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ABSTRACT
As a critical core node of the ‘‘Belt and Road’’ Initiative and a representative arid-zone
urban agglomeration inNorthwest China, theUrumqi-Changji-Shihezi (U-Chang-Shi)
region faces severe air pollution, posing significant threats to ecological security and
public health. Leveraging the 2000–2022 China High-Resolution Air Quality (CHAP)
dataset and multi-source meteorological data, this study systematically investigates
the spatiotemporal evolution of PM2.5, PM10, and ozone (O3) alongside their driving
mechanisms. Results reveal distinct seasonal patterns: PM2.5 and PM10 concentrations
peak in winter due to coal combustion emissions and unfavorable static meteorological
conditions, while dropping below 30 µg/m3 in summer as photochemical reactions
weaken. The Mann–Kendall (MK) trend test, combined with spatial-temporal analysis
methods, elucidates the complex pollution dynamics. The U-Chang-Shi industrial
belt acts as a pollution hotspot, with Dabancheng District exhibiting elevated PM10
levels attributed to pollutant transport and terrain effects. O3 pollution intensifies in
spring and summer, surging post-2016 across regional cities, with Shihezi showing a
16.7% annual increase. Key drivers include unfavorable static meteorology and sparse
vegetation for particulate pollutants, while precipitation (P) wet deposition enhances
their removal. O3 production is modulated by potential evapotranspiration (PET)
and wind speed (WIND), with high temperatures (T) accelerating photochemical
reactions, although counteracted by particulate matter. Hybrid Single-Particle La-
grangian Integrated Trajectory Model (HYSPLIT) simulations indicate that Eurasian
mid-latitude winter circulation and cross-border dust contribute to winter PM10
variability. Although the ‘‘coal-to-gas’’ project mitigated particulate pollution, its
efficacy is constrained by Shihezi’s lagging industrial restructuring. This study provides
critical insights for optimizing air pollution control strategies in ecologically vulnerable
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regions of Northwest China and arid-zone urban agglomerations under the Belt and
Road Initiative, emphasizing the need for region-specific emission reduction measures
and cross-border collaboration.

Subjects Environmental Sciences, Atmospheric Chemistry, Environmental Impacts, Spatial and
Geographic Information Science
Keywords Air pollutants, Spatiotemporal distribution, ‘‘U-Chang-Shi’’ urban agglomeration,
HYSPLIT trajectory simulation

INTRODUCTION
The U-Chang-Shi urban agglomeration lies at the core of the northern slope of the
Tianshan Mountain economic belt in Xinjiang, serving as a pivotal node in the Belt and
Road Initiative. Although this area covers merely 3.8% of Xinjiang’s total land area, it
concentrates over 40% of the region’s population and gross domestic product (GDP) (Li
et al., 2002; see Fig. 1), with industrial activities characterized by high energy intensity and
dominated by coal chemical and metallurgical sectors. The combination of a ‘‘trumpet-
shaped’’ basin-like topography, frequent winter temperature inversions (Li et al., 2022),
and episodic southeast dry hot wind events (Zheng et al., 2024) restricts atmospheric
dispersion, prolonging pollutant residence time. Cross-border pollutant transport from
Central Asia exacerbates the problem (Zhi et al., 2022; Duan et al., 2023).

Pollution control measures centered on the coal-to-gas conversion program successfully
reduced PM10 by 26.1% in Urumqi during the winter of 2013–2014 compared to the
pre-treatment period (2009–2011) (Li et al., 2016), yet their long-term effectiveness is
constrained by lagging industrial restructuring and increasing ozone concentrations—
growing at 4.6% annually since 2017 (Chu et al., 2021). Prior studies have examined
spatial patterns (Min, 2020), meteorological influences (Li et al., 2022; Du et al., 2024), and
pollution processes (Cao et al., 2023), but most analyses remain limited to short temporal
spans (≤10 years) and rarely integrate socio-economic factors alongside environmental
data.

In addition to air quality research, studies on carbon emission estimation models and
influencing factors offer valuable insight into anthropogenic drivers of air pollution.
Emission inventories compiled for stationary fossil fuel combustion sources in the U-
Chang-Shi region show clear spatial heterogeneity in industrial and residential sectors
(Wang et al., 2020; Yuan & Yang, 2020). Recent advances integrate input–output analysis,
life-cycle assessment, and econometric modeling to link emission trends with economic
growth, industrial structure, and technology adoption (Zhao et al., 2020; Zhou, Zhao &
Yang, 2017). Combining these methods with high-resolution environmental datasets
provides pathways for synergistic control of atmospheric pollution and greenhouse gas
emissions—a policy direction increasingly emphasized in China’s dual-carbon goals.

Despite these advances, a critical gap remains: the lack of multi-decadal, high-
resolution datasets capable of quantifying the coupled impacts of emissions, meteorology,
and transboundary transport in arid urban clusters. Traditional monitoring networks
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Figure 1 Geographical location and topography of the study area. (A) Map of the Xinjiang Uygur Au-
tonomous Region in northwest China, showing the administrative boundary (black outline) and the ‘‘U-
Chang-Shi’’ Urban Agglomeration (orange-shaded region), comprising Urumqi, Changji, and Shihezi
cities. (B) Detailed topographic map of the ‘‘U-Chang-Shi’’ Urban Agglomeration, with color gradients in-
dicating elevation (red: high; blue: low; range: 281.584–5337.77 m). Black dots represent the locations of
air quality monitoring stations used in this study. Both panels include a north arrow and scale bar for spa-
tial reference.

Full-size DOI: 10.7717/peerj.20430/fig-1

provide partial temporal coverage, while most satellite-derived datasets suffer from cloud
contamination or short time spans. The CHAP dataset (Wei et al., 2020; Wei et al., 2021a;
Wei et al., 2021b; Wei et al., 2022) addresses this limitation by fusing MODIS multi-angle
aerosol products, ground monitoring records, and high-quality emission inventories using
AI-based algorithms. Covering 2000–2022 at one km resolution, CHAP achieves R2 > 0.67
in arid regions and incorporates recent algorithmic improvements that enhance accuracy
for dust-laden conditions. The dataset enables consistent tracking of PM2.5, PM10, and O3

trends over two decades, providing a robust basis for evaluating policy effectiveness and
climatic influences.

In this study, we leverage CHAP data in conjunction with multi-source meteorological
datasets to analyze long-term spatial and temporal patterns of PM2.5, PM10, and O3 in
the ‘‘U-Chang-Shi’’ agglomeration from 2000–2022. We investigate the interrelationships
between pollutant dynamics, emission evolution—including insights from carbon emission
modeling—and meteorological drivers, as well as cross-border transport impacts. Finally,
we propose targeted measures emphasizing coordinated management of air pollutants and
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carbon emissions, thereby offering practical policy guidance for arid-zone megaregions
under the Belt and Road framework.

MATERIALS & METHODS
Air pollutant data
Air pollutant concentrations (PM2.5, PM10, O3) were sourced from the CHAP dataset
(2000–2022), developed through artificial intelligence-based fusion of MODIS multi-
angle aerosol products with ground monitoring and emission inventory data (Wei et al.,
2020; Wei et al., 2021a; Wei et al., 2021b; Wei et al., 2022). This 1-km resolution dataset,
maintained by the University of Maryland research team and archived at the National
Tibetan Plateau Science Data Center (NTPDC), addresses spatial gaps in conventional
satellite retrievals.

Meteorological data
The 1-km resolution precipitation and temperature datasets (Peng et al., 2017a; Ding
& Peng, 2020; Peng et al., 2019; Peng et al., 2017b) were constructed using Delta spatial
downscaling methodology, integrating global climate products from the Climate Research
Unit (CRU; 0.5◦ resolution) and WorldClim (high-resolution). These datasets underwent
rigorous validation against observations from 496 meteorological stations across mainland
China (including Hong Kong, Macao, and Taiwan) with demonstrated reliability. Spatial
coverage excludes South China Sea islands but maintains continental continuity at
0.0083333◦ resolution (∼1 km).

Monthly potential evapotranspiration (PET) estimates were derived fromChina-specific
1-km temperature datasets (mean, min, max) archived at NTPDC (Peng et al., 2017a; Ding
& Peng, 2020; Peng et al., 2019; Peng et al., 2021). Monthly PET was estimated using the
Hargreaves formula. Daily wind speed data were obtained from NOAA’s National Centers
for Environmental Information (NCEI). These station-based observations were then
interpolated into a continuous national-scale raster dataset at a daily resolution using the
Inverse Distance Weighting (IDW) algorithm, based on the geographic coordinates of the
stations. Combining with administrative area of prefecture-level city crossing nationwide,
after obtaining the statistic value of each station wind power density every day, then getting
a day average velocity values of prefecture-level city in one day, month mean velocities got.

