of flavonoids** and the scientificity of
35 harvesting years.

36 Keywords: *Gongronemopsis tenacissima*; metabolome; transcriptome; rhizosphere microbes;
37 flavonoids

38 **Introduction**

39 ***Marsdenia tenacissima* (Roxb.) Moon**, a traditional medicine of the Dai ethnic group, holds
40 significant value in the ethnomedical traditions of Southeast Asia. In the Dai language, it is
41 referred to as "Ya Jie Xian Da," symbolizing its ability to purge the body of numerous toxins.

42 This medicinal herb has long been utilized in Dai-inhabited regions such as Xishuangbanna,
43 Dehong, Ximeng, Menglian, Xinping, Yuanjiang, Mojiang, and Puer in China, as well as
44 neighbouring countries like Laos and Myanmar (Li *et al.*, 1995). The root of *M.*
45 *tenacissima* is employed in folkloric medicine named Dai-Bai-Jie for detoxification purposes. It
46 is known to counteract toxicities from various substances, such as food, animals, and even heat,
47 water, and fire burns. Additionally, it is utilized to alleviate throat discomfort and swelling
48 caused by excessive heat toxicity. With a rich historical background in traditional medicine, *M.*
49 *tenacissima* (Dai-Bai-Jie) has found its way into contemporary hospital preparations at
50 institutions like the Xishuangbanna Dai Hospital. These preparations include formulations such
51 as Bai-jie Capsules, Ya-jie Gahan, and Banna Coolant. Modern pharmacological research has
52 revealed that "Dai-Bai-Jie" exhibits inhibitory effects on cancer cells, protects against liver
53 damage caused by certain drugs, demonstrates anti-HIV activity, possesses antioxidant
54 properties, and exhibits antibacterial activities (Gao *et al.*, 2014; Li *et al.*, 2021)
55 Currently, various bioactive compounds have been isolated from *M. tenacissima*, including
56 organic acids, polyoxyprogesterone glycosides, volatile oils, and pyrrole alkaloids (Liao *et al.*,
57 2016; Pang *et al.*, 2018; Song *et al.*, 2018; Song *et al.*, 2021). These discoveries not only
58 enhance our understanding of the medicinal properties of this herb but also pave the way for
59 potential therapeutic applications in modern medicine.
60 For numerous years, Dai-Bai-Jie has been erroneously identified as the dried root of *Dregea*
61 *sinensis* Hemsl., belonging to the genus *Dregea* of the Asclepiadaceae family (Lin *et al.*, 2003).
62 However, in 2014, a pivotal study established that Dai-Bai-Jie is the dried root of *M.*
63 *tenacissima*, a member of the *Marsdenia* genus (Li *et al.*, 2014; Li *et al.*, 2023). This
64 identification was based on comprehensive molecular and morphological analysis, employing
65 DNA fragments such as psbD-trnT, trnL-trnF, and ITS, in conjunction with observations of leaf
66 morphology and floral traits. Importantly, it must be noted that the "tong-guan-teng" mentioned
67 in the Chinese Pharmacopoeia, renowned for its broad-spectrum anticancer activities,
68 corresponds to *M. cavaleriei* (Chen *et al.*, 2022; Li *et al.*, 2014). Current scientific inquiries
69 have revealed significant disparities in the chemical composition and therapeutic effects of these
70 two species. Specifically, antidotal properties and gastrointestinal disease management are the
71 primary therapeutic indications of Dai-Bai-Jie, whereas anticancer activity is the primary
72 biological function attributed to *M. cavaleriei*. In 2022, *M. tenacissima* has been transferred to
73 the genus *Gongronemopsis*, named *Gongronemopsis tenacissima* (Roxb.) (Liede-Schumann *et*
74 *al.*, 2022)
75 Flavonoids are secondary metabolites that are ubiquitously found in plants and possess diverse
76 functions including antioxidant, anti-inflammatory, antitumor, antiviral, antibacterial, anti-
77 vascular sclerosis, and anti-liver fibrosis activities (Fang *et al.*, 2023; Wang *et al.*, 2020;
78 Zhang *et al.*, 2023). Recent studies suggested that its protective effect on intestinal mucosal
79 barrier function may contribute to its detoxification mechanisms (Yang *et al.*, 2020). According
80 to Dai medical theory, the occurrence of disease is closely associated with imbalances among the

81 four cosmic elements within the body, and these imbalances can be triggered by the presence of
82 toxins (Zhang *et al.*, 2023). Such imbalances may stem from disturbances in antioxidant
83 defences and imbalances between pro- and anti-inflammatory factors. Notably, recent studies
84 have demonstrated a correlation between the levels of total flavonoids and total polyphenols in
85 Dai-Bai-Jie with its antioxidant and anti-inflammatory activities (Zhang *et al.*, 2023). Therefore,
86 Flavonoids maybe the most important active component for detoxification of *G. tenacissima*
87 Due to the extensive utilization of *G. tenacissima*, wild resources are becoming increasingly
88 scarce. Fortunately, significant progress has been made in the artificial cultivation technology of
89 *G. tenacissima*, resulting in small-scale cultivation in Xishuangbanna, Yunnan. Under natural
90 conditions, the harvesting period is typically determined by empirical knowledge and generally
91 occurs after at least two years of growth. Similarly, under cultivation conditions, the harvest
92 period is usually 2-3 years, primarily considering the biomass of the roots.
93 Despite these advancements, the accumulation patterns of flavonoids in *G. tenacissima* under
94 varying cultivation conditions remain unclear. To address this knowledge gap, this study
95 investigated the flavonoids accumulation patterns and influence factors of *G. tenacissima* from
96 the multi-omics perspective, which may lead to better understanding of *G. tenacissima*
97 metabolism accumulative mechanism, as well as facilitate to elucidate scientifically optimal
98 harvesting years for this medicinal plant.

99 Materials & Methods

100 2.1 Plant materials and sampling

101 The roots of one-year-old (CR1), two-year-old (CR2), and three-year-old (CR3) cultivated *G.*
102 *tenacissima* (Dai-Bai-Jie) were collected from Menghun County, Xishuangbanna Dai
103 Autonomous Prefecture, Yunnan, China (E 100.38°, N 21.82°; 1179 m) in November 2022
104 (Fig. 1) . Additionally, the roots of three-year-old Dai-Bai-Jie (CR4) cultivated in South
105 Medicine Garden (E100.79°, N22.00°; 533.57m) also located in Xishuangbanna Dai
106 Autonomous Prefecture, Yunnan Province, China, were gathered. Each plant was divided into
107 two sections: one for transcriptome sequencing and the other for metabolome analysis, with three
108 biological replicates per sample. Furthermore, the rhizosphere soil (CM1, CM2, CM3, CM4)
109 corresponding to each plant (CR1, CR2, CR3, CR4) was collected and utilized for 16S rRNA
110 and ITS analysis.

111 2.2 Metabolome analysis

112 After the freeze-dried samples were crushed (30 Hz, 1.5 minutes), the extraction solution (70%
113 methanol water pre-cooled to -20°C) was added, and the mixture was vortexed for 30 seconds.
114 Subsequently, the samples were vortexed six times (once every 30 minutes) and centrifuged at
115 12,000 rpm for 3 minutes. The supernatant was then filtered through a microporous filter
116 membrane with a pore size of 0.22 µm and stored in an injection vial for UPLC-MS/MS analysis.
117 Ultra High Performance Liquid Chromatography (ExionLC™ AD) was employed for sample
118 collection and analysis, utilizing an Agilent SB-C18 column (1.8 µm, 2.1 mm × 100 mm). The
119 mobile phase A consisted of 0.1% formic acid in water, while the mobile phase B was
120 acetonitrile containing 0.1% formic acid. The column temperature was maintained at 40°C, and
121 the automatic sampler temperature was set to 4°C. The flow rate was adjusted to 0.35 mL/min,
122 and the injection volume was 2 µL. Applied Biosystems 6500 QTRAP was used for analysis.
123 The typical ion source parameters were as follows: electrospray ionization (ESI) temperature of

124 500°C; ion spray voltage (IS) of 5500 V in positive ion mode and -4500 V in negative ion mode;
125 ion source gas I (GSI), gas II (GSII), and curtain gas (CUR) were set to 50, 60, and 25 psi,
126 respectively. The collision-induced dissociation parameters were set to high. SCIEX Analyst
127 workstation software (version 1.6.3) was used for Multiple Reaction Monitoring (MRM) data
128 collection and processing.

129 Using MS-Converter, MS raw data files were converted into TXT format for further analysis. An
130 internal R program, along with a specialized database, was employed for peak detection and
131 annotation. Prior to analysis, the raw data underwent preprocessing to filter out low-quality ion
132 signals.

133 After obtaining the organized data, SIMCA (version 16.0.2) software was used for analysis PCA
134 and OPLS-DA, which were used to explore the metabolic patterns and identify differential
135 metabolites Metabolites (DAMs) with p-values < 0.05 and VIP (variable importance in
136 projection) >1.

137 2.3 RNA-seq processing and data analysis

138 Total RNA was extracted and purified from the above samples. The extracted RNA was tested
139 for purity, concentration, and integrity. After the samples were qualified, the mRNA was isolated
140 and purified by Oligo (dt) for the construction of the cDNA library. Illumina Novaseq 6000
141 sequencing was performed after the library was qualified. Fastp software (*Chen et al., 2018*)
142 was used for quality control on the raw data.

143 After obtaining Clean Reads, Trinity assembly software is used to splice the Clean Reads to
144 obtain reference sequences for subsequent analysis, trinity assembly software was used to stitch
145 the clean reads to obtain reference sequences for subsequent analysis.

146 The RSeQC software (*Wang et al., 2012*) was used to evaluate the quality of transcriptome
147 data, and to analyze the sequencing data after passing the quality evaluation. FPKM (*Trapnell et*
148 *al., 2010*) was used to estimate gene expression level. The transcriptome assembly was
149 assessed in terms of their completeness and the percentage of complete, fragmented, and missing
150 fragments by using the BUSCO 5.3.2 (<https://busco.ezlab.org>, *Simão et al. 2015*). DESeq2 (*Iove*
151 *et al., 2014; Varet et al., 2016*) was used for differential expression analysis between
152 samples. The corrected p-value and FDR (False Discovery Rate) were used as the key indicators
153 for the screening of differentially expressed genes (DEGs). Weighted Geneco-expression
154 Network Analysis (WGCNA) was used to find the gene modules that are co-expressed and
155 constructed the hierarchical clustering tree. The statistical power of this experimental design,
156 calculated in RNASeqPower is 0.70.

