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ABSTRACT

Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality globally.
Previous studies have reported that oral cancer overexpression 1 (ORAOV1) is overex-
pressed in HCC and correlated with poor prognosis, yet its molecular mechanisms re-
main incompletely understood. In this study, ORAOV1 overexpression was confirmed
in HCC tissues via tissue microarray analysis and functionally linked to tumor cell

proliferation through a positive correlation with Ki-67 expression in the human HCC
cell line MHCC-97L. Bioinformatics analyses using The Cancer Genome Atlas (TCGA)
and three Gene Expression Omnibus (GEO) HCC datasets further supported these find-
ings. Multiple mechanisms appear to drive ORAOV1 upregulation, including promoter
hypomethylation, amplification of the 11q13 region, and a putative ceRNA network
involving AC005332.1, AC012615.1, and hsa-miR-100-5p. Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses implicated ORAOV1 in
various cellular processes, such as abnormal membrane channel function, extracellular
matrix—receptor interactions, IL-17 signaling, and peroxisome proliferator-activated

receptor (PPAR) signaling. Co-expression analysis identified significant associations

between ORAOV1 and the oncogenes TPCN2 and CCND1. Additionally, ORAOV1

expression correlated with enhanced infiltration of immunosuppressive cells, including
regulatory T cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts,
as well as upregulation of immune checkpoint markers (PD-1, PD-L1, and CTLA-4).
These results indicate that ORAOV1 may modulate the immunosuppressive tumor

microenvironment and contribute to resistance against immunotherapy, highlighting
its potential as a therapeutic target in HCC.

Subjects Bioinformatics, Genetics, Immunology, Oncology

Keywords Hepatocellular carcinoma, Oral cancer overexpression 1, Prognosis, Competing
endogenous RNA regulatory network, Immune cell infiltration, Immune checkpoints

INTRODUCTION

Primary liver cancer, predominantly hepatocellular carcinoma (HCC), constitutes a

significant global health challenge, ranking as the sixth most commonly diagnosed cancer
and the fourth leading cause of cancer-related mortality worldwide (Shi et al., 2023; Sung
et al., 2021). Accounting for 75%-85% of primary liver cancer cases, HCC is characterized
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by aggressive progression and unfavorable clinical outcomes (Gao et al., 2023). Chronic
inflammation, driven by established risk factors including hepatitis B virus (HBV) infection,
excessive alcohol consumption, and nonalcoholic fatty liver disease (NAFLD), represents a
major etiological driver of HCC (Lawal et al., 2021). Although the contribution of NAFLD
to HCC incidence is increasing, HBV infection remains the most prominent risk factor,
accounting for approximately 50% of HCC cases globally (Akinyemiju et al., 2017).

Considerable progress has been made in the clinical management of HCC, with treatment
modalities encompassing liver transplantation, surgical resection (DiNorcia et al., 2020;
European Association for the Study of the Liver, 2018), percutaneous ablation (Llovet et al.,
2021a), transhepatic arterial chemotherapy and embolization (TACE), radioembolization
(Llovet ¢ Bruix, 2003), and systemic therapy (Sangro et al., 2021). Treatment selection is
guided by factors such as tumor burden, anatomical location, and underlying patient
comorbidities (European Association for the Study of the Liver, 2018). Nevertheless, HCC
incidence and mortality rates remain closely aligned worldwide, and the prognosis for
patients, especially those with advanced disease, remains poor (Llovet ef al., 2022).

Immunotherapy, particularly immune checkpoint blockade (ICB) targeting pathways
such as PD-1/PD-L1 and CTLA-4, has emerged as a highly promising therapeutic approach
for multiple cancers, including HCC (Rimassa, Finn ¢ Sangro, 2023; Xing et al., 2021).
ICB seeks to counteract tumor-mediated immunosuppression by reinvigorating the
host’s antitumor immune response (Du et al., 2021). However, its efficacy in HCC is
often constrained by primary or acquired resistance, observed in a substantial subset
of patients (Kwong et al., 2025; Zhang et al., 2024). A major contributing factor is the
immunosuppressive tumor microenvironment (TME), wherein aberrant expression and
regulation of immune checkpoint molecules like PD-L1 play pivotal roles in treatment
failure and adverse outcomes (Kong et al., 2023). The dynamic nature of PD-L1 expression
further complicates the prediction of therapeutic response and resistance mechanisms (Cao
et al., 2024). Thus, a deeper understanding of the molecular mechanisms underpinning
immune evasion and ICB resistance in the HCC TME is essential for developing more
effective treatment strategies.

