

Mechanistic study on integrated water and fertilizer management to alleviate Na^+ toxicity and enhance salt tolerance and yield of pakchoi under salt stress (#120973)

1

First submission

Guidance from your Editor

Please submit by **20 Jul 2025** for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

All review materials are strictly confidential. Uploading the manuscript to third-party tools such as Large Language Models is not allowed.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the [materials page](#).

9 Figure file(s)

4 Table file(s)

1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty is not assessed.** Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Mechanistic study on integrated water and fertilizer management to alleviate Na⁺ toxicity and enhance salt tolerance and yield of pakchoi under salt stress

Jin Li¹, Hongcheng Li¹, Zizheng Li¹, Huirong Su², Tingting Duan¹, Zhong Lin¹, Yinling Zhu¹, Xiaoli Chen¹, Xianmin Wang^{Corresp. 1}

¹ Guangdong Ocean University, Zhanjiang, Guangdong, China

² Zhanjiang Agricultural Technology Extension Center, Zhanjiang, Guangdong, China

Corresponding Author: Xianmin Wang
Email address: wangmw213@yeah.net

Planting salt-tolerant Pakchoi is a promising strategy for utilizing coastal saline soils, yet supporting agronomic technologies remain underdeveloped. This study investigates the mechanisms by which coordinated water and fertilizer regulation mitigates Na⁺ toxicity under salt stress and enhances salt tolerance and yield in Pakchoi, aiming to provide a scientific basis for optimizing agronomic management of salt-tolerant Pakchoi. A pot experiment using a split-plot design was conducted with three irrigation methods (conventional, drip, and mulched drip) and three fertilizer types (conventional, mixed, and controlled-release). The MP treatment (mulched drip irrigation + mixed fertilizer) significantly reduced soil EC in the upper layer and increased K⁺ and Ca²⁺ content while lowering Na⁺, thereby increasing the K⁺/Na⁺ ratio and decreasing the Na⁺/Ca²⁺ ratio. MP also reduced MDA and electrolyte leakage and enhanced activities of SOD, CAT, POD, and APX enzymes. Leaf water potential improved to -0.60 MPa, and total soluble organic osmolytes accumulation were minimized. MP-treated plants showed superior gas exchange ($Pn = 14.8 \mu\text{mol CO}_2 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $Gs = 0.622 \text{ mol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $Tr = 5.28 \text{ mmol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) with efficient CO₂ assimilation ($C_i = 251 \mu\text{mol} \cdot \text{mol}^{-1}$) and high chlorophyll content (total = 2.68 mg·g⁻¹). Yield performance improved markedly, with 39% and 42% higher fresh and dry weight than FI. MP treatment offers a highly effective water-fertilizer strategy for Pakchoi in saline regions.

1 Mechanistic study on integrated water and fertilizer 2 management to alleviate Na⁺ toxicity and enhance salt 3 tolerance and yield of pakchoi under salt stress

4 Jin Li¹, Hongcheng Li¹, Zizheng Li¹, Huirong Su², Tingting Duan¹, Zhong Lin¹, Yinling Zhu¹,
5 Xiaoli Chen¹, Xianmin Wang¹

6

7 ¹Guangdong Ocean University, Zhanjiang, Guangdong 524088, China

8 ²Zhanjiang Agricultural Technology Extension Center, Zhanjiang, Guangdong 524000, China
9

10 Corresponding Author:

11 Xianmin Wang¹

12 Guangdong Ocean University, Zhanjiang, Guangdong 524088, China

13 Email address: wangmw213@yeah.net

14

15 Abstract

16 Planting salt-tolerant Pakchoi is a promising strategy for utilizing coastal saline soils, yet
17 supporting agronomic technologies remain underdeveloped. This study investigates the
18 mechanisms by which coordinated water and fertilizer regulation mitigates Na⁺ toxicity under
19 salt stress and enhances salt tolerance and yield in Pakchoi, aiming to provide a scientific basis
20 for optimizing agronomic management of salt-tolerant Pakchoi. A pot experiment using a split-
21 plot design was conducted with three irrigation methods (conventional, drip, and mulched drip)
22 and three fertilizer types (conventional, mixed, and controlled-release). The MP treatment
23 (mulched drip irrigation + mixed fertilizer) significantly reduced soil EC in the upper layer and
24 increased K⁺ and Ca²⁺ content while lowering Na⁺, thereby increasing the K⁺/Na⁺ ratio and
25 decreasing the Na⁺/Ca²⁺ ratio. MP also reduced MDA and electrolyte leakage and enhanced
26 activities of SOD, CAT, POD, and APX enzymes. Leaf water potential improved to -0.60 MPa,
27 and total soluble organic osmolytes accumulation were minimized. MP-treated plants showed
28 superior gas exchange ($Pn = 14.8 \mu\text{mol CO}_2 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $Gs = 0.622 \text{ mol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $Tr = 5.28$
29 $\text{mmol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) with efficient CO₂ assimilation ($C_i = 251 \mu\text{mol} \cdot \text{mol}^{-1}$) and high chlorophyll
30 content (total = 2.68 mg·g⁻¹). Yield performance improved markedly, with 39% and 42% higher
31 fresh and dry weight than FI. MP treatment offers a highly effective water-fertilizer strategy for
32 Pakchoi in saline regions.

33

34 **Keywords:** Pakchoi, Salt stress, Integrated water and fertilizer management, Ion homeostasis
35 and Na⁺ toxicity, Photosynthetic performance and ROS defense

36

37 INTRODUCTION

38 Pakchoi (*Brassica rapa* L. ssp. *chinensis*), belonging to the Brassicaceae family, is native to

39 China and is commonly known as Chinese cabbage. It is an important leafy vegetable crop in
40 China and has been extensively cultivated in recent years in countries such as Europe, America,
41 Japan, and Southeast Asia, gradually becoming a globally recognized vegetable (Yu *et al.*, 2022).
42 However, soil salinization has become a major limiting factor for greenhouse vegetable
43 production (Xu *et al.*, 2018) and a significant agricultural issue worldwide (Liang *et al.*, 2018).
44 Currently, there are approximately 950 million hectares of saline-alkali land globally, with China
45 having around 100 million hectares of saline soil (Li *et al.*, 2022a). In the coastal areas of
46 Guangdong, there are nearly 200,000 hectares of saline-alkali land, with Zhanjiang accounting
47 for half of this area (Luo, 2012; Wang *et al.*, 2018). Moreover, it is estimated that the degree of
48 soil salinization on approximately 20% of agricultural land worldwide is continuously worsening,
49 with more than 50% of arable land expected to become saline by 2050 (Li *et al.*, 2022b).
50 Coastal soil salinization typically occurs due to rapid soil moisture evaporation, leading to the
51 gradual accumulation of sodium chloride (NaCl) in the soil (Khalifa *et al.*, 2016). Under NaCl
52 stress, plant growth and development slow down, metabolic capacity is inhibited, and severe
53 symptoms of wilting may occur, eventually leading to plant death (Parida and Das, 2005).
54 Proper irrigation and fertilization practices are essential for managing salinity while ensuring
55 water and nutrient supply to plants. Inappropriate fertilization and irrigation can result in the
56 accumulation of salt in the root zone, leading to Na⁺ toxicity in crops (Lima *et al.*, 2020). This
57 can damage cell membrane structures and functions (Liu *et al.*, 2017), causing disruption in
58 physiological metabolism and water imbalance, which adversely affect crop growth and yield
59 reduction (Piao *et al.*, 2020). Therefore, rational fertilization and irrigation are crucial measures
60 to reduce soil salinity and increase crop yield (Lima *et al.*, 2020). Studies have shown that film
61 mulched trickle irrigation can effectively prevent rapid water evaporation, reduce the aggregation
62 of salt ions in the root zone, and alleviate plant salt stress (Lima *et al.*, 2020). Pakchoi, belonging
63 to the leafy vegetable category, is a nitrogen-loving crop, and nitrogen fertilizer application plays
64 a decisive role in its yield (Xiong *et al.*, 2018). Controlled-release nitrogen fertilizer is
65 particularly beneficial for crops as it releases nutrients slowly, reducing soil salt accumulation. It
66 also facilitates nitrogen absorption by crops, contributing to proper physiological metabolic
67 functions in Pakchoi (Zhang *et al.*, 2016). Selective ion uptake through the plant root system,
68 such as K⁺ and Ca²⁺, helps inhibit Na⁺ entry and promote Na⁺ excretion, thereby maintaining
69 higher K⁺/Na⁺ and Na⁺/Ca²⁺ ratios, reducing or avoiding the harmful effects of Na⁺ ions (Zhang
70 *et al.*, 2018).
71 Studies have demonstrated that adopting appropriate water and fertilizer management strategies
72 in saline-alkali soils can effectively control salinity and enhance crop yield (Lima *et al.*, 2019).
73 However, current research on Pakchoi cultivation in coastal saline areas has primarily focused on
74 the selection and breeding of salt-tolerant varieties, with limited attention paid to corresponding
75 water and nitrogen management practices. Therefore, the main objective of this study is to
76 investigate and evaluate the effects of different fertilization regimes (e.g., conventional and
77 controlled-release fertilizers) and irrigation methods (e.g., surface irrigation, drip irrigation, and
78 plastic-film mulched drip irrigation) under salt stress conditions (0.15% NaCl). The evaluation

79 encompasses changes in soil electrical conductivity (EC), Na^+ , K^+ , and Ca^{2+} concentrations and
80 their ratios in Pakchoi, plant nitrogen and phosphorus contents, leaf water potential, organic
81 osmolyte contents, reactive oxygen species (ROS) and malondialdehyde (MDA) levels,
82 electrolyte leakage rate, antioxidant enzyme activities, chlorophyll content, photosynthetic
83 parameters, as well as plant height and yield. This study aims to explore how different water and
84 fertilizer management models alleviate Na^+ toxicity under salinity stress and enhance the growth
85 of Pakchoi, ultimately providing scientific support for the optimized management of water and
86 fertilizer in coastal saline-alkali land to achieve high-efficiency production.

87

88 MATERIALS AND METHODS

89 Experimental Materials

90 Test Soil: Soil samples were obtained from the cultivation layer (0-20cm) of Guangdong Ocean
91 University's breeding base ($N21^{\circ}8'31''$, $E110^{\circ}18'23''$). The soil characteristics were as follows:
92 pH 6.45, EC 670 $\mu\text{S}/\text{cm}$, salinity 0.01%, bulk density 1.20 g/cm^3 , organic matter content 14.25
93 g/kg , available nitrogen 65.57 mg/kg , available phosphorus 10.81 mg/kg , available potassium
94 58.37 mg/kg , water-soluble calcium 3.43 mg/kg , and water-soluble magnesium 2.28 mg/kg .
95 After air-drying, the soil samples were crushed and sieved through a 2.00 mm mesh, and 5g of
96 NaCl was added and mixed uniformly. The soil was then placed in pots (inner diameter 21 cm,
97 height 20 cm, bottom without holes), with each pot containing 3.8 kg of soil. After adjustment,
98 the measured soil salinity was 0.15%.

99 Test Crop: Improved Pakchoi (*Brassica rapa* L. ssp. *chinensis*) seeds of the “Jinpin 28” variety
100 were purchased from Fujian Jinpin Agricultural Science and Technology Co., Ltd. This variety is
101 known to thrive in soils with a total salt content of up to 0.3%. Its root system primarily extends
102 within the top 10cm of the soil. The growth stages include seedling stage (20 days), rosette stage
103 (20 days), flowering stage (15 days), and fruiting stage (15 days). Due to its classification as a
104 leafy vegetable, it is typically harvested during the later stages of the rosette period. The seeds
105 were germinated in a cultivation box until they had two leaves and one heart. Uniformly growing
106 seedlings were selected and transplanted into experimental pots.

107 Test Fertilizers: Fertilizers were provided by Environmental Friendly Fertilizer Engineering
108 Technology Research Center in Guangdong. The fertilizers included compound controlled-
109 release fertilizer ($\text{N:P}_2\text{O}_5:\text{K}_2\text{O} = 14:14:14$, effective for 1-2 months), conventional urea ($\text{N} \geq$
110 46.0%), monoammonium phosphate ($\text{N:P}_2\text{O}_5:\text{K}_2\text{O} = 12:61:0$), and potassium chloride ($\text{K}_2\text{O} \geq$
111 60%).

112

113 Experimental Design

114 The experiment was conducted in a glass greenhouse at the Guangdong Ocean University
115 Agricultural Biotechnology Research Institute from October 23, 2021, to December 29, 2021. A
116 two-factor split-plot design was employed. The main factor consisted of different irrigation
117 methods: conventional irrigation (I), trickle irrigation (T), and film mulched trickle irrigation (P).
118 The sub-factor involved the application of different fertilizers: conventional fertilizer (F),
119 controlled-release fertilizer (C), and mixed fertilizer (M) with F and C. Additionally, a control

120 treatment (CK) was established, which did not include NaCl and utilized conventional fertilizer
121 and irrigation. In total, there were ten treatments (as shown in Table 1), each with five replicate
122 pots, and each pot contained three Pakchoi plants.

123

124 **Experimental methods**

125 Fertilization Method: Nitrogen, phosphorus, and potassium fertilizers were uniformly mixed with
126 the soil as base fertilizer, with each treatment receiving 0.2g N/pot, 0.2g P₂O₅/pot, and 0.2g
127 K₂O/pot. In the mixed fertilizer (M) treatment, it was a blend of 50% of the total NPK nutrients
128 from the conventional fertilizer (F) and 50% from the controlled-release fertilizer (C).

129 Irrigation Method: In the irrigation treatment, a graduated cylinder was used to uniformly and
130 quantitatively water the surface of the potted plants. For the trickle irrigation treatment, water
131 was measured using a graduated cylinder and added to the drip emitter, with a constant dripping
132 rate of 30 ml/h for targeted irrigation. In the film mulched trickle irrigation treatment, black
133 plastic film was used to cover the soil surface in the pots, and holes were made in the plastic film
134 corresponding to the drip emitter outlets for localized drip irrigation. Prior to the experiment, the
135 field capacity of the base soil was determined (26%), and each pot was supplied with an equal
136 amount of water equivalent to 80% of the field capacity (790 ml). Subsequently, water was
137 added daily between 6:00 PM and 7:00 PM to maintain the soil moisture content at 80% of field
138 capacity.