157 The whole transcript data set can be found in the National Center for Biotechnology Information
158 (NCBI) database (BioProject ID: PRJNA996325).

159 2.4 RT-qPCR validation

160 We selected **five genes associated with flavonoids synthesis** for RT-qPCR according to **FMPK**
161 value. GAPDH was used as a reference gene and all genes used in this study are listed in Table
162 1. cDNA was synthesized using MonScript™ RTIII All-in-One Mix with ds DNase (Monad,
163 China). According to the instructions of QuantiNova SYBR Green PCR Kit (QIAGEN, China),
164 RT-qPCR was performed. The total volume of the system was 10 μ L, including 5 μ L 2x SYBR
165 Green PCR Master Mix, 0.7 μ L upstream Primer with 0.7 μ M, 0.7 μ L down-stream primer with
166 0.7 μ M, 1 μ L cDNA with \leq 100ng/reaction, 2.55 μ l RNase-free water, 0.05 μ l QN ROX Reference
167 Dye.

168 Microbial DNA extraction, 16S rRNA and ITS gene sequencing

169 Genomic DNA was extracted using CTAB (Nobleryder, China). Dilute the DNA with sterile
170 water to 1 ng/μL. 30 μL PCR amplification system was as follows: Phusion® High-Fidelity
171 PCR Master and high fidelity polymerase Mix (New England Biolabs) 15μL, Primer 1 μL,
172 DNA5-10 ng, ddH2O. 16S V4 Regional primer (GTGCCAGCMGCGCGGGGTAA and 806R
173 GGACTACHVGGGTWTCTAAT) was used for identified bacterial diversity. ITS5-1737F 5'-
174 GGAAGTAAAAGTCGTAACAAGG-3' and ITS2-2043R 5'-GCTGCCTTCTTCATCGATGC-
175 3' was used for identified fungal diversity. Reaction procedure was set at 98 C for 1 min,
176 followed by 40 cycles at 98 °C for 10 s, 0°C for 38 s and 72 °C for 30 s, 72 °C extension for 5
177 minutes finally. PCR products was sequenced on the NovaSeq6000 platform (Maiwei
178 Biotechnology Company).

179 Results

180 3.1 RNA-seq analysis and DEGs identification

181 We performed high-throughput transcriptome sequencing of CR1, CR2, CR3, and CR4 of Dai-
182 Bai-Jie, with three biological replicates per sample. In total, we obtained 78.27 GB of clean data.
183 The clean Data of all sample was not less than 6 Gb. The percentages of Q30 bases were all
184 greater than 90%. After assembling and splicing, 85,346 unigenes were obtained. A BUSCO
185 analysis was performed to evaluate the completeness, and we recovered 253 of the 255
186 conserved eukaryotic genes (99.2%) (Fig. 3A) .

187 Using the criteria of $|\log_2 \text{Fold Change}| \geq 1$ and $\text{FDR} < 0.05$, we screened for DEGs. The results
188 revealed that 15,255, 8,170, 10,529, and 8,225 DEGs were identified in the comparisons of CR1
189 vs. CR2, CR1 vs. CR3, CR2 vs. CR3, and CR3 vs. CR4, respectively. Among them, there were
190 654 common DEGs shared of CR1, CR2, CR3, and CR4. Specifically, there were 6,043 unique
191 DEGs in the comparison of CR1 vs. CR2, 1,243 unique DEGs in CR1 vs. CR3, 2,720 unique
192 DEGs in CR2 vs. CR3, and 2,957 unique DEGs in CR3 vs. CR4 (Fig. 3C).

193 The DEGs in the four groups were analyzed by KEGG metabolic pathway. The results showed
194 that the DEGs of CR1 vs. CR2, CR1 vs. CR3, CR2 vs. CR3, and CR3 vs. CR4 were annotated to
195 144, 140,143, and 140 KEGG metabolic and biosynthetic pathways, respectively. Notably, the
196 "Metabolic pathways" category emerged as the most frequently annotated, encompassing 2492,
197 1428, 1669, and 1432 genes in each comparison, respectively. Closely following was the
198 "biosynthesis of secondary metabolites" category, which annotated 1375, 800, 930, and 808
199 genes, respectively. The "Plant-pathogen interaction" pathway was annotated to 514, 271, 364,
200 and 401 genes (Fig. 2).

201 WGCNA displayed that DEGs are divided into 27 co-expression modules of CR1, CR2, CR3,
202 and CR4. Among them, the turquoise module has the highest number of genes with 11313,
203 followed by the blue module with 5550 genes, and the least is the white module, which has 101
204 genes (Fig . 3B).

205 3.2 RT-qPCR validation

206 The RT-qPCR results for the five genes revealed that four of them (excluding cluster-60047.2)
207 exhibited general consistency with the relative transcript abundance observed in the
208 transcriptome analysis. This concordance validates the reliability of the RNA-seq data (Fig. 4).

209 3.3 Metabolomic profiling

210 A total of 1495 metabolites were identified by Ultra-Performance Liquid Chromatography
211 coupled with Mass Spectrometry/Mass Spectrometry (UPLC-MS/MS) from Dai-Bai-Jie,
212 including 378 amino acids and their derivatives (25.28%) , 265 phenolic acids (17.73%), 168
213 lipids (11.24%), 114 flavonoids (7.63%), 103 organic acids (6.89%), 92 alkaloids (6.15%), 80
214 nucleotides and their derivatives (5.35%), 55 lignans and coumarins (3.68%), and 42 terpenoids

215 (2.81%), 23 steroid₁ (1.54%) and 75 metabolites belonging to other categories (11.71%)
216 (Fig. 5A). Notably, the flavonoid category was further subdivided into 9 chalcones, 17
217 dihydroflavonoids, 8 dihydroflavonols, 36 flavonoids, 40 flavonols, and 4 flavanols.
218 Principal component analysis (PCA) was used to reveal the overall metabolite differences
219 between the different groups. The results showed that both PC1 (38.39%) and PC2 (23.73%)
220 explained 62.12% of the changes in the metabolic profile, indicating significant differences in
221 four groups. The three samples within every group presented high aggregation and good
222 repeatability (Fig. 5B).

223 A total of 943 Differential metabolites (DAMs) were detected using $FC \geq 2$ or ≤ 0.5 and $VIP > 1$ as
224 screening conditions, including 255 amino acids and their derivatives, 174 phenolic acids, 45
225 nucleotides and their derivatives, 79 flavonoids, 42 lignans and coumarins, 64 alkaloids, 30
226 terpenoids, 44 organic acids, 20 steroids and 83 lipids. Among them, there were one common
227 DAMs shared of CR1, CR2, CR3, and CR4. Specifically, there were five unique DAMs in the
228 comparison of CR1 vs. CR2, 273 unique DAMs in CR1 vs. CR3, 172 unique DAMs in CR2 vs.
229 CR3, and 46 unique DAMs in CR3 vs. CR4 (Fig. 5D).

230 There were 627 DAMs in CR1 vs CR2, of which 183 were down-regulated and 444 were up-
231 regulated. Compared with the CR1, the metabolite with a significant decrease in the CR2 was
232 gofruside, and the metabolite with a significant increase was 4-O-(2"-O-acetyl-6"-P-coumaroyl-
233 β -D-glucopyranosyl)-P-coumaric acid (Fig. 6A) . There was a total of 550 DAMs in CR1 vs
234 CR3, of which 276 were up-regulated and 274 were down-regulated. Compared with the CR1,
235 protocatechuic acid 4-O-(2"-O-Vanillyl) glucoside was significantly reduced in the CR3, and
236 eugenol was significantly increased (Fig. 6B). 449 DAMs were detected in CR2 vs CR3, of
237 which 377 were down-regulated and 72 were up-regulated. The metabolite significantly reduced
238 in CR3 was 6,7-dimethoxy-2-[2-(4'-hydroxy-3'-methoxyphenyl)ethyl]chromone compared to the
239 CR2, and the significantly increased metabolite was sinapine (Fig. 6C) . A total of 259 DAMs
240 were found in CR3 vs CR4, of which 117 were down-regulated and 142 were up-regulated. The
241 metabolite that was significantly reduced in CR4 was rutin, and the metabolite that was
242 significantly increased was 7-Hydroxycoumarin compared to CR3 (Fig. 6D). Cluster analysis
243 was performed on the DAMs of the four groups. The differences between the four groups of
244 samples were obvious, the phenolic acids were commonly higher in the CR2, and flavonoids
245 were commonly higher in the CR1 and CR2 than₁ other groups. The contents of amino acids and
246 their derivatives were higher at CR3, while the contents of terpenes, nucleotides and their
247 derivatives were higher CR4 (Fig. 5C).

248 To gain a deeper understanding of the accumulation patterns of metabolites of Dai-Bai-Jie across
249 different plantation age and altitudes, we employed k-means cluster analysis to categorize all the
250 metabolites. The analysis revealed that the metabolites clustered into six distinct groups (Fig.
251 6E). Notably, classes 1 and 6 exhibited the highest concentration of metabolites in CR2, with
252 class 6 containing the largest number of metabolites among all six classes. Classes 2 and 4, on
253 the other hand, demonstrated the highest abundance of metabolites in CR3. Class 3 was
254 characterized by the highest amount of metabolites in CR4, while class 5 displayed the highest
255 concentration of metabolites in CR1. This categorization provides valuable insights into the

256 specific patterns of metabolite accumulation within each growth year and altitude, enabling us to
257 further investigate their potential biological significance.

258 3.4 Comparative metabolomic analysis aiming to flavonoids and flavonoid biosynthesis-related
259 genes among the different plantation age and locality.

