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17 Abstract
18 Exercise-induced fatigue refers to the physiological processes of body functions that

19  cannot be sustained at a specific level during exercise or the inability of the organs to

20 maintain a predetermined level of intensity. Exercise-induced fatigue is a comprehensive
21 physiological process, which is mainly reflected in the body's neuromuscular system and
22 cardiovascular system. The study of fatigue-related physiological responses related to

23  exercise-induced fatigue provides crucial insights into the underlying mechanisms, enables
24 the assessment of fatigue levels, and aids in the formulation of effective recovery strategies.
25  This review summarizes-summarized the latest advancements in the research of biomarkers
26  associated with exercise-induced fatigue, exploring the mechanisms of various biomarkers,
27  detection methods, and their applications in sports medicine. Studies have shown that energy
28  substances, metabolites, blood bioindicators, central neurotransmitters, free radicals, urine,
29  saliva, etc., are related to exercise-induced fatigue-related biomarkers in human body.

30 Among them, energy-related substances were the first fatigue markers studied, and

31  metabolites in the blood or urine were gradually used as biomarkers as research was

32  deepened and testing methods were upgradedrefined. The presence of central

33  neurotransmitters gradually increased, and researchers gradually emphasized the important

34  role of neurotransmitters in exercise-induced fatigue. Through a comprehensive analysis of
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relevant literature, this paper aims-aimed to offer guidance for future research directions and
promote a more scientific approach to managing exercise-induced fatigue.
1. Introduction

Exercise-induced fatigue can be caused by central nervous system abnormalities, namely
central fatigue, or peripheral nervous system disorders(Hsiao et al. 2018). Exercise-induced
fatigue is a multifaceted physiological phenomenon that arises from the intricate interplay
between various systems, including the nervous, muscular, and metabolic systems(Song et al.
2023). At present, many theories have been proposed on the possible mechanism of exercise-
induced fatigue, mainly including energy depletion theory(Ling. 2000), metabolite
accumulation theory(Liu et al. 2022;Zhao et al 2023), free radical theory(Chen et al. 2022;
Dobryakova et al. 2015; Ronghui 2015), internal environment homeostasis disorder
_ theory(Ament & Verkerke 2009), fatigue chain theory(Girard 2014), central nervous

system transmitter imbalance theory, protective inhibition theory, mutation theory, etc.,
but the mechanism has not been fully elucidated, the identification and understanding of
biological markers of exercise-induced fatigue have become increasingly important.
Biomarkers are biochemical markers that can mark changes in structure or function from a
system to cells or even subcell(Califf 2018). Understanding the biomarkers of exercise-
induced fatigue can be beneficial to understand the grading of exercise-induced fatigue, and
it is also of guiding value for subsequent therapeutic recovery. This review aims to
systematically examine the current research advancements regarding biomarkers of exercise-
induced fatigue, analyze their biological underpinnings, and explore their potential clinical
applications.

This paper providespresents a narrative review of the latest research progress on
exercise-induced fatigue biomarkers, whiehfillsfilling the knowledge gap in the
interdisciplinary field and has-impertantpssessing both academic and applied value. This
article incorporates markers of different dimensions, such as energy metabolism, metabolites,
neurotransmitters, and free radical damage, into a unified framework to elucidate the multi-
system interaction mechanism of exercise-induced fatigue and provide theoretical support
for interdisciplinary research. The-article-deseribeslt disscusses emerging detection
technologies, such as microneedle sensors and salivary metabolomics, te-which promote the
development of non-invasive, real-time monitoring devices and everceme-address the
limitations of traditional blood tests. ft-highlightsThe article emphasizes the practical value
of biomarkers in optimising training programmes, preventing sports injuries, and managing

chronic fatigue, thereby providing a basisfoundation for scientific intervention. The
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direction of multi-omics integration, standardised testing, individualised intervention, etc. is
proposed to show the breakthrough pathway for both academia and industry.

The target audience effor this article includes exercise science researchers, clinical and
sports medicine practitioners, and sports practitioners who can learn about the latest
research progress and mechanism analysis of fatigue markers, how to optimise exercise
performance and recovery through plant-based nutrition, and how to adjust training
intensity threughvia real-time lactate monitoring. In addition, practitioners in the food and
nutrition industry can use this article to understand market demands and Trends in Research
and Development, and develop wearable devices or anti-fatigue products with reference to
technological trends. By integrating multidisciplinary perspectives, this article aims to

provide both scientific depth and practical value to different groups of readers.

2. Survey Methodology
lA comprehensive literature search was tonductedpeffefmeé using the PubMed, Google

Scholar, SPORTDiscus, and Web of Science databases. The search strategy incorporated the
following key terms and combinations: (1) the phrase "exercise fatigue" was combined with
"mechanism", "physical", "central", "peripheral” to locate studies related to the mechanisms of
exercise-induced fatigue; (2) the term "fatigue biomarker" was paired with "metabolism",
"metabolites”, "blood", "non-invasive", "urine", "urinary", "saliva", to ensure the retrieval
covered different categories of biomarkers; (3) the terms "exercise," "fatigue," and

"biomarker" were used in conjunction with "monitor," "detection," "microneedle sensor,"
"biochip," or "mass spectrometry" to incorporate methodological advances in biomarker
quantification and application. While emphasis was placed on recent publications, seminal
earlier works were also considered where appropriate. Retrieved records were initially
screened for relevance based on title and abstract. Articles meeting the inclusion criteria
underwent full-text review and detailed evaluation. Finally, this review identified a total of
117 pertinent articles.
3. Physiological Mechanisms of Exercise-induced fatigue
Exercise-induced fatigue can be classified into two primary categories: central fatigue
and peripheral fatigue(Chen et al. 2022; European College of Sport Science 2001). Central
fatigue originates from the central nervous system (CNS), impacting the brain's ability to
initiate and sustain motor output. It is characterized by a reduction in voluntary muscle
activation, often associated with psychological factors such as motivation and perceived
exertion(Bassett 2000). In contrast, peripheral fatigue occurs at the-level-ef-the muscle itself,
arising from biochemical changes in muscle fibers during prolonged exercise. This-It includes
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104 the depletion of energy substrates, accumulation of metabolic byproducts like lactate, and
105  alterations in ion concentrations that lead to impaired muscle contractility(Allen et al. 2008;
106  Lei et al. 2024). Studies have shown that central fatigue can be exacerbated by mental
107  fatigue, which influences neurotransmitter levels and alters the perception of effort during
108  physical activity(Baek et al. 2024; Meeusen et al. 2021;Nybo & Secher 2004; Telles et al.;
109  2023). Understanding these distinctions is crucial for developing targeted interventions to
110  mitigate fatigue and enhance athletic performance(Dominguez et al. 2022 ; Hennessy.2022).
111 Neurotransmitters play a pivotal role in the onset and progression of exercise-induced
112 fatigue. During physical exertion, neurotransmitters such as dopamine, serotonin, and
113 norepinephrine are involved in regulating mood, motivation, and motor function(Ament &
114 Verkerke 2009). Research indicates that the noradrenergic system, in particular, is linked to
115  central fatigue, as increased norepinephrine levels correlate with heightened perceptions of
’1 16 exertion(Meeusen et al. 2021). Additionally, serotonin is implieated-involved in the fatigue
117  response, as alterations in its levels can influence both physical performance and mental
118  fatigue (Falabreégue et al. 2021). The balance of these neurotransmitters is critical; for
119  instance, low levels of serotonin are associated with increased fatigue and depressive
120  symptoms, suggesting that interventions aimed at optimizing neurotransmitter levels could
121 mitigate fatigue and enhance performance(Ma et al. 2021). Furthermore, the interplay

22 between neurotransmitter systems highlights the complex nature of fatigue, which

23  enecempassesencompassing both physiological and psychological dimensions (#ig. 1).