The human genome and alterations within the TME are critically implicated in HCC
pathogenesis (Llovet et al., 2021b; Rebouissou & Nault, 2020). Molecular and immune
classification systems have been established to categorize HCC based on key driver
mutations, signaling pathway activations, and immune contexture, integrating genomic,
epigenomic, histopathological, and immunological data (Llover et al., 2021b; Rebouissou
¢ Nault, 2020). As an immunologically active organ, the liver contains diverse immune
populations that exert context-dependent roles in HCC initiation, progression, treatment
response, and prognosis, influenced by the composition and spatial distribution of immune
infiltrates within the TME (Llovet et al., 2022; Ringelhan et al., 2018; Sangro et al., 2021).

Competing endogenous RNA (ceRNA) networks have recently emerged as important
regulatory mechanisms in various malignancies, including liver cancer (Kong et al.,
2019; Shi et al., 20215 Zhang et al., 2020). These networks involve long non-coding RNAs
(IncRNAs) that act as molecular sponges for microRNAs (miRNAs), thereby modulating
the expression of target genes (Bridges, Daulagala ¢ Kourtidis, 2021; Salmena et al., 2011).
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Investigation of ceRNA interactions in HCC offers novel insights into potential therapeutic
strategies, wherein targeting specific IncRNAs may enable more precise interventions.

Oral cancer overexpression 1 (ORAOV1) is located within the chromosome band
11q13, between cyclin D1 (CCND1) and fibroblast growth factor 19 (FGF19) (Huang et al.,
2002). It has been reported to be overexpressed in multiple cancer types—including gastric,
esophageal, and breast cancers—where it facilitates tumor growth and suppresses apoptosis
(Ha et al., 2021; Jiang et al., 2010; Jiang et al., 2008; Kang ¢ Koo, 2012; Komatsu et al.,
2006; Turner et al., 2010; Zhai et al., 2014; Zucman-Rossi et al., 2015). In HCC, ORAOV1
knockdown has been shown to induce apoptosis, suppress proliferation, and inhibit tumor
growth in both in vitro and in vivo models, suggesting a proto-oncogenic role (Ha et
al., 20215 Jiang et al., 2010). ORAOV1 has also been proposed as a potential prognostic
biomarker and therapeutic target in HCC (Ha et al., 2021). However, the mechanisms
driving its overexpression and its precise functional contributions to HCC pathogenesis,
particularly within the immune TME and in relation to immunotherapy resistance, remain
poorly elucidated.

In this study, an in vitro HCC tissue microarray was employed, and data from public
repositories, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus
(GEO), and UALCAN, were integrated to validate ORAOV1 overexpression in HCC and
its correlation with advanced disease stage. Through bioinformatic analyses, ORAOV1-
associated genes and functional networks were identified, leading to the discovery of a
novel ceRNA regulatory axis consisting of AC005332.1, AC012615.1, hsa-miR-100-5p, and
ORAOV1, which was found to contribute to ORAOV1 upregulation. Furthermore, the
relationship between ORAOV1 expression and the infiltration of pro-tumor immune cells,
as well as the expression of immune checkpoint molecules, was investigated. The potential
role of ORAOV1 in mediating immunotherapy resistance in HCC was also examined. The
findings provide new insights into ORAOV1-related pathogenesis in HCC and suggest its
potential utility as a diagnostic biomarker and therapeutic target.