260 A total of 114 flavonoids were detected from Dai-Bai-Jie, including 34.21% flavonols, 31.58%
261 flavonoids, 14.91% dihydroflavonoids, 7.02% dihydroflavonols, 7.89% chalcone, 3.50%
262 flavanols, 0.88% flavonols, of which 79 flavonoids were differentially accumulated. Based on K-
263 means analysis, nine flavonoids, including 3',5-Dihydroxy-4',6,7-trimethoxyflavanone, acacitin-
264 7-O-galactide, robiniin-7-O-galactoside, phelamurin, huangbaioside, eriodictyol-7-O-glucoside,
265 exhibited a relatively high accumulation in class 2 for CR2. 15 flavonoids including 3',4',7-
266 trihydroxyflavone, cirsimarinin, hesperetin-7-O-glucoside, quercetin, exhibited a relatively high
267 accumulation in class 6 for CR2. Six flavonoids including kaempferol-7-O-glucuronid,
268 hesperetin-7-O-(6"-malonyl) glucoside, quercetin-3-O-(6"-O-galloyl) galactoside, myricetin-3-
269 O-rhamnoside (Myricitrin), diosmetin-7-O-glucuronide, syringetin-7-O-glucoside, exhibited a
270 relatively high accumulation in class 2 for CR3. Ten flavonoids including Rutin, hesperetin-5-
271 O-glucoside, isorhamnetin-3-O-rhamnoside, quercetin-3-O-robinobioside, exhibited a
272 relatively high accumulation in class 4 for CR3. Five flavonoids including 3-Hydroxy-4',5,7-
273 Trimethoxyflavanone, aromadendrin-7-O-glucoside, eriodictyol-8-C-glucoside,
274 dihydromyricetin-3-O-glucoside, taxifolin-3'-O-glucoside, exhibited a relatively high
275 accumulation in class 3 for CR4. 34 flavonoids including rhamnazin, quercetin-3,4'-dimethyl
276 Ether, limocitrin-7-O-glucoside, kumatakenin, exhibited relatively high accumulation in class 5
277 for CR1.

278 To gain a deeper understanding of the molecular mechanisms underlying the differential
279 accumulation of flavonoids across various planting year and planting environments, we
280 conducted a comprehensive analysis of the expression patterns of genes involved in flavonoid
281 metabolism. KEGG analysis revealed that the 15 flavonoids exhibiting differential accumulation
282 were mapped to multiple biosynthetic pathways, including the flavonoid biosynthesis pathway
283 (KO00941), flavonol biosynthesis pathway (KO00944), as well as the broader metabolic
284 pathway (KO01100) and secondary metabolite biosynthesis pathway (KO01110) (Fig. 7A).
285 Correlation analysis was conducted between DAMs mapped to the KEGG pathway and the
286 corresponding DEGs on the pathway, and the correlation > 0.8 or <-0.8 and the P-value <0.05 as
287 the screening conditions. The analysis revealed complex regulatory relationship among
288 phenylalanine ammonia-lyase (PAL Cluster-63886.0, Cluster-63886.1), 4-Coumarate: Coenzyme
289 A Ligase (4CL, Cluster-58688.4, Cluster-62808.3), lavonol synthase (FLS, Cluster-46899.18,
290 Cluster-46899.5, Cluster-50957.2, Cluster-57391.0, C12RT1(Cluster-45854.0) and metabolites
291 of hyperin, lonicerin, vicenin-2, nicotiflorin, quercetin, luteolin-7-O-(6"-malonyl) glucoside,
292 Hesperetin-7-O-glucoside (Fig. 7B).

293 3.5 Taxonomic features of the rhizosphere microbes of Dai-Bai-Jie
294 Plants recruit specific root-associated microbes, which allow plants to deliver photosynthates and
295 root exudates to their root microbiome, thereby stimulating plant growth and productivity
296 (Lareen et al., 2016). Many research has indicated that the composition of microbial
297 communities at roots, the so-called root microbiome, can have significant impacts both on plant
298 development and their stress tolerance (Mendes et al., 2011; Panke-Buisse et al., 2015).
299 The coverage index between the bacterial and fungal sample groups was above 0.965, indicating
300 that the sequencing was representative and could truly and reasonably reflect the bacterial and

301 fungal diversity of the samples. The four groups of rhizosphere soil bacteria involved a total of
302 40 phyla, 71 classes, 154 orders, 300 families, and 695 genera, and fungi involved a total of 13
303 phyla, 61 classes, 168 orders, 406 families, and 875 genera. Crenarchaeota, Acidobacteriota,
304 Chloroflexi, Firmicutes, Proteobacteria were the dominant bacteria in the rhizosphere soils,
305 while Ascomycota, Basidiomycota, Mortierellomycota, Glomeromycota,
306 Chytridiomycota, Rozellomycota were the dominant fungi.

307 The **indices of the richness index** (Alpha diversity, ACE, Chao 1) and Shannon diversity index of
308 the microbial community and the number of OTUs in all the samples was studied. There was no
309 significant difference of Shannon, Chao1 and ACE in rhizosphere microorganisms among the
310 four groups (table 2).

311 A total of 1952 bacterial operational taxonomic units (OTUs) and 5230 fungi were detected in
312 the rhizosphere microbiome. The co-possessed bacteria in the four rhizosphere soils are 2986
313 OTUs, 721 are unique to CM1, 406 are unique to CM2, 497 are unique to CM3, and 620 are
314 unique to CM4 (Fig. 8A). The co-possessed fungi in the four rhizosphere soils are 5677 OTUs,
315 383 are unique to CM1, 223 are unique to CM2, 263 are unique to CM3, and 406 are unique to
316 CM4 (Fig. 8B).

317 The community composition analysis showed that the community compositions were similar
318 among all the twelve four rhizosphere soils at the phylum level. In addition to CM3.3,
319 Acidobacteriota abundances of CM2 and CM3 were significantly higher than those of CM1 and
320 CM4. The abundance of Proteobacteria in CM1 was higher than that in Acidobacteriota
321 (Fig.8CD). However, the community compositions presented different to some extent among all
322 the twelve rhizosphere soils at the genus level (Fig. 8EF).

323 Discussion

324 Growth duration is the paramount factor influencing the quality of medicinal plants. Until now,
325 the harvesting period of Dai-Bai-Jie has primarily focused on biomass accumulation, with the
326 accumulation of bioactive components remaining unknown. Despite the existence of numerous
327 research reports exploring metabolites and anti-tumor properties of *G. tenacissima*, majority of
328 these studies have not specifically targeted Dai-Bai-Jie due to inaccuracies in plant identification
329 (Li et al., 2014; Li et al., 2023). Up to now, little is known about the chemical composition and
330 active ingredients of Dai-Bai-Jie (Liao et al., 2016; Pang et al., 2018; Zhang et al., 2016; Li et
331 al., 2017). Consequently, there is a need for further scientific exploration to comprehensively
332 understand the growth patterns and accumulation of bioactive components in Dai-Bai-Jie.

333 In this study, a comprehensive metabolic profiling of Dai-Bai-Jie was conducted using UPLC-
334 MS/MS widely-targeted metabolomics analysis. A total of 1495 metabolites were successfully
335 identified, demonstrating the rich metabolite content of Dai-Bai-Jie. These metabolites are likely
336 to serve as the pharmacological material basis for the medicinal properties of Dai-Bai-Jie. 943
337 DAMs were detected from four group samples from distinct locations and three different
338 plantation age, which suggests quality differences among them.

339 Flavonoids and total polyphenols were major contributors for detoxification of Dai-Bai-Jie
340 (Zhang et al., 2023). We detected a diverse array of secondary metabolites, including flavonoids,
341 phenolic acids, alkaloids, and terpenoids. This finding **demonstrates potentially contributing** to
342 its antioxidant and anti-inflammatory activities.

343 When comparing the accumulation of metabolites across different plantation age, it was
344 observed that the total metabolite content in CR2 and CR3 was relatively abundant. Additionally,
345 flavonoid levels were generally higher in CR1 and CR2. To achieve a balance between biomass,

346 economic benefits, and the biological activity of Dai-Bai-Jie, it is recommended that two-year
347 harvesting serves as the optimal strategy.

348 Despite originating from the same plantation age, samples CR3 and CR4 exhibited consistent
349 metabolite accumulation trends, revealing a total of 259 DAMs. This variation can be attributed
350 to diverse environmental factors, including altitude, temperature, and soil conditions. Although
351 the number of DAMs identified was fewer compared to those observed between different years,
352 it nonetheless underscores the significant impact of the environment on the accumulation of
353 secondary metabolites in Dai-Bai-Jie. Furthermore, it suggests that cultivation at lower altitudes
354 may result in a reduced abundance of secondary metabolites. The reason maybe that Dai-Bai-Jie
355 is tropical plant, and the low temperature, as a stress, promoted the production of secondary
356 metabolites in Dai-Bai-Jie.

357 Based on our widely targeted metabolome, flavonoids represent the secondary metabolites with
358 the higher content in Dai-Bai-Jie. Notably, the flavonoid content is significantly higher in farmed
359 one year and two years compared to those that ~~had~~ three years. Furthermore, the majority of
360 differentiated flavonoid components exhibit a substantial accumulation in one-year and two-
361 years plant.

362 Numerous flavonoids isolated from Dai-Bai-Jie have exhibited significant biological activities.
363 Specifically, hesperetin-7-O-glucoside has been demonstrated to effectively modulate the gut
364 microbiota composition and bile acid metabolism in murine models (Wu *et al.*, 2022). The
365 antioxidative, antihypertensive, antidiabetic, anti-inflammatory and cardioprotective activities of
366 rutin were reported, while rutin pretreatment before administration of ethanol can afford
367 significant protection against mucosal hyperemia, necrosis, edema and mucosal or submucosal
368 hemorrhage (Akash *et al.*, 2024; Chua, 2013; Nicola *et al.*, 2024). Quercetin is known to
369 possess both mast cell stabilizing and gastrointestinal cytoprotective activity (Anand David *et*
370 *al.*, 2016; Catalina *et al.*, 2016).

371 The flavonoid content in Dai-Bai-Jie varies significantly with its plantation age, which may be
372 the result of DEGs patterns of genes involved in flavonoid biosynthesis. Until now, flavonoid
373 biosynthetic pathway has been extensively studied, with the genes encoding enzymes involved in
374 this pathway and their corresponding functions having been verified in many plants. Flavonoids,
375 flavonols, and lignin are synthesized through various branching pathways originating from the
376 phenylpropane biosynthetic pathway (Froemel *et al.*, 1985). We screened nine DEGs related to
377 flavonoid biosynthesis from Dai-Bai-Jie, PAL, 4CL, FLS, and C12RT1 included.

