

Development of gene-SSR molecular markers and analysis of genetic diversity in Phoebe zhennan from Guizhou (#113451)

1

First submission

Guidance from your Editor

Please submit by **5 Apr 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the [guidance page](#)?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

6 Figure file(s)

6 Table file(s)

3 Other file(s)

Custom checks

DNA data checks

- Have you checked the authors [data deposition statement](#)?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Development of gene-SSR molecular markers and analysis of genetic diversity in *Phoebe zhennan* from Guizhou

Qing Liang¹, huan Yu Jia¹, xia Ru Shi¹, Dan Zhao^{Corresp., 1}, Mei Luo^{Corresp. 2}

¹ College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou, China

² School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China

Corresponding Authors: Dan Zhao, Mei Luo
Email address: dzhao@gzu.edu.cn, luo_mei@gmc.edu.cn

Phoebe zhennan (Nanmu) is a exceptional and precious timber and ornamental tree species native to China and is classified as a nationally protected endangered species. As Guizhou represents a major distribution area for this species, studying its genetic diversity (GD) is vital for developing effective preservation and utilization strategies. Due to the lack of reported reference genomes for the Nanmu, the development of molecular markers has been somewhat limited. In this study, magnetic bead enrichment was employed to develop Simple Sequence Repeats (SSR) molecular markers for the Nanmu genome, resulting in 794,128 SSR loci. From 108 primer pairs, 20 pairs with high polymorphism and good stability were used, and the GD of 174 individuals from 24 populations, including representative Nanmu populations in Guizhou, was analyzed. The results revealed that most SSR loci were of the dinucleotide repeat type (54.31%), with the AG/CT motif occurring most frequently. The Polymorphic Information Content (PIC) values for the 20 polymorphic SSR primer pairs from 0.777 to 0.903, with a mean value of 0.859, indicating rich polymorphisms. The Shannon Information Index for the Guizhou Nanmu population ranged from 1.196 to 1.928, with a mean of 1.518. Nei's GD index (H) varied between 0.661 and 0.832, with a mean of 0.743. The SN population exhibited relatively high GD, while the MT population showed comparatively low diversity. A evaluation of GD between Guizhou Nanmu populations. Sichuan Gulin, Sichuan Zigong, Chongqing Tongnan, and Hunan Baijia revealed that the Guizhou Nanmu populations possessed high and stable GD. Genetic differentiation analysis indicated that the primary source of genetic variation in the Nanmu population in Guizhou is within-population variation, with frequent gene flow and wide distribution of allele loci across populations. *Phoebe bournei*, *Phoebe shearerii*, and *Phoebe chekiangensis* clustered in distinct branches from other regional Nanmu populations. The SSR molecular indicators established in this study confirmed, at the molecular level, that these organisms belong to separate taxa. This research provides useful SSR molecular markers and valuable references for *Phoebe* germplasm breeding,

species identification, and GD studies.

1 Development of Gene-SSR Molecular Markers and

2 Analysis of Genetic Diversity in *Phoebe zhennan* from

3 Guizhou

4 Qing Liang¹, huanYu Jia¹,xiaRu Shi¹,Dan Zhao^{1*}, Mei Luo^{2*}

5 ¹ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous
6 Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering,
7 Guizhou University, Guiyang 550025, Guizhou Province, China

8 ² School of Biology and Engineering (School of Modern Industry for Health and Medicine),
9 Guizhou Medical University, Guiyang 561113, Guizhou Province, China

10 Corresponding Author:Dan Zhao¹,Mei Luo²

11 Email address: Dan Zhao (dzhao@gzu.edu.cn), Mei Luo (luo_mei@gmc.edu.cn)

12 Abstract

13 *Phoebe zhennan* (Nanmu) is a exceptional and precious timber and ornamental tree species
14 native to China and is classified as a nationally protected endangered species. As Guizhou
15 represents a major distribution area for this species, studying its genetic diversity (GD) is vital
16 for developing effective preservation and utilization strategies. Due to the lack of reported
17 reference genomes for the Nanmu, the development of molecular markers has been somewhat
18 limited. In this study, magnetic bead enrichment was employed to develop Simple Sequence
19 Repeats (SSR) molecular markers for the Nanmu genome, resulting in 794,128 SSR loci. From
20 108 primer pairs, 20 pairs with high polymorphism and good stability were used, and the GD of
21 174 individuals from 24 populations, including representative Nanmu populations in Guizhou,
22 was analyzed. The results revealed that most SSR loci were of the dinucleotide repeat type
23 (54.31%), with the AG/CT motif occurring most frequently. The Polymorphic Information
24 Content (PIC) values for the 20 polymorphic SSR primer pairs from 0.777 to 0.903, with a mean
25 value of 0.859, indicating rich polymorphisms. The Shannon Information Index for the Guizhou
26 Nanmu population ranged from 1.196 to 1.928, with a mean of 1.518. Nei's GD index (H) varied
27 between 0.661 and 0.832, with a mean of 0.743. The SN population exhibited relatively high
28 GD, while the MT population showed comparatively low diversity. A evaluation of GD between
29 Guizhou Nanmu populations. Sichuan Gulin, Sichuan Zigong, Chongqing Tongnan, and Hunan
30 Baijia revealed that the Guizhou Nanmu populations possessed high and stable GD. Genetic
31 differentiation analysis indicated that the primary source of genetic variation in the Nanmu
32 population in Guizhou is within-population variation, with frequent gene flow and wide
33 distribution of allele loci across populations. *Phoebe bournei*, *Phoebe shearerii*, and *Phoebe*
34 *chekiangensis* clustered in distinct branches from other regional Nanmu populations. The SSR
35 molecular indicators established in this study confirmed, at the molecular level, that these
36 organisms belong to separate taxa. This research provides useful SSR molecular markers and
37 valuable references for *Phoebe* germplasm breeding, species identification, and GD studies.

¹ E-mail addresses: Dan Zhao (dzhao@gzu.edu.cn), Mei Luo (luo_mei@gmc.edu.cn)

38 **1 Introduction**

39 *Phoebe zhennan* S. K. Lee, belonging to the *Phoebe* genus of the Lauraceae family, is
40 indigenous to China. It is classified as a rare and endangered species of the second grade and was
41 included in the IUCN Red List of Threatened Species in 1984. Nanmu (~~as it is commonly~~
42 ~~known~~) is primarily distributed in Sichuan, Guizhou, Hubei, and other regions, with notable
43 populations in Zunyi, Tongren, and Qiandongnan in Guizhou Province (Lu et al. 2018). This
44 species is highly valued for its straight trunk, distinctive fragrance, and durable, hard material,
45 making it significant in architecture, furniture, and handicrafts (Yue & Runguo 2023; Hanbo et
46 al. 2022). The most important seed disperser of Nanmu is fruit-eating birds. However, wild
47 populations have drastically declined due to slow growth, environmental degradation, and over-
48 harvesting (Jianhua et al. 2020; Lichao et al. 2022). This has also complicated the
49 discrimination ~~between pairs of~~ *Phoebe* species ~~through~~ minor differences in leaf morphology.
50 Therefore, developing molecular markers and investigating the GD of *Phoebe* species are
51 essential for enhancing understanding of genetic variation, which plays a significant role in
52 germplasm cultivation, species identification, and conservation.

53 Here are some common molecular markers that are better than other markers for
54 identification compared to other markers:DNA molecular markers are directly induced into the
55 inherent genetic qualities of species. It is when these are not influenced by extrinsic
56 environmental factors and have benefits such as high co-dominance and abundant availability.
57 Consequently, DNA markers are widely applied in genetic breeding, gene pool construction, and
58 species identification (Christian 2004; Cai 2008). Among these, Simple Sequence Repeats
59 (SSRs) are particularly valuable owing their high polymorphism, stability, repeatability, and low
60 cost, making them ideal for developing genetic markers, conducting species identification, and
61 studying population genetic structures (Changming et al. 2015; Wangcang et al. 2023). Existing
62 studies on SSR marker development and *GD* in Nanmu have primarily relied on EST(expressed
63 sequence tag-~~simple repeat~~,EST-SSR) or transcriptome data. For instance, Xiaodong et al.
64 (2016) employed high-throughput sequencing to develop SSR markers from the transcriptome of
65 Sichuan Nanmu and identified nine highly polymorphic *primer pairs*. Qun et al. (2023) used 14
66 pairs of SSR primers to demonstrate the high GD of Nanmu germplasm resources and applied
67 the marker results to construct identity profiles for 60 Nanmu germplasm resources. However,
68 publicly available genomic data for Nanmu are limited, hindering further SSR marker
69 development and their broader *application*. ~~Additionally, research on the GD of Nanmu in~~
70 ~~Guizhou is scarce~~. Furthermore, the interspecific relationships between some *Phoebe* species,
71 such as *Phoebe zhennan* and *Phoebe bournei*, remain controversial (Juan et al. 2018;Ding et al.
72 2018). Therefore, further research on the GD and identification of *Phoebe* species of these
73 vegetation types are important *basis* for the development of more effective conservation
74 measures for ~~conserving~~ existing Nanmu resources. In this study, the SSR ~~molecular~~ markers
75 were developed by sequencing an SSR-enriched library from the Nanmu genome, sourced from
76 the ~~mother~~ forest of Nanmu in Changning, Sichuan Province. We also analyzed the GD of
77 Nanmu in its main distribution areas in Guizhou. This work not only contributes to the

78 enrichment of the Nanmu genomic data but also aids in comprehending the genetic processes
79 underlying the species' vulnerability and the GD of Nanmu populations in Guizhou. The findings
80 provide valuable data ~~and theoretical references~~ for Nanmu's **genetic mechanisms**, germplasm
81 resource cultivation, wild resource protection, and species identification.