MATERIALS AND METHODS

Further validation of ORAOV1 overexpression and its clinical
relevance in HCC

To further validate the overexpression of ORAOV1 in HCC, mRNA, miRNA, and IncRNA
microarray datasets from HCC patients were obtained from TCGA (Tomczak, Czerwiriska
& Wiznerowicz, 2015) using the TCGA biolinks package in R (version 4.2.1) (Colaprico
et al., 2016). Additional HCC mRNA datasets (GSE45267: 62 tumors vs. 41 normals;
GSE121248: 70 tumors vs. 37 normals) and miRNA datasets (GSE108724: seven paired
tumors/normals; GSE69580: five paired tumors/normals) were downloaded from the
Gene Expression Omnibus (GEO) (Barrett et al., 2013). The association between ORAOV1
expression and clinical features was evaluated using the UALCAN database (Zhang et al.,
2022a). Statistical significance was defined as *p < 0.05; **p < 0.01; ***p < 0.001.
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Clinical samples and tissue immunofluorescent

The HCC tissue microarray (catalogue No: HLiVH180Su17) was procured from Shanghai
Outdo Biotech Co., Ltd. (Institutional Code: YB M-05-02; Shanghai, China) with approval
from the Institutional Review Board (Reference No: SHYJS-CP-1710004). The microarray
contained 108 tissue samples, comprising both adjacent non-cancerous tissues and paired
cancerous tissues from 54 HCC cases. All participants were male, with a mean age

of 47.20 £ 10.34 years. Immunofluorescence was performed on tissue sections using
antibodies against Ki-67 (ab15580, 1:400) and ORAOV1 (CSB-PA003600, 1:200). Imaging
was carried out using a fluorescence microscope following nuclear staining with 4',6-
diamidino-2-phenylindole (DAPI).

Cell culture and transfection

The human HCC cell line MHCC-97L was procured from Procell Life Science & Technology
Co., Ltd. (Wuhan, China). Cells were maintained in high-glucose Dulbecco’s Modified
Eagle Medium (DMEM,; Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal
bovine serum (FBS; Gibco, Waltham, MA, USA), at 37 °C in a humidified atmosphere
containing 5% CO,.

To knock down the expression of ORAOV1, small interfering RNA (siRNA) was
employed. The small interfering RNAs (siRNAs) targeting human ORAOV1 were designed
as follows. The guide strand sequence was 5'-UGAACAUUGAGUAACGAACATAT-3,
and the passenger strand sequence was 5'-GUUCGUUACUCAAUGUUCAATAT-3'. The
non-targeting scrambled sequences (Sense: UUCUCCGAACGUGUCACGU/dT//dT/;
Antisense: ACGUGACACGUUCGGAGAA/dT//dT/) was used as a negative control (si-
NC). All siRNA oligonucleotides were synthesized by Sangon Biotech (Shanghai, China).
For transfection, cells in the exponential growth phase were seeded into 6-well plates at a
density of 1 x 10 cells per well and allowed to adhere for 24 h. Prior to transfection, the
culture medium was replaced with serum-free Opti-MEM (Gibco, Waltham, MA, USA)
for an 8-hour starvation period. Transfection was then performed using Lipofectamine
3000 reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol,
with a final siRNA concentration of 10 wM.

RNA extraction and quantitative real-time PCR

Total RNA was isolated from transfected cells using an RNA purification kit (Magen,
China) following the manufacturer’s instructions. cDNA was synthesized from total RNA
using the ThermoScript™ RT-PCR System (Invitrogen, Carlsbad, CA, USA). Quantitative
real-time PCR (qRT-PCR) was subsequently performed to measure the mRNA expression
levels of ORAOV1 and Ki-67. The primer sequences used are listed in Table S1. The
reaction was carried out using a standard SYBR Green protocol on a real-time PCR system.
GAPDH was used as an endogenous reference gene for normalization. The relative mRNA
expression levels were calculated using the comparative 2~24¢" method. Knockdown
efficiency was confirmed by assessing ORAOV1 mRNA levels in siRNA-transfected cells
relative to the si-NC group.
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Construction of the IncRNA-miRNA-mRNA regulatory axis

Differentially expressed miRNAs (DEmiRNAs) and IncRNAs (DEIncRNAs) were identified
from TCGA data using the limma package in R (Ritchie et al., 2015). DEmiRNAs and
DEIncRNAs were selected based on an adjusted p value < 0.05 and |log2 fold change
(FC)| > 0.5. Potential upstream miRNAs and IncRNAs interacting with ORAOV1 were
predicted using the StarBase database (Li et al., 2014). Venn analysis was employed to
identify key miRNAs. miRNA-mRNA, miRNA-IncRNA, and mRNA-IncRNA coexpression
analyses were conducted using data from StarBase, with interactions retained based on

a Pearson’s correlation |r| > 0.1 and p < 0.05. Based on the ceRNA network theory, a
IncRNA-miRNA-mRNA regulatory axis was established (Pu et al., 2024).