378 PAL catalyzes the first step in the phenylpropanoid pathway and plays an important role in
379 the biosynthesis of phenylpropanoid and flavonoid compounds (Levy *et al.*, 2018). 4CL is the
380 last enzyme in the general biosynthetic pathway of phenylpropane compounds, which catalyzes
381 cinnamic acid and its hydroxyl or methoxy derivatives to generate corresponding coenzyme A
382 esters (Cao *et al.*, 2023; Lavhale *et al.*, 2018). These intermediate products then enter the
383 biosynthetic pathway of phenylpropane derivatives (Tian *et al.*, 2017). FLS is a key enzyme
384 specific to the flavonol pathway, which converts dihydroflavonol into the corresponding flavonol
385 by introducing a double bond between C-2 and C-3 of the C-ring (Forkmann *et al.*, 1986; Shi *et*
386 *al.*, 2021).

387 Correlation analysis conducted on flavonoid DAMs mapped to the KEGG pathway revealed that
388 the expression patterns of genes PAL, 4CL, and FLS exhibited a concordant trend with the
389 accumulation of nicotiflorin and lonicerin. Similarly, hesperetin-7-O-glucoside displayed a
390 comparable trend with C12RT1. These DEGs may serve as key genes regulating the distinct
391 accumulation patterns of flavonoid metabolites in Dai-Bai-Jie.

392 The RT-qPCR results showed that the expression trend of the key enzyme genes in the
393 biosynthetic pathway of flavonoids in Dai-Bai-Jie was consistent with the results of
394 transcriptome sequencing, indicating that the transcriptome data is reliable.
395 In general, plantation age has been found to elicit alterations in soil nutrient content and pH,
396 subsequently driving changes in the composition and diversity of soil bacterial and fungal
397 communities. For instance, *Na et al.*(2016) reported that fungal diversity decreased with the
398 cultivation going on from 5 a to 10 a of *Lycium barbarum* L. whereas bacterial diversity remained
399 relatively unchanged. Conversely, *Li et al.* (2020) observed a significant increase in bacterial
400 diversity and a decrease in fungal diversity in lily soil with increasing planting years. However,
401 in our study on Dai-Bai-Jie, we did not detect any significant differences in the Shannon, Chao1,
402 or ACE indices of rhizosphere microorganisms across different plantation ages and localities.
403 This inconsistency suggests that the underlying mechanisms governing microbial community
404 dynamics in Dai-Bai-Jie rhizospheres might differ from those observed in other plant species.
405 The lack of significant changes in microbial diversity in our study merits further investigation,
406 particularly from the perspectives of soil nutrients, pH, and moisture content.
407 In summary, this study comprehensively characterized the disparities in flavonoid metabolite
408 profiles and abundances across varying cultivation environments and plantation age through
409 integrated transcriptome and metabolome analyses. Key genes intricately associated with the
410 differential accumulation of flavonoids were identified. The results laid a foundation for further
411 regulation of the effective components and provided support for determining the scientific
412 harvesting practices of Dai-Bai-Jie.

413 **Conclusions**

414 Dai-Bai-Jie is a traditional Dai nationality herb medicine for detoxification purposes. The
415 accumulation pattern of flavonoids and regulation patterns for remain undetermined. In this study,
416 we collected roots and rhizosphere soils under three planting years (one years, two years, and
417 three years) and three years with two different localities. We investigated the flavonoids
418 accumulation patterns and influence factors of Dai-Bai-Jie from the multi-omics perspective. A
419 total of 1495 metabolites were identified by UPLC-MS/MS from Dai-Bai-Jie, of which 943
420 DAMs were detected. 114 flavonoids were detected, of which 79 flavonoids were differentially
421 accumulated. Maximum DAMs were appeared between one-year and two-year Dai-Bai-Jie.
422 Complex regulatory relationship among phenylalanine ammonia-lyase (PAL Cluster-63886.0,
423 Cluster-63886.1), 4-Coumarate: Coenzyme A Ligase (4CL, Cluster-58688.4, Cluster-62808.3),
424 lavonol synthase (FLS, Cluster-46899.18, Cluster-46899.5, Cluster-50957.2, Cluster-57391.0,
425 C12RT1(Cluster-45854.0) and metabolites of hyperin, lonicerin, vicenin-2, nicotiflorin,
426 querceti, luteolin-7-O-(6"-malonyl) glucoside, Hesperetin-7-O-glucoside. Different plantation
427 ages and localities did not cause the significant differences in the Shannon, Chao1, or ACE
428 indices of rhizosphere microorganisms of Dai-Bai-Jie. The differences observed in flavonoid
429 accumulation may be, to a certain extent, attributed to variations in the community compositions
430 at the genus level.

431

432 **References**

433 **Akash SR, Tabassum A, Aditee LM, Rahman A, Hossain MI, Hannan MA, Uddin MJ. 2024.**
434 Pharmacological insight of rutin as a potential candidate against peptic ulcer. *Biomedicine &*
435 *Pharmacotherapy* 177:116961 DOI 10.1016/j.bioph.2024.116961.

436 **Anand David AV, Arulmoli R, Parasuraman S. 2016.** Overviews of Biological Importance of
437 Quercetin: A Bioactive Flavonoid. *Pharmacognosy Reviews* **10(20)**:84-89 DOI 10.4103/0973-
438 7847.194044.

439 **Cao Y, Chen Y, Zhang L, Cai Y. 2023.** Two monolignoid biosynthetic genes 4-
440 coumarate:coenzyme A ligase (4CL) and p-coumaric acid 3-hydroxylase (C3H) involved in lignin
441 accumulation in pear fruits. *Physiology And Molecular Biology of Plants* **29(6)**:791-
442 798.10.1007/s12298-023-01329-1.

443 **Catalina CP, Carroll B, Alfonso M, Jocelyn F, Martin G. 2016.** Molecular mechanisms of
444 gastrointestinal protection by quercetin against indomethacin-induced damage: role of NF- κ B
445 and Nrf2 - ScienceDirect. *The Journal of Nutritional Biochemistry* **27**:289-298
446 10.1016/j.jnutbio.2015.09.016.

447 **Chen S, Zhou Y, Chen Y, Gu J. 2018.** fastp: an ultra-fast all-in-one FASTQ preprocessor.
448 *Bioinformatics* **34(17)**:i884-i890 DOI 10.1093/bioinformatics/bty560.

449 **Chen X, Luo Z, Liu X, Li X, Li Q, Zhang W, Liu Y, Cheng Z, Yang X, Liu Y, Jin R, Zhu
450 D, Wang F, Lu Q, Su Z, Guo H. 2022.** *Marsdenia tenacissima* (Roxb.) Moon injection exerts a
451 potential anti-tumor effect in prostate cancer through inhibiting ErbB2-GSK3 β -HIF1 α signaling
452 axis. *Journal of Ethnopharmacology* **295**:115381-115381 DOI
453 https://doi.org/10.1016/j.jep.2022.115381.

454 **Chua LS. 2013.** A review on plant-based rutin extraction methods and its pharmacological
455 activities. *Journal of Ethnopharmacology* **150(3)**:805-17. DOI 10.1016/j.jep.2013.10.036.

456 **Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL,
457 Wold BJ Pachter L. 2010.** Transcript assembly and quantification by RNA-Seq reveals
458 unannotated transcripts and isoform switching during cell differentiation. *Nature biotechnology*
459 **28(5)**:511-5 DOI 10.1038/nbt.1621.

460 **Fang H, Zhao X, Zhang M, Ma Y, Huang J, Zhou P. 2023.** Beneficial effects of flavonoids on
461 cardiovascular diseases by influencing NLRP3 inflammasome. *Inflammopharmacology*
462 **31(4)**:1715-1729 DOI 10.1007/s10787-023-01249-2.

463 **Wu F, Lei HH, Chen G, Chen Ch, Song YC, Cao Z, Zhang C, Zhang C, Zhou jL, Lu YJ,
464 Zhang LM. 2022.** Multiomics Analyses Reveal That Long-Term Intake of Hesperetin-7-O-
465 glucoside Modulates the Gut Microbiota and Bile Acid Metabolism in Mice. *Journal of
466 agricultural and food chemistry* **70(47)**:14831-14840 DOI 10.1021/acs.jafc.2c05053.

467 **Forkmann G, Vlaming PD, Spribile R, Wiering H, Schram AW.1986.** Genetic and
468 Biochemical Studies on the Conversion of Dihydroflavonols to Flavonols in Flowers of Petunia
469 hybrida. *Zeitschrift für Naturforschung C* **41**:179-186 DOI 10.1515/znc-1986-1-227.

470 **Froemel S, de Vlaming P, Stotz G, Wiering H, Forkmann G, Schram AW.1985.** Genetic and
471 biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia
472 hybrida. *Theoretical And Applied Genetics* **70(5)**:561-8.10.1007/bf00305991.

473 **Gao M, Wang SG, Ni K, ZhaoY, Zhang Y.2014.** Protective Effect of Dai Baijie on Liver Injury
474 Induced by AIDS Antivirals. *Yunnan Journal of Traditional Chinese Medicine and Materia
475 Medica* **35(04)**:60-61 DOI 10.16254/j.cnki.53-1120/r.2014.04.032.

476 **Iove LM, Wolfgang H, Simon A. 2014.** Moderated estimation of fold change and dispersion for
477 RNA-seq data with DESeq2. *Genome biology* **15(12)**:550 DOI 10.1186/s13059-014-0550-8

478 **Lareen A, Burton F, Schäfer P.2016.** Plant root-microbe communication in shaping root
479 microbiomes. *Plant Molecular Biology* **90(6)**: 575-87 DOI 10.1007/s11103-015-0417-8

480 **Lavhale SG, Kalunke RM, Giri AP.** 2018. Structural, functional and evolutionary diversity of 4-
481 coumarate-CoA ligase in plants. *Planta* **248**(5):1063-1078 DOI 10.1007/s00425-018-2965-z

482 **Levy HL, Sarkissian CN, Scriver CR.** 2018. Phenylalanine ammonia lyase (PAL): From
483 discovery to enzyme substitution therapy for phenylketonuria. *Molecular Genetics And*
484 *Metabolism* **124**(4):223-229 DOI 10.1016/j.ymgme.2018.06.002.