24 Metabolic byproducts, particularly those gererated-produced during high-intensity

25  exercise, significantly impaet-affect muscle function and contribute to fatigue. The

26  accumulation of lactate and hydrogen ions eanlead-to-a-decrease-inlowers the pH within
127  muscle cells, impairing enzymatic activity and disrupting calcium handling, which is
128  essential for muscle contraction(Tornero-Aguilera et al. 2022). Additionally, the depletion of
129  glycogen stores during prolonged exercise can limit energy availability, further exacerbating
130  fatigue(Mast et al. 2025). Studies have shown that strategies to enhance recovery, such as
131 carbohydrate supplementation and proper hydration, can mitigate the effects of metabolic
132 byproducts and improve performance outcomes(Keller et al. 2021). Understanding the
133  biochemical pathways involved in fatigue can inform training regimens and recovery

34 protocols, ultimately leading to improved athletic performance and a reduced risk of

35  overtraining or injury.

37 4. Classification and Characteristics of Major Biomarkers
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4.1. Substances related to energy metabolism

The onset and progression of exercise-induced fatigue are intrinsically linked to the
body's capacity to generate and regulate energy. Within this context, the depletion,
accumulation, and metabolic flux of specific energy substrates and their related compounds
serve as critical physiological indicators. Consequently, substances directly involved in
cellular energy pathways constitute a primary category of biomarkers for assessing fatigue.
4.1.1. Adenosine triphosphate (ATP) and creatine phosphate (CP)

The initial energy demands during exercise are primarily met through the rapid
depletion of high-energy phosphagens, notably adenosine triphosphate (ATP) and creatine
phosphate (CP), collectively termed the phosphagen system (Fig. 2). As physical activity
progresses, the decline in these intramuscular energy reserves correlates directly with
diminished contractile capacity.

High-energy phosphate compounds central to exercise metabolism include adenosine
triphosphate (ATP) and phosphocreatine (creatine phosphate, PCr). During physical activity,
ATP breaks down to release energy, producing adenosine diphosphate (ADP).
Phosphocreatine then donates its phosphate group to regenerate ATP from ADP.
Concurrently, two ADP molecules can combine via the enzyme myokinase to form one ATP
and adenosine monophosphate (AMP), releasing inorganic phosphate ions (Pi)(Hackney
2016a). Generally, energy consumption in a short period of time is mainly based on CP, and
the decline can reach more than 90%. It has been well documented that a 70 kg person
consumes about four calories(kcal) per minute when taking on a 1-hour walk. As the-exercise
time increases, the calories consumed gradually increase(Thompson et al. 2013). Therefore,
ATP and CP and their related metabolites, AMP, ADP, and Pi, can be used as one of the
biomarkers for the preliminary assessmentjudgment of exercise-induced fatigue.

4.1.2. Glucose and glycogen

When-performinglongtermDuring prolonged strenuous exercise, the main energy
substance consumed is Saecharidessaccharides. After long exercise, glucose in the blood is
consumed. With further extension of exercise duration, When-the-exereise-time-isfurther
extended, muscle glycogen and liver glycogen are greatly consumed. At this stage, up to 75—

90% of muscle glycogen and more than 90% of liver glycogen stores may be depleted.Atthis

m 000,

consumption-of liver glycogen-ecanreach-more than-90%. Glycogen cannot maintain the
normal level-ef-blood glucose levels;- and often resulting in hypoglycemia -and-eften
hypeglyeemia-will-appear-at-this-time(Hackney 2016b; Nelson & Cox 2005).
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4.1.3. Fat
As exercise progresses, fat will also begin to be consumed;-; but-however exercise-
induced fatigue will not lead to a large reduction of body fat(Romijn et al. 1993; van Loon et

al. 2001). Although the overall fat content does not change much, the ameuntlevels of fatty

acids and triglycerides in the blood will increase(Liao et al. 2024). In 1998, Li jie's study
demonstratedshowed that the-plasma free fatty acid concentrations in the blood during
surface body exercise could inereaserise from 0.1 mmol/L to 2 mmol/L. It is generally
believed that the-appearanee-effatigue onset can be delayed ata-—eertainlevelto some extent

if endurance training can improve the utilization of fat during exercise, thereby reducing the

consumption of glycogen and thepreventing a decline efin blood sugar-glucose levels.

4.1.4. Amino acid related to energy metabolism

When-exereisingDuring exercise, the-free amino acids and intracellular amino acids in
the blood are consumed and utilized;-. and-Among these, glutamine, leucine, isoleucine and
valine are the amino acids currently considered to be related to energy metabolism. These
amino acids in-these-bleedin blood are consumed as exercise preceeds-progresses and can also
serve as biomarkers of exercise-induced fatigue(Mcglory & Phillips 2016).

Long exercise consumes glutamine, reducing its levels in the blood and muscle. The
enzyme activity of Glutamine is reduced due to the decrease in glycogen and blood
glucose(Mioko et al. 2013).

Valine, leucine and isoleucine are all branched-chain amino acids. Branehed-
ehainThese amino acids can be catabolized in muscle tissue and can be used by oxidative
energy supply. After marathon runners supplemented branched chain amino acids, weariness
decreased significantly-and-improved. The results of comprehensive literature show that the
branched chain amino acids are beneficial during short-term, moderate-intensity
exerciseundershort-time limit intensity-are-mederate-intensity-exereise; after prolonged
exercise (>3h) or when exercise-induced fatigue occurs, their depletion shows a high
correlation with the state of fatigue.afterlongexereise-or-exereise-indueedfatigue (>3h);

While the depletion of energy substrates like glycogen and CP provides a logical and

historically significant explanation for fatigue, their utility as real-time, predictive
biomarkers is limited by several factors. Firstly, the direct measurement of intramuscular
glycogen is highly invasive and impractical in most athletic settings. Secondly, there is

considerable inter-individual variability in substrate utilization rates and fatigue thresholds,
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meaning a ‘one-size-fits-all’ critical level of depletion does not exist (Ament & Verkerke
2009). For instance, well-trained athletes exhibit enhanced glycogen sparing and fat
oxidation capabilities, delaying the point at which glycogen depletion triggers fatigue
(Zafrilla et al. 2019). Therefore, while these measures are mechanistically crucial, future
research should focus on developing non-invasive proxies (e.g., via breath or sweat analysis)
or dynamic metabolic models that can predict individual substrate depletion kinetics, rather
than relying on static, post-hoc measurements.
4.2. Metabolite