139 Collection of Soil and Plant Samples: The experiment involved transplanting Pakchoi seedlings
140 on October 23, 2021. Soil samples were collected for the first time on November 13, 2021,
141 during the seedling stage. Soil samples were obtained from the middle of each pot, collecting soil
142 from both the upper layer (0-10 cm, root zone) and the lower layer (10-20 cm). One soil core was
143 collected from each pot, and this process was repeated five times for each treatment (5 pots per
144 treatment). The samples were sieved through a 2 mm mesh to remove stones and plant roots and
145 were air-dried for subsequent analysis. The same procedure was repeated on December 4, 2021,
146 during the later stage of the rosette stage of Pakchoi. Plant samples were harvested, and plants
147 were washed with deionized water, blotted dry with absorbent paper to determine fresh weight.
148 A small amount of fresh leaves was taken for physiological index measurement. The remaining
149 plant samples were then oven-dried at 75°C to a constant weight, followed by grinding for
150 further analysis.

151

152 **Soil and Plant Sample Measurements**

153 Soil electrical conductivity (EC) was determined using a soil salinity meter (Germany, STEP
154 PNT300 model) with a 1:1 soil-to-water ratio. Plant height was measured using a ruler from the
155 ground to the tip of the uppermost leaf along the main stem axis on days 7 (early seedling stage),
156 17 (late seedling stage), 27 (early rosette stage), and 37 (late rosette stage) after transplanting.
157 On the harvest day, functional leaves were sampled for physicochemical analysis. Leaf water
158 potential was measured using the pressure chamber method with a PMS Model 1000 instrument
159 (USA), with fresh samples collected and measured in the early morning (Turner, 1988).

160 Chlorophyll a, chlorophyll b, and total chlorophyll contents were extracted with 80% acetone
161 and calculated based on absorbance values measured at 663 nm and 645 nm using a
162 spectrophotometer (Lichtenthaler and Wellburn, 1983). On clear, windless days between 9:00
163 and 11:00 a.m., fully expanded functional leaves from the middle part of pakchoi plants were
164 selected for measurement. A portable photosynthesis system (LI-6400XT, LI-COR Inc., USA)
165 was used to determine key photosynthetic parameters. The chamber light intensity was set at
166 1200 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, with an ambient CO_2 concentration of approximately 400 $\mu\text{mol}\cdot\text{mol}^{-1}$, and
167 relative humidity maintained between 50% and 60%. The following photosynthetic parameters
168 were recorded: Net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs),
169 intercellular CO_2 concentration (C_i).

170 The measured values were computed and interpreted based on the following definitions and
171 equations:

172 **Net Photosynthetic Rate** (Pn , $\mu\text{mol CO}_2\cdot\text{m}^{-2}\cdot\text{s}^{-1}$), represents the net assimilation of CO_2 by the
173 leaf per unit area per unit time.

$$174 Pn = A = (C_a - C_i) \times g_c$$

175 Where:

176 C_a = Ambient CO_2 concentration in the leaf chamber ($\mu\text{mol}\cdot\text{mol}^{-1}$)

177 C_i = Intercellular CO_2 concentration ($\mu\text{mol}\cdot\text{mol}^{-1}$)

178 g_c = CO_2 conductance ($\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$)

179 (Note: In practice, the instrument typically calculates A (i.e., Pn) directly based on the difference
180 in CO_2 concentration and the airflow rate.)

181 **Transpiration Rate** (Tr , $\text{mmol H}_2\text{O}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$), reflects the amount of water vapor lost through
182 stomata per unit area per unit time.

$$183 Tr = g_w \times (W_i - W_a)$$

184 Where:

185 g_w = Water vapor conductance ($\text{mol H}_2\text{O}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$)

186 W_i = Water vapor concentration inside the leaf chamber ($\text{mmol}\cdot\text{mol}^{-1}$)

187 W_a = Ambient water vapor concentration ($\text{mmol}\cdot\text{mol}^{-1}$)

188 **Stomatal Conductance** (Gs , $\text{mol H}_2\text{O}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$), indicates the permeability of stomata to water
189 vapor diffusion per unit area per unit time.

$$190 Gs = \frac{Tr}{VPD}$$

191 Where:

192 Tr = Transpiration rate ($\text{mmol H}_2\text{O}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$)

193 VPD = Vapor Pressure Deficit between the leaf and chamber air (kPa)

194 **Intercellular CO_2 Concentration** (C_i , $\mu\text{mol}\cdot\text{mol}^{-1}$), reflects the concentration of CO_2 in the
195 intercellular spaces of the mesophyll, indicating the CO_2 assimilation capacity.

$$196 C_i = C_a \times \left(\frac{Pn}{g_s/1.6} \right)$$

197 Where:

198 C_a = Ambient CO₂ concentration (μmol·mol⁻¹)
199 Pn = Net photosynthetic rate (μmol CO₂·m⁻²·s⁻¹)
200 g_s = Stomatal conductance (mol H₂O·m⁻²·s⁻¹)
201 (Note: Division by 1.6 accounts for the fact that stomatal conductance to water vapor is
202 approximately 1.6 times that to CO₂.)
203 Contents of sodium (Na⁺), potassium (K⁺), and calcium (Ca²⁺) in plant tissues were determined
204 after dry ashing and dissolution in 1% HCl using a Shimadzu AA-7000 atomic absorption
205 spectrophotometer (Japan) (Isaac and Johnson, 1985). Total nitrogen (N) was determined using
206 the Kjeldahl digestion method, and total phosphorus (P) was determined using the molybdenum
207 blue colorimetric method with absorbance measured at 880 nm (Bremner, 1965).
208 Proline content was measured via the acid ninhydrin colorimetric method, with absorbance
209 recorded at 520 nm (Bates *et al.*, 1973). Soluble sugars, glucose, fructose, and sucrose were
210 quantified using the anthrone method: soluble sugars and fructose were measured at 620 nm,
211 glucose was quantified using a glucose oxidase enzymatic reaction, and sucrose was hydrolyzed
212 into monosaccharides before colorimetric measurement (Yemm and Willis, 1954). Soluble
213 protein was measured using the Coomassie Brilliant Blue G-250 binding assay at 595 nm
214 (Bradford, 1976).
215 For reactive oxygen species (ROS)-related indicators, superoxide anion (O₂⁻) was measured
216 using the nitro blue tetrazolium (NBT) reduction method, while hydrogen peroxide (H₂O₂) was
217 quantified using an iodometric assay with absorbance at 390 nm. Electrolyte leakage was
218 calculated from the electrical conductivity before and after leaf tissue incubation using a
219 conductivity meter. Malondialdehyde (MDA) content was determined via the thiobarbituric acid
220 (TBA) method, and absorbance was read at 532 nm and 600 nm to calculate the differential
221 values (Heath and Packer, 1968).
222 Antioxidant enzyme activities were measured as follows: superoxide dismutase (SOD) activity
223 based on the inhibition of NBT photoreduction; peroxidase (POD) activity using the guaiacol-
224 H₂O₂ reaction; catalase (CAT) activity via the decomposition rate of H₂O₂ measured as the
225 decline in absorbance; and ascorbate peroxidase (APX) activity based on the oxidation of
226 ascorbic acid, with continuous measurement at 290 nm to track the decline in absorbance over
227 time (Aebi, 1984).
228

229 **Data Processing**

230 Data analysis was conducted using SPSS 22.0 software.

231

232 **RESULTS AND ANALYSIS**

233 **Effect of Water and Fertilizer Management on Soil Electrical Conductivity**

234 As shown in Table 2, different irrigation methods (I, T, P) had a significant impact on both upper
235 and lower layer soil electrical conductivity (EC), while fertilization methods (F, M, C) had no
236 significant effect. During the Pakchoi seedling and rosette stages, the upper layer soil EC of the
237 T (FT, MT, CT) and P (FP, MP, CP) treatments was significantly lower than that of the I (FI, MI,

238 CI) treatment, whereas the lower layer soil EC of the T and P treatments was higher than that of
239 the I treatment. The upper and lower layer soil EC of CK control treatment was significantly
240 lower than the other treatments. The upper layer soil EC showed a decreasing trend with the
241 extension of the Pakchoi growth period, while there was no clear trend observed in the lower
242 layer soil EC.

243

244 **Effects of Water and Fertilizer Management on Leaf Water Potential in Pakchoi**

245 As shown in Figure 1, the CK treatment exhibited the highest leaf water potential (-0.40 MPa),
246 which was significantly greater than that observed in all other treatments (significance level: a).
247 This indicates that, in the absence of salt stress, bok choy maintained optimal water status, with
248 no signs of water potential decline or associated physiological stress. In contrast, the FI treatment
249 demonstrated the lowest leaf water potential (-1.53 MPa), revealing that traditional irrigation
250 combined with conventional fertilizer was ineffective in sustaining plant water status under
251 saline conditions, leading to severe water stress in the plants.

252 Overall, the sequence of leaf water potential values across treatments followed the order: **FI < CI**
253 **< MI < FT < CT < MT < FP < CP < MP < CK**. This gradient distribution underscores the
254 substantial influence of water and fertilizer management strategies on the regulation of leaf water
255 potential in Pakchoi. Notably, treatments MP (-0.60 MPa) and CP (-0.73 MPa) maintained
256 relatively high water potential values, indicating that plastic mulching drip irrigation combined
257 with mixed or controlled-release fertilizers can effectively preserve plant water status and
258 alleviate salt-induced water deficits. In contrast, the lower water potentials recorded in CI (-1.35
259 MPa), MI (-1.22 MPa), and FT (-1.08 MPa) suggest that under traditional irrigation or with the
260 use of single fertilizer types, bok choy plants struggle to maintain adequate hydration levels.

261 It is particularly noteworthy that although controlled-release fertilizers (CI, CT, CP) are designed
262 to release nutrients gradually and stabilize plant water status, their effectiveness under saline
263 conditions varied considerably depending on the irrigation method. For instance, the CI
264 treatment exhibited a relatively low water potential (-1.35 MPa), whereas the CP treatment
265 achieved a significantly higher value (-0.73 MPa), indicating that the regulatory efficacy of
266 controlled-release fertilizers is contingent upon a compatible and efficient water delivery system.

267

268 **Effects of Water and Fertilizer Management on the Contents and Ratios of Na^+ , K^+ , 269 and Ca^{2+} in Pakchoi**

270 This experiment investigated the effects of different water and fertilizer management strategies
271 on the K^+ , Na^+ , and Ca^{2+} contents in Pakchoi, as well as the ratios of K^+/Na^+ and $\text{Na}^+/\text{Ca}^{2+}$. As
272 shown in Table 3, significant differences were observed in these indicators among the treatments,
273 highlighting the significant impact of water and fertilizer management on ion absorption and ion
274 balance in Pakchoi.

275 Firstly, there were significant differences in K^+ content among the treatments. The K^+ content in
276 CK (3.89%), MP (3.28%), MT (4.06%), and CP (3.73%) treatments was higher compared to
277 other treatments. These treatments accumulated significantly more K^+ than FI (1.32%) and FT
278 (2.36%), suggesting that optimized water and fertilizer management can effectively promote K^+

279 absorption and accumulation, enhancing the plant's water-salt balance ability. The FI treatment
280 had the lowest K⁺ content, reflecting the inhibitory effect of traditional water and fertilizer
281 management on K⁺ absorption.

282 Similarly, the trend for Na⁺ content followed that of K⁺. The Na⁺ content in MP (3.5%) and CP
283 (6.39%) was significantly lower than that in the FI treatment (9.22%). This indicates that
284 optimized water and fertilizer management strategies can effectively mitigate salt stress, reduce
285 Na⁺ accumulation, and improve the ion balance in Pakchoi. In contrast, the higher Na⁺ content in
286 the FI treatment suggests excessive Na⁺ accumulation, which likely leads to increased salt stress
287 on the plant.

288 In terms of Ca²⁺ content, CK treatment had the highest Ca²⁺ content (0.98%), significantly higher
289 than the other treatments. MP and CP treatments also had relatively high Ca²⁺ content (0.91%
290 and 0.83%, respectively), indicating that these optimized water and fertilizer management
291 practices can effectively promote Ca²⁺ absorption and accumulation, which is crucial for
292 enhancing plant cell wall stability and stress resistance. On the other hand, FI and MI treatments
293 had lower Ca²⁺ content, suggesting that these management strategies may lead to insufficient
294 calcium absorption.

295 Regarding ion ratios, the K⁺/Na⁺ ratio was highest in the MP treatment (0.94), while it was
296 lowest in the FI treatment (0.14). Treatments like MP and CP effectively increased the utilization
297 of K⁺ and reduced Na⁺ accumulation, thereby enhancing the plant's resistance to salt stress. The
298 low K⁺/Na⁺ ratio in the FI treatment indicates a stronger salt stress response in Pakchoi and
299 poorer ion balance under traditional irrigation and fertilization methods.

300 The Na⁺/Ca²⁺ ratio also showed significant differences. The Na⁺/Ca²⁺ ratio was highest in the FI
301 treatment (22.55), indicating that under salt stress, traditional water and fertilizer management
302 leads to excessive Na⁺ accumulation, disrupting the balance of calcium. The Na⁺/Ca²⁺ ratio was
303 significantly lower in the MP and CP treatments, suggesting that these treatments effectively
304 improve the negative impact of salt stress on the plant's ion balance.

305 In conclusion, optimized water and fertilizer management strategies, such as the MP and CP
306 treatments, can significantly increase K⁺ accumulation, reduce Na⁺ accumulation, and improve
307 Ca²⁺ absorption, maintaining ion balance in the plant and effectively alleviating salt stress, thus
308 improving Pakchoi's salt tolerance. In contrast, traditional water and fertilizer management
309 strategies, such as the FI treatment, lead to higher Na⁺ accumulation and lower K⁺ content,
310 increasing the risk of salt stress.

311

312 **Effects of Water and Fertilizer Management on Nitrogen and Phosphorus Content 313 in Pakchoi Plants**

314 As shown in Figure 2, the nitrogen (N) content in the CK treatment was significantly higher than
315 in all other treatments (2.84%), indicating that salt stress substantially inhibited nitrogen uptake
316 in bok choy. The N content was generally low under salt stress conditions, particularly in the FI
317 (0.762%), FT (0.723%), and CI (0.690%) treatments, reflecting severe suppression of nitrogen
318 accumulation in these groups. In contrast, treatments such as MP (1.29%), MT (1.19%), and MI
319 (0.89%) exhibited relatively higher N levels, suggesting that the combination of plastic mulching

320 drip irrigation and mixed fertilizer effectively mitigated salt damage and enhanced nitrogen
321 uptake.