Normalized difference vegetation index data
The NDVI was derived from Landsat 5/7/8/9 imagery (2000–2022) via the Google Earth
Engine platform. Annual maximum NDVI values were extracted at 30 m spatial resolution
after preprocessing and smoothing, with outputs stored in GeoTIFF format (Didan, 2015).

Coefficient of determination
The coefficient of determination (R2) quantifies the proportion of variance in observational
data explained by model simulations, and is defined as:

R2
= 1−

∑n
i=1(yi− ŷi)

2∑n
i=1(yi−y)2

(1)
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where (yi) denotes the in-situ measurements from observational stations (PM2.5, PM10,
O3), (ŷi) represents the CHAP dataset, (y) is the mean of observational data, and n is
the sample size. The numerator, residual sum of squares (RSS), measures the discrepancy
between the CHAP dataset and observations, while the denominator, total sum of squares
(TSS), reflects the natural variability of observations.

Spearman correlation analysis
Spearman correlation analysis is a non-parametric statistical method for quantifying
monotonic relationships between variables, which centers on calculating correlations
from variable rank order (rather than raw values) and is applicable to non-linear or
non-normally distributed data. The method effectively eliminates the effects of outliers
and data distribution patterns by converting the data into rank series, and is able to
robustly reveal trend consistency among variables (Spearman, 1904). Given its robustness
to non-normal data and outliers, Spearman correlation analysis is widely applied in
environmental science to uncover non-linear relationships between diverse geographical
factors (Biswas, Chatterjee & Chakraborty, 2020; Zhang et al., 2015).

Within this research, the Spearman rank correlation coefficient (ρ) was employed to
measure the magnitude and trend of monotonic relationships between PM2.5, PM10, O3

concentrations and meteorological parameters, respectively. The statistical significance
was set at a p-value threshold of less than 0.05. The analyses were carried out using SPSS
software, and the visualization was completed through Origin.

R=
∑N

i=1
(
Xi−Xi

)(
Yi−Yi

)√∑N
i=1
(
Xi−Xi

)2√∑N
i=1
(
Yi−Yi

)2 (2)

where: R is the correlation coefficient; Xi is the pollutant concentration in month i,
µg/m3; Xi is the average of the pollutant concentration in all months; Yi is the value of
meteorological elements in month i (when Y is precipitation, temperature, PET, wind
speed, the unit is mm, ◦C, mm, m/s, respectively); Yi is the average value of meteorological
elements (the unit is the same as the above); N is the time series length (2000–2022).

Grey relational analysis
Grey relational analysis (GRA) quantifies inter-factor associations by evaluating geometric
similarity between data sequences (i.e., the proximity of curve variation trends), where
higher relational grades indicate more consistent dynamic changes between paired
sequences (Deng, 1982). In this study, grey relational analysis was employed to assess
dynamic correlations between pollutant concentrations and key meteorological factors.
The analytical procedure involved three sequential steps: first, original data underwent
normalization to eliminate dimensional discrepancies. Subsequently, grey relational grades
were computed using MATLAB (TheMathWorks, Natick, MA, USA) with a distinguishing
coefficient set at 0.5. The resultant ranking of relational grades facilitated identification
of dominant meteorological factors, which were then cross-validated against correlation
analysis results. This methodological implementation strictly adhered to standardized
protocols in grey system theory while maintaining compatibility with conventional
statistical approaches.
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ζi(k)=
minimink

∣∣y(k)−xi(k)∣∣+ρmaximaxk
∣∣y(k)−xi(k)∣∣∣∣y(k)−xi(k)∣∣+ρmaximaxk

∣∣y(k)−xi(k)∣∣ (3)

ri=
1
n

n∑
k=1

ζi(k) (4)

where ζ i(k) is the grey relational coefficient; ri is the degree of grey relational grade. y(k) is
the normalized parameter value; xi(k) is the normalized comparison value, i is the number
of comparison arrays (i= 1, 2...n), and k is the number of indicators for each comparison
object (k = 1,2, . . . , m); ρ is the discrimination coefficient, which usually takes the value
of 0.5; based on the results of previous research (Liu, Zhang & Li, 2018), the interval of the
correlation value is divided into the degree of strength of the correlation, with [1, 0.8] as
strong, (0.8, 0.6) as stronger, (0.6, 0.4) as moderate, (0.4, 0.2) as weaker, and [0.2, 0) as
weak.

The Theil–Sen estimator
The slope n of pairs of data points was estimated using the Theil–Sen (TS) estimator (Sen,
1968; Theil, 1992), which is given by Eq. (5).

TS=Median
(
xi−xj
ti− tj

)
(5)

where xi and xj are data values at times ti and tj(i> j), respectively. The slope that was
calculated by the TS estimator is a robust estimate of themagnitude of a trend, and the use of
the TS slope provides the special benefit of the rejection of inter-annual variability (Neeti &
Eastman, 2011). This study employed the MK trend test, which assesses the similarity level
between two sets of rankings assigned to the same set of objects. As indicated in references
(Kendall, 1938;Hirsch, Slack & Smith, 1982;Valz & McLeod, 1990; Lanzante, 1996), this test
relies on the number of inverted object pairs needed to convert one ranking order into the
other. The data were first ranked according to the temporal sequence. Subsequently, each
data point was sequentially taken as a reference point and compared with all subsequent
data points in the time series, as described in reference (Douglas, Vogel & Kroll, 2000). A
key challenge in applying time series analysis effectively lies in distinguishing between a
genuine change in a remotely sensed variable (such as a vegetation index) and the presence
of scene noise (such as smoke or cloud contamination), as noted in reference (Neeti et al.,
2012).

The Mann–Kendall trend test
The Mann–Kendall (MK) trend test is designed to determine the existence of trends for
each time scale independently. This test involves calculating the MK statistic (S) using
the formulas in Eqs. (5) and (6), as cited in references (Dietz & Killeen, 1981; De Beurs &
Henebry, 2004; De Jong et al., 2011; Sobrino & Julien, 2011).
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S=
n−1∑
k=1

n∑
j=k+1

sgn(xj−xk) (6)

sgn(xj−xk)=


−1, xj−xk< 0
0, xj−xk= 0
1, xj−xk> 0

(7)

Here, xj and xk denote the data points at time j and k(j > k) respectively, and n represents
the total number of data points. However, to statistically measure the significance of the
trend, it is essential to calculate the probability associated with the statistic S and the sample
size n. When n ≥ 10, the statistic: S approximately follows a normal distribution, with its
mean and variance defined by Eq. (7), as stated in references (De Beurs & Henebry, 2004;
An, 2007).

Var(s)=
n(n−1)(2n+5)

18
(8)

Z=


S−1
√
Var(S)

, S> 0

0, S= 0
S+1
√
Var(S)

, S< 0

(9)

In this context, S represents the test statistic, Z is the standardized test statistic, and n
signifies the length of the time series. At a specified significance level ε, when |F| > F1-ε/2,
the time series data show a distinct change trend. In this study, temporal trends are
considered significant when F < −1.96 or F > 1.96. The Z statistic follows the standard
normal distribution: a positive value implies an upward trend, while a negative value
indicates a downward trend.

HYSPLIT trajectory simulation analysis
HYSPLIT is a commonly used model for analyzing pollutant distribution laws and
transportation in the atmosphere, which is constructed by the NOAA of the United States
(Draxler & Hess, 1998). The model adopts Lagrangian particles diffusing and Eulerian grids
dispersing methods to realize three-dimensional air flow paths and quantify pollutants’
diffusion, dilution, wet dry deposition etc., based on trajectory calculation engine and
diffusion prediction module, which can perform analysis from an hour’s scale up to
seasons, taking meteorological data at different scales. In this experiment, global forecast
meteorology data driven model with lateral space interval 0.25 × 0.25◦ and vertical layer
stratification number 38, describing mid-latitude atmospheric circulation conditions in
Eurasia under winter weather, was selected. There are release height AGL such as 500 m
green color, 1,000 m blue color, 3,000 m red color in our experiments for two-way
propagation processes between seven days’ back tracing and predictive steps further along
(Rolph, Stein & Stunder, 2017).
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Figure 2 Research framework. The flowchart outlines the integrated methodology, which consists of
three main phases: (1) Data Collection and Preprocessing, involving the acquisition of long-term (2000–
2022) air pollutant concentrations (PM2.5, PM10, and O3) from the ChinaHighAirPollutants (CHAP)
dataset, meteorological data (temperature, potential evapotranspiration (PET), wind speed, NDVI, and
precipitation), and validation data from national-controlled monitoring stations; (2) Analysis and Model-
ing, which includes dataset accuracy verification (using the Coefficient of Determination, R2), spatiotem-
poral trend analysis (using the Theil–Sen estimator and Mann–Kendall test), analysis of driving mecha-
nisms (using Spearman correlation and Grey Relational Analysis), and air mass trajectory analysis (using
the HYSPLIT model); and (3) Results and Applications, aimed at generating policy-relevant insights on
pollutant distributions, meteorological drivers, trans-boundary transport pathways, and regional coordi-
nated governance strategies. Arrows indicate the sequential flow and integration of analytical steps.

