

Positive rates of total and specific immunoglobulin E in 7,824 adult patients with suspected allergic diseases in Liaoning Province, China: a retrospective study

Zan Sun^{1,2}, Long Shao³, Peng Cao⁴, Hanqi Zhang², Meng Chen², Jingfang Wang² and Lin Zhou²

- ¹ The People's Hospital of Liaoning Province and People's Hospital of China Medical University, Shenyang, China
- ² School of Public Health, Shenyang Medical College, Shenyang, China
- ³ The First Hospital of China Medical University, Shenyang, China
- ⁴ Liaoning University of Traditional Chinese Medicine, Shenyang, China

ABSTRACT

Background. The escalating prevalence of allergic diseases poses a significant global health challenge. However, estimates of allergic disease prevalence in Liaoning Province, China, remain lacking. This study aimed to investigate total immunoglobulin E (tIgE) and specific immunoglobulin E (sIgE) levels in 7,824 patients with suspected allergic diseases and to identify factors associated with allergic conditions.

Methods. A total of 7,824 participants (3,180 males and 4,644 females) with a mean age of 53.63 years were included. tIgE and sIgE levels were measured using standard laboratory methods. The normal reference range for tIgE was stratified by age group, and sIgE results were categorized as positive or negative based on predefined thresholds. Statistical analysis was performed using SPSS 26.0.

Results. The overall tIgE positivity rate was 39.26%, with males showing a significantly higher rate (46.67%) than females (34.19%) ($\chi^2 = 123.118, p < 0.001$). The highest tIgE positivity was observed in the 18–44 age group (44.11%) and during the summer season (43.95%). No significant differences were found in sIgE positivity rates for inhaled and food allergens between sexes or seasons.

Conclusions. Male sex, younger and older age groups, and the summer season were identified as significant predictors of allergic diseases based on tIgE levels. These findings underscore the importance of sex and seasonal variations in allergic disease prevalence and highlight the need for targeted prevention and management strategies.

Subjects Biochemistry, Allergy and Clinical Immunology, Immunology, Public Health **Keywords** Allergic diseases, IgE, sIgE, Positive rates

INTRODUCTION

Allergic diseases, characterized as chronic immune-mediated disorders, have become a global health challenge with escalating prevalence over recent decades. These conditions manifest through diverse clinical presentations including skin reactions (*e.g.*, atopic

Submitted 18 April 2025 Accepted 24 October 2025 Published 21 November 2025

Corresponding authors Jingfang Wang, 17309813966@163.com Lin Zhou, zhoulin@symc.edu.cn

Academic editor Santosh Patnaik

Additional Information and Declarations can be found on page 13

DOI 10.7717/peerj.20394

© Copyright 2025 Sun et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

dermatitis), respiratory manifestations (e.g., allergic rhinitis and asthma), gastrointestinal disturbances (e.g., food allergy), and life-threatening anaphylactic shock. According to the 2011 World Allergy Organization White Book, 30%–40% of the global population suffers from at least one allergic condition (World Allergy Organization, 2011), with house dust mite (HDM) allergy affecting 65-130 million individuals worldwide (Huang, Sarzsinszky & Vrtala, 2023). A recent review confirms that food allergy is a major and growing public health concern, affecting approximately 8% of children and 10% of adults in developed countries (Bartha, Almulhem & Santos, 2024). Specifically, in the United States, food allergies affect an estimated 8% of children and 5% of adults (Gupta et al., 2018; Sicherer & Sampson, 2018). In Canada, the self-reported prevalence of food allergies increased from 7.1% to 9.3% between 2010 and 2016 (Clarke et al., 2020). Notably, in leading respiratory epidemic regions such as Australia, challenge-proven IgE-mediated food allergy now affecting up to 10% of infants (*Prescott & Allen*, 2011). In addition, European studies show even higher self-reported rates, with pooled lifetime and point prevalence reaching 19.9% and 13.1%, respectively (Spolidoro et al., 2023). Especially in the United Kingdom, the estimated incidence of probable food allergy doubled between 2008 and 2018, prevalence increased from 0.4% to 1.1% (Turner et al., 2024). This epidemiological surge has prompted the World Health Organization to prioritize allergy management, given its substantial socioeconomic burden through diminished quality of life and healthcare expenditures (*Lai et al.*, 2006).

Allergic diseases arise from complex gene-environment interactions (*Liu et al.*, 2009). The key feature of these diseases is the abnormal production of immunoglobulin E (IgE). IgE is primarily synthesized by B cells located in the lymphatic tissue of the respiratory and digestive tracts' lamina propria mucosa. As the primary mediator of type I allergic reactions, IgE plays a central role in these conditions. Elevated serum IgE levels often suggest the presence of genetic allergies or type I hypersensitivity. Though the underlying mechanisms are not fully elucidated, emerging evidence highlights demographic influences on disease manifestation, with age-related susceptibility patterns (*Tuten Dal et al.*, 2024), sex disparities in immune responses (*Osman*, 2003), and seasonal variations in allergen exposure (*Lee et al.*, 2020) being increasingly recognized. These findings underscore the necessity for multidimensional approaches in clinical management, emphasizing personalized prevention and treatment strategies.

Despite global research advances, significant knowledge gaps persist regarding regional epidemiological variations. Liaoning Province, a northeastern Chinese region characterized by distinct seasonal transitions with prolonged heating periods and associated indoor allergen exposure, likely presents unique allergy profiles. However, the absence of comprehensive epidemiological data from this 43-million population region hinders targeted interventions. This study aimed to investigate the total and specific IgE levels in 7,824 adult patients with suspected allergic diseases and identify the factors associated with allergic diseases. The findings from this investigation are expected to provide valuable insights for the development of more effective diagnostic tools, preventive strategies, and therapeutic interventions tailored to the needs of individuals at risk for allergic diseases.

METHODS

Study population

In this retrospective study, the results of testing 7,824 patients with suspected allergies who attended the Liaoning Provincial People's Hospital in China between January 2018 and December 2023 were analyzed. These patients were clinically evaluated by the attending physicians and all presented with suspected allergic symptoms, including atopic dermatitis, urticaria, eczema, asthma, shortness of breath, cough, and respiratory tract infections. The investigation was reviewed and approved by the Ethics Committee of The People's Hospital of Liaoning Province (2024K004). Since this study was a retrospective study form, the application for waiver of informed consent was adopted.

Allergy screen test

Preparation of blood sample and reagents

The collected blood was placed in a sterile drying tube or a coagulant tube containing separation gel. The sample should be centrifuged immediately upon receipt at 3,000 rpm for 10 min to facilitate serum separation. If immediate testing was not feasible, serum samples must be stored under cold conditions at 2–8 °C and tested as soon as possible. Samples exhibiting severe hemolysis or lipemia were deemed unsuitable for this experiment due to their potential interference with result analysis.