In-the-eeurse-ofDuring exercise, the-aetivity-of-energy metabolism is-becomes
exceptionally vigorous—Fhe, leading the body will-to generate various metabolic substances.
As these metabolites accumulate, they will giverisecontribute to a decline in the body's
exercise capacity, thereby leading to the emergence of exercise-induced fatigue. Commonly
found metabolites observed during exercise include lactate-aeid, ammonia, urea, ketone
bedybodies, and thelikeothers. These metabolites are-all frequently employed as biomarkers
for indicating exercise-induced fatigue. Specifically, lactate-acid-is produced as-aresultofvia
anaerobic glycolysis when the body's oxygen supply is insufficient during intense exercise.
Ammonia is a byproduct of protein metabolism, and its accumulation can affect the normal
functioning of the nervous system. Urea is a waste product of protein metabolism that needs
to be excreted from the body. The presence of ketone bodies indicates that the body is using
fat as an energy source, which may occur during prolonged exercise or when carbohydrate
reserves are depleted. These metabolites play a crucial role in understanding the
physiological changes that occur during exercise and in diagnosing and monitoring exercise-
induced fatigue(Khadartsev et al. 2022).

4.2.1. Lactic acid

The human body will-ecensumeconsumes a lot of ATP and CP after-during intense
exercise;. when-When these the-two-aresubstrates become insufficient, the body begins to
use the lactic acid system (anaerobic glycolysis) for energy supply in a short

durationtime;-Duringat this timeprocess, ATP is produced by glucose under anaerobic

conditions. Due to the low efficiency of ATP production by-via anaerobic glycolysis, the
body will conduct a large amount of anaerobic glycolysis in order to produce enough energy,
producing large amounts of lactic acid. Notably, this elevatien-rise in blood lactate
concentration is primarily driven by muscle contraction demands, with a significant
contribution from the recruitment of fast-twitch muscle fibers (Sdnchez-Medina &

Gonzalez-Badillo, 2011). These fibers are characterized by high force output but low fatigue
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resistance, and their heightened expression of glycolytic enzymes (e.g., phosphofructokinase,
lactate dehydrogenase) accelerates glycogen breakdown. This causes pyruvate production
rates to exceed the oxidative capacity of the mitochondria, leading to disproportionately high
lactate generation compared to slow-twitch fibers(Garcia-Sillero et al. 2022). Karlsson et al.
found through bicycle experiments in the 80s that exercise-induced fatigue was associated
with elevated lactic acid after exercise(Yan et al. 2022).

Lactic acid itself does not cause fatigue; rather; fatigue-whieh is eaused-byassociated with
the H+ dissociated byereatelactatefrom lactic acid. The decrease in pH affects many
processes, including the ability of myseeoagulin-troponin to bind calcium, as well as the

activity of many enzymes. Previous studies have confirmed that the pH value decreases,
which reduces the activity of kinases such as creatine kinase, ATPase, and phosphofructose
kinase (PFK), thereby affecting the metabolism of the lactate system(MeeewnMcCown et al.
2010). This mechanism of lactate production, dominated by fast-twitch fiber recruitment,
explains the rapid surge in blood lactate observed during high-intensity exercise(Garcia-
Sillero et al. 2022). Consequently, lactate and the associated pH decrease remain established

biomarkers for assessing exercise-induced fatigue and exhaustive exertion.

4.2.2. Ammonia

Studies have confirmed that during long-term high-intensity exercise, the-proteins and
amino acids in the human body wit}t—beare consumed to participate in the energy supply.
Due to the decomposition of proteins during long-term exercise, amino acid decomposition
produces ammonia(Khadartsev et al. 2022). Studies have shown that the increase in ammonia
concentration plays an important role in both central and peripheral fatigue(Meeusen et al.
2006). In general, high concentrations of ammonia can affect ATP synthesis. At the same
time, the increase in ammonia concentration will inevitably lead to an increase in osmotic
pressure, resulting in internal environmental disorders. In addition, ammonia can enter the
brain tissue through the blood-brain barrier, which has a toxic effect on the brain and affects
the function of the central nervous syste. Current research suggests that ammonia hinders
the synthesis of inhibitory GABA (v -aminobutyric acid). Due to GABA deficiency, nerve
control is reduced, resulting in fatigue(Foley et al. 2006).
4.2.3. Urea

Urea is closely associated with the metabolism of amino acids within the human body.
Consequently, +hisit enables us to assess the physical functioning and fatigue levels of
athletes in a more comprehensive manner. It is widely acknowledged that the quantity of

blood urea tends to rise in proportion to the exercise load, and its recovery process is
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relatively sluggish. The extent of exercise-induced fatigue is determined by measuring the
degree of increase after exercise and the subsequent rate of recovery. When the level of urea
in the blood following exercise is 3 mmol/L higher than that before exercise, it can be
construed as an indication of a substantial amount of exercise, signifying that the athlete has
reached the fatigue threshold(Qian et al. 2024).

Currently, urine and saliva are widely used as non-invasive biomarkers for fatigue

monitoring in sportsfatigue markersin-sports-monitoring. To improve their measurement

accuracy, it is essential to overcome the challenges ofin standardizing sample processing and

advancing detection technologies+. The key steps include: First, sample collection and storage

processes must be strictly standardized. For urine, analysis must be conducted within 2 hours
(or within 3 hours if refrigerated) to prevent biomarker degradation. For saliva, the addition

of RNA stabilizers (such as RNAlater) enables preservation at room temperature for up to

one year, significantly reducing the risk of biomarker degradation caused by repeated freeze-

thaw cycles.

h RNA 1onifican e

repeatedfreeze-thaw-eyeles(Zheng et al. 2025).
Secondly, high-sensitivity detection teechnelogy-technologies was-were applied:-.

autematie-Automatic online solid-phase microextraction coupled with liquid
chromatography-tandem mass spectrometry (SPME-LC/MS/MS) achieved a precision of 4.9%
for cortisol detection in 40 1 +L of saliva (quantification limit: 0.03 ng/mL), while magnetic
bead-assisted peptide mass analysis (MALDI-TOF MS) can identify fatigue-specific
differential peptides within the molecular weight range of 2000-15000 Da, with a cross-
validation rate of 95.49%, providing new targets for the development of portable
devices(Gervasoni et al. 2018).Further elimination of systematic errors through multimodal
data integration: Gembining-combining salivary cortisol/ « -amylase with urine urea/uric
acid ratios and integrating psychological scales (such as POMS) to establish a machine
learning assessment model, reducing the overall error rate by 32%. Additionally,
constructing an individualized baseline database (such as resting salivary cortisol ranges)
helps to avoid misjudgments based on group standards, ultimately achieving precise
quantification of fatigue states(Sequeira-Antunes & Ferreira 2023).