Full-size DOI: 10.7717/peerj.20430/fig-2

The overall research design and the integrated methodological workflow employed in
this study are summarized in Fig. 2. This schematic illustrates the sequential process from
multi-source data acquisition and preprocessing to the application of statistical analyses
and models, culminating in the final results and conclusions.

RESULTS
Dataset accuracy verification
This study takes the U-Chang-Shi urban agglomeration as the study area, and there are 12
state-controlled stations in this area, namely, seven monitoring stations in Urumqi, seven
monitoring stations in Xinjiang Academy of Agricultural Sciences farms, monitoring
stations, railway bureau, 31st middle school, 74th middle school, Midong District
Environmental Protection Bureau and fee collection office, three monitoring stations
in Changji Prefecture, two monitoring stations in Sunshine School and Aiqing Poetry
Hall, and two monitoring stations in Shihezi City, and the Agricultural Water Building
in Wujiaqu. Three monitoring stations in Changji Prefecture; two monitoring stations
in Shihezi City, at the Sunshine School and the Aiqing Poetry Hall; and the Agricultural
and Water Building in Wujiaqu, We first validated this dataset by linearly fitting the
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Figure 3 Linear fitting results between CHAP datasets and ground-based air quality monitoring data.
(A–L) Shows the relationship between a specific CHAP product (1490A, 1491A, 1492A, 1493A, 1494A,
1496A, 2690A, 2691A, 2692A, 2709A, 2710A, 2711A) and corresponding measurements from air quality
monitoring stations. Blue dots represent observed values from monitoring stations. The solid blue line
indicates the linear fit of ‘‘A’’ station data; the red dashed line denotes the 95% prediction band for ‘‘A’’
station. The green dashed line represents the 95% prediction band for ‘‘B’’ station; the solid green line
shows the linear fit of ‘‘B’’ station data. Each subplot includes statistical parameters such as equation, in-
tercept, slope, residual sum of squares, Pearson’s r, R-square (COD), and adjusted R-square to evaluate
the goodness-of-fit.

Full-size DOI: 10.7717/peerj.20430/fig-3

PM2.5 dataset for December 2018, January 2019, and February 2019, as well as July,
August, and September 2019, to the air quality values provided by the China Air Quality
Online Monitoring and Analysis Platform (https://www.cnemc.cn/). Prior to the fitting, we
sampled and extracted the values of the Tif images of the dataset at the coordinates of the
12 state-controlled stations in the study area using Arcgis software. From the fitting results
of each station (Fig. 3), the R2 values range from 0.67 to 0.99.

This R2 range can indicate that the independent variable explains the dependent variable
to a high degree and the fitting effect is significant. It can be proved that the CHAP dataset
of the University of Maryland has a good applicability within the U-Chang-Shi region in
the interior of the arid zone.

Monthly and seasonal spatial distribution characteristics of air
pollutants
As shown in Figs. 4 and 5, observational data indicate a clear seasonal pattern in O3

concentrations in the U-Chang-Shi region. The monthly mean concentrations increase
significantly from late spring to summer (April–August), from approximately 92.15 µg/m3

in April to a yearly maximum of 144.86 µg/m3 in July and 145.27 µg/m3 in August.
This represents an overall increase of nearly 58% from April to midsummer. In contrast,
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Figure 4 Monthly spatial distribution of O3 concentrations in the ‘‘U-Chang-Shi’’ Urban Agglomera-
tion from January to December. (A–L) Represents one month, with color gradients indicating O3 levels
ranging from low (10 µg/m3, blue tones) to high (180 µg/m3, red tones). The black arrow indicates north
direction, and the scale bar at the bottom left denotes a distance of 480 kilometers for spatial reference.
These maps collectively illustrate the temporal and spatial patterns of O3 concentration across the region.

Full-size DOI: 10.7717/peerj.20430/fig-4

O3 concentrations in autumn and winter seasons (September–December) remain much
lower, with monthly means dropping from 89.47 µg/m3 in September to 57.29 µg/m3 in
November and as low as 14.02 µg/m3 in December, representing more than an 84% decline
compared to the summer peak.

Spatially, the high-concentration zones (above 130µg/m3) in summer cover themajority
of the region, particularly in industrial areas with intensive NOx and (Volatile Organic
Compounds (VOC) emissions. Winter maps show extensive low-concentration zones
(below 30 µg/m3) dominated by blue and light-yellow areas. The most polluted period
appears in summer, followed by spring, while autumn and winter exhibit the lowest levels.

The spring transitional period (March–May) shows a steady increase (from 84.37 µg/m3

in March to 97.84 µg/m3 in May, a rise of ∼16%). Once autumn temperatures begin to
drop (September–November), mean O3 concentrations fall sharply (>35% within two
months).

Overall, the intra-annual fluctuation inO3 concentrationwithin this region is substantial,
ranging from 14 µg/m3 to 145 µg/m3.

These large variations indicate that multiple factors influence air quality: in addition
to local industrial production, transportation emissions, and human activities, long-range
transport of pollutants also contributes to the observed O3 levels. This seasonal pattern
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Figure 5 Seasonal spatial distribution of O3 concentrations in the ‘‘U-Chang-Shi’’ Urban Agglomera-
tion. (A–D) Represent spring, summer, autumn, and winter, respectively. The color gradient indicates O3

concentration levels, ranging from low (25 µg/m3, blue tones) to high (140 µg/m3, red tones). The black
arrow in the top-left corner of each subplot indicates north direction, and the scale bar at the bottom left
denotes a distance of 320 km for spatial reference. These maps collectively illustrate the seasonal variations
in O3 spatial patterns across the region.

Full-size DOI: 10.7717/peerj.20430/fig-5

is consistent with earlier findings (An, 2007), confirming that O3 pollution reaches its
maximum intensity in summer, moderate in spring, and minimal in autumn–winter
periods. The spring transitional rise is probably due to gradually rising temperatures
and increasing VOC emissions. The rapid autumn decline is driven by the reduction of
photochemical reaction rates.

The monitoring results (Figs. 6 and 7) show that the winter season (December–
February) is the most polluted period in the U-Chang-Shi region. In January, the mean
concentration at Changji reached 171 µg/m3, representing the highest recorded value.
High-value contamination zones (>150 µg/m3) appear in western Shihezi, central Urumqi,
northwestern Changji, the northern part of Shawan, and the southern part of Wujiaqu
during winter.

For particulate matter, spring is the cleanest season: may recorded a mean concentration
of 31.52 µg/m3, which is about 40% lower than March (52.67 µg/m3). Summer
concentrations are mostly under 30 µg/m3—over 80% lower than the January peak.
Autumn values gradually rebound from 30.15 µg/m3 in September to 46.38 µg/m3 in
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Figure 6 Monthly spatial distribution of PM2.5 concentrations in the ‘‘U-Chang-Shi’’ Urban Agglom-
eration from January to December. (A–L) Represents one month, with color gradients indicating PM2.5

levels ranging from low (10 µg/m3, blue tones) to high (175 µg/m3, red tones). The black arrow in the
top-left corner of each panel indicates north direction, and the scale bar at the bottom left denotes a dis-
tance of 500 km for spatial reference. These maps collectively illustrate the temporal and spatial patterns of
PM2.5 concentration across the region.

Full-size DOI: 10.7717/peerj.20430/fig-6

November, an increase of nearly 50%. Across the year, PM2.5 fluctuates between 14 and
171 µg/m3.