Screening of differentially expressed mRNAs and gene enrichment
analysis

Differentially expressed mRNAs (DEmRNAs) associated with ORAOV1 were identified
using the limma package in R (Ritchie et al., 2015), with criteria of adjusted p < 0.05
and |log,FC| > 0.5. Gene Set Enrichment Analysis (GSEA) was conducted using the
clusterProfiler package in R to explore the functional roles of ORAOV1-associated
DEmRNAs, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses (Subramanian et al., 2005; Yu et al., 2012).
DEmRNASs with Pearson’s ratio (|r|) > 0.5 and p < 0.05 were considered significantly
coexpressed with ORAOV1. Protein-protein interaction (PPI) networks of ORAOV1
and significantly coexpressed genes were constructed using the STRING database
(https:/www.string-db.org)) (Szklarczyk et al., 2019) , with a combined score >0.4 regarded
as statistically significant.

Tumor immune analysis

The correlation between ORAOV1 expression and the infiltration of regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated fibroblasts
(CAFs) was analyzed using the TIMER2 database (Li et al., 2017). Additionally, the
expression of immune checkpoints, including cytotoxic T lymphocyte-associated antigen
4 (CTLA4), programmed cell death protein 1 (PD1), and its ligand PD-L1, was examined
for potential correlations with ORAOV1 (Tang et al., 2021), with a |r| > 0.1 and p < 0.05
considered statistically significant. The impact of ORAOV1 overexpression on the CTLA4
and/or PD1/PD-L1 immune checkpoint inhibitors (ICIs) was assessed using Immune
Prediction Score (IPS) analysis on TCGA-HCC patients, with data obtained from the
Cancer Immunobhistology Atlas (TCIA) (Charoentong et al., 2017). The IPS is a predictive
score used to estimate the likelihood of tumor response to ICIs, where a higher IPS indicates
a better response to ICI treatment (Charoentong et al., 2017).

Statistical analysis

Immunofluorescence data were analyzed using SPSS version 22.0 (IBM Corp., Armonk,
NY, USA). Paired t-tests were applied to compare ORAOV1 and Ki-67 expression between
cancerous and adjacent non-cancerous tissues. Spearman’s rank correlation was used

Huang et al. (2025), PeerdJ, DOI 10.7717/peerj.20390 5/24


https://peerj.com
https://www.string-db.org/
http://dx.doi.org/10.7717/peerj.20390

Peer

to assess the correlation between ORAOV1 and Ki-67 expression. A p-value < 0.05 was
considered statistically significant.

RESULTS

Potential association of ORAOV1 with HCC cell proliferation

The expression of ORAOV1 in HCC tissues and its potential correlation with cell
proliferation were evaluated using a tissue microarray comprising paired cancerous
and adjacent non-cancerous samples from 54 HCC cases. Immunostaining was performed
with antibodies against ORAOV1 and Ki-67, a recognized marker of proliferative activity.
ORAOV1 and Ki-67 expression were both significantly elevated in HCC tissues compared
to adjacent normal tissues (Figs. 1A, 1B). A strong positive correlation between ORAOV1-
and Ki-67-positive areas was observed (P < 0.001, R? = 1) (Fig. 1C), suggesting a potential
role for ORAOV1 in promoting tumor cell proliferation. To assess functional involvement,
ORAOV1 was knocked down in HCC cells, resulting in a significant reduction in Ki-67
mRNA levels (Fig. 1D), indicating that ORAOV1 may regulate the expression of this
proliferation-associated gene.

ORAOV1 overexpression in HCC

ORAOV1 mRNA expression was analyzed across four independent HCC datasets, all of
which showed significant upregulation in tumor tissues compared to normal controls
(Figs. 2A-2D).

To further explore the clinical relevance of ORAOV1, its expression was correlated with
clinicopathological features using the UALCAN database. Elevated ORAOV1 expression
was associated with higher tumor grades and advanced metastatic status (Figs. 2E, 2F).
Additionally, promoter methylation levels of ORAOV1 were significantly reduced in
primary tumors compared to normal tissues (p < 0.001) (Fig. 2G), suggesting epigenetic
involvement in its overexpression. These results indicate that ORAOV1 may serve as a
prognostic biomarker in HCC.