322 A similar trend was observed for phosphorus (P) content. The CK group exhibited a markedly
323 higher P content (0.268%) compared to all other treatments. The lowest P level was recorded in
324 the FI treatment (0.0567%), and generally low P levels were also observed in traditional
325 irrigation (FI) and controlled-release fertilizer (CI) treatments, with values of 0.0567% and
326 0.0866%, respectively. Conversely, relatively higher P contents were found in the MP (0.111%),
327 CP (0.109%), and MI (0.109%) treatments, indicating that the combination of plastic mulching
328 drip irrigation with mixed or controlled-release fertilizers can significantly improve phosphorus
329 uptake.

330 Overall, the data demonstrate that salt stress significantly suppresses nitrogen and phosphorus
331 absorption in bok choy, especially under traditional irrigation and the use of single fertilizer
332 types. Among all the treatments, the combination of plastic mulching drip irrigation and mixed
333 fertilizer (MP) showed the most pronounced effect in alleviating salt stress and enhancing
334 nutrient accumulation.

335

336 **Effects of Water and Fertilizer Management on Organic Solute Accumulation in** 337 **Pakchoi Plants**

338 This study further evaluated the accumulation of various organic solutes in Pakchoi under
339 different water and fertilizer management regimes, focusing on six physiological indicators:
340 proline, soluble protein, soluble sugar, glucose, fructose, and sucrose (Figure 3). These solutes
341 are critical for osmoregulation and stress adaptation under saline conditions. The significant
342 differences among treatments and the distribution of values across groups highlight the
343 substantial impact of water-fertilizer strategies on the osmotic adjustment capacity and metabolic
344 activity of Pakchoi.

345 Proline content (Figure 3a) was highest in the FI treatment (333.68 µg/g FW), significantly
346 exceeding all other treatments, while the CK group exhibited the lowest concentration (76.43
347 µg/g FW). This finding indicates that salt stress strongly induces proline biosynthesis in Pakchoi,
348 facilitating osmotic regulation and protecting cells from dehydration. Notably, treatments such as
349 MP and CP displayed markedly lower proline levels compared to FI, FT, and CI, suggesting that
350 plastic mulching drip irrigation combined with optimized fertilization alleviated stress intensity
351 and reduced the need for excessive accumulation of protective solutes.

352 In terms of soluble protein content (Figure 3b), the FI and CI treatments showed the highest
353 levels (28.78 and 28.91 mg/g FW, respectively), with values significantly greater than those
354 recorded under MP, FP, CP, and CK treatments. As soluble proteins contribute to osmotic
355 balance and stress response, their elevated levels in high-salinity treatments reflect the intensity
356 of cellular metabolic response under salt stress. Conversely, the CK group had the lowest protein
357 content (9.59 mg/g FW), consistent with its unstressed condition and lack of induced protein
358 expression. MP treatment also exhibited relatively low protein accumulation (13.53 mg/g FW),
359 further confirming its efficacy in mitigating environmental stress.

360 Soluble sugars (Figure 3c), another key class of osmotic regulators, also played an essential role
361 in stress response. The FI and CI treatments had soluble sugar concentrations exceeding 48 mg/g
362 FW, significantly higher than that of the CK group (23.91 mg/g FW). This suggests that under
363 severe salt stress, Pakchoi accumulates sugars to maintain cellular osmotic potential. Meanwhile,
364 MP and CP treatments showed reduced sugar content (25.26 and 26.04 mg/g FW, respectively),
365 indicating that these practices contributed to alleviating salt-induced osmotic stress.

366 Glucose (Figure 3d) and fructose (Figure 3e) levels followed a similar trend. The highest glucose
367 content was observed in the FT treatment (25.82 μ mol/g FW), while MP and CK exhibited the
368 lowest levels (13.54 and 10.22 μ mol/g FW, respectively). Elevated glucose levels in FI, CI, and
369 MI suggest that salt stress activates carbohydrate metabolism pathways, leading to enhanced
370 glucose synthesis. Similarly, fructose concentrations were significantly higher in FI and CI
371 (14.15 and 11.51 mg/g FW, respectively), with CK once again showing the lowest accumulation
372 (4.76 mg/g FW). These results mirror the proline pattern, highlighting the role of sugar
373 metabolism in maintaining cellular water balance under saline conditions.

374 Sucrose content (Figure 3f) further substantiated the above findings. Treatments FI, CI, FT, MI,
375 and CT recorded significantly higher levels (16–17.5 mg/g FW), whereas MP and CK presented
376 the lowest values (8.15 and 5.08 mg/g FW, respectively). These differences indicate that plants
377 under lower or no stress conditions exhibit less demand for sucrose-mediated osmotic adjustment.
378 Overall, the FI and CI treatments consistently exhibited the highest concentrations of osmotic
379 regulators, implying that traditional irrigation combined with conventional or controlled-release
380 fertilizers resulted in severe salt stress in Pakchoi. In contrast, MP and CP treatments showed
381 lower accumulation across multiple parameters, demonstrating that plastic mulching drip
382 irrigation in conjunction with optimized fertilization effectively reduced stress intensity and
383 minimized the plant's reliance on osmoregulatory solutes. The CK group, with the lowest values
384 across all indicators, further validated that salt stress is the primary driver of organic solute
385 accumulation in Pakchoi.

386

387 **Effects of Water and Fertilizer Management on ROS, MDA Content, and Electrolyte 388 Leakage in Pakchoi Plants**

389 This experiment further analyzed the degree of oxidative damage and membrane stability in
390 Pakchoi under salt stress, by measuring four key physiological indicators: superoxide anion
391 (O_2^-), hydrogen peroxide (H_2O_2) content, electrolyte leakage, and malondialdehyde (MDA)
392 content (Figure 4). These indicators comprehensively reflect the accumulation of reactive oxygen
393 species (ROS) and lipid peroxidation of membranes under stress. The results reveal significant
394 differences across treatments, highlighting the substantial impact of water and fertilizer
395 management strategies on alleviating salt stress and enhancing cellular protection mechanisms.

396 Firstly, the O_2^- content was highest in the FI treatment (1.97 μ mol/g FW), significantly higher
397 than in the FP, MP, CP, and CK treatments, with the CK group showing the lowest value (0.45
398 μ mol/g FW). This indicates a gradient shift from high salt stress to no stress, as shown in Figure
399 4a. Similarly, the O_2^- content in CI, MI, and FT treatments was relatively high, suggesting a
400 pronounced accumulation of ROS under traditional irrigation or single fertilizer regimes. In

401 contrast, the MP and CP treatments exhibited a notable decrease in O_2^- content, indicating that
402 plastic mulching drip irrigation combined with optimized fertilization can effectively suppress
403 ROS generation and reduce oxidative damage.

404 The trend in H_2O_2 content further supports these findings (Figure 4b). FI treatment exhibited the
405 highest H_2O_2 level (3.31 $\mu\text{mol/g FW}$), followed by CI (2.70 $\mu\text{mol/g FW}$) and MI (2.58 $\mu\text{mol/g FW}$),
406 with MP (1.22 $\mu\text{mol/g FW}$) and CK (0.85 $\mu\text{mol/g FW}$) showing the lowest levels, with
407 significant differences. The clear suppression of H_2O_2 accumulation in the MP and CP
408 treatments highlights their important role in mitigating salt-induced ROS accumulation.

409 Electrolyte leakage, which serves as an important indicator of cell membrane integrity, also
410 followed the same trend as the oxidative stress markers (Figure 4c). The electrolyte leakage rate
411 in the FI treatment was significantly highest (31.77%), while the CK group exhibited the lowest
412 rate (10.88%), indicating enhanced membrane damage and leakage under salt stress. The MP
413 treatment had a leakage rate of 13.28%, slightly higher than CK but significantly lower than in
414 the high-stress treatments (FI, CI, FT), demonstrating the protective effect of this treatment on
415 the cell membrane. The CP treatment also exhibited a relatively low leakage rate (14.05%),
416 further suggesting that optimized water and fertilizer management can significantly reduce
417 membrane damage under salt stress.

418 MDA content, a key indicator of lipid peroxidation, showed similar trends (Figure 4d). The
419 MDA content was highest in the FI treatment (3.61 nmol/g FW), and lowest in the CK treatment
420 (0.82 nmol/g FW). The CI treatment also exhibited high levels of MDA (3.36 nmol/g FW),
421 indicating severe membrane lipid peroxidation under these conditions. In contrast, the MDA
422 content in MP and CP treatments was significantly lower (1.13 and 1.44 nmol/g FW,
423 respectively), further confirming the effectiveness of optimized water and fertilizer management
424 strategies in reducing membrane oxidative damage and enhancing Pakchoi's stress tolerance.

425 In summary, FI and CI treatments exhibited significantly higher values across all oxidative
426 stress-related indicators, reflecting the inability of traditional irrigation combined with
427 conventional or controlled-release fertilizers to effectively protect cells under salt stress, leading
428 to increased oxidative damage. In contrast, the MP and CP treatments demonstrated significantly
429 lower values in all indicators, indicating their superior ability to reduce ROS accumulation and
430 mitigate membrane system damage, making them the most effective management strategies for
431 alleviating salt stress. The CK group consistently exhibited the lowest values in all indicators,
432 reinforcing the notion that salt stress is the primary driver of oxidative damage and cell
433 membrane injury.

434

435 **Effects of Water and Fertilizer Management on Antioxidant Enzyme Activities in** 436 **Pakchoi**

437 This experiment also evaluated the effects of different water and fertilizer management strategies
438 on the antioxidant enzyme activities in Pakchoi, specifically analyzing the activities of
439 superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase
440 (APX) (Figure 5). The results revealed significant differences in enzyme activities across

441 treatments, highlighting the impact of water and fertilizer management on Pakchoi's response to
442 oxidative stress.

443 SOD activity, a key enzyme in the elimination of superoxide anion radicals, was highest in the
444 MP treatment (158.19 U/g FW), followed by CP (150.85 U/g FW), both significantly higher than
445 the other treatments. The lowest SOD activity was observed in the FI treatment (54.66 U/g FW),
446 significantly lower than the MP and CP treatments. This trend suggests that under optimized
447 water and fertilizer management conditions (MP and CP treatments), Pakchoi's oxidative stress
448 response is significantly enhanced, while the response under traditional management practices
449 (FI treatment) is weaker (Figure 5a).

450 Similarly, POD activity was highest in the MP treatment (113.91 U/g FW), followed by CP
451 (111.46 U/g FW), both significantly higher than the other treatments. The lowest POD activity
452 was observed in the FI treatment (36.28 U/g FW), which aligns with its lower oxidative stress
453 response (Figure 5b).

454 CAT activity was highest in the MP treatment (20.33 U/g FW), with the CP treatment showing
455 the second-highest level (19.50 U/g FW). The lowest CAT activity was found in the FI treatment
456 (6.51 U/g FW). This indicates that optimized water and fertilizer management (such as MP and
457 CP treatments) significantly enhances Pakchoi's ability to detoxify hydrogen peroxide (H₂O₂),
458 thus providing better protection against oxidative damage (Figure 5c).

459 APX activity, an enzyme responsible for reducing H₂O₂ to water, was highest in the MP
460 treatment (6.01 U/g FW), followed by CP (5.68 U/g FW). The FI treatment exhibited the lowest
461 APX activity (1.31 U/g FW), suggesting that under traditional management practices, the activity
462 of ascorbate peroxidase is low, leading to weaker H₂O₂ detoxification capacity (Figure 5d).

463 In summary, these results conclude that water and fertilizer management strategies, particularly
464 MP and CP treatments, significantly enhance Pakchoi's antioxidant defense system, improving
465 its resistance to oxidative damage induced by salt stress. Traditional treatments (FI and CI)
466 consistently showed lower enzyme activities, indicating a weaker response to oxidative stress.
467

468 **Effects of Water and Fertilizer Management on Chlorophyll Content in Pakchoi**

469 This study further analyzed the effects of different water and fertilizer management practices on
470 the chlorophyll a (Chl-a), chlorophyll b (Chl-b), and total chlorophyll (Chl-a + Chl-b) contents in
471 Pakchoi leaves. The results revealed significant differences among treatments across all three
472 indicators, indicating that water and fertilizer management plays a critical role in regulating the
473 photosynthetic potential and physiological activity of Pakchoi (Figure 6).

474 In terms of Chl-a content, the CK treatment exhibited the highest value (1.612), significantly
475 exceeding all other treatments. This was followed by MP (1.512) and FP (1.44), suggesting that
476 both the absence of salt stress and optimized water and fertilizer management (as in MP
477 treatment) promote the synthesis of photosynthetic pigments. In contrast, CI (1.11) and FI (1.228)
478 treatments showed the lowest Chl-a contents, indicating that traditional irrigation combined with
479 conventional fertilizers may suppress chlorophyll synthesis, likely due to salt stress and
480 suboptimal nutrient availability.

481 The trend in Chl-b content mirrored that of Chl-a. The CK group again had the highest value
482 (0.552), with MP (0.522) and FP (0.508) following closely behind, all significantly higher than
483 FI (0.414) and CI (0.368). This further confirms that optimized water and fertilizer management
484 effectively enhances chlorophyll accumulation. Intermediate Chl-b values in CT and MI
485 treatments suggest that partially improved management measures (e.g., controlled-release
486 fertilizers) offer moderate stress alleviation benefits.

487 For total chlorophyll content (Chl-a + Chl-b), CK treatment recorded the highest level (2.16),
488 followed by MP (2.03), both significantly greater than all other treatments. This indicates that
489 optimized water and fertilizer strategies or non-saline environments significantly boost
490 photosynthetic capacity in Pakchoi. In contrast, CI had the lowest total chlorophyll content (1.48),
491 followed by FI (1.64) and CT (1.63), suggesting that traditional management approaches impair
492 chlorophyll biosynthesis, which could potentially hinder plant growth and yield formation.

493 The overall trends highlight the effectiveness of optimized water and fertilizer regimes—
494 especially the MP treatment (plastic mulching drip irrigation combined with mixed fertilizers)—
495 in significantly increasing chlorophyll content in Pakchoi. Its chlorophyll levels were second
496 only to the non-saline CK treatment and markedly superior to those under traditional irrigation
497 (FI) and single-fertilizer treatments (CI). These findings are consistent with earlier results
498 showing the MP treatment's capacity to alleviate salt stress and enhance stress resilience, further
499 confirming the central role of water and fertilizer management in modulating the physiological
500 metabolism of Pakchoi.