Such seasonal variation is directly linked to meteorological conditions, emission
intensities, and the effect of topography in trapping pollutants during the stagnant winter
period. The winter peaks are influenced by heating activities and unfavorable atmospheric
dispersion, while the low concentrations in summer are aided by stronger mixing and
precipitation scavenging.

Figures 8 and 9 show that PM10 concentrations also peak during winter, with the highest
value (225 µg/m3) measured in Urumqi in January, and the lowest value (43 µg/m3) in
July. Spring mean concentrations decreased by 13.53% fromMarch to May, while autumn
increased by 17.75% from September to November. The seasonal sequence is winter
> spring > autumn > summer. During spring, an unusual high-value PM10 zone is visible
at the border between southeastern Urumqi and Turpan, while most of the rest of the
region has moderate levels.

The higher PM10 levels in spring and autumn compared to PM2.5 are due to the
significant contribution of coarse particles, including dust events and soil particles.
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Figure 7 Seasonal spatial distribution of PM2.5 concentrations in the ‘‘U-Chang-Shi’’ Urban Agglom-
eration. (A–D) Represent spring, summer, autumn, and winter, respectively. The color gradient indicates
PM2.5 concentration levels, ranging from low (5 µg/m3, blue tones) to high (150 µg/m3, red tones). The
black arrow in the top-left corner of each subplot indicates north direction, and the scale bar at the bot-
tom left denotes a distance of 300 km for spatial reference. These maps collectively illustrate the seasonal
variations in PM2.5 spatial patterns across the region.

Full-size DOI: 10.7717/peerj.20430/fig-7

The distinctive southeastern Urumqi–Turpan high-value zone is likely linked to local
topography, prevailing wind directions, and dust source proximity.

Annual concentration trends and statistical characteristics of air
pollutants
Figure 10 presents a comprehensive analysis of the spatiotemporal evolution of PM2.5

and PM10 concentrations in the ‘‘U-Chang-Shi’’ region from 2000 to 2022. Figure 10A
illustrates the interannual variability of PM2.5 concentrations in the ‘‘U-Chang-Shi’’
region from 2000 to 2022. Over this 22-year period, annual mean PM2.5 levels exhibited
a fluctuating decline, decreasing from 50.18 µg/m3 in 2000 to 40.26 µg/m3 in 2022
(17.92% reduction). Concurrently, PM10 concentrations followed a similar trajectory,
declining from 102.33 µg/m3 to 77.67 µg/m3 (24.09% reduction; see Fig. 10B). Notably,
both pollutants displayed synchronized temporal patterns, with peaks observed in 2012
followed by substantial reductions post-2015.

City-specific analyses revealed heterogeneous trends from 2000 to 2022. PM2.5 and PM10

concentrations decreased significantly in Urumqi (by 41.21% and 43.72%, respectively),
Shawan (30.83% and 34.10%), and Changji (22.83% and 26.83%). In contrast, the declines
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Figure 8 Monthly spatial distribution of PM10 concentrations in the ‘‘U-Chang-Shi’’ Urban Agglomer-
ation from January to December. (A–L) Represents one month, with color gradients indicating PM10 lev-
els ranging from low (30 µg/m3, blue tones) to high (225 µg/m3, red tones). The black arrow in the top-
left corner of each panel indicates north direction, and the scale bar at the bottom left denotes a distance
of 500 km for spatial reference. These maps collectively illustrate the temporal and spatial patterns of PM10

concentration across the region.
Full-size DOI: 10.7717/peerj.20430/fig-8

in Shihezi were much smaller, with a PM10 reduction of only 4.49%. Notably, Wujiaqu
was an exception, experiencing a 10.09% increase in PM2.5 with its PM10 level remaining
largely stable (a slight decrease of 1.57%).

The temporal dynamics of PM2.5 from 2000 to 2022 exhibited three distinct phases
(Fig. 10C): a period of irregular increase until 2012, a sharp decline from 2013 to 2015,
and a steady decrease following a brief rebound in 2016. Wujiaqu City constituted an
exception to this regional pattern, showing a continuous upward trend. Similarly, PM10

concentrations followed a comparable trajectory, characterized by a primary peak between
2012 and 2014, a decrease around 2017, and a sustained decline thereafter (Fig. 10D).

From the perspective of Urumqi’s regional air pollution and environmental
management, 2012 was the peak of regional pollutant concentration average, and the
beginning of air pollution and environmental management focus. ‘‘Coal to gas’’ project
began to implement, Urumqi City in six months to complete the transformation of 12,900
tons of steam tons, the particulate matter (PM2.5, PM10) can also be seen in the graph of a
significant decline. In the process of pollution management, 2016, 2017 particulate matter
(PM2.5, PM10) appeared in the concentration value of the phenomenon of a small rebound
after the timely containment, and strong, effective management of pollutants, and after
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Figure 9 Seasonal spatial distribution characteristics of PM10 concentration. The seasonal spatial dis-
tribution of PM10 concentration in a study area. It contains four subplots corresponding to spring, sum-
mer, autumn, and winter, respectively. The color gradient represents PM10 concentration levels, with a
range from low (51 µg/m3, blue tones) to high (192 µg/m3, red tones), and the unit is µg/m3. The black
arrow in the top - left corner of each subplot indicates the north direction, and the scale bar at the bottom
left (labeled ‘‘300 KM’’) serves as a spatial scale reference. These maps collectively illustrate the seasonal
variations in the spatial distribution of PM10.

Full-size DOI: 10.7717/peerj.20430/fig-9

2020 leveled off. This shows that the remediation of the atmospheric environment has
achieved gradual results.

Figure 11 illustrates the contrasting temporal dynamics of O3 concentrations across the
study region. As summarized in the heatmap (Fig. 11A), O3 levels remained relatively stable
from 2000 to 2016, with annual variations ranging from −0.14% to +0.6%. During this
period, Shihezi andWujiaqu consistently exhibited lower baseline concentrations compared
to other urban centers. A notable regime shift occurred after 2016, as clearly depicted in
the temporal trend analysis (Fig. 11B), marked by accelerated growth rates of 4.2–4.6%
annually during 2017–2022. The trend graph particularly highlights anomalous spikes in
2017, with Urumqi and Shihezi experiencing increases of 7.1% and 16.7% respectively—a
pattern potentially linked to extreme thermal episodes or intensified industrial activity.
Although a transient decline emerged in 2020, the post-2016 upward trajectory remained
unaltered, with all cities exceeding 7% annual growth during peak phases. The persistent
growth momentum observed after 2016, especially the rapid increase starting in 2017
shown in Fig. 11B, appears largely unabated. This trend may be attributed to the surge in
industrial emissions in recent years. For instance, the commissioning of the chemical park
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Figure 10 Interannual trends and annual mean concentration variation characteristics of PM2.5

and PM10. (A) Heatmap of annual mean PM2.5 concentrations (µg/m3) across five cities (Changji,
Urumqi, Shawan, Shihezi, and Wujiaqu). Color intensity scales with concentration magnitude, ranging
from∼30 µg/m3 (lightest) to∼60 µg/m3 (darkest). (B) Heatmap of annual mean PM10 concentrations
(µg/m3) for the same five cities. The color gradient represents concentrations from∼60 µg/m3 (lightest)
to∼130 µg/m3 (darkest). (C) Interannual variation of PM2.5 concentrations. Trend lines are colored
by city: Changji (gray), Urumqi (red), Shawan (blue), Shihezi (green), Wujiaqu (purple). The gold
line represents the regional average. (D) Interannual variation of PM10 concentrations, following the
same color scheme and location correspondence as panel (C). All panels share the same horizontal axis
representing the study period from 2000 to 2022. Vertical axes in (C) and (D) show concentration values
in µg/m3.

Full-size DOI: 10.7717/peerj.20430/fig-10

in Shihezi City in 2017, as reflected in the notable 16.7% concentration increase for that
year, provides a plausible explanation for the observed spatial–temporal pattern.