Antibody levels in the serum of patients were evaluated using the Total IgE Antibody Detection Kit (Catalog No.: MB00072), the Allergen-Specific IgE Antibody (sIgE) Detection Kit for Inhaled Allergens (Catalog No.: MB00061), and the sIgE Detection Kit for Food Allergens (Catalog No.: MB00062), all manufactured by HOB Biotech Group Corp., Ltd. (Suzhou, Jiangsu, China). Experiments were performed in strict accordance with the instructions provided. The reagents in the kits were equilibrated for 30 min at room temperature, and the working concentration of the wash solution was obtained by diluting the concentrated wash solution with purified or distilled water at a ratio of 1:10. The prepared wash solution should be used as soon as possible, and the unused portion must be stored at a low temperature of 2–8 °C.

Test procedure

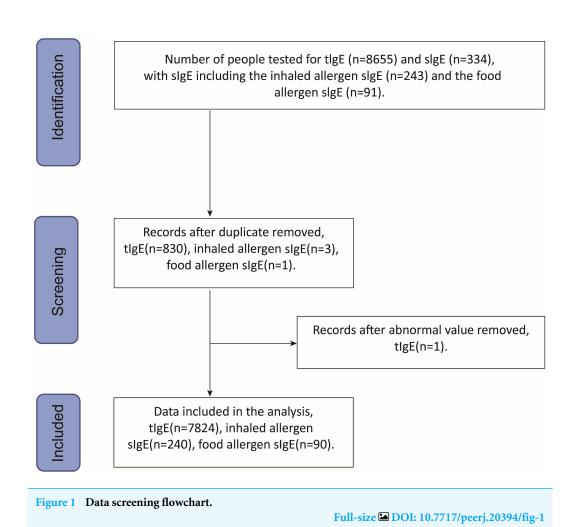
The incubators with the test strips were placed on a shaker, and one mL of serum sample was added to each incubator followed by incubation with shaking at 40 rpm for 60 min at room temperature. After discarding the reaction solution in the incubator, the test strips were washed with the prepared washing solution and the above washing procedure was repeated three times. Then one mL of bonding solution was added to each test strip and incubated for 20 min at room temperature with shaking at 40 rpm, followed by two washes with washing solution. one mL of substrate solution was then added to each incubator and incubation continued for 10 min at room temperature. Finally, the test strips were removed, and excess liquid was blotted with absorbent paper and left to dry completely before placing it on the reading system for interpretation of results.

The obtained test strips were analyzed by a Rayto automated immunoblotting instrument (Shenzhen, China) to achieve qualitative classification of allergen-specific IgE. Each

strip contains a negative and a positive control area. The color of the negative control area appeared white or extremely light blue, while the color of the positive control area was significantly more intense than that of the negative control zone, indicating a valid result. If the color intensity of the allergen response zone exceeded that of the negative control zone, it was interpreted as a positive reaction, signifying the presence of specific IgE for that allergen in the patient's serum. In contrast, if the antigen reactive area was the same or similar in color to the negative control area, a negative reaction was indicated, suggesting that IgE specific for the allergen was not present in the patient's serum. It is crucial to emphasize that chromogenic results from total IgE response regions do not serve as substitutes for quantification *via* enzyme-linked immunosorbent assay (ELISA) methods recommended by the World Health Organization (WHO), and these results are only intended to predict IgE-mediated allergic reactions.

Evaluation of tlgE and slgE

The normal reference range of tIgE can be categorized as follows: 3 to 5 years old, tIgE range was 0 to 35 IU/mL; 6 to 20 years old, tIgE range was 0 to 51 IU/mL; over 20 years old, tIgE range was 0 to 100 IU/mL. Patients with tIgE values outside the reference range were considered positive. sIgE test results <0.35 IU/mL were negative and \geq 0.35 IU/mL were positive. A case was considered positive whenever 1 or more sIgE were positive in the patient's serum.


Statistical analysis

SPSS 26.0 software (IBM Corp., Armonk, NY, USA) was used for statistical analysis of the data, and comparisons between groups were performed by Chi-square test. P < 0.05 was considered to be statistically significant.

RESULTS

Characteristics of the study population

Of the 7,824 patients with suspected allergies, the number and percentage of patients tested for tIgE and sIgE varied by year as follows: 823 (10.52%) in 2018, 1,157 (14.79%) in 2019, 762 (9.74%) in 2020, 1,334 (17.05%) in 2021, 1,639 (20.95%) in 2022, and 2,109 (26.95%) in 2023. As shown in Fig. 1, the subjects comprised 3,180 males (40.64%) and 4,644 females (59.36%), with a mean age of 53.63 ± 18.32 years (range: 18 years to 101 years). Among them, 7,824 patients underwent total IgE detection and 330 patients were tested for specific IgE detection, including 240 cases with 10 inhaled allergen-specific IgE tests and 90 cases with 10 food allergen-specific IgE tests. As shown in Fig. 2, allergens tested covered 20 common allergens, 10 inhaled allergens and 10 food allergens. Inhaled allergens include dust mite, cockroach, mold, walnut pollen, elm pollen, plantain pollen, artemisia pollen, ragweed pollen, cat hair, dog epithelium, while food allergens included wheat, peanut, egg, soybean, milk, tomato, fish, shrimp, crab, and nuts.

Α В 80 Number of slgE positive cases Number of slgE positive cases Male Female Female 60 Total Total Waltut Poller Elm Pollen Artice de la Contraction de la Artemisis Poller Ragineed Poller Dust mite Milk Fish Ghinn Crab

Figure 2 Positive rates for 10 inhaled allergens and 10 food allergens. (A) Inhaled allergens; (B) Food allergens.

Full-size DOI: 10.7717/peerj.20394/fig-2

Table 1 Positive rates of tIgE and sIgE.							
Gender tIgE (N) Inhaled allergen					Food allergens (N)		
	n	tIgE(+)(%)	n	sIgE(+)(%)	n	sIgE(+)(%)	
Male	3,180	1,484 (46.67)	82	43 (52.44)	40	14 (35.00)	
Female	4,644	1,588 (34.19)	158	87 (55.06)	50	18 (36.00)	
χ2		123.118		0.15		0.01	
P		< 0.001		0.699		0.922	

Analysis of tlgE and slgE by sex Overall analysis of tlgE and slgE by sex

It can be seen from Table 1, out of 7,824 patients with total IgE, 3,180 were male, of whom 1,484 were positive for total IgE. Out of 4,644 female patients, 1,588 were positive for total IgE. The total positive rate of total IgE in serum was 39.26%, with 46.67% in male patients and 34.19% in female patients. The difference in total IgE positivity between the male and female groups was statistically significant ($\chi 2 = 123.118$, P < 0.001). Among the sIgE-positive cases for the 10 inhaled allergens, 43 males and 87 females were positive, with the difference also not being statistically significant ($\chi 2 = 0.15$, P > 0.05) whereas among the sIgE-positive cases for the 10 food allergens, 14 cases were male and 18 cases were female, with no statistical significance ($\chi 2 = 0.01$, P > 0.05).