Construction of a ceRNA Network involving ORAOV1 in HCC
Differentially expressed miRNAs (DEmiRNAs) in HCC were identified from the TCGA
database, revealing 103 upregulated and 198 downregulated miRNAs (adj. p < 0.05,
[log, FC| > 0.5; Fig. 3A, Table 52). Using the StarBase database, 72 miRNAs were predicted
to target ORAOV1 (Table S3). Intersection with the downregulated miRNAs yielded 17
candidates potentially enhancing ORAOV1 expression (Fig. 3B, Table S4). Among these,
only hsa-miR-29¢-3p and hsa-miR-100-5p exhibited significant negative correlations
with ORAOV1 (r < —0.1, p < 0.05; Table 1, Table S5). Prognostic analysis indicated that
only hsa-miR-100-5p was associated with improved progression-free survival (PFS) and
overall survival (OS) in HCC patients (Figs. 3C, 3D). Consistent with TCGA findings,
independent GEO datasets (GSE45627, GSE121248 for ORAOV1; GSE108724, GSE69580
for miR-100-5p) confirmed dysregulation of these hub genes in HCC (Figs. 3E, 3F).
Subsequently, differentially expressed long non-coding RNAs (DEIncRNAs) in HCC
were identified from the TCGA database, yielding 495 upregulated and 160 downregulated
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Figure 1 Potential association of ORAOV1 with HCC cell proliferation. (A) Representative
immunofluorescence images of ORAOV1 (Green) and Ki-67 (red) expression in HCC tissues (n = 54;
scale bar, 50 jum)(B) The percentage of positive areas for ORAOV1 and Ki-67 in HCC tissues was
analyzed using a paired ¢-test. (C) Spearman correlation analysis of Ki-67 and ORAOV1 expression levels
in HCC tissues. (D) Relative mRNA expression of ORAOV1 and Ki-67 after transfection with control
siRNA (si-NC) or ORAOV1-specific siRNA (si-ORAOV1) for 48 h, as determined by qRT-PCR. GAPDH
was used for normalization. Data are mean £ SD of four replicates. ***p < 0.001.

Full-size 4 DOT: 10.7717/peer;j.20390/fig-1

IncRNAs (Table 56). A volcano plot was generated using thresholds of |log, FC| > 1.5
and adj. p < 0.05 to visualize the DEIncRNAs (Fig. 3G). Using the StarBase database, 14
upstream IncRNAs of hsa-miR-100-5p were predicted (Table S7). Intersection of the 495
upregulated DEIncRNAs with these 14 candidates identified two IncRNAs, AC005332.1 and
AC012615.1, both of which satisfied the co-expression criteria (|| > 0.1, p < 0.05) within
the ORAOV1-hsa-miR-100-5p ceRNA network (Fig. 3H, Table 1). Prognostic evaluation
revealed that both IncRNAs were significantly associated with poor progression-free
survival (PFS) in HCC (Figs. 31, 3]). Based on these results, a ceRNA regulatory axis was
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proposed: AC005332.1 and AC012615.1/hsa-miR-100-5p/ORAOV 1, which may contribute
to ORAOV1 upregulation and unfavorable prognosis in HCC (Fig. 3K).

Identification of ORAOV1-related DEmRNAs and gene enrichment
analysis
Differentially expressed mRNAs (DEmRNAs) associated with ORAOV1 were identified
using the limma package in R (Ritchie et al., 2015). A total of 16,785 genes were upregulated
(log, FC > 0.5, p < 0.05) and 323 were downregulated (log, FC < —0.5, p < 0.05) in tumors
compared to normal tissues. Their distribution was visualized via a volcano plot (Fig. 4A),
and a heatmap was generated to display the top 10 upregulated and downregulated genes
(Fig. 4B, Table S8).

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) of the 17,108
DEmRNASs revealed significant enrichment in 37 KEGG pathways and 250 GO terms
(p < 0.05, g < 0.25). Highly enriched GO terms included “ion channel complex”, “gated
channel activity”, and “ion channel activity”, indicating involvement in membrane
channel structure and function (Fig. 4C). Prominently enriched KEGG pathways included
“ECM-receptor interaction”, “IL-17 signaling pathway”, and “PPAR signaling pathway”
(Fig. 4D). The top 15 GO terms and KEGG pathways are provided in Table S9.