82 **2 Materials & Methods**

83 2.1 Plant material

84 The distribution range of wild Nanmu in Guizhou was initially determined through
85 consultation with the Chinese Virtual Herbarium (CVH, <http://www.cvh.org.cn/>) and the Chinese
86 Local Flora. ~~With~~ guidance and approval from the local Forestry Bureau, representative Nanmu
87 areas were selected for field surveys, where data such as collection sites, latitude and **longitude**,
88 were recorded. Fresh, healthy leaves were ~~then~~ collected, flash-frozen in liquid nitrogen, and
89 stored at -80°C in an ultra-low temperature freezer (**Table 1**,**Table S1**). ~~Nanmu is typically~~
90 ~~located near village settlements rather than in nature reserves. Since we only collect a small~~
91 ~~amount of branches and seeds, written permits are not required. It is sufficient to contact local~~
92 ~~villagers or forest rangers to inform them of our purpose.~~

93 The Nanmu populations from Guizhou were named according to the collection sites and
94 include Daozhen (DZ), Tongzi (TZ), Jianhe (JH), Taijiang (TJ), Yuqing (YQ), Fenggang (FG),
95 Chishui (CS), Dejiang (DJ), Jiangkou (JK), Sinan (SN), Meitan (MT), Shiqian (SQ), Wuchuan
96 (WC), Xishui (XS), Zhengan (ZA), and Yanhe (YH). Additionally, materials from other primary
97 Nanmu-producing regions, such as Zigong (ZG) and Hejiang County (HJ; P. zhennan) in Sichuan
98 Province, Gulin County (GL) in Luzhou City, Tongnan District (TN) in Chongqing, and Baijia
99 Town (BJ) in Hunan Province, were also collected. **Three Nanmu germplasm species (Phoebe**
100 **bournei** from Guizhou University, **Phoebe sheareri** from Guizhou Botanical Garden, and **Phoebe**
101 **chekiangensis** from Qingyuan County, Zhejiang Province) were included, bringing the total
102 number of experimental materials to 174. Nanmu samples for SSR enrichment library
103 construction were obtained from Sichuan Changlin Maternal Forest and provided by the Guizhou
104 Forestry Academy of Sciences.

105 2.2 Methods

106 2.2.1 Extraction of Nanmu DNA

107 Genomic DNA of ~~the Nanmu~~ was extracted employing ~~a~~ adapted CTAB technique (Yichen
108 et al. 2021). The quality of the extracted DNA was assessed using 1% agarose gel
109 electrophoresis. The genomic DNA was diluted to 50 ng/μL, and stored at -20°C for future
110 use.

111 2.2.2 Construction and sequencing of SSR-enriched libraries for Nanmu

112 The DNA samples were dispatched to Shanghai Parsonage Biotechnology Co., Ltd. for the
113 construction and sequencing of SSR-enriched libraries. High-quality genomic library was
114 constructed by randomly fragmenting genomic DNA through ultrasonic treatment. The **library**
115 SSR fragments were enriched using magnetic bead-based **enrichment**, and were then subjected
116 to high-throughput sequencing. ~~Bioinformatics~~ software was used to process and filter using

117 ~~bioinformatics~~ software to obtain high-quality results. Raw data have been deposited to National
118 Center for Biotechnology Information (NCBI) under the BioProject number PRJNA1224921.

119 2.2.3 Characterization of SSR loci ~~in Nanmu~~ and primer design

120 Based on the high-quality sequencing data obtained, MISA software (**Microsatellite**
121 identification tool) was utilized to detect SSR loci, which were subsequently characterized and
122 ~~statistically~~ analyzed. Primers for SSR loci with more than two polymorphisms were designed
123 using **primer3 software**, with the target amplification product size spanning from 100 to 400 bp
124 (Andreas et al. 2012)

125 2.2.4 SSR primer screening and PCR amplification for Nanmu

126 **108** pairs of ~~eligible~~ polymorphic SSR primers were selected from the designed primers and
127 synthesized by Shanghai Bioengineering Co. The selected primers were amplified via PCR using
128 genomic DNA from 16 Nanmu samples as templates. After amplification, they were **detected by**
129 2% agarose gel electrophoresis, ~~after further screening~~. SSR-PCR products were then subjected
130 to capillary electrophoresis (Agilent, USA) to select primers that consistently amplified bands
131 with high polymorphisms.

132 2.2.5 Data analysis

133 The results of capillary electrophoresis were scored as 0 or 1, and GD parameters were
134 calculated based on manual band reading. GD indices, including the number of alleles (Na), the
135 effective number of alleles (Ne), Shannon information index (I), genetic differentiation
136 coefficient (Gst), and gene flow (Nm), were computed using GenAlEx 6.51 software. Nei's GD
137 index (H) was determined by Power Marker software. UMPGA clustering of populations was
138 performed based on Nei's genetic distances, and the resulting cluster tree was visualized through
139 the iTOL online website (<https://itol.embl.de/>). Molecular ANOVA was conducted using
140 **Arlequin**. Population genetic **arrangement** was examined using **Structure** software to categorize
141 the populations. The results folder was then compressed and submitted to Structure Harvester
142 (<https://taylor0.biology.ucla.edu/structureHarvester/>).

143 **3 Results**

144 3.1 Characterization of SSR loci

145 A total of 794,128 ~~Nanmu~~ SSR loci were recognized in 1,642,465 sequences of the ~~Nanmu~~
146 SSR-enriched library using MISA software (**Table 2**). Characterization of the SSR sites revealed
147 (**Figure 1A**) that dinucleotide SSRs comprised the highest percentage, with 431,326 occurrences,
148 accounting for 54.31%. This was followed by mononucleotide SSRs and trinucleotide SSRs,
149 with 209,961 and 141,218 ~~occurrences~~, respectively, representing 26.44% and 17.78%. The
150 occurrences of tetranucleotide, pentanucleotide, and hexanucleotide SSRs were lower,
151 collectively accounting for 1.47%. Among these, the most common mononucleotide SSRs were
152 of the A/T type, constituting 98.81%, while the AG/CT type of dinucleotide SSRs exhibited the
153 highest frequency of occurrence, at 84.73 %. Most trinucleotide SSRs were of the AAG/CTT
154 type, representing 80.08 %.

155 The analysis further revealed that the number of SSR loci decreased gradually with an rise
156 in the number of repetitive motif repeats (**Figure 1B**). However, mononucleotide and

157 dinucleotide SSRs exhibited a trend of **decreasing followed by increasing**, with mononucleotide
158 SSRs showing a sharper decline. The repetitions of mononucleotide SSRs were primarily
159 concentrated between 10 and 15 repeats, while dinucleotide SSRs were centered between 6 and
160 10 repeats. Trinucleotide SSR repetitions were primarily concentrated between 5 and 7 repeats,
161 and tetranucleotide, pentanucleotide, and hexanucleotide SSRs were predominantly limited to
162 five repetitions.

163 3.2 Polymorphism analysis of the SSR markers

164 **Sixteen Nanmu species** from different seed sources in Guizhou were selected as materials,
165 and genomic DNA was extracted using the modified CTAB. This DNA served as a template for
166 the preliminary validation of the synthesized SSR primers. The results revealed that 33 out of
167 108 primer pairs successfully amplified clear and expected bands, yielding an amplification
168 efficiency of 30.57%. Subsequent capillary electrophoresis of the PCR products from these 33
169 primer pairs identified 20 pairs of primers with high polymorphism (**Table S2**), Selected capillary
170 electrophoresis results are shown in **Figure S1**.