Sensitization to inhaled and food allergens by sex

As shown in Table 2, out of 240 patients, 130 (54.17%) tested positive for sIgE to at least one of the 10 inhaled allergens, with dog epithelium (66, 27.50%), dust mites (41, 17.08%), and molds (36, 15.00%) being the most common inhaled allergens. Out of 90 patients, 32 (35.56%) tested positive for sIgE to at least one of the 10 food allergens, with peanuts (14, 15.56%), eggs (14, 15.56%), and nuts (8, 8.89%) being the top three food allergens.

Analysis of inhaled allergens and food allergens in different sex groups

Table 3 show the sex distribution of 10 inhaled allergens and 10 food allergens. As shown in Table 3 and Fig. 2, the top inhaled allergen was dog epithelium in both males and females, with positivity rates of 26.83% and 27.85%, respectively. In addition, mold (17.07%) and dust mite (19.62%) were the second most common inhaled allergens in male and female patients, respectively (Table 3 and Fig. 2). It can be seen from Table 3 and Fig. 2 that the food allergens in the patients were mainly eggs and peanuts, the food allergens in the male patients were mainly peanuts, and the food allergens in the female patients were mainly eggs. Peanut (20%) and egg (12.5%) were the common food allergens in male patients, whereas egg (18%), peanut (12%) and soybean (10%) were the most common food allergens in female patients However, due to the lack of sample size, there was no statistical significance in the sex distribution of specific IgE.

Table 2 Sensitization to 10 inhaled and 10 food allergens.					
Inhaled allergens	Positive number (%)	Food allergens	Positive number (%)		
Dust mite	41 (17.08)	Wheat	7 (7.78)		
Cockroach	15 (6.25)	Peanut	14 (15.56)		
Mold	36 (15.00)	Egg	14 (15.56)		
Walnut pollen	29 (12.08)	Soybean	7 (7.78)		
Elm pollen	22 (9.17)	Milk	5 (5.56)		
Plantain pollen	3 (1.25)	Tomato	1 (1.11)		
Artemisia pollen	22 (9.17)	Fish	3 (3.33)		
Ragweed pollen	25 (10.42)	Shrimp	4 (4.44)		
Cat hair	35 (14.58)	Crab	7 (7.78)		
Dog epithelium	66 (27.50)	Nut	8 (8.89)		

Table 3 Sensitization to 10 inhaled and 10 food allergens by gender.

Inhaled allergens	Male (n = 82)	Female (<i>n</i> = 158)	χ2	P	Food allergens	Male (<i>n</i> = 40)	Female $(n = 50)$	χ2	P
	Positive rate (%)	Positive rate (%)				Positive rate (%)	Positive rate (%)		
Dust mite	10(12.20)	31(19.62)	2.101	0.147	Wheat ^a	3(7.50)	4(8.00)	0	1
Cockroach	6(7.32)	9(5.70)	0.242	0.623	Peanut	8(20.00)	6(12.00)	1.083	0.298
Mold	14(17.07)	22(13.92)	0.420	0.517	Egg	5(12.50)	9(18.00)	0.512	0.474
Walnut pollen	9(10.98)	20(12.66)	0. 144	0.704	Soybean	2(5.00)	5(10.00)	0.234	0.628
Elm pollen	7(8.54)	15(9.49)	0.059	0.807	Milk	3(7.50)	2(4.00)	0.066	0.797
Plantain pollen ^a	2(2.44)	1(0.63)	0.339	0.561	Tomato ^b	1(2.50)	0(0.00)		0.444
Artemisia pollen	7(8.54)	15(9.49)	0.059	0.807	Fish	1(2.50)	2(4.00)	0	1
Ragweed pollen	10(12.20)	15(9.49)	0.422	0.516	Shrimp	3(7.50)	1(2.00)	0.553	0.457
Cat hair	12(14.63)	23(14.56)	0.000	0.987	Crab	4(10.00)	3(6.00)	0.095	0.758
Dog epithelium	22(26.83)	44(27.85)	0.028	0.867	Nut	4(10.00)	4(8.00)	0	1

Notes.

Positive rates of tIgE by age

As shown in Table 4, the adult patients investigated were categorized into three groups, 18–44 years, 45–59 years and 60 years and above according to the World Health Organization criteria. The highest positive rate was found in the age group of 18–44 years (44.11%), followed by the age group of \geq 60 years (37.45%) and 45–59 years (35.61%). The difference was statistically significant ($\chi 2 = 41.096$, P < 0.001).

Positive rates of tlgE and slgE by season

According to international meteorological standards, the year is divided into four seasons, of which spring is from March to May, summer is from June to August, autumn is from September to November, and winter is from December to February. As can be seen in Table 5, the positive rate of tIgE showed that the highest positivity rate was observed in

^aItalic: correction formula.

^bBold: Fisher's exact test.

Table 4 Positive rates of tIgE by age.		
Age (years)		tIgE (N)
	n	tIgE (+)(%)
18–44	2,648	1,168 (44.11)
45–59	1,873	667 (35.61)
60–101	3,303	1,237 (37.45)
χ2		41.096
P		< 0.001

Table 5 Po	sitive rates of tIgE and sIgE by seasons.
------------	---

Season	1	tIgE (N)		Inhaled allergens (N)		Food allergens (N)	
	n	tIgE (+)(%)	n	sIgE (+)(%)	n	sIgE (+)(%)	
Spring	2,021	752 (37.21)	70	30 (42.86)	20	7 (35.00)	
Summer	2,198	966 (43.95)	71	40 (56.34)	21	7 (33.33)	
Autumn	2,055	826 (40.19)	59	35 (59.32)	29	9 (31.03)	
Winter	1,550	528 (34.06)	40	25 (62.50)	20	9 (45.00)	
χ2		42.127		5.492		1.085	
P		< 0.001		0.139		0.781	

summer (43.95%), followed by autumn (40.19%), spring (37.21%) and winter (34.06%). tIgE positive rate displayed a statistically significant difference among the seasons (χ 2 = 42.127, P < 0.001). The number of sIgE positive cases for the 10 inhaled allergens in spring, summer, autumn, and winter were 30, 40, 35, and 25, respectively, with no statistically significant difference (χ 2 = 5.492, P > 0.05). Similarly, the number of sIgE positive cases for the 10 food allergens in spring, summer, autumn, and winter were 7, 7, 9, and 9, respectively, with no statistically significant difference (χ 2 = 1.085, P > 0.05).