501

502 **Effects of Water and Fertilizer Management on Photosynthetic Parameters of 503 Pakchoi**

504 This study systematically evaluated the regulatory effects of different water and fertilizer
505 management strategies on key photosynthetic parameters in Pakchoi, including net
506 photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular
507 CO_2 concentration (C_i). The experimental data revealed significant differences across all four
508 parameters among treatments, indicating that water and fertilizer management significantly
509 affects the gas exchange capacity and photosynthetic efficiency of Pakchoi (Figure 7).

510 Firstly, regarding Pn (Figure 7a), the CK treatment recorded the highest value (15.2 μmol
511 $\text{CO}_2 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$), significantly surpassing all other treatments, followed by MP (14.8) and FP (14.4).
512 The CI treatment exhibited the lowest value (11.6), suggesting that under non-saline conditions
513 (CK) and optimized water-fertilizer strategies (e.g., MP and FP), photosynthetic efficiency in
514 Pakchoi is markedly enhanced. Conversely, the low photosynthetic rates observed in CI and FI
515 treatments indicate that traditional irrigation combined with conventional fertilizers under high
516 salinity conditions significantly suppresses photosynthesis.

517 Tr showed a similar trend to that of Pn (Figure 7b). The MP treatment exhibited the highest
518 transpiration rate (5.28 $\text{mmol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$), which was not significantly different from CK (5.2)
519 but was significantly higher than CI (3.68) and FI (4.14). This suggests that optimized water and
520 fertilizer management enhances water uptake and transpiration, which helps regulate leaf
521 temperature and maintain photosynthetic balance. Lower Tr values may reflect stomatal closure
522 under salt stress, limiting CO_2 intake and thereby inhibiting photosynthesis.

523 For Gs (Figure 7c), the CK treatment again showed the highest value (0.68 $\text{mol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$),
524 followed by MP (0.622), while CI had the lowest (0.458). This pattern is highly consistent with

525 the trends observed in Pn and Tr . MP and FP treatments also demonstrated notable increases in
526 Gs , supporting their role in promoting stomatal opening and enhancing photosynthetic capacity.
527 In contrast, treatments such as CI and CT exhibited lower Gs , which limited CO_2 exchange
528 efficiency, indicating restricted photosynthetic support.

529 C_i was highest in the CI treatment ($306 \mu\text{mol}\cdot\text{mol}^{-1}$), significantly greater than in other
530 treatments, while CK had the lowest C_i (245) (Figure 7d). This parameter reflects the balance
531 between stomatal aperture and CO_2 assimilation efficiency. The high C_i in CI, combined with its
532 low Pn and Gs , suggests that despite CO_2 accumulation, the carbon assimilation capacity is poor.
533 In contrast, CK and MP treatments had the lowest C_i but the highest Pn , indicating higher CO_2
534 utilization efficiency and stronger photosynthetic activity.

535 Overall, the MP treatment demonstrated the most favorable photosynthetic performance under
536 salt stress, characterized by high Pn , Tr , and Gs values and low C_i . This indicates superior gas
537 exchange capacity and CO_2 assimilation efficiency, making it an effective strategy for
538 optimizing photosynthetic function. Although CK performed best overall, it served as a non-
539 saline control, further validating the suppressive effects of salt stress on photosynthesis. The CI,
540 FI, and CT treatments consistently showed lower performance across all parameters, highlighting
541 the limitations of traditional water and fertilizer management in mitigating salt-induced
542 photosynthetic inhibition.

543

544 **Effects of Water and Fertilizer Management on Pakchoi Plant Height**

545 As shown in Figure 2, with the growth period of Pakchoi extending, the plant height of Pakchoi
546 in all treatments gradually increased. Significant differences in plant height among treatments
547 began to appear in the later stages of Pakchoi seedlings. The CK control treatment had
548 significantly taller Pakchoi plants compared to the salt-stressed treatments. The M treatment had
549 significantly taller Pakchoi plants compared to the C and F treatments. Among the salt-stressed
550 treatments, MP treatment had the tallest plants, significantly taller than the other treatments. MT
551 treatment was significantly taller than MI treatment, while MI was slightly taller than the C (CI,
552 CT, CP) and F (FI, FT, FP) treatments. There were no significant differences between the C and
553 F treatments.

554

555 **Effects of Water and Fertilizer Management on Pakchoi Biomass**

556 As shown in Table 4, the CK control treatment had the highest fresh and dry weights of Pakchoi,
557 significantly greater than the salt-stressed treatments. Among the salt-stressed treatments, the MP
558 treatment had the highest fresh weight, significantly greater than the other treatments, and its dry
559 weight was significantly greater than that of the F and C treatments. The fresh weight and dry
560 weight of the MP treatment were 15% and 3% higher than those of MT, 19% and 7% higher than
561 those of MI, 21% and 12% higher than those of CP, 23% and 9% higher than those of CT, 22%
562 and 20% higher than those of CI, 24% and 18% higher than those of FP, and 26% and 20%
563 higher than those of FT, and 39% and 42% higher than those of FI.

564

565 **DISCUSSION**

566 In this study, we systematically evaluated the effects of various water and fertilizer management
567 strategies on the growth, physiological, and biochemical responses of Pakchoi under salt stress.
568 The results revealed that optimized treatments—particularly MP (plastic film mulched drip
569 irrigation combined with mixed fertilizer)—significantly alleviated salt-induced damage,
570 enhanced photosynthetic capacity, maintained ionic balance, reduced oxidative injury, and

571 increased biomass yield. By integrating findings across 11 different physiological and
572 morphological dimensions (2.1–2.11), this study provides robust empirical support for crop salt
573 tolerance strategies.

574

575 **Phenotypic Performance: Significant Improvements in Growth, Biomass, and** 576 **Water Status**

577 Under salt stress, the MP treatment showed the most outstanding growth performance, with plant
578 height and both fresh and dry biomass significantly exceeding all other salt-treated groups and
579 even approaching levels observed in the non-saline control (CK) (Figure 8, Table 4). Similar
580 trends have been documented in other studies. For instance, Chen et al. (2016) demonstrated that
581 drip irrigation combined with slow-release fertilizers significantly improved the height and yield
582 of bell pepper under salinity stress (Chen et al., 2016). Notably, our study observed these
583 benefits even under moderate salinity levels (0.3% NaCl), suggesting stronger adaptation
584 capacity through MP application.

585 Leaf water potential data further indicated that MP treatment effectively mitigated salt-induced
586 dehydration stress (-0.60 MPa), second only to the CK group (-0.40 MPa), whereas the lowest
587 value occurred in the FI treatment (-1.53 MPa), suggesting poor water balance under
588 conventional irrigation (Figure 1). This aligns with findings by Zhang et al. (2020), who
589 emphasized that drip irrigation can improve rhizosphere soil moisture distribution and enhance
590 plant water status (Zhang et al., 2020).

591 Moreover, soil electrical conductivity (EC) results showed that MP effectively reduced EC
592 accumulation in the upper soil layer while promoting downward salt migration, thus easing
593 rhizosphere salt stress (Table 2). This corresponds with observations by Xie et al. (2021), who
594 reported that plastic film mulching with drip irrigation successfully prevented surface salt
595 accumulation in tomato cultivation (Xie et al., 2021).

596

597 **Physiological Mechanisms: Synergistic Enhancements in Ion Homeostasis,** 598 **Photosynthetic Performance, and ROS Defense**

599 This study clearly demonstrated that MP treatment facilitated preferential ion uptake.
600 Specifically, MP significantly increased the accumulation of K^+ and Ca^{2+} (3.28% and 0.91%,
601 respectively) while reducing Na^+ (3.5%), thereby elevating the K^+/Na^+ ratio to 0.94 and
602 decreasing the Na^+/Ca^{2+} ratio to 3.84 (Table 3). These values indicate improved membrane
603 selectivity and electrochemical balance under MP, contributing to better cellular stability during
604 salt stress. This supports the conclusions of Maathuis and Amtmann (1999), who highlighted the
605 crucial role of a high K^+/Na^+ ratio in conferring salt tolerance in plants (Maathuis and Amtmann,
606 1999).

607 In terms of photosynthetic capacity, MP achieved values close to CK for net photosynthetic rate
608 (Pn : $14.8 \mu\text{mol CO}_2 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$), stomatal conductance (Gs : $0.622 \text{ mol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$), and
609 transpiration rate (Tr : $5.28 \text{ mmol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$), reflecting efficient CO_2 assimilation and
610 stomatal regulation. Moreover, intercellular CO_2 concentration (C_i) was relatively low (251

611 $\mu\text{mol}\cdot\text{mol}^{-1}$), indicative of high carbon assimilation efficiency (Figure 7). These observations are
612 consistent with Chaves et al. (2009), who suggested that appropriate water and nutrient strategies
613 can alleviate stress-induced inhibition of the photosynthetic apparatus (Chaves et al., 2009).

614 Regarding antioxidant defenses, the MP treatment significantly enhanced the activities of four
615 key enzymes: SOD, POD, CAT, and APX. Notably, SOD and CAT activities reached 158.19 and
616 20.33 U/g FW, respectively—far exceeding those observed under FI (Figure 5). Simultaneously,
617 MP sharply reduced ROS levels (O_2^- and H_2O_2), electrolyte leakage, and MDA content (Figure
618 4). These trends suggest that MP not only limits ROS generation but also enhances the plant's
619 detoxification capacity, effectively mitigating lipid peroxidation.

620 These results align with the findings of Munns and Tester (2008), who emphasized that salt-
621 induced oxidative damage can be minimized via efficient nutrient and water delivery systems,
622 particularly under integrated water-fertilizer regimes (Munns and Tester, 2008).

623

624 **Innovation: Systemic Mechanistic Framework for Water-Fertilizer Coordinatio**

625 The major innovation of this study lies in its factorial design, combining irrigation modes (I, T, P)
626 and fertilizer types (F, M, C) into nine distinct treatments. This allowed comprehensive analysis
627 of phenotypic, physiological, metabolic, and photosynthetic traits in response to salt stress and
628 led to the construction of an integrated model describing water regulation–ion homeostasis–ROS
629 defense–photosynthetic optimization (Figure 9).

630 While most previous studies have focused on singular mechanisms such as irrigation or
631 fertilization alone, our approach provides a multi-level, systems-based framework for
632 understanding plant resilience under abiotic stress. As Zhu (2016) emphasized, salt tolerance
633 mechanisms should be explored across various physiological layers. Our sequential investigation
634 from water potential to ion transport, ROS detoxification, and biomass production embodies such
635 a model-based paradigm (Zhu, 2016).

636 Furthermore, osmoregulatory compounds such as proline, soluble sugars, and fructose were
637 significantly reduced under MP and CP treatments (Figure 3), suggesting that under reduced
638 stress conditions, plants no longer require excessive energy expenditure for osmoprotection. This
639 reflects higher energy-use efficiency and physiological stability and aligns with the “low-cost
640 stress tolerance” model proposed by Ashraf and Foolad (2007).

641

642 **Prospects**

643 This study demonstrates that coordinated management of irrigation and fertilization under saline
644 conditions can effectively alleviate osmotic stress, ion toxicity, and oxidative damage in Pakchoi,
645 thereby improving photosynthetic efficiency and biomass accumulation. Future research should
646 apply multi-omics approaches—transcriptomics, proteomics, and metabolomics—to dissect how
647 MP treatment modulates signaling pathways for water sensing, selective K^+/Na^+ transport, ROS
648 scavenging, and ABA-dependent responses at the molecular level, thereby shifting from
649 physiological to mechanistic understanding (Zhang et al., 2022). Moreover, genotypic screening
650 of salt-sensitive Pakchoi varieties under MP conditions will help establish a “Genotype–

651 Regulation–Stress” triadic response model, providing precise guidance for crop management in
652 coastal saline lands.

653 To enhance practical applicability, future studies should scale up from controlled conditions to
654 field trials across varying salinity gradients, water qualities, and climate zones to assess the
655 robustness and scalability of the MP strategy. Additionally, integrating remote sensing, sensor
656 data, and machine learning can facilitate intelligent water-fertilizer regulation models, creating a
657 closed-loop system that links soil moisture/salinity, plant physiology, and management
658 commands for smart agriculture in saline regions (Wang *et al.*, 2021). Finally, future research
659 must address combined abiotic stress scenarios (e.g., salinity-drought, salinity-heat), to test the
660 broader resilience of MP treatment and expand its application range, ensuring sustainable leafy
661 vegetable production under climate change conditions.

662

663 CONCLUSION

664 This study systematically evaluated the effects of different water and fertilizer management
665 strategies on the growth performance, physiological-ecological traits, and antioxidant
666 mechanisms of Pakchoi under salt stress conditions (0.3% NaCl), with a focus on the significant
667 advantages of the MP treatment (mulched drip irrigation combined with mixed fertilizer). The
668 main findings are summarized as follows:

669 (1) Water-fertilizer regimes significantly regulate soil salinity distribution and ionic 670 balance.

671 Different irrigation methods caused distinct vertical patterns in soil electrical conductivity (EC).
672 Treatments T (drip irrigation) and P (mulched drip irrigation) effectively reduced salt
673 accumulation in the upper 0–20 cm soil layer while promoting downward salt migration, thus
674 optimizing the rhizosphere salinity profile. Within plant tissues, the MP treatment markedly
675 increased K⁺ (3.28%) and Ca²⁺ (0.91%) concentrations while reducing Na⁺ (3.5%), resulting in a
676 higher K⁺/Na⁺ ratio (0.94) and lower Na⁺/Ca²⁺ ratio (3.84). These changes reflect enhanced
677 selective ion uptake and Na⁺ exclusion capacity, contributing to stabilized cellular osmotic
678 potential and membrane electrochemical gradients, and thus improved salt tolerance.

679 (2) MP treatment alleviates oxidative stress and enhances membrane stability.

680 Under MP management, *Pakchoi* leaves exhibited significantly lower levels of malondialdehyde
681 (MDA) and electrolyte leakage, indicating reduced membrane lipid peroxidation and enhanced
682 cell membrane stability. Concurrently, activities of antioxidant enzymes including superoxide
683 dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were
684 substantially elevated, forming an efficient reactive oxygen species (ROS) scavenging system.
685 These responses were significantly superior to those observed under conventional treatments
686 such as FI and CI, providing effective protection for cellular structures.

687 (3) Water status and osmotic adjustment capacity were significantly improved.