The traditional view of lactate as a mere fatigue-causing waste product has been
profoundly revised. The ‘lactate shuttle’ hypothesis re-frames lactate as a crucial energy
carrier and signaling molecule(Brooks 2018)-. This paradigm shift eriticizes-challenges the
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oversimplified acidosis model, as the relationship between pH decline and fatigue is not
always direct or causal(Westerblad et al. 2002). Similarly, while ammonia and urea levels
correlate with protein catabolism and fatigue, their specific mechanistic roles remain
inadequately defined. A critical research gap lies in understanding the dynamic interplay
between these metabolites. Future studies should move beyond correlative measurements
and employ interventions that selectively manipulate individual metabolites to establish
causality in fatigue development.

4.3. Metabolic kinases and products in the blood

During exercise,the blood assumes a crucial transportation role, diligently-delivering
oxygen to meet muscular energy demands while-and conveying essential glucose.
Metabolites like lactate and ammonia directly reflect energy substrate turnover during
exertionexercise. Simultaneously, circulating enzymes and signaling molecules in the
bloodstream provide critical insights into cellular stress responses and systemic metabolic
regulation under fatigue conditions. These biomarkers—including kinases, redox mediators,
and endocrine factors—serve dual roles: they-aet-as functional indicators by quantifying
energy flux (e.g., ATP regeneration), oxygen dynamics, and mitochondrial efficiency; and as
damage signals-that revealing membrane integrity loss, oxidative injury, or hormonal
dysregulation induced by exertionexercise. This section examines key blood-based mediators
whose fluctuations correlate strongly with exercise-induced fatigue, spanning energy
buffering systems (CK), oxygen transport machinery (Hb), vascular regulators (NO/NOS),
mitochondrial enzymes (SDH), and anabolic-catabolic balance (T/C ratio).

4.3.1. Creatine kinase (CK)

Serum creatine kinase (CK) is ; a crucial enzyme in the biochemical processes;- that has
the remarkable ability to catalyze the formation of adenosine triphosphate (ATP). -primarily
through the CK/phosphocreatine (PCr) system;-.whieh- This system minimizes [ATP]/[ADP]
fluctuations during high-intensity activities to sustain contractile function(Dahlstedt et al.
2003). It serves as a reaction-catalytic enzyme for the recovery of ATP, a process that holds
significant importance in relation to the maintenance of the energy balance following
physical exercise. The presence of serum creatine kinase is primarily attributed to the

movement of creatine kinase from within the muscle cells into the serum s#a-across the cell

membranes. Typically, the content of serum creatine kinase is ordinarily maintained at a
relatively low level. However, when the body undergoes exercise-induced fatigue, it leads to

an increase in the permeability of the cell membranes. As a result, creatine kinase is liberated
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from the cells and enters the bloodstream, thereby causing a notable elevation in-of the
serum creatine kinase content(Qian et al. 2024; Shijing et al. 2016).

Additionally, creatine kinase exhibits antioxidant properties by inhibiting lipid
peroxidation and protein oxidation during intense exercise. This protective function may
mitigate oxidative stress-induced fatigue, suggesting a dual role in both energy metabolism
and cellular protection(Miglioranza Scavuzzi & Holoshitz 2022).In acute fatigue scenarios,
changes in neuromuscular parameters (e.g., reduced peak power, prolonged contraction
time) correlate more strongly with performance decline than creatine kinase elevation,
indicating CK's limited sensitivity as a real-time fatigue biomarker during short-term
exhaustive exercise(Yanez 2023).

4.3.2. Hemoglobin

Hemoglobin, The-the main component of red blood cells, which-plays a crucial role in
delivering oxygen and carbon dioxide. In cases where the level of hemoglobin is reduced or
the demand for oxygen increases, the oxygen supply will fall short. This shortage will
subsequently lead to a decrease in the-exercise capacity(Yin et al. 2024). During intense
physical activity, exercise-induced fatigue can occur, which may cause damage to the-red
blood cells. As a result, hemoglobin will be released from these damaged cells. This release
can lead to a situation where the level of hemoglobin drops below the normal range -(Shijing
et al. 2016)..

4.3.3. Nitric oxide (NO) and nitric oxide synthase (NOS)

The bedy'snitrie Nitric oxide (NO)_in the body is enzymatically synthesizedeatalyzed
by nitric oxide synthase (NOS). Nitric oxide plays a crucial role in promoting the

augmentation of blood flow and the dilation of blood vessels, thereby regulating the blood
supply within the body(Draghici et al. 2024). In the realm of sports, the supplementation of
L-Arginine proves to be beneficial. It helps in reducing the muscle injury that athletes may
encounter and also contributes to the enhancement of their performance(Lomonosova et al.
2014). This is particularly significant as it directly impacts the athletes' ability to perform at
their best and minimize the risk of injuries-injury that could potentially hamper their
progress and career(Jackman et al. 2010). Se-Therefore, the decline ef in Nitrie-nitric oxide

can cause exercise-induced fatigue.
4.3.4. Succininate dehydrogenase (SDH)

Succininate dehydrogenase (SDH) is a key enzyme in the tricarboxylic acid cycle eyele
invelved-inthe inner mitochondrial membrane. whiehlts activity can be used to assess the
aerobic oxidation capacity of athletes(Lewis et al. 2010). Succininate dehydrogenase is

located on the inner mitochondrial membrane and does not enter the tissue fluid and thus
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into the bloodstream. Due to exercise-induced muscle tissue damage, the increased
permeability of the mitochondria leads to an increase in the content of Ssucciainate
dehydrogenase in the coating slurry, which can be used to reflect the status of the
tricarboxylic acid cycle-eyele(Rodrigues et al. 2010).

4.3.5. Testosterone/cortisol (T/C)

Testosterone is an androgen hormone that accelerates the synthesis of substances in the
body, while cortisol is a glucocorticoid that promotes the catabolism of substances in the
body. The testosterone/cortisol (T/C) ratio represents-serves as an indicator of the anabolic
and catabolic balance of nutrients in the body. Unlike free testosterone concentrations that
significantly decrease when the body is depleted due to movement, increased cortisol and its
receptors cause protein breakdown beyond synthesis levels(Meeusen 2014; Shimomura et al.
2009).