Clinical symptoms and tIgE positivity among patients with suspected allergy

The ten most common clinical symptoms and tIgE positive rates among the 7,824 patients are shown in Table 6, which indicated that there were significant differences in tIgE positivity among different clinical conditions. Among them, urticaria, dermatitis and rhinitis had the highest tIgE positivity rates of 66.86%, 62.54% and 45.38%, respectively, suggesting that these symptoms were more closely related to allergic reactions. Overall, these results contribute to a clinician's better understanding of the relationship between different symptoms and immune system responses when diagnosing and treating allergic diseases.

DISCUSSION

In this study, the levels of total IgE and specific IgE were systematically analyzed in 7,824 adult patients with suspected allergies. In agreement with some previous studies (*Ballardini et al.*, 2021; *Park et al.*, 2017), it is observed that tIgE positivity is significantly higher

Table 6 Top ten most common clinical symptoms and tIgE positivity among patients with suspected allergy.

Clinical symptoms	Frequency (n)	tIgE (+) (%)
Pneumonia	2,306	391 (16.96)
Hypertension	1,368	194 (14.18)
Asthma	1,107	258 (23.31)
Dermatitis	1,009	631 (62.54)
Chronic Obstructive Pulmonary Disease	757	118 (15.59)
Urticaria	679	454 (66.86)
Bronchitis	654	202 (30.89)
Respiratory Failure	638	99 (15.52)
Type 2 Diabetes	620	107 (17.26)
Rhinitis	368	167 (45.38)

in male patients than in female patients. This may be due to hormonal differences as estrogen is known to modulate the immune response and potentially prevent sensitization (Bonds & Midoro-Horiuti, 2013). However, other studies have also reported that sex differences are not significant and even higher prevalence in females, suggesting that the relationship between sexes and allergic diseases is complex and may be influenced by a variety of factors such as genetics, individual lifestyle habits and environmental exposure (Lokaj-Berisha et al., 2015; Rosário et al., 2021; Tagliaferro et al., 2024). Genomewide association studies (GWAS) have identified genetic risk loci for asthma and allergy that show sex-specific effects, underscoring the intricate interplay between genetics and sex in allergic inflammation (Moffatt et al., 2010; Verlaan et al., 2009). Beyond genetic predisposition, behavioral differences may also play a role; for example, women tend to pay more attention to skin care and the use of cosmetics, which contain some chemicals and fragrances that may become potential allergens and increase the chance of allergic diseases in women. In contrast, men may have different exposures to other specific allergens due to factors such as their occupations, which may lead to the difference in the incidence of allergic diseases between the sexes (De Martinis et al., 2020). Furthermore, a previous study has suggests that high alcohol consumption is associated with elevated tIgE levels in men (Carballo et al., 2021).

This study reveals higher tIgE positivity in younger and older adults. Although the finding in younger individuals is similar to previous reports (*Omenaas et al.*, 1994), the result in the older group contrasts sharply with earlier findings (*Viswanathan & Mathur*, 2011). It is related to the different lifestyles and exposure to the environment in different age groups, and thus can influence the development of allergic diseases (*Fang et al.*, 2023). For example, younger people may be more exposed to outdoor allergens. Furthermore, previous studies have also reported that in healthy individuals, the total serum IgE level gradually increases from birth to the age of 15, and then gradually decreases from the age of 20 to 80 (*Barbee et al.*, 1981). However, the elderly exhibit increased susceptibility to infections, autoimmune diseases, and malignancy due to the functional decline of

both innate and adaptive immunity (*Derhovanessian et al.*, 2008), which makes them more susceptible to allergic reactions (*Huang et al.*, 2022; *Kousa et al.*, 2024; *Sadighi Akha*, 2018), resulting in a higher tIgE positivity rate.

Furthermore, we have observed that the tIgE positivity rate of the investigated group of adult suspected allergy sufferers is the highest in summer, followed by autumn. This pattern contrasts with the established pollen seasons in Liaoning Province, where spring (typically late March to mid-June) is dominated by poplar and autumn (typically August to September) by ragweed pollen (*Zhang et al.*, 2024). This seasonal distribution is partially supported by a Canadian study showing that the number of positive Radioallergosorbent Test (RAST) results peaked in April and November (Salkie & Weimer, 1984). This divergence suggests that while pollen exposure contributes to allergic sensitization, the elevated tIgE levels observed in summer may also be partially attributable to parasitic co-infections. National surveys indicate that while soil-transmitted helminth infections are most prevalent in southwestern provinces like Yunnan (11.83%) and Hainan (10.9%) (Chen et al., 2021; Zhu et al., 2019), certain foodborne parasitic diseases show significant prevalence in northeastern China. Specifically, Clonorchis sinensis (Chinese liver fluke) infection is highly endemic in Heilongjiang and Jilin provinces, with these regions identified as major endemic areas alongside Guangdong and Guangxi. Although data specific to Liaoning Province have not been explicitly reported, populations in this region may still face similar exposure risks due to its geographical proximity and comparable environmental conditions. The warm, humid summer environment not only promotes the transmission of these parasites but may also enhance their immunogenicity, thereby amplifying IgE responses (*Pullan & Brooker*, 2008). Additionally, summer conditions facilitate the proliferation of other allergens such as fungi or dust mites, as well as elevated temperature and air humidity. These environmental factors not only promote the multiplication of common allergens but also may increase people's chances of coming into contact with these allergens, thus exacerbating allergic symptoms. The tIgE positivity rate in this study population is lower in the winter months. This seasonal pattern aligns with findings from a previous dynamic study by Korean scholars, which reported a significant reduction in both total serum IgE and specific IgE antibody levels from September to December (Nahm et al., 1997). The reason for the above result might be that in winter, the body may dedicate more immune resources to responding to coldweather threats of infections such as influenza viruses, respiratory syncytial viruses, etc. (Zuo et al., 2021). During this state of immune stress, the number and function of regulatory T cells (Tregs) are enhanced to maintain immune homeostasis and suppress excessive immune responses, including allergic reactions mediated by helper T cells 2 (Th2) (Robinson, Larché & Durham, 2004). Th2 cells are important regulators of IgE production, and inhibition of their activity leads to a decrease in the level of IgE produced by B cells, resulting in lower total IgE levels observed in winter (Deo et al., 2010; Goetzl, 2024).