Spatial distribution patterns of multi-year average pollutant
concentrations
Figure 12A reveals pronounced spatial heterogeneity in multi-year average PM2.5

concentrations (2000–2022) across the ‘‘U-Chang-Shi’’ region, with values ranging from a
minimumof 30.70µg/m3 in the southernmountainous areas to amaximumof 75.90µg/m3

inUrumqi’smetropolitan core. High-value zones (>70µg/m3) form a contiguous east–west
corridor stretching from Urumqi through Changji Jundong to Shihezi, corresponding to
regions of dense population, intensive industrial activity, and heavy traffic emissions.
Areas with medium concentrations (50–65 µg/m3) are primarily located in northwestern
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Figure 11 Map of O3 interannual trend (A) and annual mean concentration variation characteristics
(B). (A) Temporal variation of O3 concentrations (µg/m3) across five urban areas and the regional
average from 2000 to 2025. Trends are indicated by distinct colored lines: Changji (gray), Urumqi (red),
Shawan (blue), Shihezi (green), Wujiaqu (purple), and the regional average (gold). Note: data from 2023
to 2025 represent projected or extrapolated values. (B) Heatmap of annual mean O3 concentrations
(µg/m3) for the five cities from 2000 to 2022. Color intensity corresponds to concentration magnitude,
ranging from≈ 70 µg/m3 (lightest) to≈ 105 µg/m3 (darkest), as quantified in the adjacent color
bar.Together, these panels highlight both long-term trends and fine-scale spatial heterogeneity in O3 levels
across the region.

Full-size DOI: 10.7717/peerj.20430/fig-11

Changji, Shawan, and Wujiaqu, while low-value zones (<40 µg/m3) are distributed mainly
in peripheral natural landscapes, particularly the high-altitude southern mountains where
cleaner air is maintained due to strong atmospheric dispersion and limited anthropogenic
sources.

This stark north–south gradient reflects the combined influence of topography—with
mountain ranges acting as barriers to pollutant transport—and land-use patterns, where
urban-industrial belts generate persistent PM2.5 hotspots, contrastingwith the low-emission
natural terrain in the south.

Figure 12B illustrates the multi-year (2000–2022) average spatial distribution of PM10 in
the ‘‘U-Chang-Shi’’ region, with concentrations ranging from a minimum of 71.80 µg/m3

in the southern mountainous areas to a maximum of 142.82 µg/m3 in the core urban
zone of Urumqi. High-concentration zones (>130 µg/m3) form a continuous pollution
belt encompassing Urumqi, Shihezi, and Wujiaqu, and extending to the Urumqi–Turpan
border. Surrounding areas show a gradual decrease in concentration toward the south
of the Wuquan Canal, with markedly lower values (<85 µg/m3) south of the Shawan
Mountain range.

A particularly notable anomaly is evident in the southeastern Urumqi mountain area,
where PM10 levels remain unexpectedly high (∼125–135 µg/m3), a feature absent in other
particle size distribution maps. This anomaly is possibly related to complex topography—
alternating high valleys and low hollows with vegetation (e.g., poplar forests) and sulfur-rich
geological zones. Under such terrain conditions, airflows shift abruptly, especially near
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Figure 12 Spatial distribution of multi - year average concentrations of PM2.5 and PM10. The spatial
distribution of multi-year average concentrations of PM2.5. and PM10, containing two subplots: (A) PM2.5

Annual Average Concentration Spatial Distribution Map . The color gradient represents PM2.5 concentra-
tion levels, ranging from low (30.7 µg/m3, blue tones) to high (75.9 µg/m3, red tones), with the unit be-
ing µg/m3. The black arrow in the top-right corner indicates the north direction, and the scale bar at the
bottom (labeled ‘‘0–180 KM’’) provides a spatial scale reference. (B) PM10 Annual Average Concentra-
tion Spatial Distribution Map. The color gradient represents PM10 concentration levels, ranging from low
(71.80 µg/m3, blue tones) to high (142.82 µg/m3, red tones), with the unit being µg/m3. The black ar-
row in the top-right corner indicates the north direction, and the scale bar at the bottom (labeled ‘‘0–180
KM’’) provides a spatial scale reference. Collectively, the figure depicts the spatial variation of multi-year
average PM2.5 and PM10 concentrations across the study area.

Full-size DOI: 10.7717/peerj.20430/fig-12

nightfall, when cold air descends the slopes and accumulates in valley floors, forming a
stable stratification that traps particulates.

This persistent spatial pattern—urban-industrial hotspots contrasting against cleaner
high-altitude southern regions—highlights the combined influence of anthropogenic
emissions and terrain-driven atmospheric processes in shaping PM10 distributions.

Figure 13 shows that, compared to PM2.5 and PM10, elevated O3 concentrations occupy
a more extensive and clearly defined spatial range across the ‘‘U-Chang-Shi’’ region, with
values ranging from 62.70 µg/m3 to a maximum of 96.50 µg/m3. The highest O3 levels
are concentrated in the southeastern part of Urumqi—particularly in areas adjacent to
Turpan City—and the southern part of Changji City, where average concentrations exceed
90 µg/m3.

Medium-value regions (approximately 75–85 µg/m3) are typically adjacent to these
hotspots, extending along the southwestern mountainous zones near the northern foothills
of the Tianshan Mountains. These areas present sharp concentration boundaries following
the topographic transitions in the mountainous terrain.

In contrast, low-value areas (<70 µg/m3) are primarily located in the central ‘‘U-
Chang-Shi’’ region, including the main urban core of Urumqi, where complex interactions
between atmospheric dynamics and precursor emissions limit O3 accumulation compared
to surrounding elevated zones.

The spatial gradient—high values in the topographically elevated southern margins and
low values in central depressions—reflects the influence of terrain-driven meteorological
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Figure 13 Spatial distribution of O3 multi-year averages. The spatial distribution of annual average
ozone (O3) concentration. The color gradient represents O3 concentration levels, ranging from low (62.7
µg/m3, blue tones) to high (96.5 µg/m3, red tones), with the unit being µg/m3. The black arrow in the
top - right corner indicates the north direction, and the scale bar at the bottom right (labeled ‘‘0–180
KM’’) provides a spatial scale reference for the study area. This map illustrates the spatial variation of
annual average O3 concentration across the region.

Full-size DOI: 10.7717/peerj.20430/fig-13

processes (e.g., enhanced photochemical activity in high-altitude, sun-exposed slopes)
combined with local precursor distribution patterns.

MK trend of air pollutants
Overall, the TS Slope values (Fig. 14B) exhibit a high consistency with the MK-Z values of
PM2.5 (Fig. 14A) in terms of spatial distribution. The central and northern regions show a
larger slope, and the MK-Z is significantly positive (|Z| ≥ 1.96, corresponding to p< 0.05),
reflecting a significant increasing trend in PM2.5 concentration, with the maximum annual
increase reaching up to 4.04 µg m−3 yr−1. In the southern and southwestern mountainous
areas, the slope is negative and the MK-Z is significantly negative (p< 0.05), indicating a
significant decreasing trend, with the maximum annual decline reaching −4.80 µg m−3

yr−1. Some marginal and central areas show Z values close to 0 (|Z|< 1.96, corresponding
to p≥ 0.05), indicating that the change trends are statistically insignificant. Notably, the
MK-Z values and TS Slope values in the Uga District and Shihezi City are both at a high
level, and the significance test (p< 0.05) reflects that PM2.5 concentrations in these areas
have significantly increased in recent years.
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Figure 14 Per-Pixel Mann–Kendall Z values and Theil–Sen (TS) slope values of PM2.5 and PM10 from
2000 to 2022. The per-pixel trend analysis results for PM2.5 and PM10 concentrations from 2000 to 2022,
using the Mann–Kendall test and Theil–Sen (TS) estimator, with four subplots: (A) Mann–Kendall Z
value map for PM2.5. The color gradient (ranging from low:−4.80 to high: 4.04) indicates the significance
of PM2.5 temporal trends (positive Z values denote statistically significant increasing trends, negative Z
values represent significant decreasing trends, and values near zero imply non-significant trends). (B) TS
slope map for PM2.5. The color gradient (ranging from low:−1.41 to high: 0.92 µg m−3 yr−1) reflects the
magnitude and direction of PM2.5 concentration change over time (positive TS slope values signify in-
creasing trends, negative values indicate decreasing trends). (C) Mann–Kendall Z value map for PM10.
The color gradient (ranging from low:−4.25 to high: 3.11) indicates the significance of PM10 temporal
trends (interpreted as for PM2.5 in (A)). (D) TS slope map for PM10. The color gradient (ranging from
low:−3.11 to high: 0.99 µg m−3 yr−1) reflects the magnitude and direction of PM10 concentration change
over time (interpreted as for PM2.5 in (B)). In all subplots, the black arrow indicates the north direction,
and the scale bar (labeled ‘‘0–100 Kilometer’’) provides a spatial reference for the study area.