171 218 alleles were identified across 16 individuals using the 20 selected SSR primers. The
172 number of alleles per locus ranged from 7 to 15, with an average of 10.9. The observed number
173 of effective Ne varied from 1.693 to 2.667, with a mean of 2.260. Shannon's information index
174 (I) ranged from 0.472 to 0.970, with a mean of 0.763. The mean values of observed
175 heterozygosity (Ho) and expected heterozygosity (He) were 0.705 and 0.487. Nei's GD index (H)
176 ranged from 0.801 to 0.910, with a mean of **0.872**. The Polymorphic Information Content (PIC)
177 of the SSR loci ranged from 0.777 to 0.903, with an average of 0.859. These results indicated
178 that the 20 **Nanmu** SSR loci were highly polymorphic and could be effectively used for assessing
179 the GD of **Nanmu** (**Table 3**).

180 3.3 GD Analysis of Guizhou **Nanmu** Population

181 Genetic parameters serve as indicators of GD levels within **different** Nanmu populations
182 (**Table 4**). The analysis results revealed that, in Guizhou Nanmu populations, the Na value
183 ranged from 3.850 to 8.150, with a mean of 5.581. The highest Na value was observed in the SN
184 population, while the minimum values were found in the JH and MT populations. The Ne value
185 ranged from 3.313 to 6.402, and the I value varied from 1.196 to 1.928, with the maximum and
186 minimum values of Ne and I observed in the SN and MT populations, respectively. The Ho
187 values from 0.406 to 0.823, with the maximum value in the JK group and the minimum in the
188 DZ group. The He values ranged from 0.654 to 0.831, with the maximum in the SN group and
189 the minimum in the MT group. In addition, with the exception of the DJ, JH, and MT groups, the
190 Ho values for the **remaining** Nanmu populations were smaller than the He values, suggesting the
191 possibility of inbreeding within these populations. The variation in Nei's GD Index (H) from
192 0.661 to 0.832, with the highest value in the SN population and the lowest in the MT population.
193 Overall, these results suggested that the SN population exhibited higher GD, while the MT
194 population had lower GD.

195 When comparing the GD parameters of Nanmu from Sichuan, Chongqing, and Hunan to
196 those in Guizhou, the BJ, GL, ZG, and TN populations showed intermediate GD, lower than the

197 SN population but higher than the MT population. The Nei's GD indices for BJ, GL, ZG, and TN
198 were all greater than 0.7, suggesting that these populations maintain high GD. Additionally, the
199 Ho values for BJ, GL, ZG, and TN were all smaller than their respective He values, indicating a
200 certain degree of inbreeding in these populations.

201 A comparison of the GD indices between the collected Nanmu (*P. zhennan*) from Hejiang
202 County, Sichuan Province, and other species such as *P. bournei*, *P. chekiangensis*, and *P. sheareri*
203 showed that the Shannon information index for the *P. bournei* population was the highest, at
204 1.917. The Ho value for *P. chekiangensis* reached a maximum of 0.802, while the maximum He
205 value for *P. bournei* was 0.821. In general, the Ho values for all populations, except the *P.*
206 *chekiangensis*, were lower than the He values, which may indicate inbreeding or could be
207 attributed to sample size or environmental factors. The Nei's GD indices (H) ranked from high to
208 low as *P. bournei*, *P. sheareri*, *P. zhennan*, and *P. chekiangensis*, with the combined analysis
209 confirming that all four Phoebe species exhibited high GD.

210 3.4 Analysis of genetic differentiation of Guizhou Nanmu populations

211 The genetic differentiation of Guizhou Nanmu populations was analyzed based on 20 SSR
212 loci (Table 5). ~~Fis represents the inbreeding coefficient within a population.~~ When **Fis** < 0, an
213 excess of heterozygotes is observed due to distant crosses, indicating outbreeding. Conversely,
214 when **Fis** > 0, inbreeding results in an excess of homozygotes, indicating a higher occurrence of
215 pure heterozygotes. The **Fis** values for the 20 SSR loci ranged from -0.323 to 0.478, with a mean
216 value of 0.059. ~~Notably, the Fis values for SSR11~SSR12 and SSR14~SSR20 were negative,~~
217 ~~suggesting an excess of heterozygotes at these loci. In contrast, the Fis values for SSR1~SSR10~~
218 ~~and SSR13 were positive, indicating an excess of homozygotes at these loci.~~ **Fit** represents the
219 inbreeding coefficient between populations. The **Fit** values for the 20 SSR loci ranged from -
220 0.089 to 0.628, with a mean value of 0.218, suggesting the presence of some degree of
221 inbreeding between populations. **Fst**, the coefficient of differentiation between populations,
222 ranged from 0.114 to 0.288, with a mean value of 0.175, indicating significant genetic
223 differentiation among populations. The mean **Fst** value suggests a relatively high level of genetic
224 differentiation. **Nm**, which measures gene flow, ranged from 0.619 to 1.941, with a mean value
225 of 1.263. Since **Nm** > 1, this indicates frequent gene flow between populations, with alleles from
226 each locus being widely distributed across populations.

227 An **AMOVE** (Analysis of Molecular Variance) of the 20 loci in Guizhou Nanmu
228 populations was conducted using Arlequin software (Table 6). The findings showed that 9.43%
229 of the genetic variation was ascribed to **disparities** among populations, while 90.57% resulted
230 from variation within populations. This implies that the majority of genetic variation in Guizhou
231 Nanmu is found within individual populations.

232 3.5 Analysis of the genetic structure of Nanmu populations

233 The genetic structure of the Nanmu populations was analyzed using Structure software
234 (Figure 2). The highest ΔK value was observed when $K = 3$, indicating that the 24 populations
235 could be classified into three subgroups, which likely originated from three distinct homologous
236 gene pools. The classifications are represented by red, green, and blue colors (Figure 3). The

237 classification was based on the Q value, where $Q \geq 0.6$ indicates a relatively homogeneous
238 genealogy, allowing the individuals to be clustered into a single group (Table S3). The first
239 group (red) includes 54 individuals from 13 populations, accounting for 31.03% of the total. This
240 group consists of all individuals from the BJ, FG, GL, JH, TJ, YQ, and YH groups, and some
241 individuals from the CS (2), JK (1), HJ (1), SN (1), SQ (1), and ZA (1) groups. The second
242 group (green) includes all individuals from three populations: ZIN (*P. sheareri*), ZJN (*P.
243 chekiangensis*), and MN (*P. bournei*), accounting for 17.24% of the total. The third group (blue)
244 consists of 88 individuals from 14 populations, accounting for 50.57% of the total. This group
245 includes all individuals from the DJ, DZ, TN, TZ, WC, XS, and ZG groups, as well as some
246 individuals from the CS (5), GL (1), JK (7), HJ (7), MT (3), SN (7), SQ (10), and ZA (5) groups.
247 This indicates that Guizhou, Sichuan, Chongqing, and Hunan populations share a certain degree
248 of genetic overlap. In addition, MT20-03 and SN20-11 exhibit $Q < 0.6$, suggesting a more
249 complex genealogy, and therefore, these two individuals were categorized into a fourth group.
250

3.6 Cluster analysis and principal component analysis of Nanmu populations

251 Genetic distance reflects the kinship between Nanmu populations, with a larger genetic
252 distance indicating greater divergence. UPGMA clustering analysis was performed based on
253 Nei's genetic distance among the groups (Figure 4). When the groups were clustered into three
254 categories: the first category comprised the YH group; the second category included three
255 groups—*P. bournei*, *P. sheareri*, and *P. chekiangensis*; and the third category included the DZ,
256 JH, GL, BJ, FG, YQ, TJ, MT, XS, TZ, *P. zhennan*, ZG, TN, WC, JK, CS, DJ, ZA, SQ, and SN
257 Nanmu groups. When the 24 groups were clustered into five categories, the first category
258 remained the same as in the previous classification, while the third category comprised the DZ
259 Nanmu group; the fourth category included the JH, GL, BJ, FG, YQ, and TJ Nanmu groups; and
260 the fifth category included the MT, XS, TZ, *P. zhennan*, ZG, TN, WC, JC, JK, CS, DJ, ZA, SQ,
261 and SN Nanmu groups. In the comprehensive analysis, this study successfully distinguishes *P.
262 bournei* from the other Nanmu species. It was found that *P. bournei* is more closely related to *P.
263 sheareri*. *P. bournei*, *P. chekiangensis*, and *P. sheareri* form a distinct branch, while the remaining
264 groups cluster into another branch. Notably, *P. zhennan* is more closely related to the Nanmu
265 groups from ZG, TN, and TZ, indicating closer affinities between them. The YH Nanmu group
266 from Guizhou formed a separate branch, suggesting that it may represent a different species of
267 Phoebe.