688 Leaf water potential under MP treatment (−0.60 MPa) was markedly higher than in other salt-
689 stressed groups and second only to the non-saline control (CK, −0.40 MPa), suggesting that
690 mulched drip irrigation effectively mitigated cellular dehydration. The total content of osmolytes

691 such as proline, soluble sugars, and MDA was minimized, indicating that plants under MP
692 management did not require high-energy-demanding osmotic regulation strategies to maintain
693 turgor, thereby reflecting enhanced energy use efficiency and stress resilience.

694 **(4) Photosynthetic performance and gas exchange efficiency, along with pigment
695 accumulation, were significantly enhanced.**

696 MP treatment resulted in the highest gas exchange parameters among all salt-stressed groups,
697 with net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) reaching
698 $14.8 \mu\text{mol CO}_2 \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $0.622 \text{ mol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, and $5.28 \text{ mmol H}_2\text{O} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, respectively. The
699 intercellular CO_2 concentration (C_i) was the lowest at $251 \mu\text{mol} \cdot \text{mol}^{-1}$, suggesting greater CO_2
700 assimilation efficiency and enhanced carbon fixation potential. Moreover, MP-treated plants
701 showed significantly increased levels of chlorophyll a, chlorophyll b, and total chlorophyll (1.97,
702 0.71, and $2.68 \text{ mg} \cdot \text{g}^{-1}$, respectively), approaching the values observed in the CK group. These
703 results indicate that MP effectively preserves the structural and functional integrity of
704 photosystem II (PSII), thereby improving light harvesting and energy conversion. The concurrent
705 enhancement in pigment content and gas exchange parameters strongly supports the superior
706 photosynthetic capacity and biomass accumulation observed under MP.

707 **(5) MP treatment exhibited the most favorable performance in yield formation.**

708 Under salt stress, plants treated with M fertilizers showed significantly higher plant height and
709 biomass than those under C and F treatments. MP-treated plants had the greatest fresh and dry
710 weights, exceeding MT by 15% and 3%, MI by 19% and 7%, CP by 21% and 12%, CT by 23%
711 and 9%, CI by 22% and 20%, FP by 24% and 18%, FT by 26% and 20%, and FI by 39% and
712 42%, respectively. This confirms the strong yield potential and physiological resilience of MP
713 under saline conditions. These advantages highlight the MP strategy as a superior integrated
714 water-fertilizer approach for enhancing crop vigor, nutrient uptake, and biomass productivity.

715 In summary, the MP treatment effectively mitigated salt-induced stress in *Pakchoi* by
716 synergistically optimizing soil salinity profiles, improving selective ion absorption, enhancing
717 antioxidant defenses, and boosting photosynthetic performance and water status. These
718 comprehensive improvements support MP as the most promising water and fertilizer
719 management strategy for high-efficiency cultivation of *Pakchoi* in coastal saline-alkali soils. We
720 recommend the promotion of MP application in relevant agro-ecological zones, integrated with
721 salt-tolerant cultivar selection and intelligent fertigation technologies to advance sustainable,
722 efficient, and resilient protected vegetable production systems.

723

724 **Acknowledgments**

725 This work was supported by National Natural Science Fund of China [NSFC32000164],
726 Ministry of Natural Resources in Guangdong Province (GDNRC[2021]38), Key Assignment
727 Mission Project for Rural Science and Technology Commissioners under Guangdong's
728 "Hundreds of Counties, Thousands of Towns, Tens of Thousands of Villages Development
729 Project" (KTP20240513), Zhanjiang Science and Technology Plan Project (A23078),
730 Guangdong Province "Strengthening Top Universities, Filling Shortcomings, and Enhancing

731 Distinctive Features" Special Fiscal Funds Project (080503122202), Guangdong Ocean
732 University Undergraduate Teaching Quality and Teaching Reform Construction Project (PX-
733 142023007), Guangdong Ocean University Education and Teaching Reform Project (PX-
734 972023008).

735

736 Competing Interests

737 The authors declare that they have no competing interests.

738

739 Data Availability

740 All data related to this paper can be requested from the corresponding author upon reasonable
741 request.

742

743 References

744 Aebi H. 1984. Catalase in vitro. *Methods in Enzymology* 105:121-126.
745 [https://doi.org/10.1016/S0076-6879\(84\)05016-3](https://doi.org/10.1016/S0076-6879(84)05016-3)

746 Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic
747 stress resistance. *Environmental and Experimental Botany* 59(2):206-216.
748 <https://doi.org/10.1016/j.envexpbot.2005.12.006>

749 Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress
750 studies. *Plant and Soil* 39(1):205-207. <https://doi.org/10.1007/BF00018060>

751 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities
752 of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry* 72(1-
753 2):248-254. [https://doi.org/10.1016/0003-2697\(76\)90527-3](https://doi.org/10.1016/0003-2697(76)90527-3)

754 Bremner JM. 1965. Nitrogen availability indexes. *Methods of Soil Analysis* 2:1324-1345.
755 <https://doi.org/10.2134/agronmonogr9.2.c37>

756 Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress:
757 Regulation mechanisms from whole plant to cell. *Annals of Botany* 103(4):551-560.
758 <https://doi.org/10.1093/aob/mcn125>

759 Chen Q, Zhang X, Wang Y. 2016. Effect of drip irrigation and fertilizer application on growth
760 and yield of pepper under saline conditions. *Agricultural Research in the Arid Areas*
761 34(5):20-26.

762 Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and
763 stoichiometry of fatty acid peroxidation. *Archives of Biochemistry and Biophysics*
764 125(1):189-198. [https://doi.org/10.1016/0003-9861\(68\)90654-1](https://doi.org/10.1016/0003-9861(68)90654-1)

765 Isaac RA, Johnson WC. 1985. Elemental analysis of plant tissue by plasma emission
766 spectroscopy: Collaborative study. *Journal of AOAC International* 68(3):499-505.
767 <https://doi.org/10.1093/jaoac/68.3.499>

768 Khalifa GS, Abdelrassoul M, Hegazi AM, Elsherif M.H. 2016. Attenuation of negative effects of
769 saline stress in two lettuce cultivars by salicylic acid and glycine betaine. *Gesunde Pflanzen*
770 68(4):177-189. <https://doi.org/10.1007/s10343-016-0376-2>

771 Li J, Fan XL, Zhu YL, Rao GS, Chen RS, Duan TT. 2022b. Effects of irrigation and nitrogen
772 fertilization on mitigating salt-induced Na⁺ toxicity and sustaining sea rice growth. *Open*
773 *Life Sciences* 17(1):1165-1173. DOI: 10.1515/biol-2022-0492

774 Li J, Duan TT, Zhang ZH, Chen RS, Rao GS, Fan XL. 2022a. Effects of irrigation and nitrogen
775 fertilization on soil Na⁺ in root zone and salt-tolerant rice yield. *INMATEH Agricultural*
776 *Engineering* 68(3):549-558. DOI: <https://doi.org/10.35633/inmateh-68-54>

777 Liang WJ, Ma XL, Wan P, Liu LY. 2018. Plant salt-tolerance mechanism: A review.
778 *Biochemical and Biophysical Research Communications* 495(1):286-291.
779 <https://doi.org/10.1016/j.bbrc.2017.11.043>

780 Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a
781 and b of leaf extracts in different solvents. *Biochemical Society Transactions* 11(5):591-592.
782 <https://doi.org/10.1042/bst0110591>

783 Lima GSD, Pinheiro FWA, Dias AS, Gheyi, HR, Soares LAA, Silva SSD. 2019. Growth and
784 production components of West Indian cherry cultivated with saline waters and potassium
785 fertilization. *Rev. bras. eng. agric. Ambient* 23(4):250-256. <https://doi.org/10.1590/1807-1929/agriambi.v23n4p250-256>

787 Lima GSD, Pinheiro FWA, Gheyi HR, Anjos Soares LAD, Silva SSD. 2020. Growth and post-
788 harvest fruit quality of West Indian cherry under saline water irrigation and potassium
789 fertilization. *Revista Caatinga* 33(3):775-784. <https://doi.org/10.1590/1983-21252020v33n321rc>

791 Liu ZG, Wang ZJ, Fang Y, Sun WC, Yuan JH, Mi C, Fang Y, Wu JY, Li XC. 2017. Effect of
792 salt stress on seed germination and seedling physiology of winter rapeseed (*Brassica rapa*
793 L.). *Chinese Journal of Oil Crop Sciences* 39(3):351-359. DOI: 10.7505/j.issn.1007-9084.2017.03.009

795 Luo GH. 2012. Revealing the secrets of *penaeus vannamei* in Zhanjiang. *Ocean and Fisheries*
796 000(006):78-79.

797 Maathuis F J, Amtmann A. 1999. K⁺ nutrition and Na⁺ toxicity: The basis of cellular K⁺/Na⁺
798 ratios. *Annals of Botany* 84(2):123-133. <https://doi.org/10.1006/anbo.1999.0912>

799 Munns R, Tester M. 2008. Mechanisms of salinity tolerance. *Annual Review of Plant Biology*
800 59:651-681. DOI: 10.1146/annurev.arplant.59.032607.092911

801 Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. *Ecotoxicology*
802 and *Environmental Safety* 60(3):324-349. <https://doi.org/10.1016/j.ecoenv.2004.06.010>

803 Piao YZ, Zhao CC, Eun JB. 2020. Influence of different temperatures on brining kinetics, salt
804 concentration and texture properties of Chinese cabbage (*Brassica rapa* L. ssp. *pekinensis*)
805 during brining with ultrasonic treatment. *Journal of Food Science* 85(12):4161-4169. DOI:
806 10.1111/1750-3841.15509

807 Turner NC. 1988. Measurement of plant water status by the pressure chamber technique.
808 *Irrigation Science* 9:289-308. <https://doi.org/10.1007/BF00296704>

809 Wang C, Zhao Y, Li Y, et al. 2021. Artificial intelligence in agriculture: Challenges and
810 opportunities. *Computers and Electronics in Agriculture* 189:106414.

811 Wang XM, Zhao XX, Chen JY, Zhou BL, Yang H, He XL, Wang PP, Mo S, Zhou HK. 2018.
812 The precise development of saline-alkali soil and the prospect of high-efficiency cultivation
813 of sea rice resistant to saline-alkali in Zhanjiang. *Chinese Journal of Tropical Agriculture*
814 38(12):25-29.

815 Xie L, Jin S, Wang L. 2021. Effect of plastic mulched drip irrigation on soil salt dynamics and
816 tomato yield. *Transactions of the Chinese Society of Agricultural Engineering* 37(1):132-
817 139.

818 Xiong X, Chang LY, Khalid M, Zhang JJ, Huang DF. 2018. Alleviation of drought stress by
819 nitrogen application in brassica campestris ssp. Chinensis L. *Agronomy*. 8(5), 66.
820 <https://doi.org/10.3390/agronomy8050066>

821 Xu FF, Xu P, Hu Z T, Zhao J. 2018. Photosynthetic physiological responses of Pakchoi to salt
822 stress. *Molecular Plant Breeding* 16(10):3327-3332. DOI:10.13271/j.mpb.016.003327

823 Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone.
824 *Biochemical Journal* 57(3):508-514. DOI: 10.1042/bj0570508

825 Yu RG, Zhang D, Yu XY, Tang G, Yang JJ, Zhao YD, Wu C. 2022. Comparative analysis of salt
826 tolerance in 13 varieties of Pakchoi during seedling stage and selection of salt tolerance
827 indexes. *Journal of Yunnan Agricultural University (Natural Science)* 37(01):24-31. DOI:
828 10.12101/j.issn.1004-390X(n).202105001

829 Zhang RR, Liu Y, Xue WL, Chen RX, Du ST. 2016. Slow-release nitrogen fertilizers can
830 improve yield and reduce Cd concentration in pakchoi (*Brassica chinensis* L.) grown in Cd-
831 contaminated soil. *Environmental Science and Pollution Research* 23(24):25074-25083.
832 <https://doi.org/10.1007/s11356-016-7742-6>

833 Zhang YH, Fang JP, Wu XB, Dong LY. 2018. Na⁺/K⁺ balance and transport regulatory
834 mechanisms in weedy and cultivated rice (*Oryza sativa* L.) under salt stress. *BMC Plant
835 Biology* 18(1):375. <https://doi.org/10.1186/s12870-018-1586-9>

836 Zhang HM, Zhu JH, Gong ZZ, Zhu JK. 2022. Abiotic stress responses in plants. *Nature Reviews
837 Genetics* 23(2):104-119. DOI: 10.1038/s41576-021-00413-0

838 Zhang L, Li Y, Cui S, Wang F. 2020. Water potential and physiological response of different
839 irrigation methods in greenhouse vegetables. *Acta Ecologica Sinica* 40(8):2589-2598.

840 Zhu JK. 2016. Abiotic stress signaling and responses in plants. *Cell* 167(2):313-324. DOI:
841 10.1016/j.cell.2016.08.029

842

843 Figures Captions

844 **Figure 1:** The leaf water potential of Pakchoi under different irrigation and fertilization modes

845 Note: Lowercase letters indicate significant differences in leaf water potential among treatments at the 5% level (P <
846 0.05, DMRT).

847 **Figure 2:** Effects of different irrigation and fertilization modes on nitrogen and phosphorus content in Pakchoi
848 plants

849 Note: Capital letters above the bars indicate significant differences in nitrogen content among treatments at the 5%
850 level. Lowercase letters indicate significant differences in phosphorus content among treatments at the 5% level
851 (P < 0.05, DMRT).

852 **Figure 3:** The organic solute accumulation in Pakchoi under different irrigation and fertilization modes: (a)Proline

853 content, (b)Soluble protein content, (c)Soluble sugar content, (d)Glucose content, (e)Fructose content,
854 (f)Sucrose content.

855 Note: Lowercase letters indicate significant differences in organic solute accumulationl among treatments at the 5%
856 level (P < 0.05, DMRT).

857 **Figure 4:** The ROS, MDA contents, and electrolyte leakage in Pakchoi under different irrigation and fertilization
858 modes: (a) O₂⁻ content, (b) H₂O₂ content, (c) Electrolyte leakage, (d) MDA content.

859 Note: Lowercase letters indicate significant differences in ROS, MDA content, and electrolyte leakage among
860 treatments at the 5% level (P < 0.05, DMRT).

861 **Figure 5:** The antioxidant enzyme activities in Pakchoi under different water and fertilizer management modes:
862 (a)SOD activitie, (b)POD activitie, (c)CAT activitie, (d)APX activitie.

863 Note: Lowercase letters indicate significant differences in antioxidant enzyme activities among treatments at the 5%
864 level (P < 0.05, DMRT).