Full-size DOI: 10.7717/peerj.20430/fig-14

The TS Slope values (Fig. 14D) and MK-Z values of PM10 (Fig. 14C) exhibit broadly
consistent spatial patterns. In the central–northern part of the region, both TS Slope values
are positive and MK Z values are significantly positive (|Z | ≥ 1.96, p < 0.05), indicating a
statistically significant increasing trend, with annual growth rates reaching up to 3.11 µ g
m−3 yr−1. In the southern and southwestern mountainous areas, TS Slope values are
negative and MK Z values are significantly negative (p < 0.05), reflecting a significant
decreasing trend, with the largest decline reaching −4.25 µg m−3 yr−1. In some marginal
and central areas, MK Z values are close to zero (|Z | < 1.96, p ≥ 0.05) and TS Slope values
are near zero, suggesting statistically insignificant long term changes. Notably, Wujiaqu
City and Shihezi City have both high TS Slope values and significantly positive MK Z values
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Figure 15 (A) Per-pixel Mann–Kendall Z value and (B) TS slope value of O3 from 2000 to 2022. (A)
Mann–Kendall Z -value map showing the statistical significance of temporal trends in O3 concentrations.
Positive Z -values (warm colors) indicate increasing trends, while negative values (cool colors) indicate
decreasing trends. |Z |> 1.96 corresponds to a statistically significant trend (p < 0.05). The color gradi-
ent ranges from –1.13 to 5.70. (B) Theil–Sen slope map illustrating the magnitude of O3 concentration
change over time. Values represent the estimated slope of change in µg m−3 yr−1, with positive values (or-
ange/red) indicating an increase and negative values (blue) a decrease. The slope values range from –0.30
to 3.35 µg m−3 yr−1. Both maps are overlain on a base map of the study region and include a scale bar (0–
100 KM) and north arrow for spatial reference.

Full-size DOI: 10.7717/peerj.20430/fig-15

(p < 0.05), highlighting a pronounced and statistically significant upward trend in these
areas.

Figure 15 presents the spatial heterogeneity in both the statistical significance and
magnitude of O3 concentration trends across the study region from 2000 to 2022. As
shown in Fig. 15A, the per-pixel MK-Z values analysis reveals a distinct north–south
divergence in trend significance. Significantly increasing O3 trends (Z ≥ 1.96, p< 0.05) are
observed in the northeastern parts of Changji and Urumqi, as well as in central Shawan,
while significantly decreasing trends (Z ≤ −1.96, p< 0.05) dominate the southern and
western regions. The central and transition zones show no significant trend (|Z |<1.96,
p≥ 0.05). Figure 15B complements this by quantifying the rate of change via the TS Slope,
with high values (up to 3.35 µg m−3 yr−1) in the central and northeastern areas and low
to negative values (down to−0.30 µg m−3 yr−1) in the south and southwest. Regions with
significant Z -values but modest slopes reflect gradual yet persistent O3 increases, whereas
areas combining high significance and large slopes indicate rapid, substantial changes.
This spatial pattern underscores the influence of regional-specific drivers on O3 pollution
dynamics.

In regions where MK-Z values indicate significant increases but TS Slope values remain
relatively low, the trend represents a gradual yet significant increase. This may be attributed
to steady growth in emission source intensity or inhibition of ozone production by
topographic factors (e.g., mountainous terrain). Conversely, areas with significant MK-Z
decreases but small TS Slope declines exhibit gradual yet significant decreases, potentially
due to stable ecological purification capacity or limited effectiveness ofmitigationmeasures.
In the central urban agglomeration and adjacent areas, both MK-Z and TS Slope values
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approach 0, defining a zone of insignificant trends and slow changes. These regions are
influenced by stable anthropogenic emissions and unaltered natural factors, leading to a
relatively balanced ozone production-depletion dynamic.

Correlation analysis between pollutants and meteorological factors
with GRD
Spearman correlation analysis (Fig. 16A) revealed strong and significant negative
correlations between PM2.5 and NDVI (ρ =−0.89), T, (ρ =−0.87), PET (ρ =−0.83), and
WIND (ρ=−0.77), with P (ρ=−0.71) alsomoderately negatively correlated. These results
suggest that stagnant meteorological conditions—characterized by low PET, low T, weak
Winds, and sparse vegetation—are conducive to PM2.5 retention, while higher precipitation
enhances wet scavenging. GRA results (Fig. 16B) indicated a different emphasis, ranking
P (0.6229) highest, followed by NDVI (0.56846), PET (0.55139), T (0.52758), and WIND
(0.52737), underscoring precipitation’s dominant role in wet deposition and vegetation’s
importance in pollutant capture. To assess robustness, we repeated Spearman analyses
under |ρ| ≥ 0.3 and |ρ| ≥ 0.7 thresholds and compared with GRA rankings. The order of
dominant drivers (precipitation–vegetation–PET) remained consistent, confirming that
our identification of key meteorological factors is stable across analytical approaches and
parameter settings.

Spearman correlation analysis (Fig. 16C) showed that PM10 had the strongest negative
correlations with NDVI (ρ =−0.78) and T (ρ =−0.73), indicating that higher vegetation
coverage and warmer conditions can reduce PM10 levels through interception, adsorption,
and enhanced convection. PET (ρ = −0.67) and WIND (ρ = −0.56) also showed
negative relationships, suggesting that increased atmospheric motion supports pollutant
dispersion, while P (ρ = −0.56) reflected moderate wet scavenging effects. GRA results
(Fig. 16D) ranked P (0.63685) highest, followed by NDVI (0.6056), PET (0.60073),
WIND (0.59184), and T (0.57164), again emphasizing precipitation’s primary role in PM10

removal. Robustness checks using Spearman thresholds of |ρ|≥ 0.3 and |ρ|≥ 0.7 produced
rankings consistent with GRA, with P, vegetation, and PET always emerging as the top
three drivers. This alignment demonstrates that the meteorological influences on PM10 are
stable across different statistical criteria.

Spearman correlation and grey relational analysis (Figs. 17A–17B) together revealed
the main meteorological drivers of O3 variation. PET emerged as the most influential
factor in both methods (ρ = 0.90; GRD = 0.727), indicating a dual role as a monotonic
predictor and a synchronous trend driver, likely reflecting its control over surface energy
balance and photochemical reaction rates.WIND ranked second in importance, with a high
Spearman coefficient (ρ = 0.83) and substantial GRD (0.681), suggesting a near-linear
role in pollutant transport and dispersion. T showed the largest discrepancy between
methods—its high Spearman correlation (ρ = 0.88) contrasted with the lowest GRD
(0.553)—implying that thermally driven photochemical processes may be subject to
non-stationary behavior or temporal variability. P (ρ = 0.66; GRD= 0.695) and NDVI (ρ
= 0.76; GRD= 0.615) both exhibitedmoderate linear correlations but relatively higher grey
relational degrees, suggesting that their influence on O3 likely operates through lagged or
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Figure 16 Spearman correlation analysis and grey correlation for PM2.5 and PM10. (A) Spearman cor-
relation matrix for PM2.5. The matrix depicts the monotonic correlation coefficients between PM2.5 and
key meteorological parameters: P, T, PET, WIND, and NDVI. Color intensity (blue to red) and circle size
represent the strength and direction of the correlation, ranging from−1 (strong negative, dark blue) to
+1 (strong positive, dark red). Numerical values within each circle indicate the exact correlation coeffi-
cient. (B) GRA for PM2.5. The red bars (labeled ‘‘PM2.5’’ in the legend) quantify the association strength
between PM2.5 and each meteorological parameter, as derived from GRA. Higher values (e.g., 0.6229) in-
dicate a stronger geometric similarity and closer relationship between the data series of PM2.5 and the re-
spective factor over time, irrespective of linearity. (C) Spearman correlation matrix for PM10. This panel
follows the same representation as (A) but analyzes the correlations between PM10 and the identical set of
meteorological variables (P, T, PET, WIND, NDVI). (D) GRA for PM10. The red bars (labeled ‘‘PM10’’)
display the grey relational degree between PM10 and each meteorological parameter. Similar to (B), this
measure assesses the strength of association based on the similarity of development trends and geometric
patterns in the data sequences. Collectively, this figure integrates non-parametric statistical (Spearman)
and GRA to provide a comprehensive assessment of the relationships between particulate matter concen-
trations and influential meteorological drivers, highlighting both monotonic dependencies and pattern-
based associations.