Blood-based biomarkers such as creatine kinase (CK) and hemoglobin are widely used
yet frequently misinterpreted. A major limitation is their lack of specificity for fatigue. For
instance, elevated CK levels serve as a robust indicator of muscle damage but do not directly
reflect the acute state of fatigue that impairs performance within a single exercise bout
(Brancaccio et al., 2007). Similarly, a decrease in hemoglobin may result from hemolysis or
changes in hydration status, rather than solely indicating a diminished oxygen-carrying
capacity. The testosterone-to-cortisol (T/C) ratio, while valuable for assessing long-term
anabolic-catabolic balance, is affected by diurnal rhythms, nutrition, and psychological
stress, thereby complicating its interpretation in the context of acute fatigue (Kiiiismaa et al.,
2015; Vaamonde et al., 2022). Thus, these biomarkers are most informative when used as part
of an integrated panel rather than as standalone diagnostic tools for fatigue. Future research
should focus on identifying novel, more specific blood-borne factors.

4.4. Free-radica-associated biomarkers

Beyond endocrine regulation, intense exercise triggers a cascade of oxidative reactions.
‘When oxygen consumption surges during high-intensity exertion, reactive oxygen species
(ROS)—- unstable molecules with unpaired electrons —- are overproduced ia-through
mitochondrial electron leakage and neutrophil activation. These radicals initiate chain
reactions by "stealing" electrons from lipids, proteins, and DNA, a process that ewlminating
culminates in oxidative stress when ROS production exceeds the body's endogenous
exeeeding-endogenous-antioxidant capacity. This imbalance manifests primarily as through
Lipid-lipid peroxidation (measured by Malondialdehyde) and Antiexidant-antioxidant
enzyme adaptation (Supersuper oxide dismutase, Catalasecatalase, Glutathione-glutathione
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peroxidase). Collectively, these biomarkers quantify exercise-induced macromolecular

damage and compensatory defenses (Hackney 2016a).

4.4.1. Malondialdehyde (MDA)

Malondialdehyde is a product of degradation by peroxidation in vivo;-. te-To some
extent, the-ameountof malondialdehydeits concentrarion can reflect;- the severity of free
radical attack and damage to motor cells. The content of malondialdehyde in lipid
peroxidation products increased after exhaustion exercise, which proved that
malondialdehyde could be used to determine exhaustion exercise. Mitchell-s post-run
plasma analysis of ultra-long marathon runners confirmed that malondialdehyde levels in
the-body were significantly elevated after exercise(Maxwell et al. 2001; Mohammadi et al.
2024).

4.4.2. Super-oxide dismutase (SOD)

Super-oxide dismutase is an important antioxidant perase-enzyme in the free radical
scavenging freeradieal-system;-. Its activity level ef Super-oxide-dismutase-aetivity
can representindicate the level-offree radiealsinthe boedybody’s free radical load. When the

body has a high free radical content during exercise-induced fatigue, the high activity of

Super-superoxide dismutase enzymes is required. After prolonged exercise, the results
showed a significant increase in malondialdehyde content in the plasma, as well as an
increase in the activity of Super-superoxide dismutase. By analyzing SOD/MDA, it can reflect
the free radical production and clear rate in the body, and further analyze the actual changes
of free radical metabolism in depth and objectively, and-thenrefleetthereby indicating the
degree of exercise-induced fatigue of the body(Zhao et al. 2024).

4.4.3. Catalase (CAT)

Catalase is one of the impertant-key enzymes for scavenging intracellular H202
seavenging. HaO2 is the redueingreduction product of Oz; and-it-has strong oxidation
properties. It can directly oxidize the hydrophobic groups of some enzymes, which can make
the enzyme inactive. Catalase can bind to and clear the hydrogen peroxideperexidase in vivo.
Quintanilha found that Catalase-catalase activity -was-increased in skeletal musele-and
cardiac muscle after-of rat after aerobic endurance training, indicating that Gatalase-catalase
activity in muscle can be improved as exercise progressed(Lew & Quintanilha 1991).The
activity of Gatalase-catalase in the human body is ¥ery-highly sensitive to exercise
stimulation. Aerobic exercise can significantly promote the increase of Gatalase-catalase
activity in the body, and if the exercise intensity increases, the Catalase-catalase activity will
be further increased(Ekstrom et al. 2024).
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452  4.4.4. Glutathione peroxidase (GSH-PX)

#53 Glutathione peroxidase is a-hydregen-peroxide-catabelasean enzyme that catalyzes the
#54  reduction reaction of H:Oz2and-, thus preteets-protecting membrane structural

A55  tienabilityintegrity. Most studies suggest that exercise-induced fatigue eauses-lesds to

A56  elevated Glutathione glutathione peroxidase activity. Heavy exercise can cause a significant
#57  increase in glutathione peroxidase activity in muscle tissue. Lew et al. reported that when

158  rats ran to exhaustion, glutathione peroxidase, glutathione S-transferase, and glutathione
159  reductase activities increased in the liver and bone, while their activities decreased in plasma

461 55 5
162  activitiesof glutathione peroxidase, glutathione S-transferases,and¢

463  plasma-deereased(Lew et al. 1985;Wang et al. 2024; Wu et al. 1999).

464 The role of oxidative stress in fatigue is a field of significant debate;. the-The

465 ‘mitohormesis’ theory posits that moderate ROS production is essential for adaptive signaling
466  and training responses(Ristow & Zarse 2010). Therefore, simply observing an increase in
467 MDA or antioxidant enzyme activity does not necessarily indicate deleterious fatigue; it
~468 could signify a positive adaptive process. The-A majority of studies measure these markers in
469  blood, but their levels may poorly reflect the redox environment within contracting muscle
470  fibers (Powers et al. 2016). Furthermore, the inconsistent outcomes of antioxidant
471  supplementation studies in combating fatigue challenge the simplistic ‘oxidants are bad’
~472 narrative(Merry & Ristow 2016). Future research should focus on the targeted measurement
473  of redox status in specific cellular compartments and during recovery to determine whether
474  oxidative stress is a cause, a correlate, or a consequence of exercise-induced fatigue.
475  4.5. Central neurotransmitter-related biomarkers
476 Extensive research conducted over several years has consistently demonstrated that
477  neurotransmitters within the central nervous system (CNS) play a crucial role in motor
478  fatigue, with particular significance for central fatigue. These studies have established that
479  specific substances, including serotonin, norepinephrine, dopamine, acetylcholine, amino
480  acids, and other compounds, are critically involved in the transmission processes underlying
481  exercise-induced fatigue. Serotonin regulates various physiological pathways contributing to
482  fatigue, while norepinephrine influences stress responses and energy expenditure, both

83  impacting fatigue levels. Dopamine, central to motivation and reward systems, can become

84  dysregulatedmaysee-dysregulation associated with fatigue development. Acetylcholine is
85  essential for neuromuscular communication, and its dysfunctionaltered-funetion can directly
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lead direetly-to muscle fatigue. AdditionallyIn addition, amino acids and other identified
compounds have-play distinct roles in the complex mechanisms of exercise fatigue.
4.5.1. Hydroxytryptamine (5-HT)

Hydroxytryptamine is a metabolite of tryptophan;-whieh-is-a-veryimpertant and a
crucial neurotransmitter in the central nervous system-ard-is-, involved in various
physiological roles. Tryptophan is a substrate for hydroxytryptamine synthesis and a rate-
limiting substance, and free tryptophan in -plasma can enter the brain through the blood-
brain barrier and affect hydroxytryptamine. During exercise, lipolysis increases free fatty
acids, and free tryptophan increases, which in turn increases hydroxytryptamine synthesis in
the brain. Studies have shown that exercise can lead-to-an-increase in-hydroxytryptamine
levels in the central system, and the-this increase in-hydroxytryptamineis associated with
the development of central fatigue. In 1987, Newsholme et al. first proposed that
hydroxytryptamine may be a regulator of central fatigue. Hydroxytryptamine acts as an
inhibitory transmitter that reduces the impulse to be released from the center to the
periphery and thus reduces exercise capacity. Studies have also confirmed that with the
extension of exercise time, the anabolism of hydroxytryptamine, dopamine, etc. in the brain
of the body will decrease(Newsholme & Blomstrand 1995-—, Castrogiovanni & Imbesi
2012).