865 **Figure 6:** The chlorophyll content of Pakchoi under different water and fertilizer management regimes

866 Note: Different capital letters above the bars indicate significant differences in total chlorophyll content among
867 treatments at the 5% level. Different lowercase letters indicate significant differences in chlorophyll a or b
868 content among treatments at the 5% level (P < 0.05, DMRT).

869 **Figure 7:** The photosynthetic parameters of Pakchoi under different water and fertilizer management regimes: (a)Pn,
870 (b)Tr, (c)Gs, (d)Ci

871 Note: Different lowercase letters indicate significant differences in photosynthetic parameters among treatments at
872 the 5% level (P < 0.05, DMRT).

873 **Figure 8:** The plant height of Pakchoi under different irrigation and fertilization modes

874 **Figure 9:** Integrated Mechanistic Model of Water Regulation, Ion Homeostasis, ROS Defense, and Photosynthetic
875 Optimization in Pakchoi under Salt Stress

876

877 Table Captions

878 **Table 1.** The design of experiment

879 **Table 2.** The soil EC under different irrigation and fertilization modes¹⁾

880 1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference
881 among treatments at the 5% level (P<0.05, DMRT).

882 **Table 3.** The Na⁺, K⁺, Ca²⁺contents of single plant and their ratio under different irrigation and fertilization
883 modes¹⁾

884 1) Number in the table is mean±standard deviation.Different letters in a column indicate significant difference
885 among treatments at the 5% level (P<0.05, DMRT).

886 **Table 4.** The biomass of Pakchoi under different irrigation and fertilization modes¹⁾

887 1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference
888 among treatments at the 5% level (P<0.05, DMRT).

Table 1(on next page)

The design of experiment

1

Table 1. The design of experiment

Treatments	Irrigation methods	Fertilizer types	With or without NaCl
FI	Conventional irrigation	Conventional fertilizer	With
FT	Trickle irrigation	Conventional fertilizer	With
FP	Film mulched trickle irrigation	Conventional fertilizer	With
MI	Conventional irrigation	Mixed fertilizer	With
MT	Trickle irrigation	Mixed fertilizer	With
MP	Film mulched trickle irrigation	Mixed fertilizer	With
CI	Conventional irrigation	Controlled-release fertilizer	With
CT	Trickle irrigation	Controlled-release fertilizer	With
CP	Film mulched trickle irrigation	Controlled-release fertilizer	With
CK	Conventional irrigation	Conventional fertilizer	Without

2

3

Table 2(on next page)

The soil EC under different irrigation and fertilization modes ¹⁾

1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference among treatments at the 5% level (P<0.05, DMRT) .

1

Table 2. The soil EC under different irrigation and fertilization modes¹⁾

Treatments	EC in upper soil layer (us·cm ⁻¹)		EC in lower soil layer (us·cm ⁻¹)	
	Seedling stage	Rosette stage	Seedling stage	Rosette stage
FI	1711±155 ab	1578±92 a	1628±254 c	1690±63 e
FT	1332±99 bc	1168±63 cd	2295±286 ab	2842±124 ab
FP	1364±149 bc	1125±85 d	2385±359 ab	2285±296 cd
MI	1721±202 a	1556±98 a	2044±185 bc	1927±228 de
MT	1297±162 bc	1182±87 bcd	2599±261 a	3165±385 a
MP	1322±70 bc	1265±87 bc	2487±242 ab	2454±118 c
CI	1792±216 a	1577±142 a	1907±375 bc	2071±136 d
CT	1458±157 abc	1290±65 bc	2219±242 ab	2585±145 bc
CP	1309±102 bc	1208±70 bcd	2334±213 ab	2323±76 c
CK	598±50 d	319±61 e	850±61 d	784±20 f

2 1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference among treatments

3 at the 5% level (P<0.05, DMRT).

4

Table 3(on next page)

The Na^+ , K^+ , Ca^{2+} contents of single plant and their ratio under different irrigation and fertilization modes ¹⁾

1) Number in the table is mean \pm standard deviation.Different letters in a column indicate significant difference among treatments at the 5% level ($P<0.05$, DMRT) .

1 **Tab. 3 The Na^+ , K^+ , Ca^{2+} contents of single plant and their ratio under different irrigation and**
 2 **fertilization modes¹⁾**

Treatments	K^+ (%)	Ca^{2+} (%)	Na^+ (%)	K^+/Na^+	$\text{Na}^+/\text{Ca}^{2+}$
FI	1.32±0.14 g	0.41±0.03 g	9.22±0.29 a	0.14±0.01 g	22.64±2.13 a
FT	2.36±0.28 de	0.67±0.02 e	7.08±0.43 b	0.33±0.05 e	10.53±0.59 cd
FP	1.78±0.14 f	0.65±0.02 e	4.9±0.15 d	0.36±0.03 e	7.6±0.22 e
MI	2.13±0.28 e	0.38±0.02 g	6.62±0.42 bc	0.32±0.04 e	17.28±1.70 b
MT	4.06±0.43 a	0.83±0.02 c	5.07±0.35 d	0.81±0.09 b	6.15±0.47 f
MP	3.28±0.43 bc	0.91±0.02 b	3.5±0.56 e	0.96±0.16 b	3.84±0.61 g
CI	1.39±0.15 g	0.56±0.02 f	6.06±0.41 c	0.23±0.04 f	10.82±0.90 cd
CT	2.83±0.29 cd	0.71±0.02 d	6.67±0.56 bc	0.42±0.06 d	9.43±0.84 d
CP	3.73±0.86 ab	0.83±0.02 c	6.39±0.41 bc	0.59±0.12 c	7.72±0.70 e
CK	3.89±0.42 ab	0.98±0.03 a	1.12±0.28 f	3.61±0.86 a	1.15±0.28 h

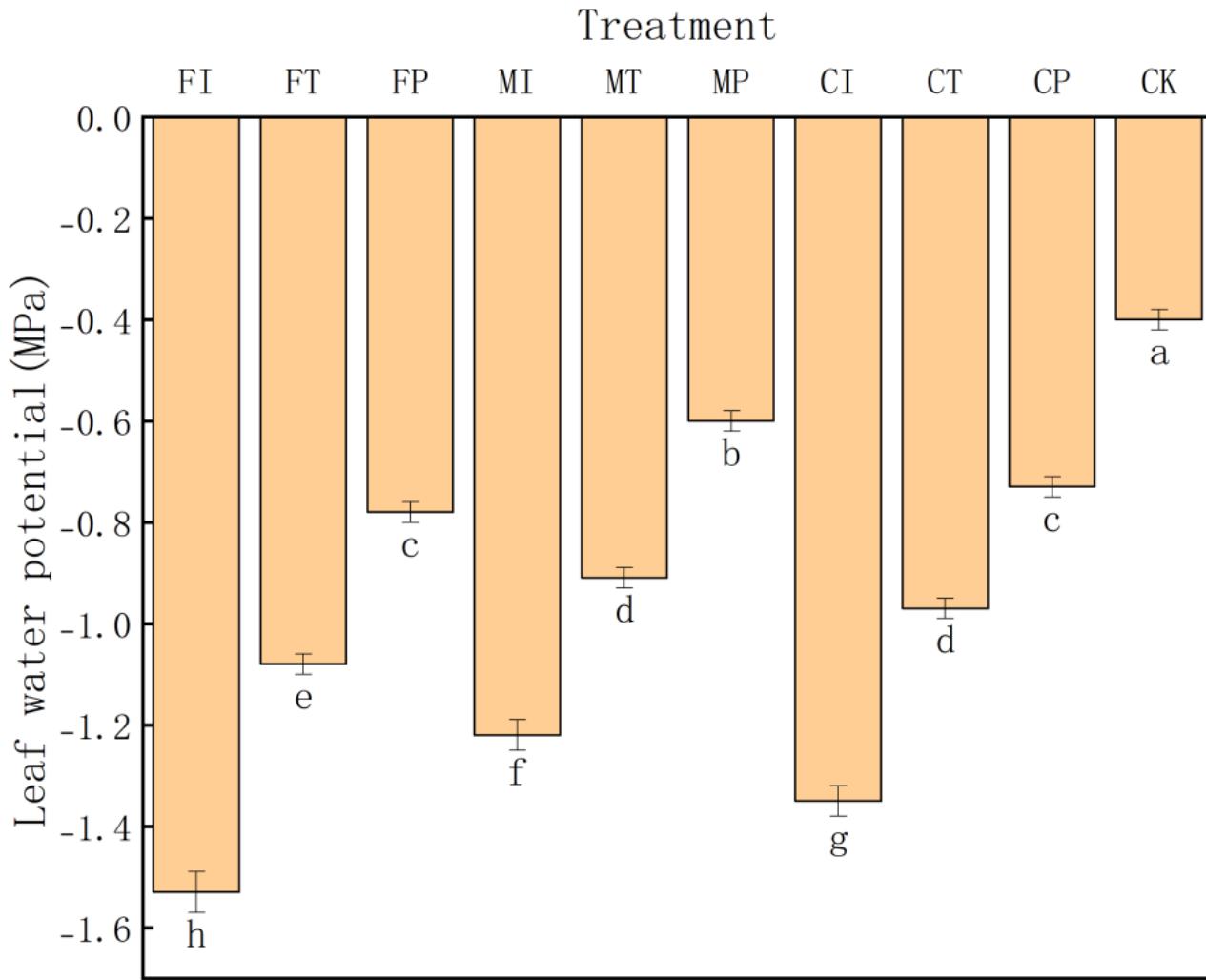
3 1) Number in the table is mean±standard deviation.Different letters in a column indicate significant difference among treatments
 4 at the 5% level (P<0.05, DMRT).

Table 4(on next page)

The biomass of Pakchoi under different irrigation and fertilization modes ¹⁾

1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference among treatments at the 5% level (P<0.05 , DMRT) .

1 **Table 4.** The biomass of Pakchoi under different irrigation and fertilization modes¹⁾


Treatments	Fresh matter (g)	Dry matter (g)
FI	32.47±1.89 e	2.09±0.18 g
FT	35.86±1.19 d	2.46±0.14 f
FP	36.54±1.45 cd	2.5±0.15 ef
MI	38.12±0.81 c	2.77±0.11 bcd
MT	39.39±1.23 c	2.88±0.07 bc
MP	45.26±2.04 b	2.96±0.12 b
CI	37.19±0.71 c	2.47±0.11 f
CT	36.75±1.12 cd	2.71±0.07 cde
CP	37.47±1.63 c	2.64±0.12d ef
CK	49.38±0.46 a	3.46±0.06 a

2 1) Number in the table is mean±standard deviation. Different letters in a column indicate significant difference among treatments
3 at the 5% level (P<0.05, DMRT).

Figure 1

The Leaf water potential of Pakchoi under different irrigation and fertilization modes

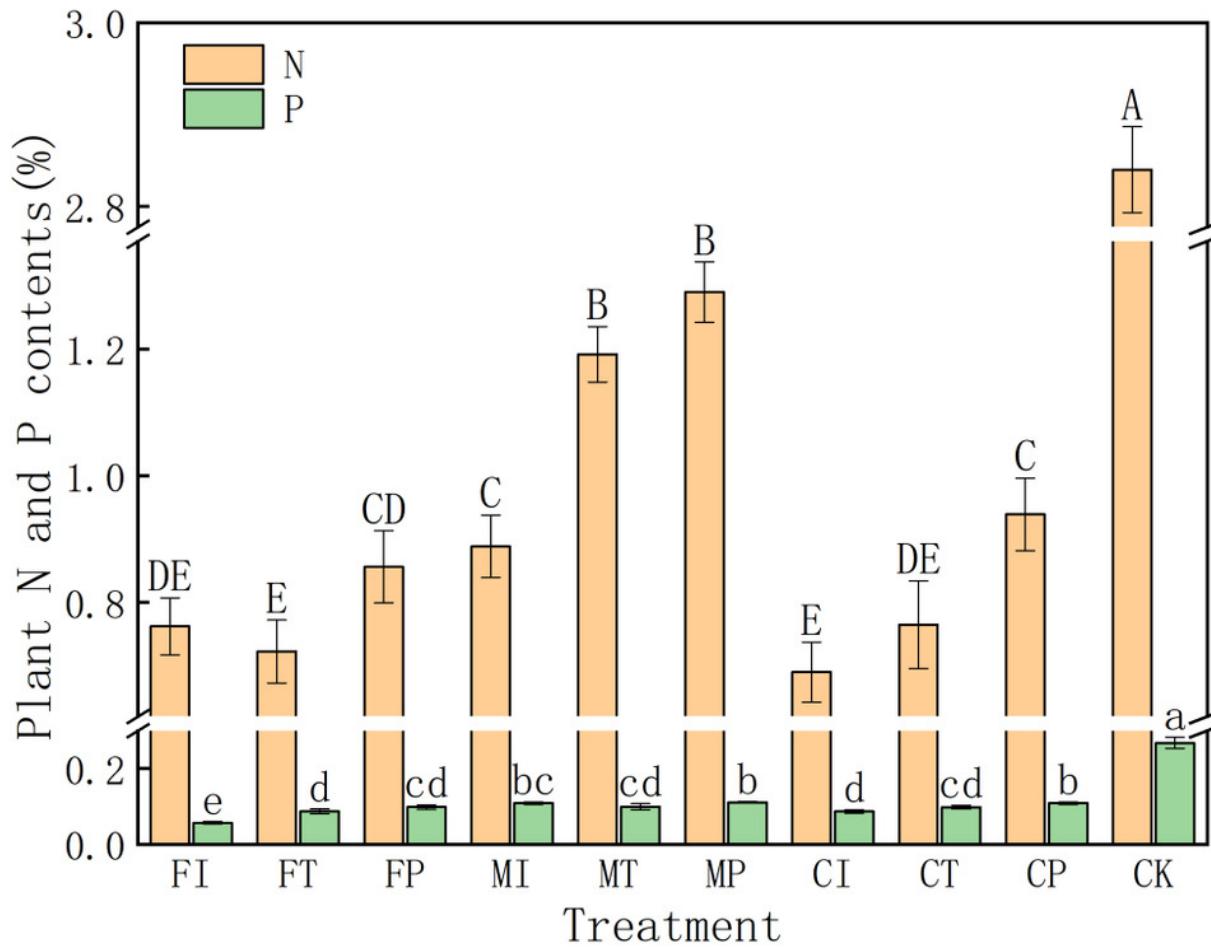

Note : Lowercase letters indicate significant differences in Leaf water potential among treatments at the 5% level ($P < 0.05$, DMRT).