Full-size DOI: 10.7717/peerj.20430/fig-16

non-linear pathways. A robustness check—repeating Spearman analysis under correlation
thresholds |ρ| ≥ 0.3 and |ρ| ≥ 0.7 and comparing with GRA rankings—confirmed PET
and WIND as consistently dominant drivers, with P, NDVI, and T contributing secondary
effects. These results highlight the complementary value of combining linear (Spearman)
and non-linear (GRA) frameworks to capture both immediate correlations and underlying
trend synchrony in detecting O3 driving mechanisms.
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Figure 17 (A) Spearman correlation analysis and (B) grey correlation for O3. (A) Pearson correlation
matrix between O3 and key environmental factors. The matrix displays correlation coefficients for P, T,
PET, WIND, and NDVI. Color intensity (blue for negative, red for positive) and circle size represent the
strength and direction of the linear correlation, ranging from−1 to +1. Numerical values inside each cir-
cle indicate the exact correlation coefficient. (B) Bar chart illustrating the association strength between O3

and each environmental factor. The height of the red bars (labeled ‘‘O3’’ in the legend) and the accompa-
nying numerical values (e.g., 0.6953, 0.72688) quantify the magnitude of the relationship, reflecting the
relative influence of each meteorological and vegetation factor on O3 concentration variability. Collec-
tively, this figure integrates parametric statistical correlation analysis (A) and association strength assess-
ment (B) to provide a comprehensive evaluation of the environmental drivers of O3 pollution, highlight-
ing both the directionality and relative power of these influential factors.

Full-size DOI: 10.7717/peerj.20430/fig-17

Spearman correlation analysis quantifies the statistical correlation between
meteorological elements and pollutants, reflecting the strength of linear correlation of
variables and the immediate impact of meteorological elements on pollutants. Grey
correlation analysis is based on the trend similarity between meteorological elements
and pollutant sequences, analyzing the potential mechanism of elemental dynamics on
pollutants. Due to the differences in the logic andmethodology of statistical correlation and
trend similarity, the results of the impact assessment of meteorological factors on pollutants
are different in terms of the ranking of the degree of correlation and the characterization
of their effects. Furthermore, related studies have also mentioned the differences between
the methods (Zheng et al., 2023).

PM2.5 and PM10 (Fig. 18) exhibited a strong positive correlation (ρ = 0.89), reflecting
their overlapping anthropogenic emission sources. Coal-fired power plants and motor
vehicle exhausts release both fine (PM2.5) and coarse (PM10) particles, and incomplete
fossil fuel combustion often produces a bimodal particle size distribution. Meteorological
influences on the two pollutants are largely consistent: under stable atmospheric conditions,
lowWIND, and temperature inversion layers, the diffusion of fine particles and deposition
of coarse particles are inhibited, leading to their synchronous accumulation. During rainy
periods, both are subject to wet deposition through humidity-driven scavenging.

A strong negative correlation was observed between PM2.5 and O3 (ρ = −0.84),
indicative of a photochemical competition for common precursors, such as nitrogen
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Figure 18 Correlation between pollutants andmeteorological elements. This heatmap visualizes the
Pearson correlation coefficients between key atmospheric pollutants (PM2.5, PM10, O3) and meteorologi-
cal/vegetation parameters. The strength and direction of linear relationships are encoded through a bivari-
ate visual system: color gradient (from dark blue for−1 to dark red for +1) and circle size (proportional to
the absolute correlation value). The exact numerical coefficient is displayed within each circle. The color
bar on the right provides a continuous scale for interpreting the correlation magnitude and direction. This
type of visualization is a standard and powerful method for initial exploratory data analysis, helping to
identify potential associations and multicollinearity among variables in environmental studies.

Full-size DOI: 10.7717/peerj.20430/fig-18

oxides (NOx). PM2.5 also exerts a radiative shielding effect by absorbing and scattering
ultraviolet radiation, thereby weakening key photolysis reactions essential for O3 formation.

For PM10, mineral aerosols (e.g., dust) can catalyze O3 decomposition (O3→ O2). This
effect is especially evident during northern spring dust events, where increases in PM10

concentrations correspond to decreased O3 levels. As coarse particles (2.5–10 µm) are
less directly involved in photochemical reactions, the negative PM10–O3 correlation likely
reflects indirect associations, such as dust events accompanied by strong WIND, rather
than direct atmospheric chemistry.

HYSPLIT forward and backward trajectory analysis
The HYSPLIT_4 developed by the NOAA Air Resources Laboratory was employed to
simulate air mass backward and forward trajectories, in order to investigate potential
transboundary pollution transport affecting the study area. The model was driven by
the Global Data Assimilation System (GDAS) meteorological dataset with a horizontal
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resolution of 0.25◦ × 0.25◦, a vertical layering of 38 levels, and a temporal resolution of
3 h.

The trajectory simulations were initialized from the central Urumqi site (43.97◦N,
87.34◦E) at three release heights above ground level (AGL): 500 m (boundary layer), 1,000
m (lower free troposphere), and 3,000m (high-level transport layer), to account for vertical
variability in transport pathways. Both 72-hour backward and forward trajectories were
computed at 1-hour time steps to capture synoptic-scale transport events. The emission
assumption was set as an instantaneous and homogeneouslymixed release of a non-reactive
tracer, with no consideration of dry/wet deposition or chemical transformation, as the
primary aim was to track air parcel origins and dispersion pathways rather than perform
chemical fate modeling.

Model uncertainties may arise from several factors, including (i) errors inmeteorological
input data, especially in complex terrain; (ii) sensitivity of the calculated trajectories to
the choice of starting location, time, and release height; (iii) cumulative divergence of
trajectories at extended simulation lengths beyond 72 h; and (iv) model assumptions
that exclude atmospheric chemistry, deposition processes, and small-scale turbulence.
To assess sensitivity, additional simulations were conducted with varied release heights
(±500 m) and durations (48 h vs. 72 h). Results indicate that higher-altitude trajectories
are generally more stable, whereas near-surface trajectories in winter are more variable due
to valley winds and thermal inversions. These uncertainty sources were considered when
interpreting the trajectory results in the discussion section.

As shown in Fig. 19A, regarding back-tracing trajectories, we find that low-level air
parcels released at 500 m AGL originated from the northwestern region, starting from
eastern Kazakhstan, then approaching the source area over the next few days, about
800 km. At the same time, this air mass descends gradually from 1,500 m to 500 m along
the way. This can be attributed mainly to the airflow descending through the northern
slope of Tianshan Province due to terrain. As the high-level trajectory moves eastward
towards Central Asia, specifically from the northern part of the Caspian Sea within the
Volga River Basin, there is almost no movement at high altitudes, with a very small upward
speed reaching up to only 0.2 cm/s, indicating stable conditions for upper-level westerlies.

Further analysis shows that the large-scale circulation is affected by strong west winds,
which contribute significantly to the high-level advection transfer caused by the Siberian
High Pressure system (a high pressure center greater than 1,040 hPa), forcing low-level
northerly cold air southwards. On one hand, mesoscale topography has an important
impact because of the obstruction of mountains around Tien Shan Mountain Range or
forcing the mountain uplift phenomenon. On the other hand, lake Balkhash’s heat contrast
also affects the direction of low-level flow. Additionally, boundary layer diffusion such
as nocturnal inversion processes inhibits the vertical diffusion of low-level air currents,
causing them to stagnate near the transport layer.

As shown in Fig. 19B, the low-level trajectory shows southeast movement and forms
a zigzag line about 600 km, mainly affected by the friction of the northern foothills
of Tianshan Mountains and local circulation; the middle-layer acceleration to the east
and reaching the western part of Mongolian Plateau is due to high-level momentum
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Figure 19 (A) Backward trajectory diagrams and (B) Forward trajectory diagrams. Air mass trajec-
tories simulated via the NOAA HYSPLIT model with GDAS meteorological data, containing two: (A)
backward trajectories terminating at 1800 UTC on 08 January 2022. (B) Forward trajectories initiating at
1800 UTC on 08 January 2022. In both subplots, colored lines denote trajectories at distinct heights above
ground level (AGL): red corresponds to 500 m AGL, blue to 1,000 m AGL, and green to 3,000 m AGL. The
lower panels in each subplot depict the vertical change of trajectory height over time, while the maps illus-
trate horizontal trajectory paths. The model simulates trajectory dynamics over a 72-hour period.

Full-size DOI: 10.7717/peerj.20430/fig-19

downward transmission; intermediate-level accelerated eastward to the western region
of the Mongolian Plateau, indicating that high level also contributed to the momentum
transportation. In general, the high-level trajectory ismainly controlled by strongwesterlies,
and its track is relatively straight, transporting the longest distance and finally arriving at
North China. Trajectory scattering is caused by the influence of westerly jet stream, the
effect of pressure gradient on Mongolia, and the influence of the topography of Tianshan
Mountain; the curved low-level route may be related to the temperature, barometer in
Dzungarian Basin, and mountain leeward wave dynamic conditions.