4.5.2. Dopamine(DA)

Dopamine can regulate the tension degree of the muscle tissue, and dopamine was the
first neurotransmitter confirmed to play an important role in exercise-induced fatigue(Liao et
al. 2024).Usually, dopamine metabolism increases throughout the brain after exercise.
Sutoo(Allen et al. 2008)- has found that there are two main reasons for the increase in
dopamine in the brain after initial exercise, one is to promote the synthesis of dopamine, and
the other is to promote the binding of dopamine receptors. However, studies have shown
that the synthesis of dopamine in the rat midbrain is weakened when-fatigue-oceursin-the
eenterduring central fatigue, and the-that a high eentent-ef-dopamine level can delay the
developmentoffatigue development(Kanter et al. 1985; Lu et al. 2024).These studies have
shown that when exercise-induced fatigue, the amount of dopamine in the brain decreases.
4.5.3. Noradrenaline(NE)

Noradrenaline is a neurotransmitter synthesized and secreted by adrenergic nerve

terminals;-.Itand-NE is produced from dopamine through catalysis by the enzyme dopamine
B-hydroxylasePA-eatalyzed-by-depamine—p—hydrexylase. Studies have confirmed that

noradrenaline in the hypothalamus decreases after exercise and exhaustion, and the content

of noradrenaline can affect the metabolic level of noradrenalin, both of which can inhibit the
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normal effect of the hypothalamus(Hackney 2016b; Lew et al. 1985), which is one of the
causes of exercise-induced fatigue.
4.5.4. Acetylcholine(Ach)

Acetylcholine is a cholinergic neurotransmitter released within the central nervous
system by cholinergic nerve endings. The-Its synthesis and release ef-acetylchelineplayan
impertantrole-in-theare vital for central nervous system. The synthesis rate of acetylcholine
is affected by the precursor choline. After running a marathon, the level of choline in the
plasma drops by 40%, and supplementing with choline drinks to maintain plasma choline
levels will delay the onset of fatigue. Supplementing with choline drinks during marathons
can delay the onset of fatigue(Fecik et al. 2024).

4.5.5. Amino acid (Neurotransmitter correlation)

At present, it is believed that the amino acids related to central fatigue mainly include
gamma-aminobutyric acid (GABA), glutamic acid (Glu), and branched-chain amino acids
(BCAA). BCAAs, which include isoleucine, leucine, and valine, are important for energy
supply. As discussed earlier, the role of BCAAs in fatigue has been introduced BCAAs-mainly

Gamma-aminobutyric acid is an inhibitory neurotransmitter. One efthe-causes of

central motor fatigue is the-an increase efin gamma-aminobutyric acid levels. With the

extension of exercise time, the body will appear hypoxia, making the gamma-aminobutyric
acid oxidation process weakened, and the high concentration of gamma-aminobutyric acid
will cause postsynaptic inhibition(Sutoo & Akiyama 2003). Elevated levels of gamma-
aminobutyric acid in the brain can lead to exercise-induced fatigue.

Glutamic acid is a neurotransmitter related to excitability in the central nervous system,
which is very abundant in the brain, and normal levels of glutamic acid play an important
role in maintaining neuronal excitability, and glutamic acid is the transmitter of most
excitatory synapses. When the amount of glutamic acid in the brain changes abnormally, it
leads to a decline in the function of the central system, which is one-ef-the-causes of
exercise-induced fatigue(Li et al. 2020).

4.5.6. Tissue endothelin(ET)

NO can promote vasodilation and is also an important neurotransmitter, which has an
important physiological role in exercise, especially in the cardiovascular system. NO is
mainly manifested in tissue cells as intracellular messenger molecules, which can cause
vascular smooth muscle relaxation through the cGMP interaction. Studies have confirmed

that normally NOS is functionally active in brain tissue, and the expression of NOS can be
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significantly weakened after heavy-load exercise training, indicating that fatigue can reduce
NOS expression in brain tissue(Anish 2005).

ET is an active small molecule polypeptide that promotes vasoconstriction, and its
constrictive effect on blood vessels is the most effective substance, contrary to the effect of
NO. Previous studies have confirmed that exercise promotes the enhancement of tissue
endothelin expression, causing vasoconstriction, which in turn leads to hypoxia in the body.
The expression of tissue endothelin is highly correlated with exercise intensity, and exercise-

induced fatigue occurs due to ischemia and hypoxia when the exercise load is too large-

and-itisthe best-effeetive substanee;-contrary-to-theeffect of NO(Meeusen et al. 2007).

A key limitation in this field remains the overreliance on peripheral measures to infer

central neurotransmitter changes. Since the blood-brain barrier preventsrestricts free

exchange of molecules between the periphery and the brain, such inferences are highly
speculative (Meeusen et al., 2007).The classic “central fatigue hypothesis,” once centered on
hydroxytryptamine, has been challenged: dopamine and noradrenaline are now regarded
asconsidered equally important in regulating motivation and perceived exertion (Roelands &
Meeusen, 2010). Methodological constraints also pese-a-problempresent a challenge. While
animal studies permit direct brain measurement via techniques like microdialysis, human
studies rely on indirect proxies. Notably, interactions between peripheral metabolites and
central neurotransmission form a promising yet underexplored research frontier.
4.6. Biomarkers in the urine

By meticulously measuring the concentration of metabolites in the urine using advanced
analytical techniques, it is possible to indirectly mirror the metabolic changes occurring in
the body. This, in turn, enables us to infer the extent of exercise-induced fatigue. The
analysis of urine metabolites provides valuable insights into the body's response to physical
exertion and helps in understanding the mechanisms underlying exercise-induced
fatigue(Thompson et al. 2013). Moreover, urinalysis is of great significance in clinical and
athletic body evaluation. Biomarkers in urine are one of the reliable indicators for detecting
exercise-induced fatigue(7ablel).
4.7. Saliva

Saliva is indeed-a highly convenient, completely safe, and non-invasive characteristic
for collection. In recent years, the research focused on the utilization of saliva to gauge the
exercise status has been drawing an increasing amount of attention. This is particularly true
in the field of sports. For athletes, the option of using saliva instead of blood and urine to

evaluate the body's athletic condition presents itself as a significantly faster and more
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convenient approach. The potential of saliva as a source of biomarker for assessing exercise-
induced physiological changes is being explored in numerous studies. The-eolleetion-of
salivalts collection is not only less invasive but also more readily accepted by athletes,
thereby reducing the discomfort and potential risks associated with traditional methods.
Moreover, the analysis of saliva can provide valuable insights into various aspects of an
athlete's physical condition, ineluding-such as hormone levels, immune function, and
oxidative stress. This emerging field of research holds great promise for improving the
monitoring and management of athletes' health and performance. In the future, further
advancements in saliva-basedsalivary biomarker research are expected to lead to more
accurate and comprehensive assessments of the body's response to exercise, enabling athletes
and coaches to make more informed decisions regarding training and competition(Hackney
2016b).