268 In a principal component analysis of 174 samples based on Nei's genetic distance (Figure
269 5), all individuals from the three groups—*P. bournei*, *P. sheareri*, and *P. chekiangensis*—were
270 clustered into one group in the upper right corner (red), with no overlap between them. The YH
271 individuals formed a distinct group on their own (blue), while the remaining Nanmu groups were
272 distributed in a cross pattern, in agreement with the findings of the cluster analysis.

273 4 Discussion

274 4.1 Development of SSR molecular markers for the Nanmu genome

275 The morphological differences between species of Phoebe are minimal, and their
276 distribution is wide. Based on traditional morphological classifications and the currently

277 developed EST and transcriptomic molecular markers, it is challenging to distinguish the
278 interspecific relationships among some Phoebe species and to accurately identify species within
279 the genus. *P. zhennan* and *P. bournei* are often considered controversial species due to small
280 differences in leaf traits, with environmental factors also potentially influencing leaf phenotypes.

281 Juan et al. (2018) failed to distinguish *P. zhennan* from *P. bournei* using ISSR markers and
282 suggested that these two Nanmu species should be combined. In contrast, Ding et al. (2018)
283 integrated morphology data with RAD-seq sequencing to distinguish *P. zhennan* from *P. bournei*
284 through SNP detection. Compared to SNP detection technology, SSR markers, as a second-
285 generation molecular marker technology, offer low-cost, accurate detection, and were developed
286 and applied earlier. For example, Jian (2016) developed SSR molecular markers based on the
287 whole genome of *Camphora officinarum* and demonstrated the applicability of 27 pairs of
288 markers across the genera Phoebe and Machilus. Yingchun et al. (2023) used SSR marker
289 technology to confirm that *Pinus yunnanensis* is a typical outcrossing *plant* and maintains
290 medium to high GD.

291 In this study, we constructed a Nanmu SSR enrichment library using the magnetic bead
292 ~~enrichment~~ method to identify SSR loci within the Nanmu genome. More than 794,128 SSR loci
293 were identified, which are more than those found in the transcriptome. ~~According to the~~
294 ~~statistical analysis of identified SSR loci~~, the most common SSR types were dinucleotide repeats
295 (54.31%), succeeded by mononucleotide and trinucleotide repeat types. Tetranucleotide,
296 pentanucleotide, and hexanucleotide repeat types appeared least frequently. Out of these
297 dinucleotide SSRs, the AG/CT repeat motif was the ~~most common~~, consistent with the repeat
298 motifs found in many plants, such as *Pseudotsuga menziesii* and *Camellia oleifera* (
299 *VindhyaAmarasinghe & ECarlson 2002*; Lang et al. 2024).

300 From the genomic DNA of 16 Nanmu materials, 20 pairs of SSR polymorphic primers
301 were screened. Of these, 90 % were dinucleotide and trinucleotide repeat types, and the
302 polymorphic information content ranged from 0.777 to 0.903. This indicates a high level of
303 polymorphism for the selected primers, and their suitability for analyzing the GD of Nanmu.
304 These primers further provided more SSR molecular markers for the identification of Nanmu
305 germplasm resources. Principal Component Analysis (PCoA) revealed that individuals from the
306 *P. bournei*, *P. chekiangensis*, and *P. sheareri* groups were dispersed in one principal component
307 without overlap, while the YH group was distinct from these groups. This however changes as
308 the remaining Nanmu had a more spread out distribution in the other components. Similarly, the
309 results of UPGMA cluster analysis confirmed this, indicating that the developed molecular
310 markers were able to separate *P. zhennan*, *P. bournei*, *P. sheareri*, and *P. chekiangensis* on the
311 basis of their genotypes. However, the suitability of these molecular markers for identifying
312 germplasm resources in other Phoebe species requires further verification.

313 Furthermore, based on previous studies, the higher occurrence rate of a short nucleotide
314 repeat motifs in the SSR loci revealed the higher evolutionary level of a species, while the
315 greater frequency of long nucleotide repeats implied a lower evolutionary level or mutation
316 frequency (Gábor et al. 2000) . The SSR loci discovered in the current study, which consisted

317 mainly of 80.75% mononucleotide and dinucleotide repeats, indicate a high evolutionary
318 background of Nanmu. GD is a crucial index for assessing the stability of a species'
319 development. Molecular marker technologies, such as SSR, help mitigate the impact of
320 environmental factors and provide insights into the GD of a species at the molecular level
321 (Dharminder & Gagandeep Singh 2022 ; Weichang 2024). The 20 pairs of polymorphic primers
322 identified in this study can be used for the subsequent analyses of GD in Nanmu.

323 GD of Guizhou Nanmu Populations Nanmu is one of the main forest resources in Guizhou
324 with excellent material performance, high economic value and ornamental value.
325 However, Nanmu resources have been decreasing steadily due to environmental changes, human
326 activities, and other reasons. Despite this, there is an absence of studies on the GD of Nanmu
327 populations in Guizhou. Understanding the GD of Nanmu is crucial for developing effective
328 conservation strategies to protect the ~~remaining~~ resources.

329 4.2 Genetic Diversity of Guizhou Nanmu Populations

330 Nanmu were studied using 20 ~~pairs of SSR primers~~ in this work. The observed H_o value of
331 0.701 was ~~smaller~~ than the expected H_e value of 0.737, indicating a certain degree of inbreeding
332 within the Guizhou Nanmu population. The GD levels of the Guizhou population, in descending
333 order, were as follows: SN > SQ > YQ > ZA > JK > WC > CS > TJ > DJ > XS > FG > DZ > TZ
334 > JH > MT. When compared to ~~the congener~~ *Phoebe chekiangensis* ($H=0.3206$) and other
335 endangered woody plants (*Liriodendron chinense*, $H=0.740$; *Senegalia pennata*, $H=0.573$;
336 *Dalbergia nigra*, $H=0.740$) (Kangqin 2013; Gao Jie 2008; Renata Santiago de Oliveira et al.
337 2012), the GD of Guizhou Nanmu populations ($H=0.743$) was found to be relatively high. This
338 indicates that even though the Guizhou Nanmu population is fragmented, it may maintain high
339 GD due to its earlier origin, longer lifespan, and the accumulation of genetic variation. Among
340 the populations, MT, JH, TZ, and DZ exhibited GD indices (H) between 0.6 and 0.7, which are
341 lower compared to the rest of Guizhou populations. These populations require special
342 conservation attention to maintain GD. On the other hand, the GD indices (H) of FG, YH, XS,
343 DJ, TJ, CS, WC, JK, and ZA ranged between 0.7 and 0.8, suggesting they are relatively stable
344 and can be conserved under the current protection measures. The populations of SN, SQ, and
345 YQ, with GD indices (H) greater than 0.8, demonstrate high GD and should be prioritized for
346 protection. These populations could also serve as sources for screening superior Nanmu plants.
347 Furthermore, a comparison of the GD of the Guizhou Nanmu population with those from
348 Sichuan, Hunan, and Chongqing revealed that the populations in these regions also possess high
349 GD. In summary, despite the significant decline of Nanmu resources in the past due to natural
350 disasters and anthropogenic factors, the overall GD of the Nanmu population remains high. This
351 indicates that Nanmu is genetically stable, though continued human intervention is necessary for
352 its protection and breeding.

353 Population genetic differentiation is an indicator that reflects the genetic structure of a
354 population. The main factors influencing genetic differentiation include genetic drift, gene flow,
355 and evolutionary history. Previous studies have shown that gene flow between populations can
356 effectively prevent genetic differentiation due to genetic drift when the value of $Nm > 1$ (Suqi et

357 al. 1998). The results of genetic differentiation in this study indicated that the majority of genetic
358 differentiation occurred within populations, with 82.5% of the genetic variation observed within
359 populations and 17.5% between populations. Specifically, 9.43% of the total genetic variation
360 was attributed to differences between populations, while 90.57% was within populations. This
361 suggests that the Guizhou Nanmu populations exhibit a high degree of geographic coherence,
362 with minimal genetic differentiation resulting from geographic isolation. The gene flow
363 ($Nm=1.354$) was greater than 1, indicating that there is sufficient gene exchange between the
364 Guizhou Nanmu populations to prevent genetic differentiation due to genetic drift. This also
365 suggests that wild Nanmu populations can remain stable in the absence of anthropogenic factors.
366 Additionally, the Nanmu populations in this study were mainly came from mountainous regions,
367 while the dispersal of Lauraceae seeds rely largely on birds, gravity, or human activities, which
368 may further contribute to genetic exchange among Guizhou Nanmu populations.