485 **Li HT, Kang LP, Guo BL, Zhang ZL, Guan YH, Pang X, Peng CZ, Mai BP, Li X. Z.** 2014.
486 Textual Research on the Origin of the Commonly Used Dai Medicine "Dai Baijie. *China Journal*
487 *of Chinese Materia Medica* **39**(8):5 DOI CNKI:SUN:ZGZY.0.2014-08-033

488 **Li JY, Tan Yh, Li HT, Yan HD, Gong YX, Xiao YX, Yu WB.** 2023. Research on the Origin
489 of Dai Medicine "Dai Bai Jie" Based on Molecular and Morphological Evidence. *Guishaia*
490 **43**(01):32-42 DOI 10.11931/guishaia.gxzw202110070

491 **Li PT, Michael GG, Douglas SW.** Flora of China[M]. Science Press, Beijing, 1995, **16** : 189-
492 270

493 **Liao M, Zhang Y, Chen F, Yao Y.** 2016. Research on Chemical Constituents of Dai Baijie.
494 *Journal of South-Central University for Nationalities (Natural Science Edition)* **35**(3):39-41 DOI
495 10.3969/j.issn.1672-4321.2016.03.009.

496 **Liede-Schumann S, Reuss SJ, Meve U, Gâteblé G, Livshultz T, Forster PI, Wanntorp L,**
497 **Rodda M.** 2022. Phylogeny of Marsdenieae (Apocynaceae, Asclepiadoideae) based on
498 chloroplast and nuclear loci, with a conspectus of the genera. *TAXON* **71** (4): 833-875 DOI
499 org/10.1002/tax.12713.

500 **Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM,**
501 **DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM.** 2011. Deciphering the rhizosphere
502 microbiome for disease-suppressive bacteria. *Science* **332**(6033):1097-100 DOI
503 10.1126/science.1203980.

504 **Nicola MA, Attaai AH, Abdel-Raheem MH, Mohammed AF, Abu-Elhassan YF.** 2024.
505 Neuroprotective effects of rutin against cuprizone-induced multiple sclerosis in mice.
506 *Inflammopharmacology* **32**(2):1295-1315 DOI 10.1007/s10787-024-01442-x.

507 **Oyanagi M, Ozeki Y.** 2001. Functional analysis of Phenylalanine ammonia-lyase gene promoter
508 of popular. *Progress in Biotechnology* **18**(01):163-170 DOI 10.1016/S0921-0423(01)80069-1.

509 **Pang X, Kang LP, Fang XM, Yu HS, Han LF, Zhao Y, Zhang LX, Yu LY, Ma BP.** 2018.
510 C(21) steroid derivatives from the Dai herbal medicine Dai-Bai-Jie, the dried roots of Marsdenia
511 tenacissima, and their screening for anti-HIV activity. *Journal of Natural Medicines* **72**(1):166-
512 180 DOI10.1007/s11418-017-1126-1

513 **Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J.** 2015. Selection on soil
514 microbiomes reveals reproducible impacts on plant function. *Isme Journal* **9**(4):980-
515 9.10.1038/ismej.2014.196.

516 **Shi Y, Jiang X, Chen L, Li WW, Lai S, Fu Z, Liu Y, Qian Y, Gao L, Xia T.** 2021. Functional
517 Analyses of Flavonol Synthase Genes From *Camellia sinensis* Reveal Their Roles in Anther
518 Development. *Frontiers in Plant Science* **12**:753131 DOI10.3389/fpls.2021.753131.

519 **Song J, Dai R, Deng Y, Lv F.** 2018. Rapid structure prediction by HPLC-ESI-MS(n) of twenty-
520 five polyoxygenane tetraglycosides from *Dregea sinensis* with NMR confirmation of eight
521 structures. *Phytochemistry* **147**:147-157 DOI 10.1016/j.phytochem.2017.12.021.

522 **Song J, Lv F, Dai RJ, Deng YL.** 2021. Rapid identification and structural characterization of
523 polyoxygenane glycosides in *Dregea sinensis* by HPLC-MS(n) and HRMS. *Journal of Asian*
524 *Natural Products Research* **23**(1):9-19 DOI 10.1080/10286020.2020.1715951.

525 **Tian XM, Yan LH, Xiang GF, LY J. 2017.** Research Progress on 4-Coumarate :Coenzyme A
526 Ligase(4CL) in Plants. *Biotechnology Bulletin* **33**:19-26 DOI
527 10.13560/j.cnki.biotech.bull.1985.2017.04.003.

528 **Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. 2016.** SARTools: A DESeq2- and EdgeR-
529 Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. *Plos One*
530 **11(6)**:e0157022 DOI 10.1371/journal.pone.0157022.

531 **Wang L, Wang S, Li W. 2012.** RSeQC: quality control of RNA-seq experiments. *Bioinformatics*
532 **28(16)**:2184-5 DOI 10.1093/bioinformatics/bts356.

533 **Wang Q, Zhao H, Zhu M, Gao L, Cheng N, Cao W. 2020.** Spectroscopy characterization,
534 theoretical study and antioxidant activities of the flavonoids-Pb(II) complexes. *Journal of*
535 *Molecular Structure* **1209**:127919 DOI 10.1016/j.molstruc.2020.127919.

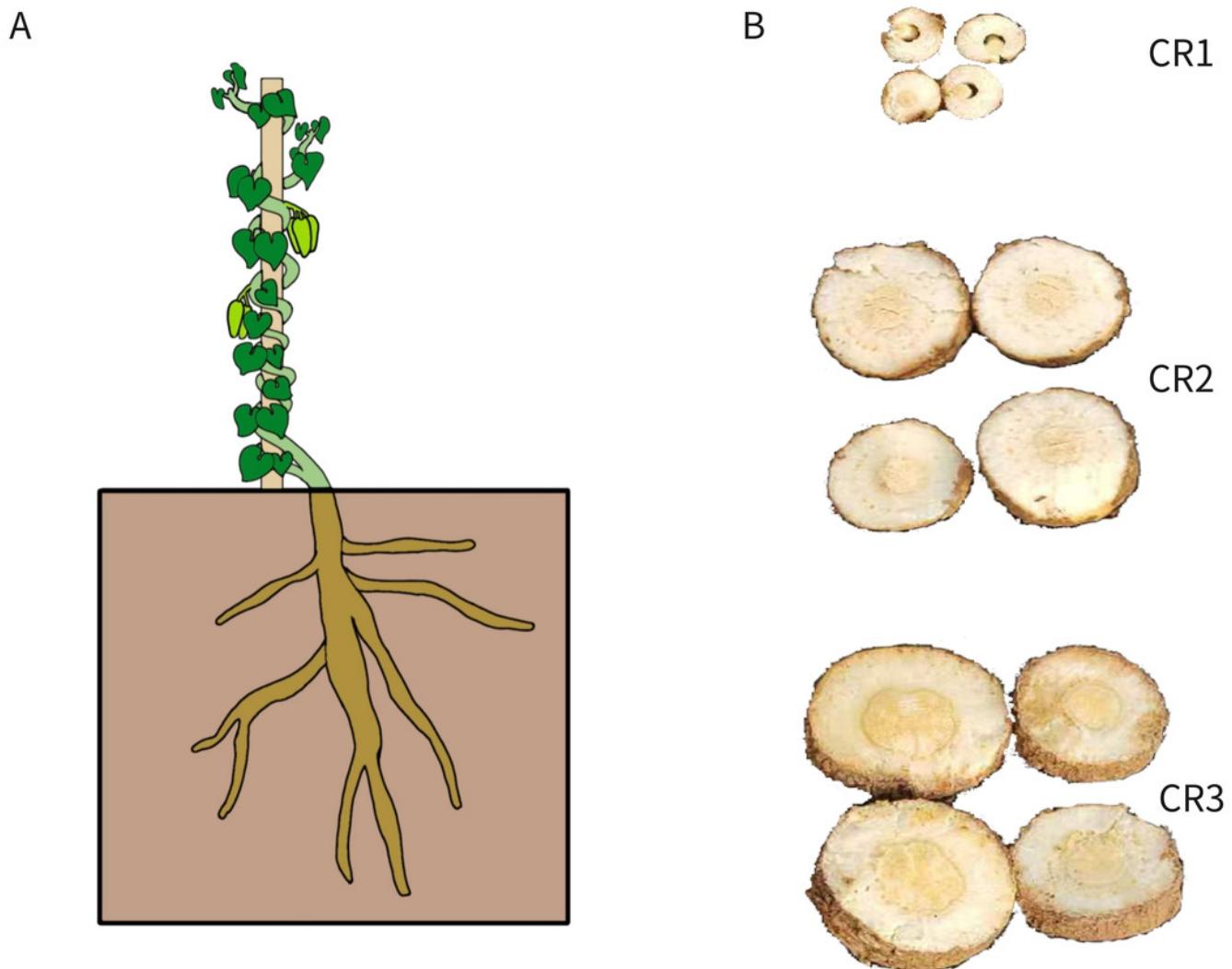
536 **Li XH, Li HT, Jin LY, Niu YF, Zeng QW, Zhang LX. 2021.** Study on Antioxidant and
537 Antibacterial Activities of Different Polar Fractions of Ethanol Extract from Dai Baijie in vitro.
538 *Yunnan Journal of Traditional Chinese Medicine and Materia Medica* **42(06)**:69-73 DOI
539 10.16254/j.cnki.53-1120/r.2021.06.023.

540 **Lin YF, Zhuan Y, Zhao YH. 2003.** Color Atlas of Dai Medicine in China. Kunming Yunnan
541 Publishing House of Minority Nationalities.

542 **Yang LP, Chen P, Zhang GY, H. DX. 2020.** Protective Effect and Mechanism of Dai Baijie on
543 Intestinal Mucosal Barrier Function. *Journal of Yunnan University of Traditional Chinese Medicin*
544 *e*(004):043 DOI 10.19288/j.cnki.issn.1000-2723.2020.04.001.