In addition, the suspected allergic patients in this study involved a variety of clinical conditions, such as urticaria, dermatitis, rhinitis, and asthma. There is an intrinsic link between different types of allergic clinical symptoms with similar pathogenesis

or common risk factors. For example, atopic dermatitis is often considered to be an early manifestation of allergic disease development, and patients are at higher risk of developing allergic rhinitis and asthma later in life (Mrkić Kobal et al., 2023; Yang, Fu & Zhou, 2020). It has to be mentioned that many patients with suspected allergies suffer from other chronic diseases such as cardiovascular disease and metabolic syndrome. Studies have shown that patients with allergic diseases may have an increased risk of developing cardiovascular disease, which may be related to inflammatory responses, immune imbalances and other mechanisms (Guo et al., 2022; Paller et al., 2018; Silverberg et al., 2018). In this study, some of the patients had co-morbidities such as hypertension and diabetes, which can affect the risk, severity and IgE levels of allergic diseases. For example, patients with hypertension may be on certain medications for long periods of time that affect the immune system, which can alter sensitivity to allergens (Kostis et al., 2018; Lieberman & Simons, 2015). Patients with diabetes may have exacerbated allergies due to poor glycemic control and chronic inflammation (Lei et al., 2024). In conclusion, studying the associations between these different types of allergic diseases and with other diseases can help in the early identification of at-risk populations, leading to more targeted prevention and intervention.

Emerging evidence now demonstrates that, in addition to traditional mechanisms, a complex interplay between immune pathways and environmental modulators is crucial. Th 17 cells exhibit dual roles in IgE regulation, not only promoting inflammation via IL-17 but also potentiating Th2 responses (Cosmi et al., 2010; Murdaca, Colombo & *Puppo*, 2011). This crosstalk suggests Th17 cells as potential therapeutic targets for allergic diseases. The IL-31/IL-33 axis further complicates the Th2-dominant paradigm. IL-33, as an "alarmin," triggers IL-31 release from Th2 cells (Di Salvo et al., 2018; Murdaca et al., 2019), while dysregulation of this axis exacerbates IgE-mediated allergies (Murdaca, Gangemi & Greco, 2023; Murdaca et al., 2019). Such findings underscore the need for cytokine-network-based therapies. Environmental-metabolic interactions also contribute to IgE dysregulation. Vitamin D deficiency disrupts gut microbiota homeostasis, thereby impairing immune balance (Murdaca et al., 2021). Furthermore, research indicates that vitamin D deficiency may lead to an increased incidence of allergies and asthma (Mirzakhani et al., 2015; Sikorska-Szaflik & Sozańska, 2020). Notably, vitamin D supplementation can reshape microbial composition and modulate immune cells via vitamin D receptors (Murdaca & Gangemi, 2022; Murdaca & Gangemi, 2024; Yamamoto & Jørgensen, 2019), highlighting an epigenetic link between environment and immunity. Furthermore, immune tolerance mechanisms may counterbalance IgE overproduction. Elevated sHLA-G in allergic patients (Murdaca, Colombo & Puppo, 2011; Negrini et al., 2021) implies compensatory tolerance activation, offering insights into endogenous regulatory checkpoints. Together, these mechanisms converge into a multi-layered IgE regulatory network, advancing our understanding of allergic pathogenesis and informing targeted interventions.

While this study provides valuable insights into the epidemiology of allergic diseases and emphasizes the importance of considering sex, age and seasonal factors in the development and management of allergic diseases. However, this study still has several

limitations that should be considered when interpreting the results. First, the crosssectional design of the study limits our ability to establish a causal relationship between the factors analyzed and the incidence of allergic diseases. Second, due to potential selection bias, the study population may not be fully representative of the general population, and the results of this study are only applicable to Liaoning, China, or areas with similar climatic conditions, species richness, and lifestyles. Notably, due to the lack of sIgE data, the current analysis may not be able to fully reflect the patterns of responses to specific allergens in different populations, nor can it provide insight into the exposure to specific allergens and their effects on disease occurrence in different seasons or age groups. Third, this study incorporated 7,824 independent, non-repeated samples. Due to the inherent limitations of the data, a longitudinal analysis of seasonal variations in tIgE levels within the same patients was not feasible. Consequently, these data preclude drawing definitive conclusions regarding the precise effect of season on tIgE. Finally, when discussing the relationship between clinical symptoms and tIgE and sIgE positive rates, the present study lacked specific data to support the relationship, although it mentioned that there might be an interaction. The lack of detailed collection of specific information about the patients' conditions, such as the severity and duration of the disease, limited the in-depth understanding of the relationship. It is worth noting that, apart from allergies, total IgE levels are also influenced by a variety of other conditions, such as parasitic infections (Belhassen-García et al., 2014; Hamid et al., 2015; Yasuda & Nakanishi, 2018), immunodeficiencies (Boos et al., 2014; Tsilifis, Freeman & Gennery, 2021), and autoimmune diseases (De Oliveira et al., 2015; Kolkhir et al., 2017). Therefore, an elevated serum IgE level does not equate to an allergy diagnosis. In summary, future studies should increase the sample size of sIgE testing in order to more comprehensively assess the risk factors and epidemiologic characteristics of allergic diseases. In addition, to better understand the relationship between allergic diseases and potential risk factors, future studies should utilize longitudinal designs and include larger and more diverse study populations.

CONCLUSIONS

This study investigated the tIgE and sIgE positivity rates of 7,824 patients with suspected allergies. The higher tIgE positivity rate in male patients compared to female patients suggests that male patients are more susceptible to allergic diseases. In addition, younger and older age groups also had higher tIgE positivity rates, implying that these age groups are more prone to allergic diseases. Further, tIgE positivity rates were highest during the summer season, suggesting that allergic diseases are more likely to occur during the summer season. Although this study provides important information on the relationship between tIgE positivity and allergic diseases, it is worth noting that the number of people tested for sIgE was small, which limits more in-depth t and precise analysis. These findings could provide important guidance for clinical practice, as well as a basis for further research into the pathogenesis of allergic diseases and the development of personalized preventive measures.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to all participants.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research was supported by Natural Science Foundation of Liaoning Province of China (2021-MS-352). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: Science Foundation of Liaoning Province of China: 2021-MS-352.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Zan Sun conceived and designed the experiments, performed the experiments, analyzed
 the data, prepared figures and/or tables, authored or reviewed drafts of the article, and
 approved the final draft.
- Long Shao conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Peng Cao performed the experiments, prepared figures and/or tables, and approved the final draft.
- Hanqi Zhang performed the experiments, prepared figures and/or tables, and approved the final draft.
- Meng Chen analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Jing Fang Wang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Lin Zhou conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Human Ethics

The following information was supplied relating to ethical approvals (*i.e.*, approving body and any reference numbers):

Ethics Committee of The People's Hospital of Liaoning Province: 2024K004

Data Availability

The following information was supplied regarding data availability:

The raw measurements are available in the Supplementary File.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.20394#supplemental-information.