369 A total of 174 individuals from 24 Nanmu populations were ~~analyzed using Structure~~
370 ~~software to study the~~ genetic structure. The results revealed that the populations could be roughly
371 classified into three groups: the first group, the second group, and the third group, which
372 accounted for 31.03%, 17.24%, and 50.57% of the total number of populations, respectively.
373 Two individuals, MT20-03 and SN20-11, showed a Q-value of less than 0.6 and exhibited more
374 complex genetic backgrounds, so they were categorized into a fourth group. UPGMA clustering
375 analysis based on Nei's genetic distance revealed that samples collected from HJ were clustered
376 with the ZG, TN, and TZ populations. This suggests that the ZG, TN, and TZ populations were
377 more closely related to the Hejiang samples from Luzhou. Additionally, Nanmu samples from
378 Gulin County, Sichuan Province, were clustered with the BJ, FG, YQ, and TJ groups, indicating
379 that these groups of Nanmu were more closely related to one another. Both cluster and principal
380 component analyses grouped the YH population separately, indicating that YH was genetically
381 more distant from the other groups. The YH group was morphologically identified as *Lindera*
382 *megaphylla*. Taken together, the genetic distance between the Nanmu populations was not found
383 to correlate with geographical distance. This finding suggests that factors other than geography
384 may influence the genetic structure of the populations, and the underlying reasons for this need
385 further investigation at a deeper level (Ami & Byoung-Un 2022).

386 In addition, during the collection of Nanmu samples, it was observed that the Nanmu at the
387 collection site were seriously infested with pests and diseases, and were not adequately treated.
388 Meanwhile, Phoebe bournei in Guizhou was found to be mixed with Phoebe zhennan, and
389 accurate data on Nanmu populations was not properly recorded during the listing process, which
390 has caused some challenges in the conservation of Nanmu species. It is recommended to
391 strengthen the prevention and control of pests and diseases affecting Nanmu, conduct a
392 comprehensive census of Nanmu resources in Guizhou, and rectify the listing information.

393 **5 Conclusions**

394 In this study, Nanmu genomic SSR molecular markers were developed based on the
395 sequencing of *Nanmu* genomic SSR-enriched libraries. Analysis using 20 highly polymorphic
396 primer pairs demonstrated that all Guizhou Nanmu populations exhibited high GD, with the SN

397 Nanmu population showing the highest GD, while the MT population exhibited lower diversity.
398 The genetic differentiation within the Guizhou Nanmu populations was found to be primarily
399 intra-population. Cluster analysis revealed that the Nanmu populations from ZG (Zigong,
400 Sichuan), TN (Tongnan District, Chongqing), and TZ (Tongzi County, Guizhou) were more
401 closely related. Furthermore, the polymorphic primers identified in this study effectively
402 distinguished Nanmu from *Phoebe bournei*, *Phoebe sheareri*, and *Phoebe chekiangensis*.

403 Acknowledgements

404 Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation of
405 Ministry of Education (Guizhou University), Open Project (Guizhou Education Technology
406 [2022] No. 430); Innovative Talent Team Project of Seedling Breeding and Plantation
407 Cultivation for Precious Tree Species in Guizhou (Qiankehe Platform Talents -CXTD[2023]006)
408

409 References

410 Ami O, and Byoung-Un O. 2022. Genetic differentiation that is exceptionally high and
411 unexpectedly sensitive to geographic distance in the absence of gene flow: Insights from the
412 genus *Eranthis* in East Asian regions. *Ecology and Evolution*. 10.1002/ece3.9007

413 Andreas U, Ioana C, Triinu K, Jian Y, Brant CF, Maito R, and Steve R. 2012. Primer3—new
414 capabilities and interfaces. *Nucleic Acids Research*. 10.1093/nar/gks596

415 Cai Y-l. 2008. Molecular Marker Assisted Selection Technology and Its Application to Crop
416 Breeding. *Seed*. null

417 Changming L, Changsong Z, Youping Z, Daoqian Y, Hongyan C, Pengfei J, Yang W, Qiaolian
418 W, Feng X, Mtawa Andrew P, Xiaoping G, and Guoli S. 2015. Development of chromosome-
419 specific markers with high polymorphism for allotetraploid cotton based on genome-wide
420 characterization of simple sequence repeats in diploid cottons (*Gossypium arboreum* L. and
421 *Gossypium raimondii* Ulbrich). *BMC Genomics*. 10.1186/s12864-015-1265-2

422 Christian S. 2004. The evolution of molecular markers — just a matter of fashion? *Nature*
423 *Reviews Genetics*. 10.1038/nrg1249

424 Dharminder B, and Gagandeep Singh B. 2022. Molecular Marker Techniques and Recent
425 Advancements. *null*. 10.1002/9781119745686.ch1

426 Ding X, Jian X, Lang L, John GC, and Jie L. 2018. Congruent species delimitation of two
427 controversial gold-thread nanmu tree species based on morphological and restriction
428 site-associated DNA sequencing data. *Journal of Systematics and Evolution*. 10.1111/jse.12433

429 Gábor T, Zoltán G, and Jerzy J. 2000. Microsatellites in Different Eukaryotic Genomes: Survey
430 and Analysis. *Genome Research*. 10.1101/gr.10.7.967

431 Gao Jie LQ. 2008. Study on Genetic Diversity of *Acacia auriculiformis* in Xishuangbanna,
432 Yunnan. *Biodiversity*:271-278.

433 Hanbo Y, Wanna A, Fang W, Yunfu G, Huimin G, Jiang Y, Jian P, Minhao L, Lianghua C, Fan
434 Z, Peng Z, Xin H, and Xueqin W. 2022. Integrated Transcriptomic, Metabolomic, and

435 Physiological Analyses Reveal New Insights into Fragrance Formation in the Heartwood of
436 Phoebe hui. International Journal of Molecular Sciences. 10.3390/ijms232214044

437 Jian W. 2016. Development of SSR Molecular Markers for the Entire Genome of *Cinnamomum*
438 *camphora* Master's degree.

439 Jianhua X, Ding X, Lang L, Hui M, Xiuqin C, Marlien van der M, John GC, and Jie L. 2020.
440 Miocene diversification of a golden-thread nanmu tree species (Phoebe zhennan, Lauraceae)
441 around the Sichuan Basin shaped by the East Asian monsoon. Ecology and Evolution.
442 10.1002/ece3.6710

443 Juan L, Lijun D, Jianyong L, Xiongsheng L, and Rui long L. 2018. ISSR analysis of Phoebe
444 species germplasm resources. Molecular plant breeding 16:6428-6435.
445 10.13271/j.mpb.016.006428

446 Kangqin L. 2013. Research on the Population Genetic Structure and Molecular Phylogeography
447 of *Liriodendron* Doctor.

448 Lang TH, Jian ZH, Jian L, Da DH, and Qiang HZ. 2024. Development and Characterization of
449 SSR Loci in the Tetraploid *Camellia Oleifera* Genome. Journal of Central South University of
450 Forestry and Technology 44:126-135. 10.14067/j.cnki.1673-923x.2024.03.013

451 Lichao J, Yang L, Ming Z, Yongping C, Zhaoshan W, Yu G, Chao X, Juan G, Tuo H, Lingyu M,
452 Wenqiang G, Jie W, Shi-Liang Z, Yonggang Z, Xiaomei J, Pieter B, and Yafang Y. 2022.
453 Ancient plastid genomes solve the tree species mystery of the imperial wood "Nanmu" in the
454 Forbidden City, the largest existing wooden palace complex in the world. Plants, people, planet.
455 10.1002/ppp3.10311

456 Lu L, Ling Feng M, Tuo Y, Jian Fei Y, Bing L, Hong Lei L, Miao S, Joe M, Sarah M, Hongling
457 H, Yan-Ting N, Dan P, You Hua C, Stephen AS, Min C, Kun X, Chi Toan L, Viet Cuong D, An
458 Ming L, Pamela SS, Douglas ES, Jian Hua L, and Zhi Duan C. 2018. Evolutionary history of the
459 angiosperm flora of China. Nature. 10.1038/nature25485

460 Qun Z, Xiaoling C, Ming L, Jiaxin X, Jian P, Bo Y, Kui Y, Yunjie G, and Hanbo Y. 2023.
461 Construction of Core Germplasm of Phoebe zhennan Based on SSR Markers. Sichuan Forestry
462 Science and Technology 44:27-35.