545 **Zhang P, Fan L, Zhang D, Zhang Z, Wang W. 2023.** In Vitro Anti-Tumor and Hypoglycemic
546 Effects of Total Flavonoids from Willow Buds. *Molecules* **28(22)**:7557 DOI
547 10.3390/molecules28227557

548 **Zhang XF, Zhao JK, Hao SQ, Ding Q, Yu SH, Yi ML, Wang J, Hu HY. 2023.** Biological
549 activities and detoxification mechanisms of Clerodendrum chinense var. simplex, Marsdenia
550 tenacissima and Arundina graminifolia: The Dai antidotes. *Journal of Sun Yat-sen University*
551 *(Natural Science Edition)* **62(3)**:89-99 DOI 10.13471/j.cnki.acta.sonus.2022e027.


552 **Li XH, Li HT, Jin JY, Niu YF, Zhang LX. 2017.** In vitro Cytotoxicity Activity and
553 Preliminary Test for Chemical Components from "Dai-Bai Jie"(Marsdeniataenacissima). *Modern*
554 *Chinese Medicine* **19(04)**: 529-532 DOI 10.13313/j.issn.1673-4890.2017.4.012.

555

Figure 1

the sample used in this study

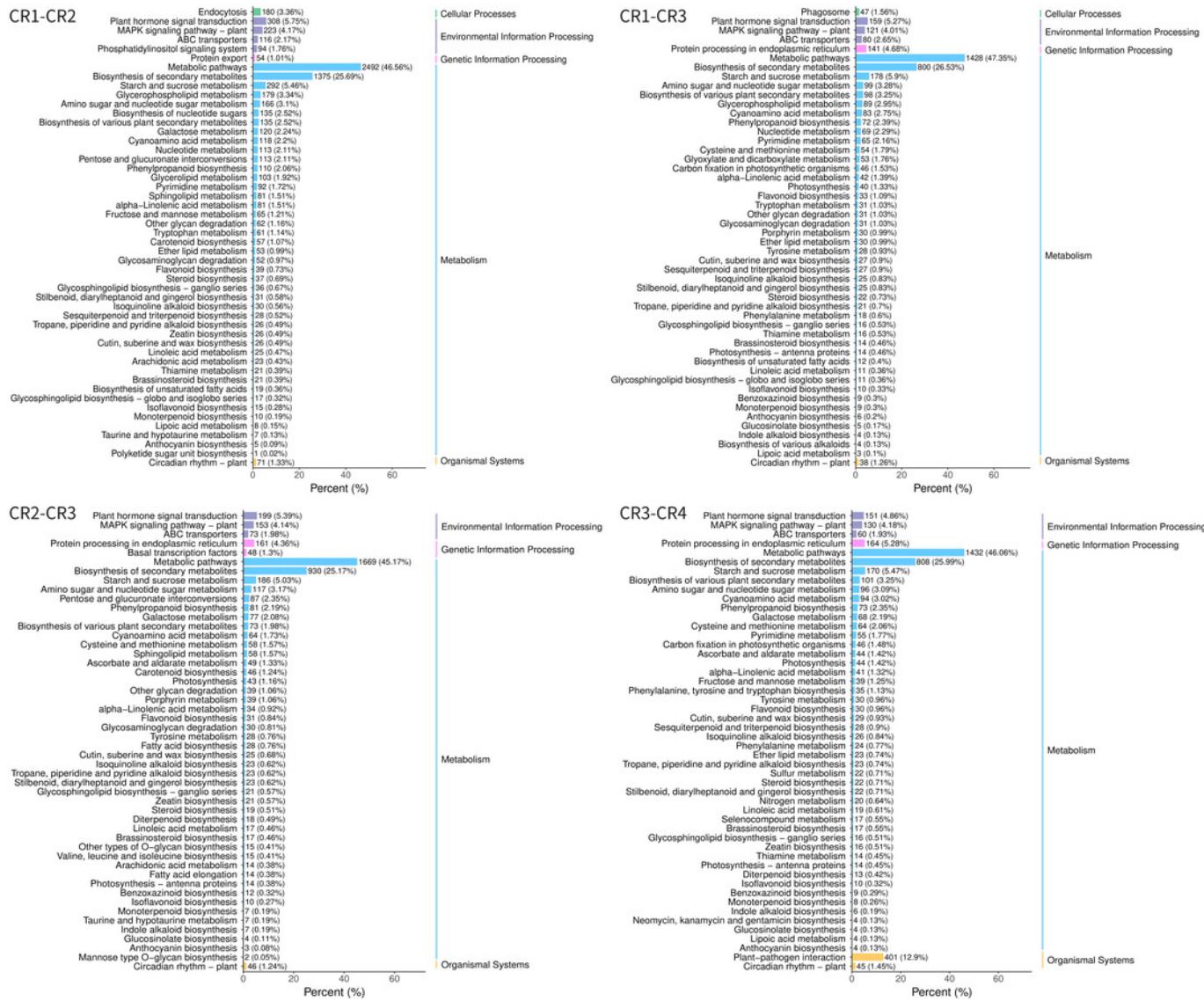

A, total plant of Dai-Bai-Jie. B, Root of cross-sections at different planting years. CR1: farmed for one year, CR2: farmed for two years, CR3, farmed for three years.

Figure 2

The DEGs in the four groups were analyzed by KEGG metabolic pathway

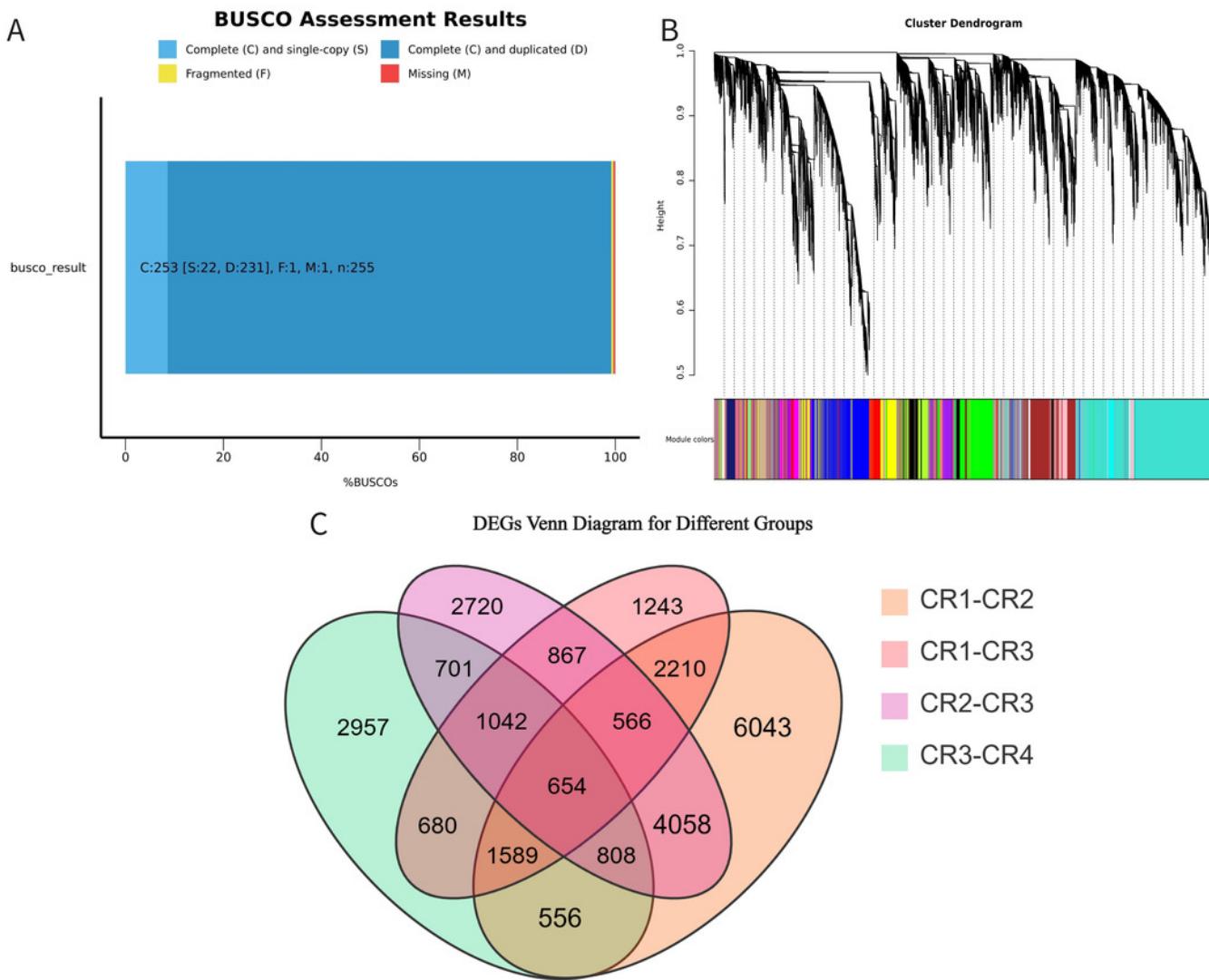

(A) CR1-CR2. (B) CR1-CR3. (C) CR2-CR3. (D) CR3-CR4.