Co-expression analysis and PPl network construction
Co-expression analysis using the limma package identified four genes most strongly
correlated with ORAOV1: cyclin D1 (CCND1), two-pore channel 2 (TPCN2),
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Table 1 Correlation analysis between mRNA and miRNA or IncRNA and miRNA or IncRNA and
ORAOV1 in HCC determined by the starBase database.

miRNA mRNA Pearson’s r value p value
hsa-miR-29¢-3p ORAOV1 —0.122 0.0193
hsa-miR-100-5p ORAOV1 —0.127 0.0147°
IncRNA miRNA Pearson’s r value p value
AC005332.1 hsa-miR-100-5p —0.105 4.40E—02'
AC012615.1 hsa-miR-100-5p —0.189 2.50E—04 "
IncRNA mRNA Pearson’s r value p value
AC005332.1 ORAOV1 0.317 3.33E—10
AC012615.1 ORAOV1 0.308 1.12E—09 "~
Notes.

*p < 0.05.

p <0.001

immunoglobulin mu-binding protein 2 (IGHMBP2), and ATPase family gene-3, yeast-
like-1 (AFG3L1P) (Fig. 4E). A protein-protein interaction (PPI) network constructed via
the STRING database suggested potential interactions between ORAOV1 and TPCN2
(score: 0.566) and CCNDI (score: 0.524) (Fig. 4F, Table S10).

Relationship between ORAOV1 and immune cell infiltration in HCC
The association between ORAOV1 expression and immune infiltration was assessed using
TIMER2 (Li et al., 2017). ORAOV1 expression was significantly positively correlated with
infiltration of regulatory T cells (Tregs) (Knochelmann et al., 2018; Noack & Miossec, 2014),
myeloid-derived suppressor cells (MDSCs) (Gomez et al., 2020; Wesolowski, Markowitz &
Carson 3rd, 2013), and cancer associated fibroblast cells (CAFs) (Affo, Yu ¢ Schwabe, 2017)
(p <0.05) , but not with tumor purity (p =0.0526) (Fig. 5A).

Human cancers, including HCC, evade antitumor immune responses by expressing the
corresponding ligands of immune checkpoints in tumor and stromal cells (Topalian, 2017;
Topalian et al., 2016). Using the GEPIA2 database (http:/gepia2.cancer-pku.cnf#index) and
Spearman correlation (|r| > 0.1, p < 0.05) (Tang et al., 2019), ORAOV1 expression was
found to be positively correlated with 26 immune checkpoint genes, including CTLA4, PD1,
and PD-L1 (Fig. 5B), all of which are commonly targeted in immunotherapies for HCC
(Sangro et al., 20215 Topalian, 2017; Topalian et al., 2016) (Fig. 5B). These results imply a
potential role for ORAOV1 in promoting an immunosuppressive microenvironment.

To further assess the potential impact of ORAOV1 expression on immunotherapy
outcomes, immunophenoscore (IPS) analyses were performed (Charoentong et al., 2017).
These analyses, which were stratified by different immunotherapy regimens involving
CTLA4 and/or PD1/PD-L1 blockers, revealed that patients with high ORAOV1 expression
had significantly lower IPS across regimens targeting CTLA4 and/or PD1/PD-L1 (p < 0.05),
suggesting that ORAOV1 overexpression may be associated with reduced response to
immune checkpoint inhibitors in HCC (Fig. 5C).
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DISCUSSION

In this study, overexpression of ORAOV1 in HCC tissues was initially validated using an
HCC tissue microarray, and a causal correlation of ORAOV1 with tumor cell proliferation
marker Ki-67 was observed in vitro in the a HCC cell line, indicating a potential association
with tumor cell proliferation. Transcriptomic analyses across four independent HCC
datasets confirmed significant upregulation of ORAOV1, consistent with previous reports of
its overexpression in this malignancy (Ha et al., 2021). Furthermore, ORAOV1 expression
was positively correlated with higher tumor grade and nodal metastasis status, supporting
its potential role as a prognostic biomarker in HCC.