463 Renata Santiago de Oliveira B, Renata Acácio R, José Pires de Lemos F, and Maria Bernadete L.
464 2012. Fine-scale spatial genetic structure of *Dalbergia nigra* (Fabaceae), a threatened and
465 endemic tree of the Brazilian Atlantic Forest. Genetics and Molecular Biology. 10.1590/s1415-
466 47572012005000066

467 Suqi W, Ruiyu L, Jinhai D, and Keling W. 1998. Gene flow and differentiation among
468 populations of red porgy in Chinese nearshore waters. Science and technology enhance national
469 strength; youth create the future—hand in hand towards a glorious new century Third National
470 Youth Academic Conference of the China Association for Science and Technology. China,
471 Beijing. p 4.

472 VindhyaAmarasinghe, and ECarlson J. 2002. The development of microsatellite DNA markers
473 for genetic analysis in Douglas-fir. Canadian Journal of Forest Research 32:1904-1915.

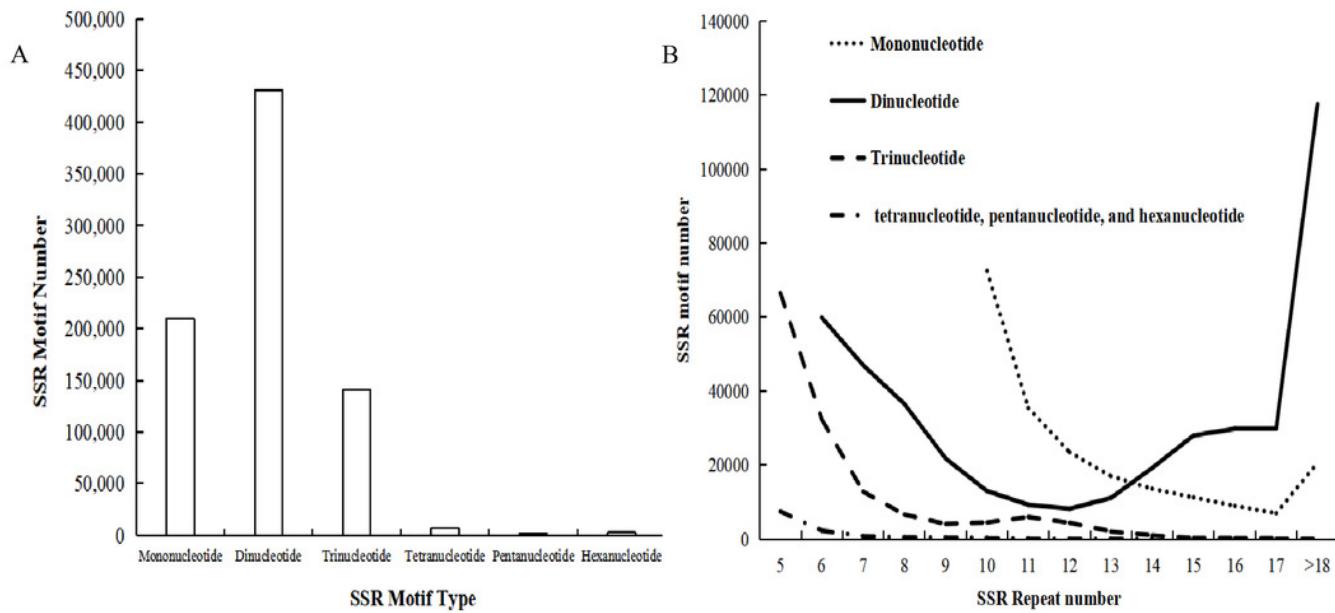
474 Wangcang S, Hongle X, Lanlan S, Chuantao L, and Wu R. 2023. Genetic diversity analysis of
475 volunteer wheat based on SSR markers. *Journal of Genetics*. 10.1007/s12041-023-01451-9

476 Weichang W. 2024. Genetic Diversity and Molecular Marker Discovery of Adaptive Traits in
477 *Triticeae* Crops. *Triticeae Genomics and Genetics*. 10.5376/tgg.2024.15.0002

478 Xiaodong S, Xuehui Z, Yuzhen S, Guoguo Z, and Fang C. 2016. Development of SSR
479 Molecular Markers for Phoebe zhennan Based on Transcriptome Sequences. *Forestry Science*
480 52:71-78.

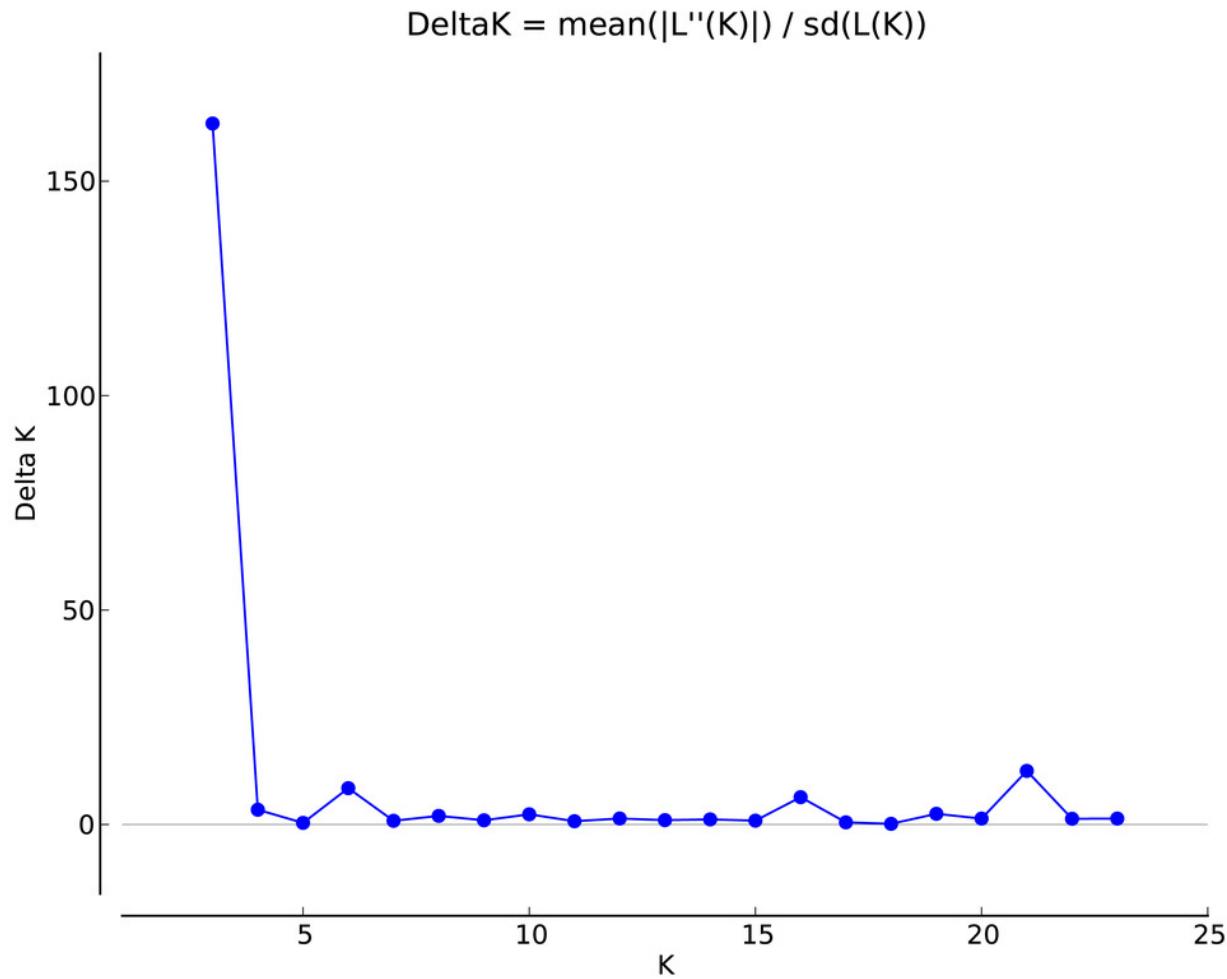
481 Yichen Z, Runying W, Qing L, Xuan D, and Degang Z. 2021. Genetic Diversity of Ancient
482 *Camellia sinensis* (L.) O.Kuntze in Sandu County of Guizhou Province in China. *Diversity*.
483 10.3390/d13060276

484 Yingchun M, Chengjie G, Jin L, Zirui L, and Kai C. 2023. Genetic diversity, population structure
485 and a core collection establishment of *Pinus yunnanensis* using microsatellite markers. *European
486 Journal of Forest Research*. 10.1007/s10342-023-01600-w