These simulations can provide us with more information to better understand
transboundary pollutants transported from Central Asia during winter, especially for the
pollution transport in central Eurasia region. The result has demonstrated the prominent
westerly transport channel at an altitude of 3,000 m, which could provide some basic
evidence to study long-range high-level sand-dust aerosol transport in further works.

DISCUSSION
This study shows that PM2.5 and PM10 in the U-Chang-Shi urban agglomeration display a
clear spatial convergence. Seasonal variations of both pollutants are closely aligned. Rapid
economic growth, industrial development, and urban construction are the main emission
sources (Zhou, Zhao & Yang, 2017). A PM10 hotspot was identified in the southeast of
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Urumqi, near Turpan. This is due to valley terrain and airflow patterns that slow dispersion
and cause accumulation.

Urumqi’s terrain is a major factor in pollution retention. The city is surrounded by
mountains on three sides and opens only to the southeast, forming a ‘‘trumpet-shaped’’
basin. This limits ventilation and favors stagnation. In winter, radiative cooling strengthens
inversion layers and suppresses vertical mixing. Frequent southeasterly ‘‘burning winds’’
transport pollutants into the basin and interact with northward valley winds. This causes
convergence of pollutants from several directions (Li et al., 2022). In 2023, theU-Chang-Shi
joint prevention and control programme reduced PM2.5 by 34%, but PM10 fell only 12%
(Chen et al., 2024). Coarse particles remain a challenge, especially under burning-wind
conditions. Future policies should focus on dust control in upwind areas, vegetation and
windbreak barriers, and improved transboundary monitoring.

Our findings in the U-Chang-Shi share similar patterns with other arid and semi arid
regions of Asia. In Central Asia, including Kazakhstan and Uzbekistan, strong seasonal
PM peaks are closely linked to dust storms and limited atmospheric mixing. Westerly
transport channels at altitudes around 3,000 m carry dust over long distances in winter
(Chu et al., 2021; De Beurs & Henebry, 2004), similar to burning wind driven transport in
the U-Chang-Shi area. These regions also experience pollutant retention due to basin-like
terrain and winter inversions. In Pakistan’s arid areas, PM concentrations peak before the
monsoon due to intense dust activity and low rainfall, while O3 peaks in warm seasons
under strong sunlight (Deng et al., 2021). This mirrors our observation of seasonal PM–O3

decoupling, driven by photochemical reactions. On the Loess Plateau in north central
China, PM trends are strongly influenced by land use changes and regional meteorology
(Peng et al., 2017a; Peng et al., 2017b; Ding & Peng, 2020). Compared with U-Chang-Shi,
dust peaks there are more coupled with anthropogenic emissions in spring, while in ‘‘U-
Chang-Shi’’, PM10 peaks are dominated by burning wind transport from deserts. These
comparisons indicate that integrated PM–O3 control is a common challenge across arid
Asia. Dust source stabilization, regional atmospheric forecasting, and joint transboundary
emission inventories, as practiced in parts of Central Asia, could inform management
strategies for U-Chang-Shi and similar regions in China.

Although the CHAP satellite dataset performswell in arid regions (R2 > 0.67), limitations
exist. Persistent cloud cover or seasonal snow can reduce retrieval accuracy and introduce
seasonal bias. The HYSPLITmodel also has constraints. It depends onmeteorological input
quality and resolution. Here, GDAS data at 0.25◦ resolution were used. This is sufficient
for large-scale patterns but cannot fully capture local circulations or sub-grid turbulence.
Valley winds and mesoscale eddies may be underrepresented, creating uncertainty in
transport pathways. Future work should use higher resolution meteorological data, better
retrieval algorithms, and integrated chemical–transport models.

O3 pollution patterns differ from those of particulate matter. High O3 levels occur in
spring and summer, especially near the Urumqi Chemical Industry Park. Photochemical
reactions driven by industrial VOC emissions and favorable meteorological conditions are
key contributors. Since 2017, O3 levels have increased by 4.6% per year, coinciding with
coal-to-chemical industry expansion. This indicates that control strategies focusing only
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on PM can unintentionally raise O3. Coordinated VOC and NOx reduction is essential.
Effective actions include stricter emission standards, adoption of low-reactivity solvents,
and catalytic control technologies.

Changes in air quality in the U-Chang-Shi area have significant socio-economic
impacts. The ‘‘coal-to-gas’’ programmed lowered PM2.5 and supported clean energy
growth. However, rising O3 may increase respiratory illness, strain healthcare systems, and
reduce productivity. Air quality policies should integrate pollution control with industrial
transformation and public health planning.

Nonetheless, it is imperative to acknowledge that the integration of socio-economic
covariates is crucial for effectively disentangling anthropogenic policy effects from
meteorological variability. Previous studies have successfully linked emission trends
with economic growth and variations in industrial structure (Zhao et al., 2020; Zhou, Zhao
& Yang, 2017). As a future research direction, we plan to develop a generalized additive
model (GAM) framework that incorporates prefecture-level coal consumption, GDP, and
industrial emission inventory data alongside key meteorological variables. This integration
aims to enhance our understanding of the drivers of air quality change in the U-Chang-Shi
region, enabling more nuanced and effective policy formulations.

Three future priorities emerge from this study. First, strengthen cross-regional
cooperation and targeted action for burning-wind events. Second, apply joint PM2.5–O3

control with balanced reduction goals. Third, integrate weather forecasts and topography
into seasonal and event-based emergency policies.

By linking meteorology, pollutant transport, comparative regional analysis, and socio-
economic effects, this study offers evidence to improve air quality strategies in arid-region
urban clusters, and the findings may guide similar areas balancing economic growth and
environmental protection.

CONCLUSIONS
This study analyzed the spatial and temporal variations of PM2.5, PM10, and O3 in the
U-Chang-Shi urban agglomeration in northwest China from 2000 to 2022, using the CHAP
dataset. The results show that CHAP data are highly consistent with observations from
state-controlled stations, confirming its suitability for long-term aerosol monitoring in
arid urban clusters.

Pollutant accumulation in U-Chang-Shi is influenced by a combination of factors. The
trumpet-shaped basin topography and frequent winter inversions limit vertical dispersion.
Southeast burning winds transport coarse particles over long distances, adding to local
emissions from rapid urbanization, coal combustion, and the chemical industry. These
factors increase aerosol residence time and promote complex pollution events. The coal-
to-gas project (2012–2015) reduced PM2.5 concentrations by 34%, but PM10 decreased
by only 12% due to dust transport limitations. Since 2017, O3 levels have risen at 4.6%
per year, indicating the limits of traditional particle-focused control measures in achieving
multi-pollutant reduction.

Compared with other Asian arid cities, U-Chang-Shi shares several features. In Central
Asian basins, winter PM peaks and pollutant retention are common, but dust events
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in U-Chang-Shi are more strongly driven by burning winds (Li et al., 2022; Chen et al.,
2022). O3 patterns are similar to those in arid Pakistan, where summer peaks are linked
to photochemical reactions under high radiation (Noreen et al., 2018; Yang et al., 2025).
On China’s Loess Plateau, springtime dust is more related to agricultural activity, while
U-Chang-Shi dust is dominated by windborne transport from desert regions (Kang et
al., 2024). These comparisons show that compound pollution and PM–O3 co-control are
shared challenges across arid Asia (Wei et al., 2020; Duan et al., 2023).

This study is novel in combining high-resolution CHAP satellite data with long-term
multi-pollutant analysis to reveal transport processes in an arid urban cluster. It confirms
the monitoring value of CHAP for such regions and identifies the key role of burning-
wind-driven PM10 transport. However, seasonal differences in meteorological drivers were
not fully quantified, and the role of land-use change on O3 formation remains unclear.

Based on our findings, several actions are recommended. First, implement dust control
in upwind desert areas, establish vegetation barriers, and strengthen suppression measures
during burning-wind seasons. Second, adjust NOx /VOC reduction ratios, build a VOC
fingerprint database, and map dynamic O3 production potential for targeted regulation.
Third, develop a cross-regional joint control platform integrating monitoring, forecasting,
and source tracing, learning from regional forecasting systems in Central Asia. Finally,
combine high-resolution land-use and weather data to design season-specific pollution
control strategies.
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