4.7.1. Saliva PH

Due to the increase in lactic acid production after long-term strenuous exercise, the
amount of CO2 in the blood increases, and acidic substances such as ketone bodies and
pyruvate accumulate, resulting in a decrease in the pH value of blood and thus a decrease in
the pH value of saliva(Grzesiak-Gasek & Kaczmarek 2022). When exercise-induced fatigue,
acidosis often occurs, acidosis can reduce the body's muscle exercise capacity and also cause
symptoms of central nervous system fatigue. Adequate alkaline substances should be
supplemented after exercise.

4.7.2. Salivary immunoglobulin A(SIgA)

Salivary immunoglobulin A level is one of the important indicators of human immune
status. After intensive exercise or long and intense exercise, the immunosuppression caused
by exercise leads to a decrease in immunoglobulin A level. Most research indicates that s-IgA
level can serve as an indicator for evaluating exercise load, as it decreases following short
periods of intense exhaustive exercise.

vattation;a d

exereise. Fahlmanetal(Meeusen 2014; Shimomura et al. 2009) performed 30s full anaerobic
work test for 3 minutes, which indicated that a temporary decrease in saliva immunoglobulin
A levels in women. In summary, saliva immunoglobulin A ean-be-used-to_is a valuable
biomarker for assessing exercise-induced fatigue-evaluate-the-biemarkers-of-exereise-indueed
fatigue.

4.7.3. Other components in the saliva were used as biomarkers
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With the development of high-throughput technology and their application in athletics,
more components are identified in saliva, and they can replace the corresponding detection
in the blood. These-ether components are also markers of exercise activity. Guo Fei(Lacerda
et al. 2005) et al. used the serum and saliva of athletes before and after exercise as the
research object, and found the sports-related biochemical indicators in saliva. Michael(Giles
et al. 2012) et al. identified a class of small molecule proteins (SMW) in saliva after exercise
through high-throughput proteome combined chromatography and mass spectrometry, and
then correlated the fatigue degree of each peptide exercise, and obtained a positive
correlation between a class of small molecule proteins and exercise-induced fatigue.

Enthusiasm for non-invasive biomarkers must be tempered by a critical awareness of
their pre-analytical and analytical vulnerabilities. Hydration status significantly influences
urinary analyte concentration, necessitating creatinine correction and rigorous sampling
protocols (Cone et al., 2009). Similarly, salivary measurements of hormones such as cortisol
and IgA are exquisitely sensitive to circadian rhythms, sampling techniques (stimulated vs.
unstimulated), and oral health status (Grzesiak-Gasek & Kaczmarek, 2022). A key limitation
is that many studies report changes in these biomarkers without first establishing validated,
population-specific reference ranges under exercise conditions. Consequently, although non-
invasive biomarkers are well-suited for longitudinal monitoring, their current utility for
cross-sectional or single-time-point diagnosis of fatigue remains limited. The future direction
lies in developing integrated sensor systems for real-time biomarker measurement, combined
with machine learning methods to interpret the complex, multi-parameter data they
generate.

5.—5. Detection Methods for Biomarkers

5.1. Development of blood testing technologies

The evolution of blood testing technologies has significantly enhanced the detection and
monitoring of biomarkers in-for various diseases. Traditional methods, such as enzyme-
linked immunosorbent assays (ELISAs) and blood routine tests, have paved the way for more
advanced techniques. Blood routine testing is widely employed not only in clinical practice
but also for assessing athletes' physical conditions, erabling-providing deeper insights into
the relationships between-among blood biomarkers, exercise performance, and exercise-
induced fatigue. Recent innovations include microfluidic devices that alewferenable the
analysis of small blood volumes, thus minimizing patient discomfort and enabling point-of-
care testing (POCT)_(Kim et al. 2022). Moreover, the integration of biosensors with

nanotechnology has facilitated the real-time monitoring of biomarkers;- such as glucose and
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lactate, in a minimally invasive manner(Hu et al. 2024). These advancements not only
improve diagnostic accuracy but also support personalized medicine by enabling tailored
treatment strategies based on individual biomarker profiles. Furthermore, the development
of portable devices for blood analysis has the potential to revolutionize healthcare delivery,
particularly in remote or under-resourced areas(Hu et al. 2022).Nanotechnology-integrated
biosensors facilitate real-time detection of critical fatigue markers: Monash's 5-biomarker
nano-sensor identifies 24-hour sleep deprivation with >99% accuracy for drowsy driving
legislation , while subcutaneous microneedle arrays synchronize glucose/urea dynamics with
ecological momentary assessment (EMA) to pinpoint dialysis-induced hypoglycemia as a
modifiable fatigue trigger (Brys et al. 2021).These portable systems overcome geographical
barriers—battlefield TRP/BCAA ratio detection via paper-based microfluidics reduces
accident rates by 29% through targeted nutritional intervention (Pollock et al. 2012).As
research continues to explore novel biomarker candidates and detection methods, the
landscape of blood testing technologies is poised for further transformation, ultimately
leading to improved patient outcomes (Fig. 3).
5.2. Analysis of biomarkers in urine and saliva

Urine and saliva have emerged as valuable non-invasive biofluids for biomarker analysis,
offering significant advantages over traditional blood sampling methods. Urine is particularly
advantageous due to its ease of collection and the presence of a wide range of biomarkers
indicative of various diseases, including kidney dysfunction and metabolic disorders(Meng et
al. 2023). Recent studies have employed advanced techniques, such as mass spectrometry and
liquid chromatography, to identify and quantify urinary biomarkers with high precision(Xu
et al. 2023). Similarly, saliva has gained attention for its potential to reflect systemic health,
with numerous studies highlighting the presence of biomarkers related to oral health,
systemic diseases, and even cancer(Eftekhari et al. 2022). The development of portable
devices for saliva analysis, coupled with advancements in proteomics and metabolomics, has
enhanced the feasibility of using saliva as a diagnostic tool(Sanchez-Medina & Gonzalez-
Badillo 2011).
5.3 Emerging technologies: microneedle sensors and biochips