REFERENCES

- Ballardini N, Bergström A, Kull I, Almqvist C, Andersson N, Asarnoj A, Borres MP, Georgellis A, Pershagen G, Westman M, Van Hage M, Melén E. 2021. Resolved allergen-specific IgE sensitization among females and early poly-sensitization among males impact IgE sensitization up to age 24 years. Clinical & Experimental Allergy 51:849–852 DOI 10.1111/cea.13846.
- **Barbee RA, Halonen M, Lebowitz M, Burrows B. 1981.** Distribution of IgE in a community population sample: correlations with age, sex, and allergen skin test reactivity. *The Journal of Allergy and Clinical Immunology* **68**:106–111 DOI 10.1016/0091-6749(81)90167-6.
- Bartha I, Almulhem N, Santos AF. 2024. Feast for thought: a comprehensive review of food allergy 2021-2023. *The Journal of Allergy and Clinical Immunology* **153**:576–594 DOI 10.1016/j.jaci.2023.11.918.
- Belhassen-García M, Pardo-Lledías J, Pérez Del Villar L, Muro A, Velasco-Tirado V, Blázquez De Castro A, Vicente B, García García MI, Luis Muñoz Bellido J, Cordero-Sánchez M. 2014. Relevance of eosinophilia and hyper-IgE in immigrant children. *Medicine* 93:e43 DOI 10.1097/md.00000000000000043.
- **Bonds RS, Midoro-Horiuti T. 2013.** Estrogen effects in allergy and asthma. *Current Opinion in Allergy & Clinical Immunology* **13**:92−99 DOI 10.1097/ACI.0b013e32835a6dd6.
- Boos AC, Hagl B, Schlesinger A, Halm BE, Ballenberger N, Pinarci M, Heinz V, Kreilinger D, Spielberger BD, Schimke-Marques LF, Sawalle-Belohradsky J, Belohradsky BH, Przybilla B, Schaub B, Wollenberg A, Renner ED. 2014. Atopic dermatitis, STAT3- and DOCK8-hyper-IgE syndromes differ in IgE-based sensitization pattern. *Allergy* 69:943–953 DOI 10.1111/all.12416.
- **Carballo I, Alonso-Sampedro M, Gonzalez-Conde E, Sanchez-Castro J, Vidal C, Gude F, Gonzalez-Quintela A. 2021.** Factors influencing total serum ige in adults: the role of obesity and related metabolic disorders. *International Archives of Allergy and Immunology* **182**:220–228 DOI 10.1159/000510789.
- Chen J, Cai Y, Ai L, Song P, Chen M, Chen S, Lu Y, Zhou X. 2021. Epidemic status and challenges of important human parasitic diseases in China. *Laboratory Medicine* 36(10):993–1000.
- Clarke AE, Elliott SJ, St Pierre Y, Soller L, La Vieille S, Ben-Shoshan M. 2020. Temporal trends in prevalence of food allergy in Canada. *The Journal of Allergy and Clinical Immunology. In Practice* 8:1428–1430.e1425 DOI 10.1016/j.jaip.2019.10.021.
- Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, Querci V, Angeli R, Matucci A, Fambrini M, Liotta F, Parronchi P, Maggi E, Romagnani S, Annunziato F. 2010. Identification of a novel subset of human circulating memory

- CD4(+) T cells that produce both IL-17A and IL-4. *The Journal of Allergy and Clinical Immunology* **125**:222–230.e221–224 DOI 10.1016/j.jaci.2009.10.012.
- De Martinis M, Sirufo MM, Suppa M, Di Silvestre D, Ginaldi L. 2020. Sex and gender aspects for patient stratification in allergy prevention and treatment. *International Journal of Molecular Sciences* 21:1535 DOI 10.3390/ijms21041535.
- De Oliveira LC, Goldberg AC, Marin ML, Schneidwind KR, Frade AF, Kalil J, Miura IK, Pugliese RP, Danesi VL, Porta G. 2015. Autoimmune hepatitis in Brazilian children: IgE and genetic polymorphisms in associated genes. *Journal of Immunology Research* 2015:679813 DOI 10.1155/2015/679813.
- **Deo SS, Mistry KJ, Kakade AM, Niphadkar PV. 2010.** Role played by Th2 type cytokines in IgE mediated allergy and asthma. *Lung India: Official Organ of Indian Chest Society* **27**:66–71 DOI 10.4103/0970-2113.63609.
- **Derhovanessian E, Solana R, Larbi A, Pawelec G. 2008.** Immunity, ageing and cancer. *Immunity & Ageing: I & A* 5:11 DOI 10.1186/1742-4933-5-11.
- **Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. 2018.** IL-33/IL-31 axis: a potential inflammatory pathway. *Mediators of inflammation* **2018**:3858032 DOI 10.1155/2018/3858032.
- Fang H, Li J, Ren L, Liu E. 2023. Age-related differences in IgE between childhood and adulthood allergic asthma: analysis of NHANES 2005-2006. *The World Allergy Organization Journal* 16:100842 DOI 10.1016/j.waojou.2023.100842.
- **Goetzl EJ. 2024.** Th2 cells in rapid immune responses and protective avoidance reactions. *FASEB Journal* **38**:e23485 DOI 10.1096/fj.202302584RR.
- **Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi G-P. 2022.** Allergic asthma is a risk factor for human cardiovascular diseases. *Nature Cardiovascular Research* 1:417–430 DOI 10.1038/s44161-022-00067-z.
- Gupta RS, Warren CM, Smith BM, Blumenstock JA, Jiang J, Davis MM, Nadeau KC. 2018. The public health impact of parent-reported childhood food allergies in the United States. *Pediatrics* 142(6):e20181235 DOI 10.1542/peds.2018-1235.
- Hamid F, Amoah AS, Van Ree R, Yazdanbakhsh M. 2015. Helminth-induced IgE and protection against allergic disorders. *Current Topics in Microbiology and Immunology* 388:91–108 DOI 10.1007/978-3-319-13725-4_5.
- **Huang H-J, Sarzsinszky E, Vrtala S. 2023.** House dust mite allergy: the importance of house dust mite allergens for diagnosis and immunotherapy. *Molecular Immunology* **158**:54–67 DOI 10.1016/j.molimm.2023.04.008.
- **Huang YJ, Porsche C, Kozik AJ, Lynch SV. 2022.** Microbiome-immune interactions in allergy and asthma. *The Journal of Allergy and Clinical Immunology. In Practice* **10**:2244–2251 DOI 10.1016/j.jaip.2022.05.038.
- **Kolkhir P, Metz M, Altrichter S, Maurer M. 2017.** Comorbidity of chronic spontaneous urticaria and autoimmune thyroid diseases: a systematic review. *Allergy* **72**:1440–1460 DOI 10.1111/all.13182.
- **Kostis WJ, Shetty M, Chowdhury YS, Kostis JB. 2018.** ACE inhibitor-induced angioedema: a review. *Current Hypertension Reports* **20**:55 DOI 10.1007/s11906-018-0859-x.