Figure 2

Effects of different irrigation and fertilization modes on nitrogen and phosphorus content in Pakchoi plants

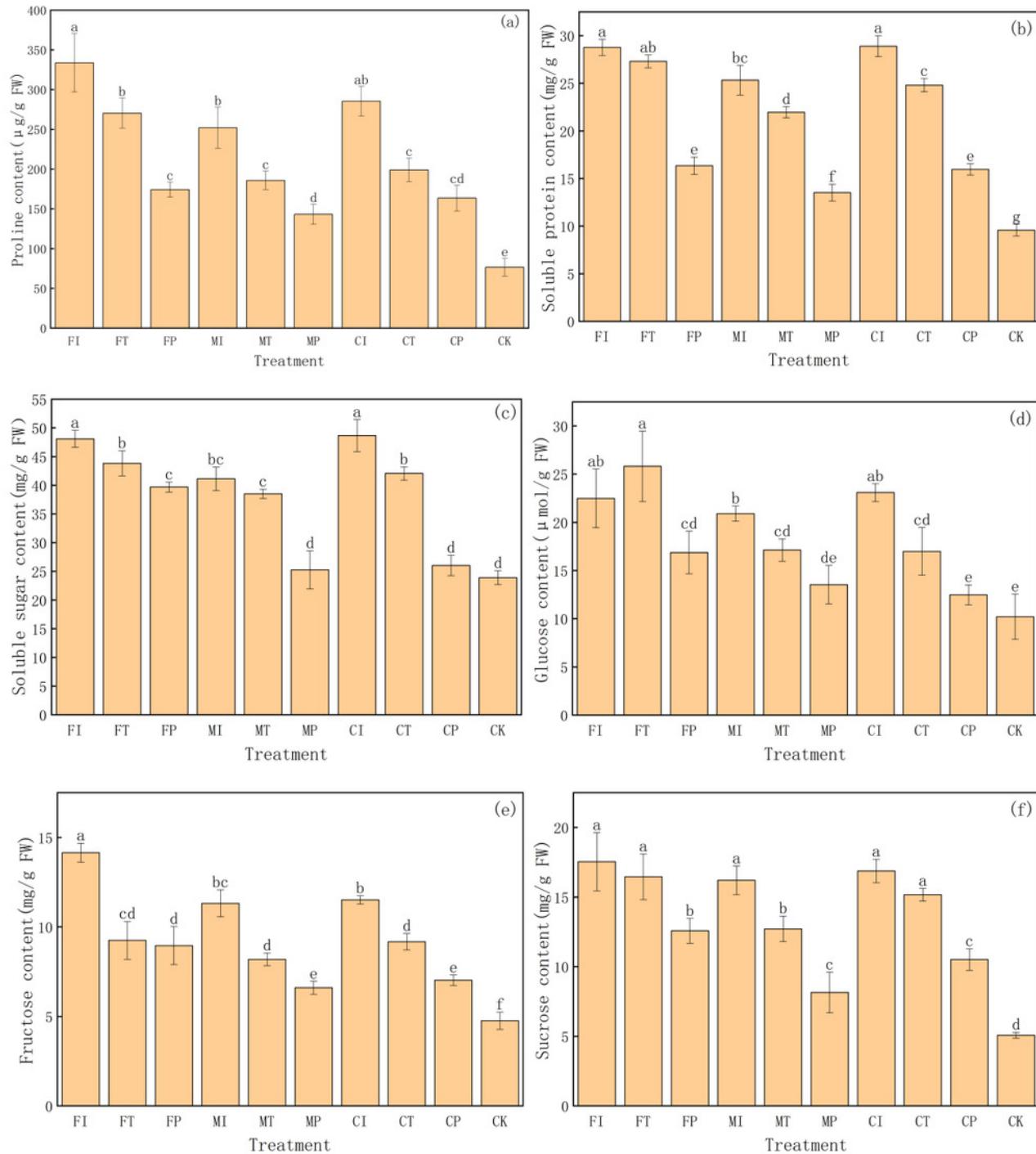

Note: Capital letters above the bars indicate significant differences in nitrogen content among treatments at the 5% level. Lowercase letters indicate significant differences in phosphorus content among treatments at the 5% level ($P < 0.05$, DMRT).

Figure 3

The organic solute accumulation in Pakchoi under different irrigation and fertilization modes : (a)Proline content, (b)Soluble protein content, (c)Soluble sugar content, (d)Glucose content, (e)Fructose content, (f)Sucrose content

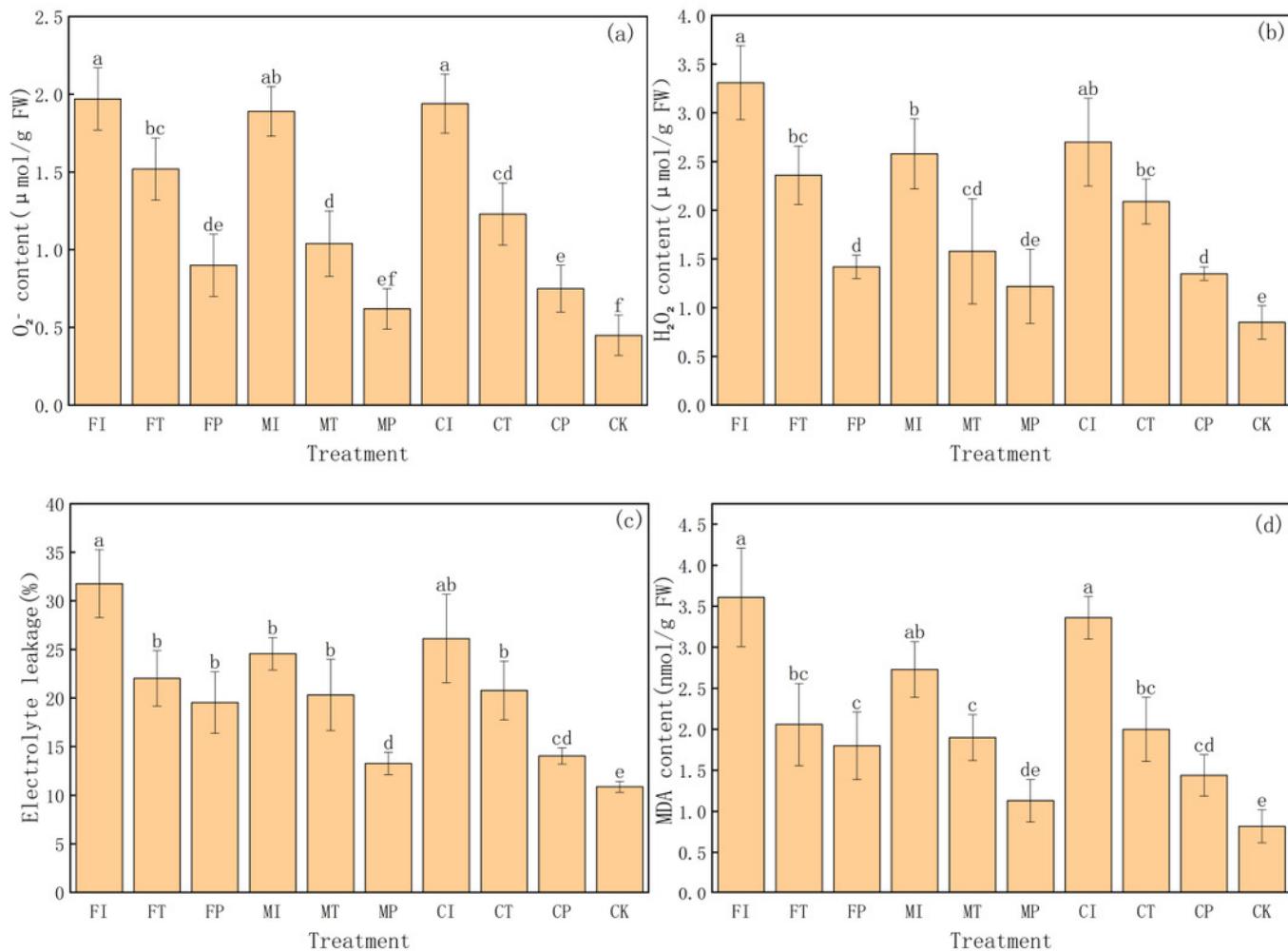

Note : Lowercase letters indicate significant differences in organic solute accumulation among treatments at the 5% level ($P < 0.05$, DMRT).

Figure 4

The ROS, MDA contents, and electrolyte leakage in Pakchoi under different irrigation and fertilization modes : (a) O_2^- content, (b) H_2O_2 content, (c) Electrolyte leakage, (d) MDA content.

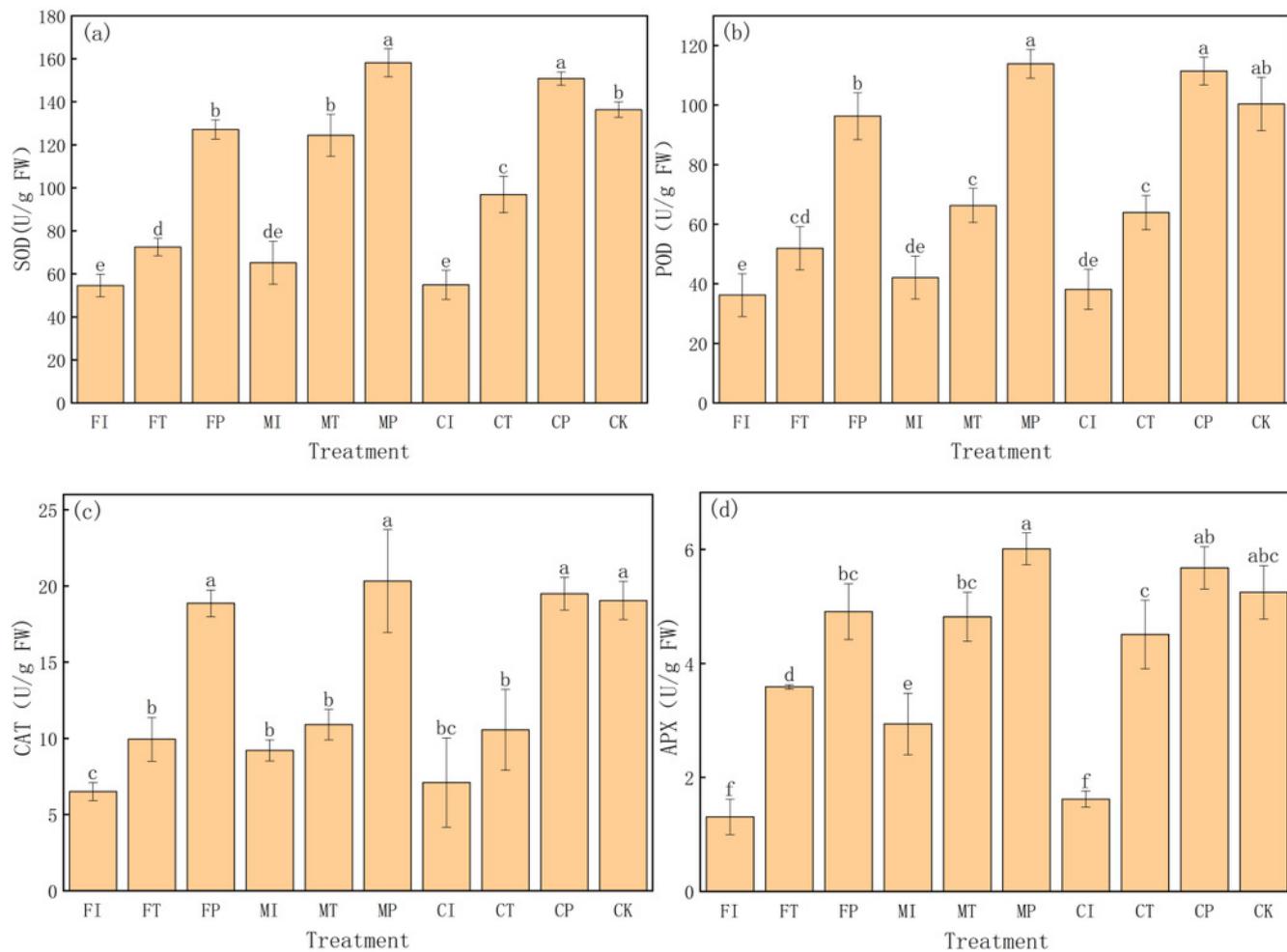

Note: Lowercase letters indicate significant differences in ROS, MDA content, and electrolyte leakage among treatments at the 5% level ($P < 0.05$, DMRT).

Figure 5

The antioxidant enzyme activities in Pakchoi under different water and fertilizer management modes : (a)SOD activitie, (b)POD activitie, (c)CAT activitie, (d)APX activitie.