Figure 3

Transcriptome analysis results

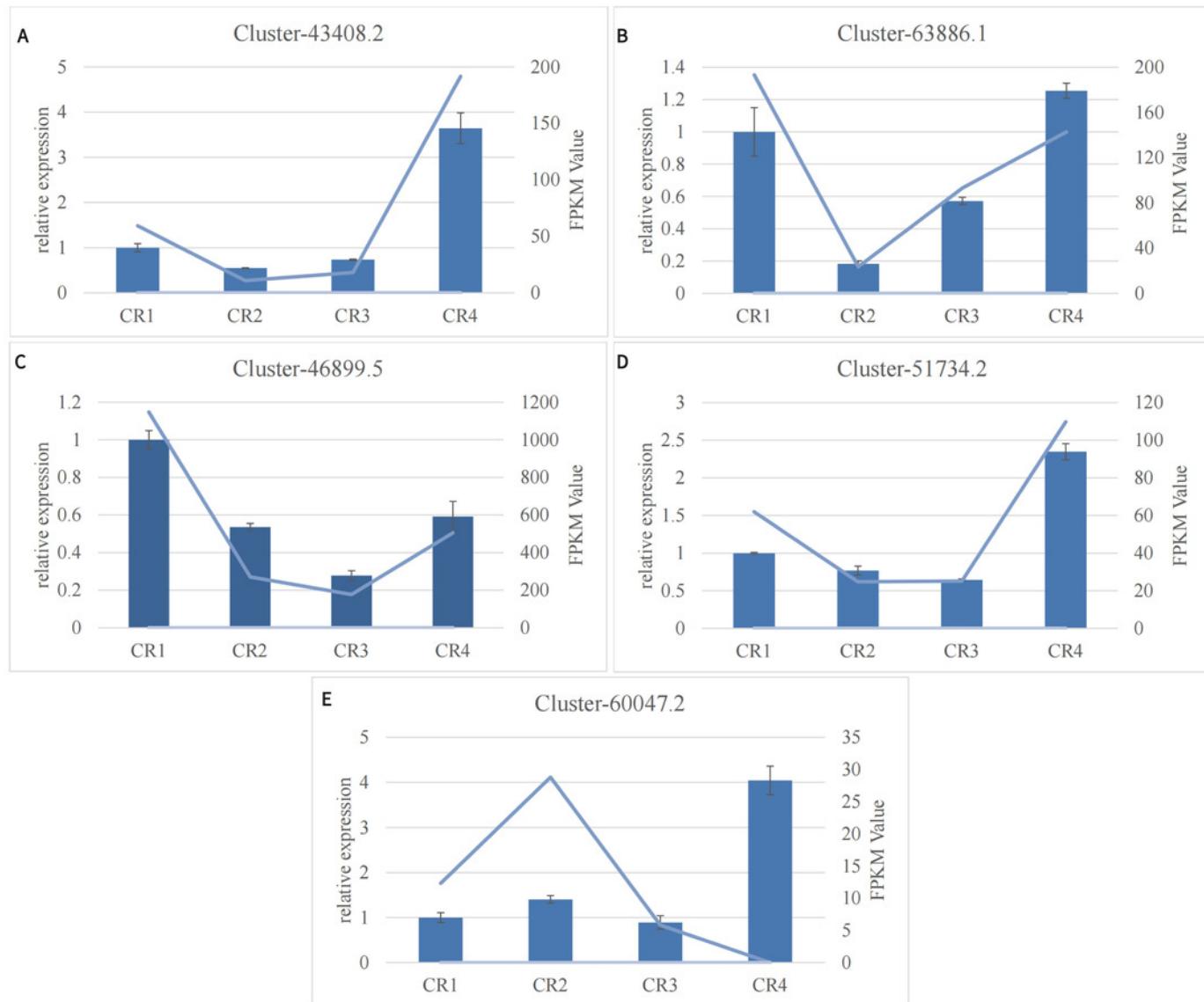

(A) BUSCO completeness assessments of the Dai-Bai-Jie transcriptome. (B) WGCNA clustering tree. (C) Venn Diagram representing the number of DEGs among four group sample.

Figure 4

RNA-seq analysis of Dai-Bai-Jie and the qRT-PCR validation of five genes.

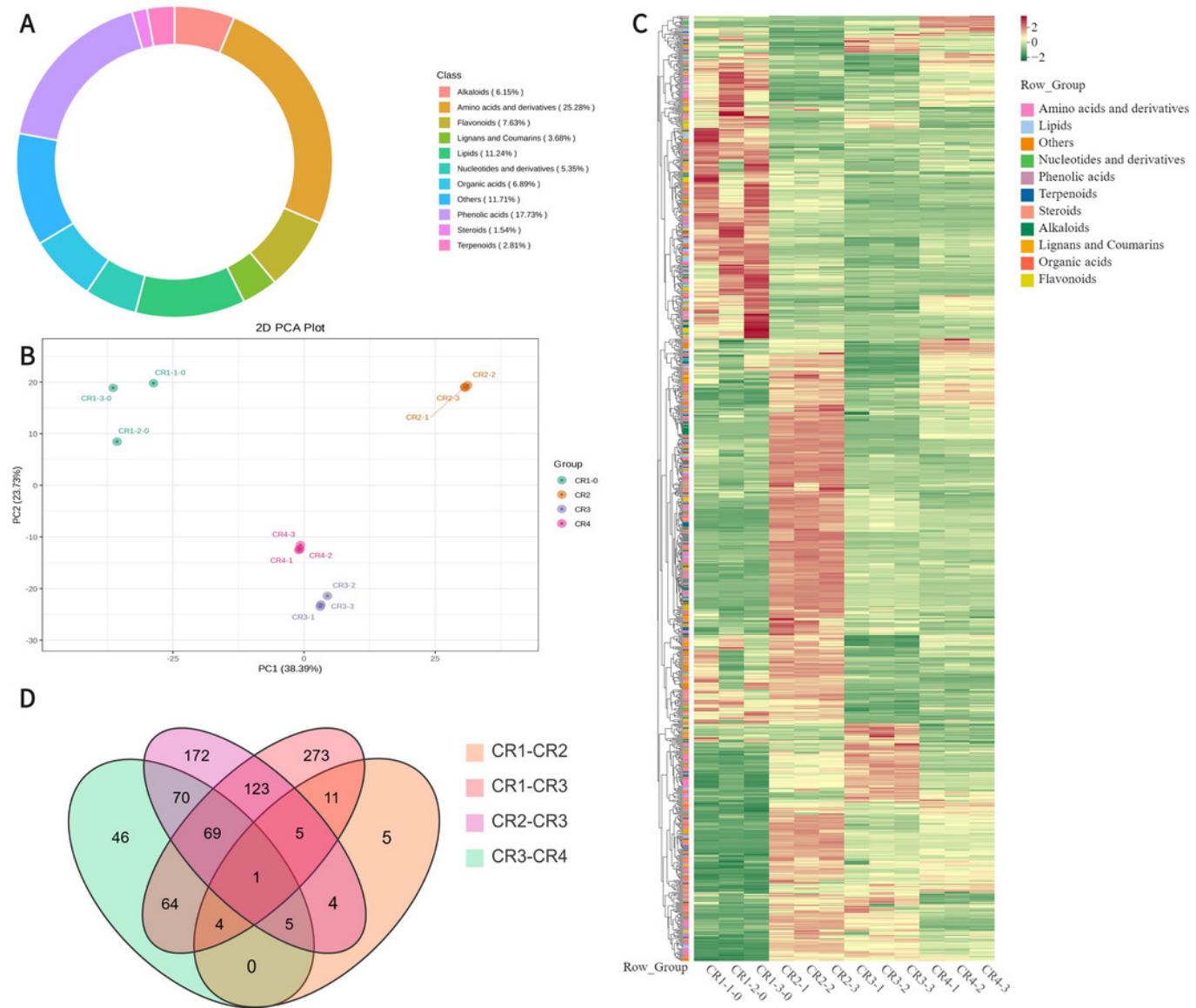

RNA-seq analysis of Dai-Bai-Jie and the qRT-PCR validation of five genes.

Figure 5

Metabolome analysis results

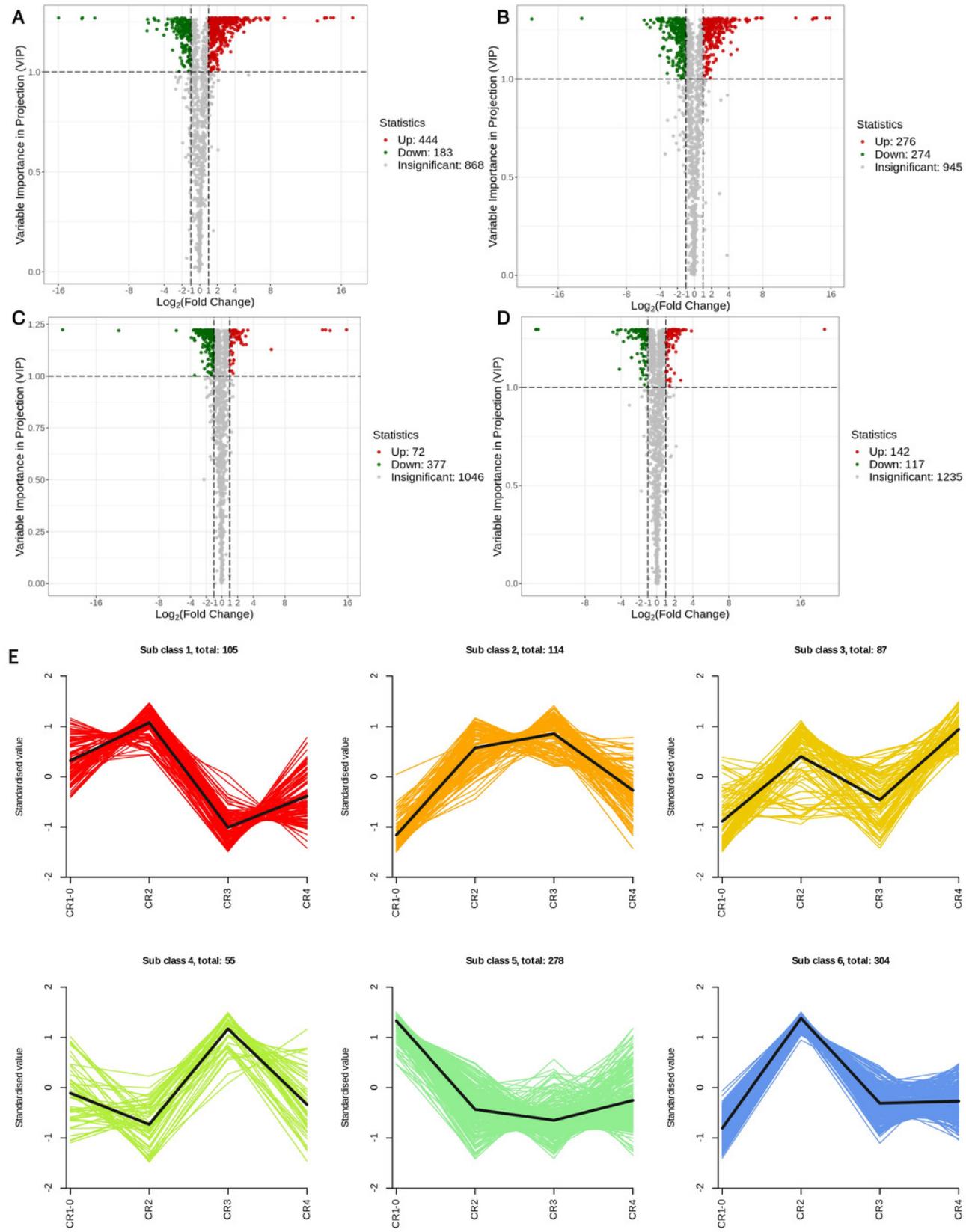

(A) Composition of metabolite in Dai-Bai-Jie. (B) PCA score plots for all samples. (C) Heat map of DAMs in four groups of samples. (D) Venn diagram of DAMs across groups.