- Kousa AI, Jahn L, Zhao K, Flores AE, Acenas 2nd D, Lederer E, Argyropoulos KV, Lemarquis AL, Granadier D, Cooper K, D'Andrea M, Sheridan JM, Tsai J, Sikkema L, Lazrak A, Nichols K, Lee N, Ghale R, Malard F, Andrlova H, Velardi E, Youssef S, Burgosda Silva M, Docampo M, Sharma R, Mazutis L, Wimmer VC, Rogers KL, De Wolf S, Gipson B, Gomes ALC, Setty M, Pe'er D, Hale L, Manley NR, Gray DHD, van den Brink MRM, Dudakov JA. 2024. Age-related epithelial defects limit thymic function and regeneration. *Nature Immunology* 25:1593–1606 DOI 10.1038/s41590-024-01915-9.
- Lai CKW, Kim YY, Kuo SH, Spencer M, Williams AE. 2006. Cost of asthma in the Asia-Pacific region. *European Respiratory Review* 15:10–16

 DOI 10.1183/09059180.06.00009802.
- **Lee YC, Ju HJ, Jw Kwon, Bae JM. 2020.** Seasonality of allergic diseases: real-world evidence from a nationwide population-based study. *Immunity, Inflammation and Disease* **8**:360–362 DOI 10.1002/iid3.316.
- Lei D, Zhang J, Zhu T, Zhang L, Man MQ. 2024. Interplay between diabetes mellitus and atopic dermatitis. *Experimental Dermatology* 33:e15116 DOI 10.1111/exd.15116.
- **Lieberman P, Simons FE. 2015.** Anaphylaxis and cardiovascular disease: therapeutic dilemmas. *Clinical and Experimental Allergy* **45**:1288–1295 DOI 10.1111/cea.12520.
- Liu X, Zhang S, Tsai HJ, Hong X, Wang B, Fang Y, Liu X, Pongracic JA, Wang X. 2009. Genetic and environmental contributions to allergen sensitization in a Chinese twin study. *Clinical and Experimental Allergy* 39:991–998 DOI 10.1111/j.1365-2222.2009.03228.x.
- Lokaj-Berisha V, Gacaferri-Lumezi B, Minci-Bejtullahu G, Latifi-Pupovci H, Karahoda-Gjurgjeala N, Berisha N, Morina T. 2015. Gender associated high body mass index in allergic diseases. *Open Access Macedonian Journal of Medical Sciences* 3:69–74 DOI 10.3889/oamjms.2015.008.
- Mirzakhani H, Al-Garawi A, Weiss ST, Litonjua AA. 2015. Vitamin D and the development of allergic disease: how important is it? *Clinical and Experimental Allergy* 45:114–125 DOI 10.1111/cea.12430.
- Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson W. 2010. A large-scale, consortium-based genomewide association study of asthma. *The New England Journal of Medicine* 363:1211–1221 DOI 10.1056/NEJMoa0906312.
- Mrkić Kobal I, Plavec D, Lončarić ŽV, Jerković I, Turkalj M. 2023. Atopic march or atopic multimorbidity—overview of current research. *Medicina* 60:21 DOI 10.3390/medicina60010021.
- **Murdaca G, Colombo BM, Puppo F. 2011.** The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. *Internal and Emergency Medicine* **6**:487–495 DOI 10.1007/s11739-011-0517-7.
- **Murdaca G, Gangemi S. 2022.** Vitamin D in health and disease. *Biomedicines* 11:10 DOI 10.3390/biomedicines11010010.
- **Murdaca G, Gangemi S. 2024.** Vitamin D in health and disease 2.0. *Biomedicines* **12**:324 DOI 10.3390/biomedicines12020324.

- **Murdaca G, Gangemi S, Greco M. 2023.** The IL-33/IL-31 axis in allergic and immune-mediated diseases. *International Journal of Molecular Sciences* **24**:9227 DOI 10.3390/ijms24119227.
- Murdaca G, Gerosa A, Paladin F, Petrocchi L, Banchero S, Gangemi S. 2021. Vitamin D and microbiota: is there a link with allergies? *International Journal of Molecular Sciences* 22:4288 DOI 10.3390/ijms22084288.
- Murdaca G, Greco M, Tonacci A, Negrini S, Borro M, Puppo F, Gangemi S. 2019. IL-33/IL-31 axis in immune-mediated and allergic diseases. *International Journal of Molecular Sciences* 20:5856 DOI 10.3390/ijms20235856.
- Nahm DH, Park HS, Kang SS, Hong CS. 1997. Seasonal variation of skin reactivity and specific IgE antibody to house dust mite. *Annals of Allergy, Asthma & Immunology* 78:589–593 DOI 10.1016/s1081-1206(10)63221-8.
- Negrini S, Contini P, Murdaca G, Puppo F. 2021. HLA-G in allergy: does it play an immunoregulatory role? *Frontiers in Immunology* 12:789684