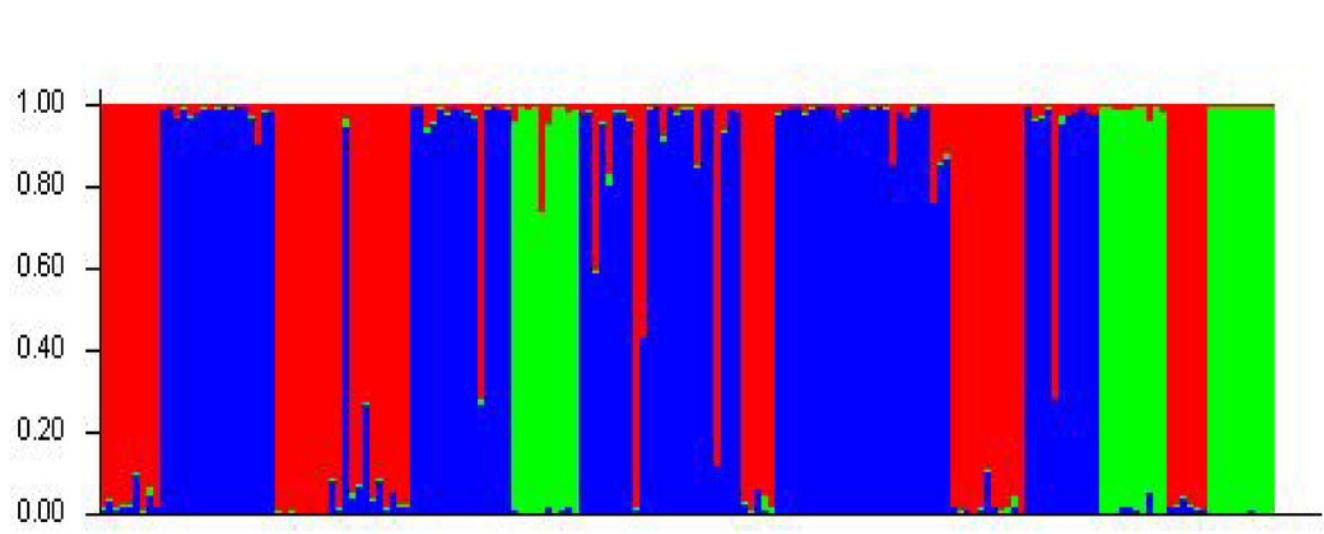

487 Yue X, and Runguo Z. 2023. Conservation of rare and endangered plant species in China.
488 *iScience*. 10.1016/j.isci.2023.106008