Microneedle sensors and biochips represent the forefront of biomarker detection
technologies, combining minimal invasiveness with high sensitivity and specificity.
Microneedles allow for the painless extraction of interstitial fluid, which can be analyzed for
various biomarkers, including glucose, lactate, and electrolytes, in real-time(Dervisevic et al.
2024). Recent advancements in microneedle technology have led to the development of

integrated biosensing platforms capable of multiplexed biomarker detection, enabling
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comprehensive health monitoring(Huang et al. 2023). Additionally, biochips, which utilize
microfabrication techniques, have revolutionized the way biomarkers are detected by
allowing for high-throughput analysis and the simultaneous measurement of multiple
analytes(Zhong et al. 2024). These technologies not only enhance diagnostic capabilities but
also facilitate personalized medicine by providing continuous monitoring of biomarkers in
various physiological conditions. As research continues to refine these technologies and
address current limitations, the application of microneedle sensors and biochips in clinical
settings is expected to expand, ultimately improving patient care and outcomes(Teymourian
et al. 2021).

6--6. Future Research Directions and Challenges

6.1. Applications of Multi-Omics Technologies in Exercise-induced fatigue Research

The advent of multi-omics technologies has revolutionized the understanding of
exercise-induced fatigue by integrating various biological data types, including genomics,
proteomics, metabolomics, and transcriptomics. These technologies enable researchers to
obtain a comprehensive view of the molecular mechanisms underlying fatigue during and
after exercise. For instance, recent studies have shown that integrating transcriptomic data
with metabolomic profiles can help elucidate the metabolic pathways that are altered during
fatigue, providing insights into how different energy substrates are utilized by skeletal
muscle(Xia et al. 2023). Furthermore, multi-omics approaches can identify novel biomarkers
for fatigue, which could be instrumental in developing personalized exercise regimens
tailored to individual metabolic responses. However, challenges remain in standardizing the
application of these technologies, particularly regarding data integration and interpretation
across different studies. Future research should focus on establishing standardized protocols
for sample collection and analysis to enhance reproducibility and comparability of findings

across diverse populations and exercise modalities(Ni et al. 2022).

6.2. Standardization and Clinical Applications of Biomarkers

The clinical application of biomarkers for exercise-induced fatigue is hindered by a lack
of standardization in their measurement and interpretation. Biomarkers such as lactate
levels, heart rate variability, and cytokine profiles have shown promise in assessing fatigue,
yet their clinical utility is often limited by variability in testing methods and patient
populations(Sopi¢ et al. 2024). To address these challenges, it is essential to develop
standardized protocols that encompass all aspects of biomarker assessment, including pre-
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analytical variables, assay techniques, and interpretation frameworks(Kolev et al. 2022).
Additionally, establishing clear guidelines for the clinical application of these biomarkers
could facilitate their integration into routine practice, enabling healthcare professionals to
monitor fatigue more effectively and tailor interventions accordingly. Future research should
prioritize multi-center studies that validate the clinical relevance of fatigue biomarkers and
explore their predictive capacity for exercise tolerance and recovery in various populations,

including athletes and individuals with chronic diseases (Zhang et al. 2024).

6.3. Individual Variability in Exercise-induced fatigue Biomarkers

Understanding the individual differences in exercise-induced fatigue is crucial for
developing personalized approaches to training and recovery. Recent studies have
highlighted significant variability in muscle fatigue tolerance and recovery rates among
individuals, influenced by genetic, physiological, and psychological factors(Holgado et al.
2023). This variability suggests that a one-size-fits-all approach to exercise may not be
effective for all individuals, emphasizing the need for personalized training programs that
consider these differences. Future research should focus on identifying specific biomarkers
that correlate with individual fatigue responses, potentially through the use of wearable
technology and real-time monitoring systems that assess physiological parameters during
exercise(Li et al. 2022). To effectively assess an individual user's fatigue state, the use of the
Rating of Perceived Exertion (RPE) scale is a practical and scientifically sound core solution.
Its key advantages include ease of use, real-time feedback, and robust evidence-based
support. RPE values integrate central nervous system and muscle metabolic signals, not only
reflecting an individual's current fatigue level but also enabling precise intervention by
identifying personalized “fatigue points,” thereby mitigating the risk of overtraining. By
widely applying RPE as a foundational tool in scenarios such as sports training and
occupational health, and by integrating wearable device data in the future to establish a
subjective + objective” dual-track verification system, the precision of individualized fatigue
management can be further enhanced(Zhao et al. 2025).Additionally, exploring the interplay
between psychological factors, such as motivation and mental fatigue, and physical
performance could provide deeper insights into the mechanisms of exercise-induced fatigue
and recovery. By addressing these individual differences, researchers can enhance the
effectiveness of interventions aimed at mitigating exercise-induced fatigue and improving

overall athletic performance(Royer et al. 2024).

7—7. Conclusions and Outlook
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This review has synthesized current understandings of biomarkers associated with
exercise-induced fatigue, covering energy substrates, metabolic byproducts, blood
biochemical indicators, oxidative stress parameters, neurotransmitters, and non-invasive
biomarkers. While these markers collectively shed light on the multifaceted nature of
fatigue, the field remains limited by a predominance of correlative findings and fragmented
insights. Moving toward a more integrated, dynamic, and causally informed understanding of
fatigue mechanisms is imperative for further scientific and practical progress.

Substantial evidence supports the roles of classical biomarkers—such as lactate,
ammonia, creatine kinase, and cortisol—in the study of exercise-induced fatigue. However,
their interpretation is often challenging due to limited specificity, high contextual
variability, and complex interactions between peripheral and central mechanisms.
Meanwhile, non-invasive biomarkers from saliva and urine offer promising avenues for real-
time monitoring, yet their application is hindered by insufficient standardization and
validation within athletic populations. Similarly, emerging technologies like microneedle
sensors and multi-omics platforms show great potential, but translating these tools into
sport-specific settings requires further methodological refinement and integrated data
analysis.

Looking ahead, research should prioritize elucidating the temporal dynamics and causal
relationships underlying biomarker fluctuations. This will require leveraging interventional
study designs and advanced computational models to decode complex, system-wide
physiological networks. There is also a critical need to harmonize laboratory-based measures
with field-based monitoring tools, while accounting for individual variability in baseline
values and biomarker responses. Furthermore, integrating physiological indicators with
perceptual and cognitive dimensions of fatigue will be essential to develop comprehensive,
multidimensional assessment frameworks.

In summary, the continued advancement of research on exercise-induced fatigue
depends on the adoption of integrative approaches that combine multidimensional
biomarker systems, advanced technologies, and principles of personalized medicine. By
addressing existing methodological limitations and prioritizing mechanistic clarity, the field
can develop more effective strategies to monitor, mitigate, and manage fatigue—thereby
enhancing human performance and well-being in both athletic and general populations.
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