 DOI 10.3389/fimmu.2021.789684.
- Omenaas E, Bakke P, Elsayed S, Hanoa R, Gulsvik A. 1994. Total and specific serum IgE levels in adults: relationship to sex, age and environmental factors. *Clinical and Experimental Allergy* 24:530–539 DOI 10.1111/j.1365-2222.1994.tb00950.x.
- **Osman M. 2003.** Therapeutic implications of sex differences in asthma and atopy. *Archives of Disease in Childhood* **88**:587–590 DOI 10.1136/adc.88.7.587.
- Paller A, Jaworski JC, Simpson EL, Boguniewicz M, Russell JJ, Block JK, Tofte S, Dunn JD, Feldman SR, Clark AR, Schwartz G, Eichenfield LF. 2018. Major comorbidities of atopic dermatitis: beyond allergic disorders. *American Journal of Clinical Dermatology* 19:821–838 DOI 10.1007/s40257-018-0383-4.
- Park HJ, Kim EJ, Yoon D, Lee JK, Chang WS, Lim YM, Park JW, Lee JS. 2017. Prevalence of self-reported allergic diseases and IgE levels: A 2010 KNHANES analysis. *Allergy, Asthma & Immunology Research* 9:329–339 DOI 10.4168/aair.2017.9.4.329.
- **Prescott S, Allen KJ. 2011.** Food allergy: riding the second wave of the allergy epidemic. *Pediatric Allergy and Immunology* **22**:155–160 DOI 10.1111/j.1399-3038.2011.01145.x.
- **Pullan R, Brooker S. 2008.** The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? *Parasitology* **135**:783–794 DOI 10.1017/s0031182008000346.
- **Robinson DS, Larché M, Durham SR. 2004.** Tregs and allergic disease. *The Journal of Clinical Investigation* **114**:1389–1397 DOI 10.1172/jci23595.
- Rosário CS, Cardozo CA, Neto HJC, Filho NAR. 2021. Do gender and puberty influence allergic diseases? *Allergologia et Immunopathologia* 49:122–125 DOI 10.15586/aei.v49i2.49.
- **Sadighi Akha AA. 2018.** Aging and the immune system: an overview. *Journal of Immuno-logical Methods* **463**:21–26 DOI 10.1016/j.jim.2018.08.005.
- **Salkie ML, Weimer N. 1984.** The influence of season and of sex on the serum level of total IgE and on the distribution of allergen-specific IgE. *Clinical Biochemistry* **17**:362–366 DOI 10.1016/s0009-9120(84)90734-3.

- **Sicherer SH, Sampson HA. 2018.** Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. *Journal of Allergy and Clinical Immunology* **141**:41–58 DOI 10.1016/j.jaci.2017.11.003.
- Sikorska-Szaflik H, Sozańska B. 2020. The role of vitamin D in respiratory allergies prevention. why the effect is so difficult to disentangle? *Nutrients* 12:1801 DOI 10.3390/nu12061801.
- Silverberg JI, Gelfand JM, Margolis DJ, Boguniewicz M, Fonacier L, Grayson MH, Simpson EL, Ong PY, Chiesa Fuxench ZC. 2018. Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults. *Annals of Allergy, Asthma & Immunology* 121:604–612.e603 DOI 10.1016/j.anai.2018.07.042.
- Spolidoro GCI, Amera YT, Ali MM, Nyassi S, Lisik D, Ioannidou A, Rovner G, Khaleva E, Venter C, van Ree R, Worm M, Vlieg-Boerstra B, Sheikh A, Muraro A, Roberts G, Nwaru BI. 2023. Frequency of food allergy in Europe: an updated systematic review and meta-analysis. *Allergy* 78:351–368 DOI 10.1111/all.15560.
- Tagliaferro S, Pirona F, Fasola S, Stanisci I, Sarno G, Baldacci S, Gariazzo C, Licitra G, Moro A, Silibello C, Stafoggia M, Viegi G, Maio S. 2024. Effects of traffic-related air and noise pollution exposure on allergic diseases in the elderly: an observational study. *Annals of Medicine* 56:2398193 DOI 10.1080/07853890.2024.2398193.
- **Tsilifis C, Freeman AF, Gennery AR. 2021.** STAT3 Hyper-IgE syndrome-an update and unanswered questions. *Journal of Clinical Immunology* **41**:864–880 DOI 10.1007/s10875-021-01051-1.
- Turner PJ, Baseggio Conrado A, Kallis C, O'Rourke E, Haider S, Ullah A, Custovic D, Custovic A, Quint JK. 2024. Time trends in the epidemiology of food allergy in England: an observational analysis of Clinical Practice Research Datalink data. *Lancet Public Health* 9:e664–e673 DOI 10.1016/s2468-2667(24)00163-4.
- **Tuten Dal S, Sahiner UM, Soyer O, Sekerel BE. 2024.** Mite allergen sensitization patterns in Turkish children: age-related changes and molecular correlations. *Pediatric Allergy and Immunology* **35**:e14093 DOI 10.1111/pai.14093.
- Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, Grundberg E, Kwan T, Ouimet M, Ge B, Hoberman R, Swiatek M, Dias J, Lam KC, Koka V, Harmsen E, Soto-Quiros M, Avila L, Celedón JC, Weiss ST, Dewar K, Sinnett D, Laprise C, Raby BA, Pastinen T, Naumova AK. 2009. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. *American Journal of Human Genetics* 85:377–393 DOI 10.1016/j.ajhg.2009.08.007.
- **Viswanathan RK, Mathur SK. 2011.** Role of allergen sensitization in older adults. *Current Allergy and Asthma Reports* **11**:427–433 DOI 10.1007/s11882-011-0204-9.
- **World Allergy Organization. 2011.** WAO white book on allergy. *Available at https:* //allergymsai.org/pdf/si-wow-white-book-on-allergy.pdf.
- Yamamoto EA, Jørgensen TN. 2019. Relationships between vitamin D, gut microbiome, and systemic autoimmunity. *Frontiers in Immunology* **10**:3141 DOI 10.3389/fimmu.2019.03141.

- Yang L, Fu J, Zhou Y. 2020. Research progress in atopic March. *Frontiers in Immunology* 11:1907 DOI 10.3389/fimmu.2020.01907.
- **Yasuda K, Nakanishi K. 2018.** Host responses to intestinal nematodes. *International Immunology* **30**:93–102 DOI 10.1093/intimm/dxy002.
- **Zhang J, Yan Y, Jiang F, Chen J, Ouyang Y, Zhang L. 2024.** Main airborne pollen species and characteristics of allergic rhinitis patients with pollen-related allergies in 13 Northern Chinese Cities. *Journal of Asthma and Allergy* **17**:757–768 DOI 10.2147/jaa.S471540.
- Zhu H, Huang J, Zhu T, Duan L, Zhou C, Qian M, Chen Y. 2019. National surveillance of soil-transmitted helminth infections in 2017. *Chinese Journal of Parasitology and Parasitic Diseases* 37:12–17 DOI 10.12140/j.issn.1000-7423.2019.01.003.
- **Zuo Z, Ma Y, Sun Y, Bai C, Ling C, Yuan F. 2021.** The protective effects of *Helicobacter pylori infection* on allergic asthma. *International Archives of Allergy and Immunology* **182**:53–64 DOI 10.1159/000508330.