489

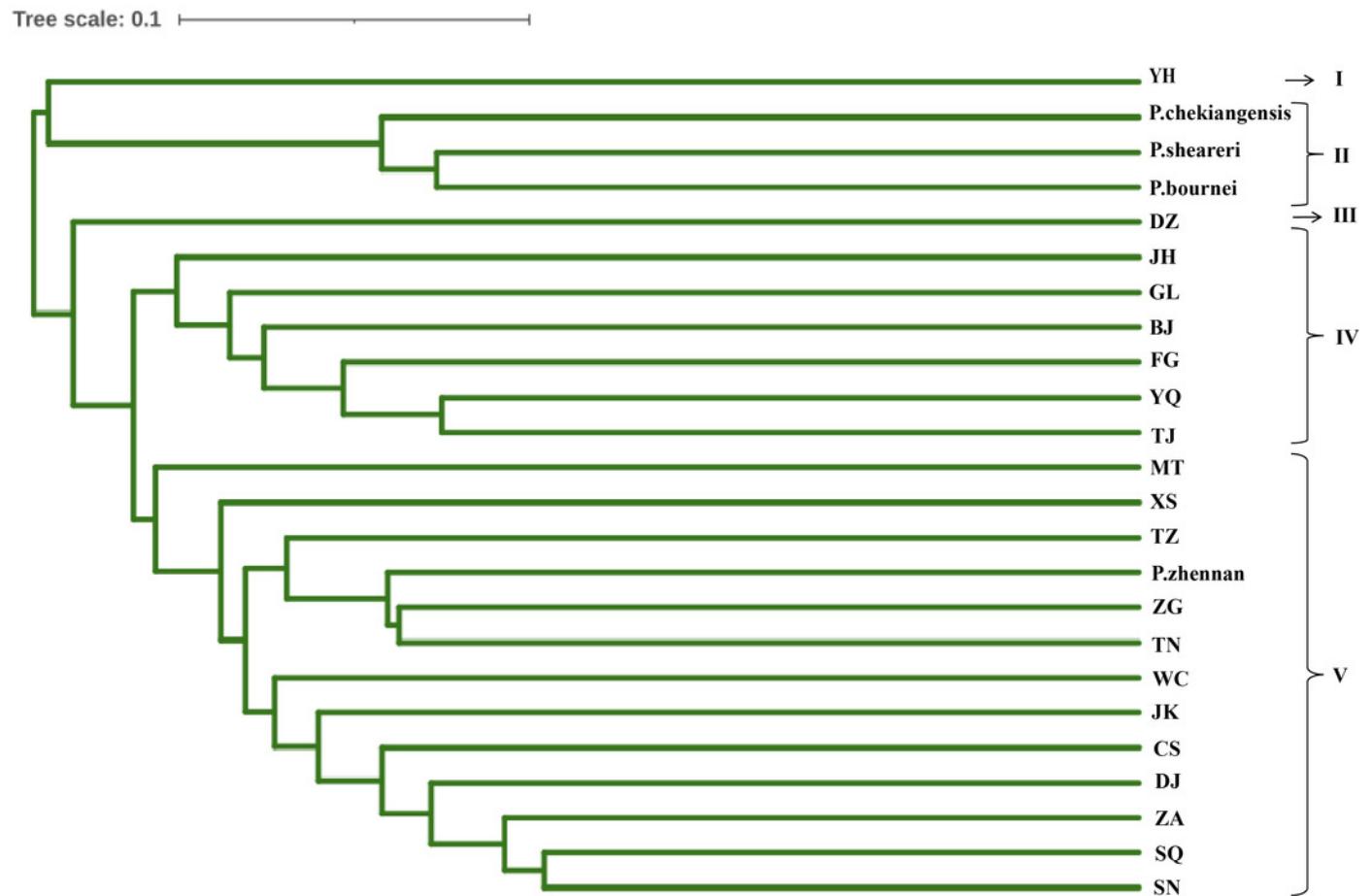
490


Figure 1

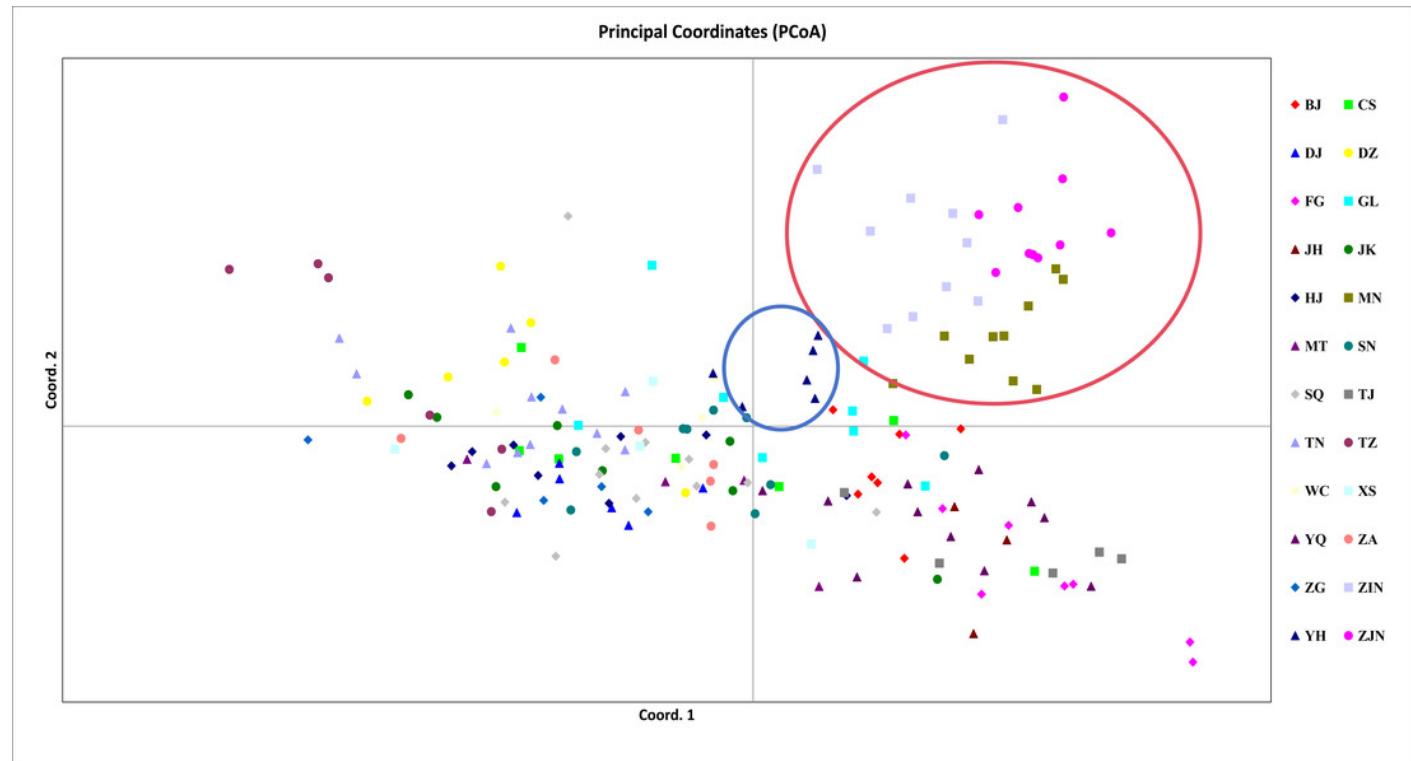
Analysis of SSRs Site Characteristics


Figure 2

Selection of optimal K value


Figure 3

Genetic structure analysis results


Figure 4

Cluster analysis

Figure 5

Principal component analysis

Table 1(on next page)

Geographic coordinates of the sampling site for Phoebe zhennan

1 Table 1 Collection information of Nanmu samples
2

sites	X	Y
DJ	107.88167	28.22694
SN	107.93250	27.83694
SQ	108.13917	27.44778
JK	108.78278	27.63722
WC	107.85972	28.37028
XS	106.58917	28.37000
ZA	107.43250	28.53722
MD	107.43833	27.44500
CS	106.48250	28.42278
YQ	107.97389	27.62278
FG	107.86417	27.94972
TZ	106.64861	28.08028
DZ	107.58083	29.08000
JH	108.62083	26.54139
TJ	108.34194	26.62694
TN	105.73667	29.84194
ZG	104.40972	29.43083
LZ	105.65472	28.65778
GL	105.72361	28.18806
ZJ	108.54057	28.48476
BJ	113.23450	28.04894

Table 2(on next page)

SSRs site search results statistics

1

Table 2. SSR site search results statistics

Sample	Numbers
The total number of sequences examined	1,642,465
The total size of examined sequences (bp)	551,443,009
The total number of identified SSRs	794,128
Number of SSR containing sequences	578,177
Number of sequences containing more than 1 SSR	162,869
The number of SSRs present in compound formation	178,046

2

Table 3(on next page)

SSR primer screening results

1

Table 3 SSR primer screening results

Prime	Allele	Number of effective alleles (Ne)	Shannon Information Index (I)	Observationa			Polymorphi c information content (PIC)
				heterozygosity (Ho)	Expected heterozygosity (He)	Nei's GD index (H)	
SSR-1	7	2.360	0.784	0.650	0.475	0.830	0.808
SSR-2	9	2.127	0.749	0.600	0.488	0.816	0.793
SSR-3	12	2.127	0.645	0.400	0.400	0.896	0.888
SSR-4	11	1.867	0.589	0.450	0.388	0.881	0.869
SSR-5	10	2.127	0.645	0.550	0.400	0.865	0.851
SSR-6	9	2.133	0.624	0.400	0.375	0.854	0.837
SSR-7	10	1.967	0.624	0.300	0.400	0.857	0.842
SSR-8	8	1.693	0.472	0.350	0.313	0.826	0.804
SSR-9	8	1.967	0.624	0.350	0.400	0.844	0.825
SSR-10	8	2.433	0.832	0.700	0.525	0.801	0.777
SSR-11	12	2.033	0.693	0.850	0.475	0.881	0.869
SSR-12	13	2.400	0.866	0.950	0.563	0.906	0.899
SSR-13	15	2.600	0.936	0.900	0.588	0.910	0.903
SSR-14	12	2.600	0.936	0.850	0.588	0.885	0.874
SSR-15	13	2.567	0.866	0.900	0.538	0.910	0.903
SSR-16	11	2.467	0.866	1.000	0.563	0.879	0.867
SSR-17	12	2.267	0.832	1.000	0.550	0.893	0.883
SSR-18	14	2.333	0.832	0.950	0.550	0.908	0.901
SSR-19	11	2.667	0.970	0.950	0.600	0.889	0.878
SSR-20	13	2.467	0.866	1.000	0.563	0.906	0.899
Mean	10.9	2.260	0.763	0.705	0.487	0.872	0.858

2

Table 4(on next page)

Genetic diversity analysis of Nanmu population

1

Table 4. GD analysis of Nanmu population

POP	Na	Ne	I	Ho	He	H
CS	6.250	4.832	1.621	0.727	0.750	0.751
DJ	5.000	4.094	1.456	0.798	0.732	0.737
DZ	4.550	3.784	1.335	0.406	0.680	0.701
FG	5.050	3.854	1.398	0.650	0.711	0.714
JH	3.850	3.423	1.223	0.750	0.663	0.664
JK	6.100	4.668	1.608	0.823	0.765	0.773
MT	3.850	3.313	1.196	0.675	0.654	0.661
SN	8.150	6.402	1.928	0.788	0.831	0.832
SQ	7.750	5.292	1.807	0.738	0.799	0.811
TJ	5.500	4.597	1.540	0.740	0.744	0.744
TZ	4.200	3.315	1.273	0.577	0.676	0.685
WC	5.050	4.339	1.515	0.668	0.758	0.762
XS	4.800	4.227	1.442	0.725	0.731	0.736
YQ	8.000	6.015	1.856	0.705	0.807	0.809
ZA	6.350	5.152	1.691	0.732	0.784	0.785
YH	4.850	3.872	1.395	0.720	0.710	0.719
GL [#]	5.900	4.513	1.553	0.637	0.741	0.763
BJ [#]	6.200	4.507	1.579	0.652	0.733	0.739
TN [#]	6.800	4.536	1.650	0.725	0.764	0.779
ZG [#]	4.700	3.992	1.400	0.590	0.713	0.713
<i>P. bournei</i> *	8.500	6.087	1.917	0.795	0.821	0.821
<i>P. zhennan</i> *	6.500	5.067	1.699	0.690	0.789	0.793
<i>P. sheareri</i> *	8.000	5.704	1.863	0.790	0.811	0.816
<i>P. chekiangensis</i> *	6.800	4.578	1.648	0.802	0.759	0.767

2 Notes: #Nanmu groups originating from Hunan, Sichuan, and Chongqing; *other species of the *Phoebe* genus.

3

Table 5(on next page)

Genetic differentiation analysis of Nanmu population

1

Table 5. Genetic differentiation analysis of the Nanmu population

Locus	Fis	Fit	Fst	Nm
SSR-1	0.049	0.158	0.114	1.941
SSR-2	0.212	0.383	0.217	0.900
SSR-3	0.441	0.524	0.148	1.444
SSR-4	0.290	0.433	0.202	0.985
SSR-5	0.167	0.382	0.258	0.718
SSR-6	0.478	0.628	0.288	0.619
SSR-7	0.341	0.464	0.186	1.097
SSR-8	0.238	0.390	0.199	1.007
SSR-9	0.255	0.421	0.223	0.871
SSR-10	0.367	0.447	0.125	1.745
SSR-11	-0.123	0.051	0.156	1.357
SSR-12	-0.137	0.030	0.146	1.457
SSR-13	0.165	0.289	0.148	1.437
SSR-14	-0.101	0.080	0.164	1.273
SSR-15	-0.228	-0.054	0.141	1.518
SSR-16	-0.323	-0.089	0.177	1.162
SSR-17	-0.223	-0.024	0.163	1.287
SSR-18	-0.228	-0.045	0.149	1.433
SSR-19	-0.267	-0.063	0.161	1.300
SSR-20	-0.196	-0.044	0.128	1.711
Mean	0.059	0.218	0.175	1.263

2

Table 6(on next page)

Analysis of Molecular Variance of Nanmu Population

1 Table 6. Analysis of molecular variance of the Nanmu population

Source of mutation	Degrees of freedom	Square sum	Variance component	Variance component ratio
Intergroup	15	260.086	0.76630	9.43%
Intragroup	194	1428.061	7.36114	90.57%
Total	209	1688.148	8.12744	
Fst: 0.09429				

2