A reduction in DNA methylation at the ORAOV1 promoter was observed in HCC
tissues compared to normal controls. This finding aligns with the well-established role of
promoter hypomethylation in gene derepression (Lou et al., 2014), suggesting that aberrant
upregulation of ORAOV1 in HCC may be partly attributable to epigenetic dysregulation
in its promoter region.

To further investigate the regulatory mechanisms underlying ORAOV1 overexpression,
a IncRNA-miRNA-mRNA ceRNA network was constructed, culminating in the proposed
axis AC005332.1 & AC012615.1 / hsa-miR-100-5p / ORAOV1. Using StarBase, hsa-miR-
100-5p was identified as a putative upstream regulator of ORAOV1 and was found to be
downregulated in HCC. Notably, low expression of hsa-miR-100-5p was associated with
improved overall and progression-free survival, consistent with its previously documented
tumor-suppressive roles in stomach adenocarcinoma (Wang et al., 2021), oral cancer
(Henson et al., 2009), esophageal cancer (Zhang ¢ Tang, 2017) and HCC (Shi et al., 2021;
Song et al., 2019). Additionally, both AC012615.1 and AC005332.1 were significantly
upregulated in HCC and correlated with poor progression-free survival. Subsequent
validation confirmed that hsa-miR-100-5p serves as a key intermediary regulated by these
IncRNAs. To our knowledge, only one study has suggested a protective role for AC012615.1
in glioblastoma (Yang et al., 2021), and no prior reports exist on AC005332.1. Thus, this
study is the first to describe the AC005332.1& ACO012615.1/hsa-miR-100-5p/ORAOV1
regulatory axis in HCC, providing novel insight into the molecular pathogenesis of this
disease.

PPI analysis identified four genes strongly correlated with ORAOV1 in HCC samples:
AFG3L1P, CCND1, IGHMBP2, and TPCN2. Among these, CCND1, IGHMBP2, and
TPCN2 are co-located with ORAOV1 within the frequently amplified 11q13 chromosomal
region (Grohmann et al., 2001; Huang et al., 2002; Khan et al., 2007), which has been
implicated in HCC pathogenesis (Zhai et al., 2014; Zucman-Rossi et al., 2015). AFG3L1
is situated near the telomere on chromosome 16q24 (Shah et al., 1998). CCNDI, a key
cell cycle regulator, is commonly overexpressed or amplified in various cancers including
HCC (Qie & Diehl, 2016), and its silencing has been shown to suppress liver cancer
stem cell differentiation (Zhang, 2020). Amplification of CCND1 may also contribute to
immunosuppression and poor response to immune checkpoint inhibitors in solid tumors
(Chen et al., 2020). TPCN2, a Ca**-permeable endolysosomal ion channel, suppresses
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HCC cell proliferation and tumor growth upon inhibition (Miiller et al., 2021). To date,
no direct association between IGHMBP2 and HCC has been reported.

A significant positive correlation was observed between ORAOV1 expression and
levels of CTLA4, PD1, and PD-L1, as well as infiltration of tumor-promoting immune
cells such as Tregs (Knochelmann et al., 2018; Noack ¢ Miossec, 2014), MDSCs (Gomiez
et al., 2020; Wesolowski, Markowitz ¢ Carson 3rd, 2013) and CAFs (Affo, Yu ¢ Schwabe,
2017) in HCC. Immune checkpoint inhibitors targeting CTLA4 and PD-1/PD-L1 have
become standard treatment for advanced liver cancer (Chae et al., 2018; Sangro et al.,
2021). Tregs suppress antitumor immunity through interactions involving CTLA4 and
PD-1/PD-L1 (Knochelmann et al., 2018; Noack ¢ Miossec, 2014); MDSCs promote tumor
progression and metastatic niche formation, and confer resistance to immunotherapy via
suppression of T and NK cells (Gomiez et al., 2020; Law, Valdes-Mora ¢» Gallego-Ortega,
2020); and CAFs, central players in liver fibrosis within both pre-malignant and tumor
microenvironments, drive HCC progression (Affo, Yu & Schwabe, 2017). IPS analysis
indicated that high ORAOV1 expression was associated with significantly lower IPS
under various anti-CTLA4 and/or anti-PD-1/PD-L1 regimens, suggesting that ORAOV1
may promote an immunosuppressive TME and contribute to primary resistance to
immunotherapy. Thus, ORAOV1 expression may serve as a predictive biomarker for
response to immune checkpoint blockade, and its targeted inhibition may represent a
promising strategy to enhance immunotherapy efficacy in HCC.