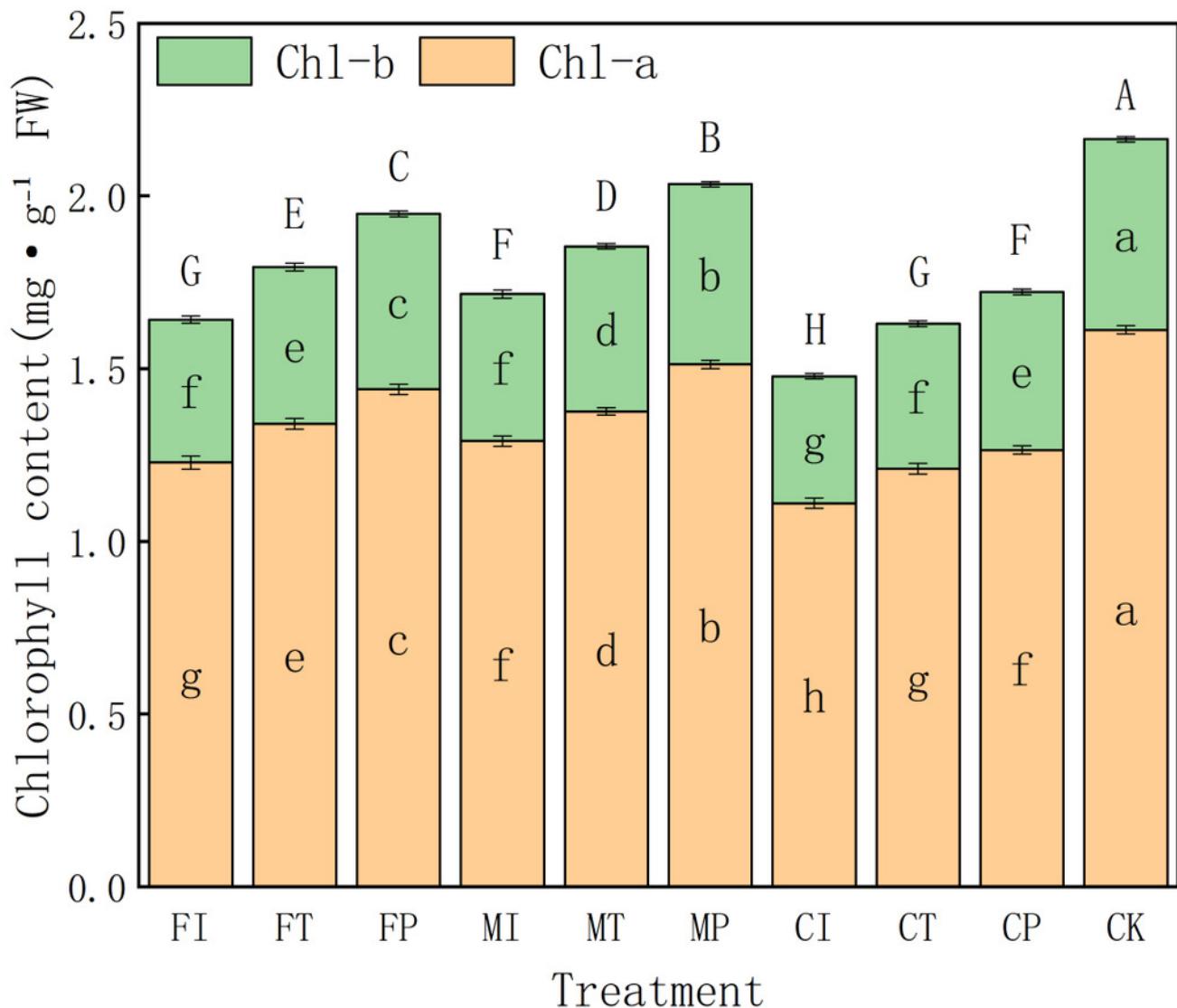

Note: Lowercase letters indicate significant differences in antioxidant enzyme activities among treatments at the 5% level (P < 0.05, DMRT).

Figure 6

The chlorophyll content of Pakchoi under different water and fertilizer management regimes

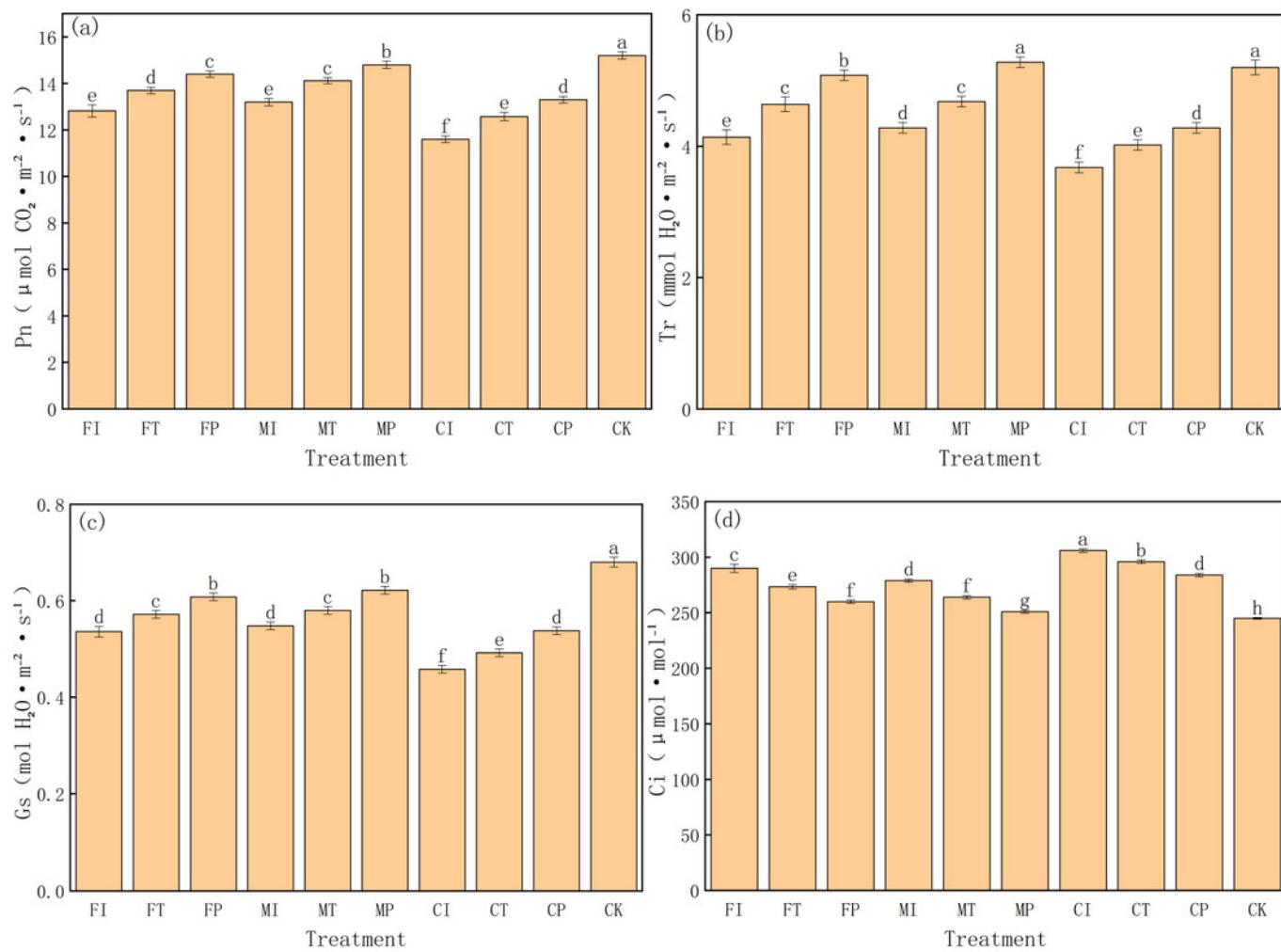
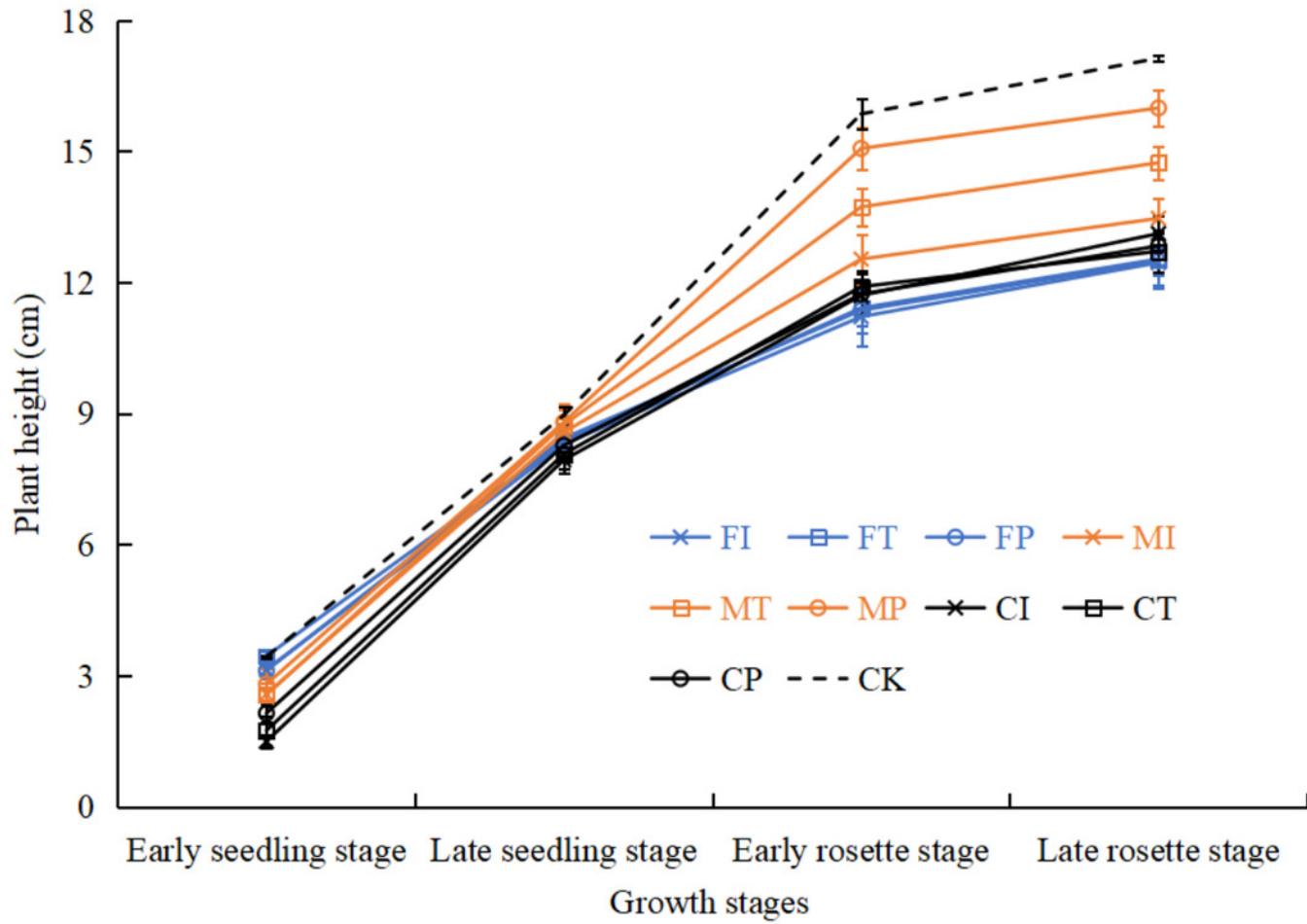
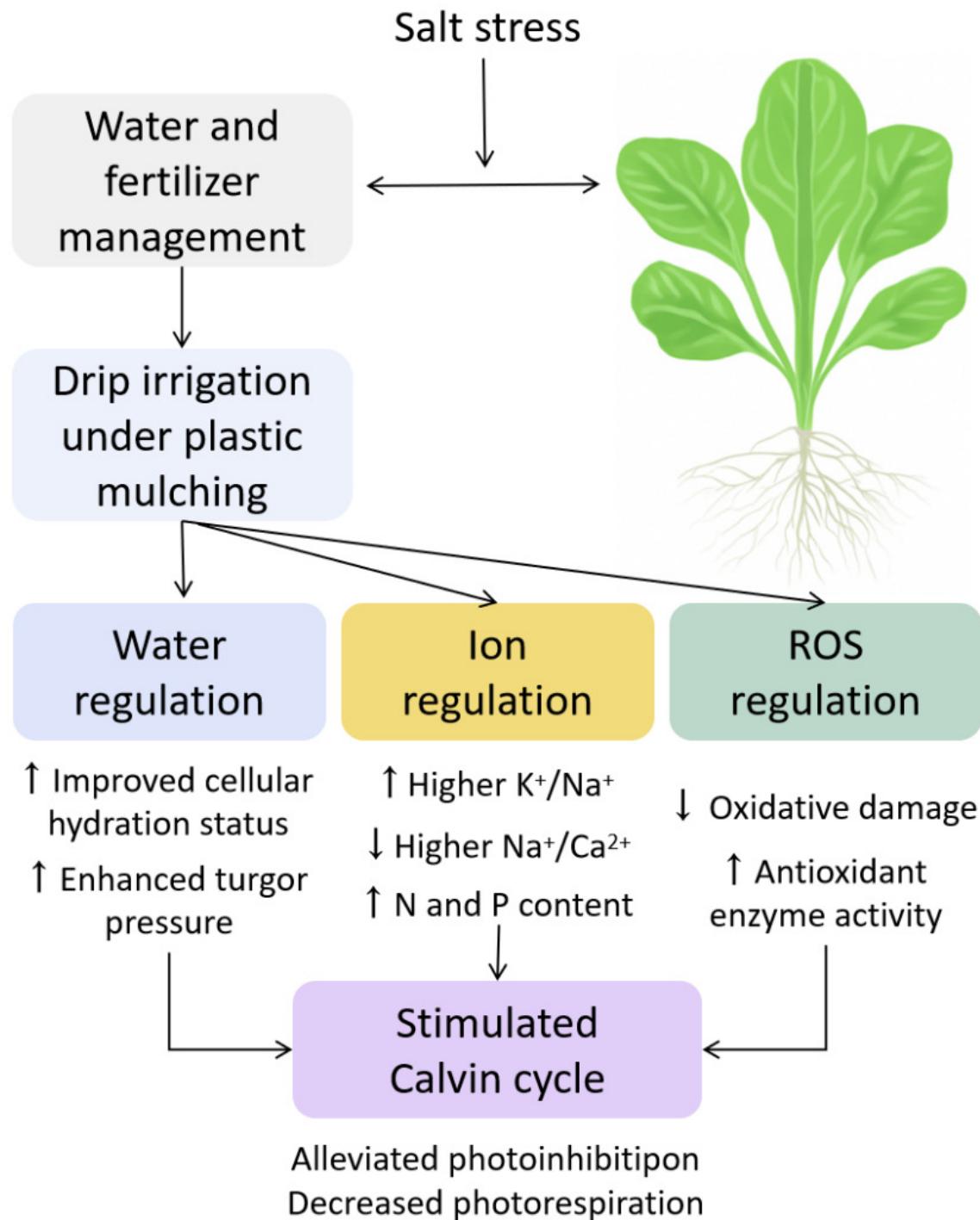

Note: Different capital letters above the bars indicate significant differences in total chlorophyll content among treatments at the 5% level . Different lowercase letters indicate significant differences in chlorophyll a or b content among treatments at the 5% level ($P < 0.05$, DMRT).

Figure 7


The photosynthetic parameters of Pakchoi under different water and fertilizer management regimes: (a) P_n , (b) T_r , (c) G_s , (d) C_i

Note: Different lowercase letters indicate significant differences in photosynthetic parameters among treatments at the 5% level ($P < 0.05$, DMRT).


Figure 8

The plant height of Pakchoi under different irrigation and fertilization modes

Figure 9

Integrated Mechanistic Model of Water Regulation, Ion Homeostasis, ROS Defense, and Photosynthetic Optimization in Pakchoi under Salt Stress