Figure 6

The volcano diagram and the k-means diagram of Metabolites.

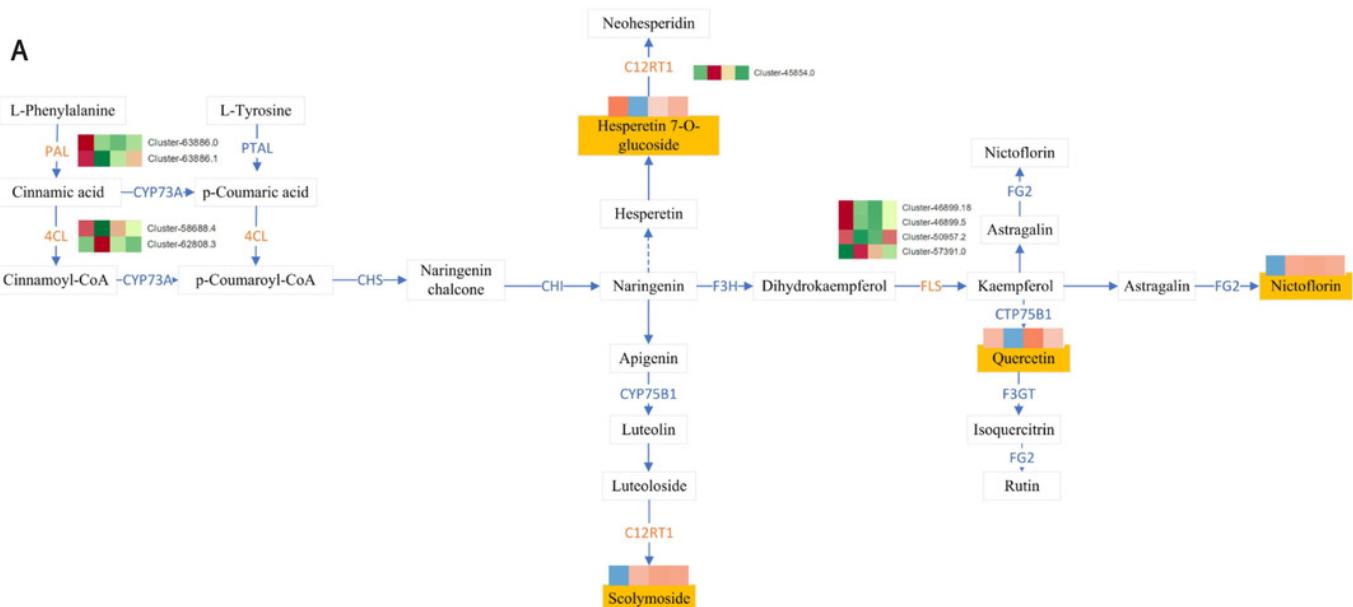
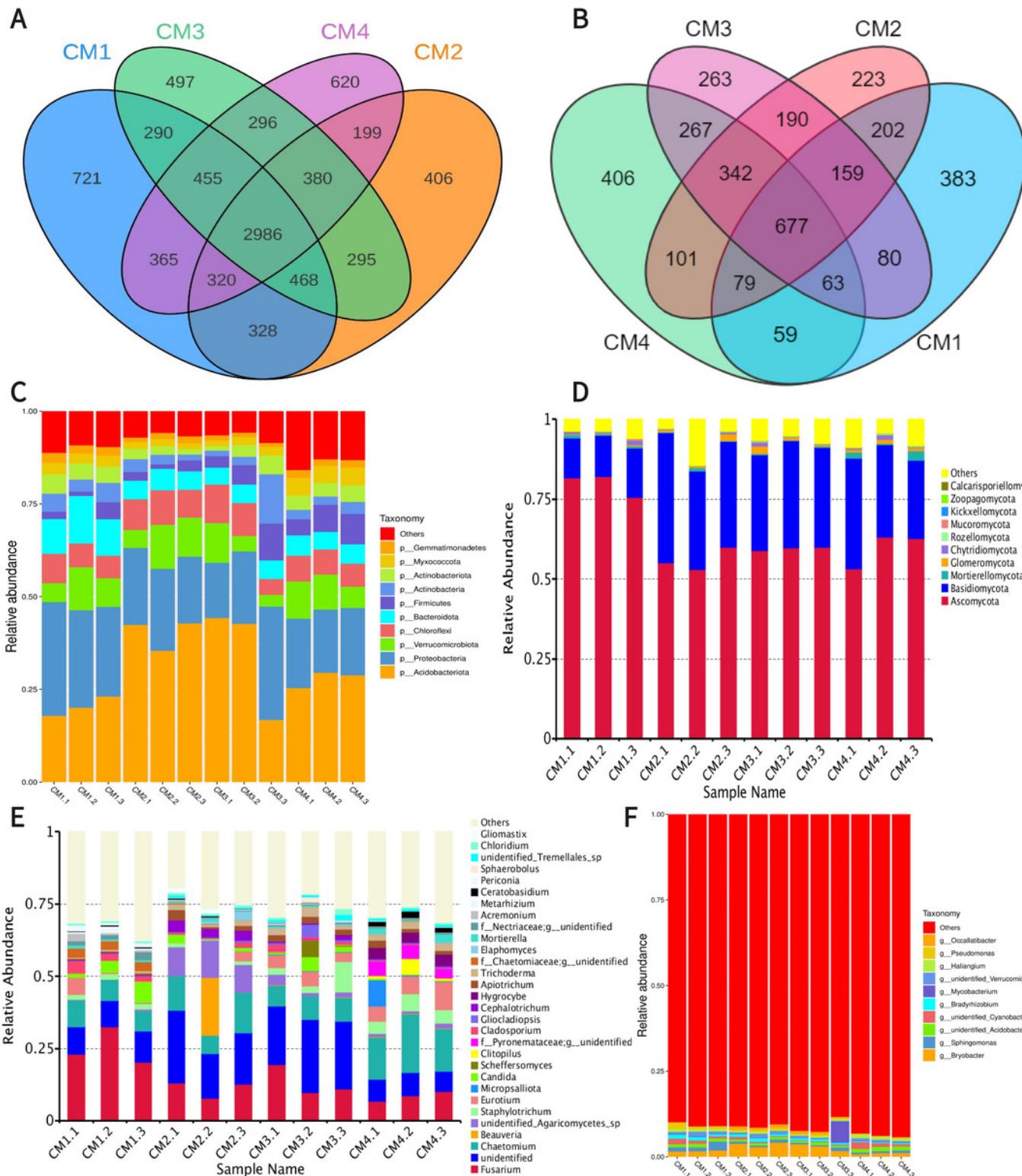

(A) Volcano diagram of DAMs (CR1 vs. CR2). (B) Volcano diagram of DAMs (CR1 vs. CR3).
(C) Volcano diagram of DAMs (CR2 vs. CR3). (D) Volcano diagram of DAMs (CR3 vs. CR4). (E)
The K-means analysis of all Metabolites. The black line in the figure represents the average
pattern of all Metabolites in each class, and different colors represent different trend.

Figure 7

Flavonoid synthesis pathway and Network diagram

(A) Flavonoid synthesis pathway. (B) Network diagram of flavonoids and differential genes.


B

The network diagram shows the relationships between various flavonoids and their differential gene clusters. Nodes are represented by colored circles (red, green, blue) and squares (yellow). Edges represent connections between nodes, with dashed lines indicating weaker or specific connections. Nodes include: Luteolin-7-O-(6'-malonyl)glucoside (red circle), Quercetin (red square), Hesperetin-7-O-glucoside (red circle), Cluster-45854.0 (yellow square), Cluster-50957.2 (yellow square), Cluster-63886.1 (yellow square), Cluster-62808.3 (yellow square), Cluster-58688.4 (yellow square), Cluster-57391.0 (yellow square), Apigenin-6,8-di-C-glucoside (Vicenin-2) (green circle), Quercetin-3-O-galactoside (Hyperin) (green circle), Kaempferol-3-O-rutinoside (Nicotiflорin) (green circle), Luteolin-7-O-neohesperidoside (Lonicericin) (green circle), Cluster-63886.0 (yellow square), Cluster-46899.18 (yellow square), Cluster-46899.5 (yellow square), and Cluster-16899.5 (yellow square).

Figure 8

Venn diagram and the relative abundance of phylum and genus among CM1, CM2, CM3, and CM4 in rhizosphere soil of Dai-Bai-Jie.

(A) Venn diagram of bacterial. (B) Venn diagram of fungus. (C) relative abundance of bacterial phylum. (D)relative abundance of fungal phylum. (E) relative abundance of bacterial genus. (F)relative abundance of fungal genus.

Table 1(on next page)

primer of Five genes

1
2

Table 1 primer of Five genes

Gene	sequence (5'-3')	product size
Cluster-43408.2	F: TGATGAATGGGAAGCCCCGAG	175bp
FLS	R: TAGCGGTCCCTGTTTGGCTT	
Cluster-46899.5	F: AGCCCTTGAAGAATTGGTTGT	114bp
FLS	R: ATCTCTTGTAAAGGCCGATCAA	
Cluster-51734.2		166bp
CYP73A	F: GGACCTGGCTAAGGAAGTGT	
	R: TGTGAAGAAAGGCACCGTCA	
Cluster-60047.2	F: GCATCCGTGGCGATCAAATC	179bp
4CL	R: TGCCACTTGGAACCCCTTG	
Cluster-63886.1	F: CATGCCCTCCTCAACAAACGA	171bp
PAL	R: GGACCTGCACTCCTGATCC	
GAPDH	F: GGCATTGTCGAGGGTCTCAT	131bp
	R: CCGGTGCTGCTGGAAATAAT	

3