While previous work by Ha et al. (2021) demonstrated that silencing ORAOV1
suppresses HCC migration, invasion, and xenograft growth, the mechanistic basis remained
unclear. In this study, GO enrichment analysis indicated that ORAOV1-associated genes
are involved in membrane channel structure and function. KEGG analysis further revealed
enrichment in ECM-receptor interaction, IL-17 signaling, and PPAR signaling pathways.

The extracellular matrix (ECM) is a critical modulator of the TME and influences
immunotherapy response in HCC (Mohan, Das ¢ Sagi, 2020; Ringelhan et al., 2018).1L-17,
a proinflammatory cytokine, plays context-dependent roles in cancer—its dysregulation
promotes immunopathology, autoimmunity, and tumor progression (Amatya, Garg ¢»
Gaffen, 2017). In mouse models, inhibition of IL-17 signaling reduced alcohol-induced
HCC progression by suppressing PPARy /PGCI1-dependent cholesterol synthesis (Ma et
al., 2020; Zhang et al., 2022b). IL-17 signaling has also been linked to resistance to immune
checkpoint inhibitors (Chen et al., 2022). Recent evidence suggests that IL-17 induces
collagen deposition in the ECM, shielding tumor cells from immune attack and conferring
resistance to anti-PD-1/PD-L1 therapy in squamous cell carcinoma (Chen et al., 2022).

Moreover, increased ECM stiffness disrupts ion channel function and signal
transduction, promoting tumor progression, immune evasion, and therapy resistance
(Jiang et al., 2022). Based on these findings, we propose that ORAOV 1-associated activation
of IL-17 signaling may drive ECM remodeling, TME dysfunction, impaired channel
activity, and broad therapeutic resistance in HCC (Fig. 6). Thus, combining conventional
immunotherapy with anti-ORAOV1 or anti-IL-17 agents may represent a more effective
therapeutic strategy.
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Beyond confirming ORAOV1 overexpression, this study provides a multidimensional
framework with clinical relevance. The strong correlation between ORAOV1 and aggressive
tumor features, immunosuppressive TME, and poor response to anti-CTLA4/PD-1 therapy
positions ORAOV1 as a dual-function biomarker suitable for prognostic stratification
and treatment response prediction. The newly identified ceRNA axis (AC005332.1 and
AC012615.1/hsa-miR-100-5p/ORAOV1) offers novel therapeutic opportunities, such as
miRNA mimics or IncRNA inhibitors, to suppress ORAOV1 and inhibit HCC progression.

Moreover, our results propose a unifying hypothesis connecting ORAOV1 to both
proliferation and immunotherapy resistance via IL-17/ECM-mediated mechanisms. This
model provides a strong rationale for evaluating combination therapies targeting ORAOV 1
or IL-17 to sensitize resistant HCC to immune checkpoint blockade. Future preclinical
and clinical studies are urgently needed to evaluate whether anti-ORAOV1 or anti-IL-17
agents can enhance the efficacy of existing immunotherapies and improve outcomes in
HCC patients.
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In conclusion, our study establishes ORAOV1 as a significantly overexpressed oncogene
in HCC, validated through integrated in vitro experimental studies and bioinformatics
approaches. ORAOV1 upregulation occurs via multiple mechanisms, including the
AC005332.1 and AC012615.1/hsa-miR-100-5p/ORAOV1 ceRNA regulatory axis. Elevated
ORAOV1 expression correlates strongly with aggressive clinicopathological features and
promotes an immunosuppressive tumor microenvironment characterized by increased
infiltration of pro-tumor immune cells and elevated expression of immune checkpoints
such as CTLA4, PD1, and PD-L1. Furthermore, we identify IL-17-mediated ECM
remodeling and TME stiffening as key downstream effects contributing to immunotherapy
resistance and disease progression. Beyond its role as a dual prognostic and predictive
biomarker, ORAOV1 represents a promising therapeutic target. Our findings provide a
rationale for novel combination treatments targeting ORAOV1 or its associated pathways
to overcome resistance to current immunotherapies in HCC.
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