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ABSTRACT
Housing development beyond the urban fringe (i.e., exurban development) is one of the
fastest growing forms of land-use change in the United States. Exurban development’s
attraction to natural and recreational amenities has raised concerns for conservation
and represents a potential threat to wildlife. Although forest-dependent species have
been found particularly sensitive to low housing densities, it is unclear how the spatial
distribution of houses affects forest birds. The aim of this study was to assess forest
bird responses to changes in the spatial pattern of exurban development and also to
examine species responses when forest loss and forest fragmentation were considered.
We evaluated landscape composition around North American Breeding Bird Survey
stops between 1986 and 2009 by developing a compactness index to assess changes
in the spatial pattern of exurban development over time. Compactness was defined
as a measure of how clustered exurban development was in the area surrounding each
survey stop at each time period considered.We used Threshold Indicator Taxa Analysis
to detect the response of forest and forest-edge species in terms of occurrence and
relative abundance along the compactness gradient at two spatial scales (400-m and
1-km radius buffer). Our results showed that most forest birds and some forest-edge
species were positively associated with high levels of compactness at the larger spatial
scale; the proportion of forest in the surrounding landscape also had a significant effect
when forest loss and forest fragmentation were accounted for. In contrast, the spatial
configuration of exurban development was an important predictor of occurrence and
abundance for only a few species at the smaller spatial scale. The positive response of
forest birds to compactness at the larger scale could represent a systematic trajectory of
decline and could be highly detrimental to bird diversity if exurban growth continues
and creates more compacted development.

Subjects Biodiversity, Conservation Biology, Ecology, Zoology, Coupled Natural and
Human Systems
Keywords Exurban growth, Low-density residential, Infilling, Ecological effect zone, Urban
fringe, Rural residential development, Forest fragmentation

INTRODUCTION
As the world’s human population has grown over the last century and residential
housing has continued to sprawl even in areas where human population is declining
(Pendall, 2003; Seto, Güneralp & Hutyra, 2012), the rapid increase of housing development
has expanded not only at the edge of cities but also beyond the urban fringe to increasingly
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more rural areas (e.g., Davis & Hansen, 2011; Hansen et al., 2005; Marzluff, 2001;
McKenzie et al., 2011; Suarez-Rubio, Lookingbill & Elmore, 2012). Housing development
beyond the urban fringe (i.e., exurban development) is characterized by low-density,
scattered housing units farther away than the suburbs but within commuting distance
to an urban center (Berube et al., 2006; Daniels, 1999; Lamb, 1983; Nelson, 1992;
Theobald, 2001). In the conterminous USA, low-density development has been prominent
since the 1950s (Brown et al., 2005), growing at a rate of about 10% to 15% per year
(Theobald, 2001). By 2000, 25% of the nation was already considered exurbia
(Brown et al., 2005) and forecasts have indicated that this pattern of land use will continue
into the future (Brown et al., 2014; Kirk, Bolstad & Manson, 2012).

The attraction of exurban development to areas with high-quality natural and
recreational amenities (Gonzalez-Abraham et al., 2007; Hammer et al., 2004) has raised
environmental and ecological concerns (Gude et al., 2006; Hansen et al., 2005; Leu, Hanser
& Knick, 2008; Sampson & DeCoster, 2000). Exurban development can alter disturbance
regimes such as wildfires (NIFC, 2013; Radeloff et al., 2005) and biogeochemical cycles
by changing greenhouse gas fluxes (Dale et al., 2005; Huang, Robinson & Parker, 2014). By
converting natural habitats into exurban development, habitat is lost and fragmented which
reduces habitat quality for many native species and increases habitat quality for many early
successional and non-native species (Donnelly & Marzluff, 2006). In addition to the loss of
vegetation cover, changes in structural complexity around houses in exurban areas
may have negative impacts on natural communities (Casey et al., 2009; Odell & Knight,
2001) by degrading habitats and natural resources (Friesen, Eagles & Mackay, 1995;
Suarez-Rubio et al., 2013; Theobald, Miller & Hobbs, 1997). As a consequence, exurban
development has been linked to reduced survival and reproduction of some wildlife species
(Riley et al., 2003; Tewksbury, Hejl & Martin, 1998) and changes in the behavior and
habitat use of other species, for example by interrupting bird migration and movement
(Lepczyk, Mertig & Liu, 2004;Miller, Knight & Miller, 1998).

Forest birds have been found particularly sensitive to new housing (Pidgeon et al., 2007)
even at densities as low as 0.095 houses/ha (Friesen, Eagles & Mackay, 1995; Merenlender,
Reed & Heise, 2009; Suarez-Rubio, Renner & Leimgruber, 2011). Area-sensitive, some
cavity-nesting, and bark-foraging birds are relatively more susceptible to the effects of
exurban development than granivores, omnivores, and ground foragers (Fraterrigo
& Wiens, 2005; Glennon & Kretser, 2013; Kluza, Griffin & Degraaf, 2000; Merenlender,
Reed & Heise, 2009). Although the mechanisms are not well understood, changes in
bird communities have been associated with increased predation (Engels & Sexton, 1994;
Lumpkin, Pearson & Turner, 2012), brood parasitism (Chace et al., 2003), free-roaming pets
(Dauphiné & Cooper, 2009), and activities of landowners (Lepczyk, Mertig & Liu, 2004).

The effects of exurban development extend beyond immediate house surroundings.
In the Rocky Mountain region of the western USA, an impact zone of up to 180 m from
houses has been observed for bird and small-mammal communities (Odell & Knight,
2001). Similarly, in the northeastern USA, an ecological effect zone of up to 200 m has
been documented for breeding birds (Glennon & Kretser, 2013). It is likely that the size of
the zone of influence of exurban development is dependent upon the spatial distribution

Suarez-Rubio and Lookingbill (2016), PeerJ, DOI 10.7717/peerj.2039 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.2039


of houses (Hansen et al., 2005). If houses are clustered, the ecological effects of each house
overlap, reducing the overall negative impacts. Thus, clustered development is thought
to minimize impacts on wildlife habitat relative to highly dispersed low-density housing
(Gagné & Fahrig, 2010;Glennon & Kretser, 2013;Odell, Theobald & Knight, 2003;Theobald,
Miller & Hobbs, 1997). Although the relative importance of habitat quantity over habitat
pattern has been shown especially for birds in fragmented systems (Alberti & Marzluff,
2004; Donnelly & Marzluff, 2006; Fahrig, 1997; Lichstein, Simons & Franzreb, 2002), little is
known about how the spatial pattern of exurban areas changes as this form of development
progresses and whether forest birds respond to changes in exurban spatial pattern.

The aim of this study was to assess forest bird responses to changes in the spatial pattern
of exurban development and also to examine species responses when forest loss and forest
fragmentation were considered. We developed a compactness index to quantify the spatial
configuration of exurban development aroundNorth American Breeding Bird Survey stops
in the Mid-Atlantic region of the USA between 1986 and 2009 and assessed the response of
selected bird species (i.e., forest and forest-edge species) along this compactness gradient. In
addition, we determined whether species responded differently to exurban patterns at the
local (400-m radius buffer) and landscape scale (1-km radius buffer). We hypothesized that
exurban development would become more compact over time and thus forest birds would
exhibit a decrease in occurrence and relative abundance, whereas forest-edge species would
respond positively to compactness of exurban development. To our knowledge, this is the
first time that a continuous gradient approach has been used to quantify compactness as
exurban development progresses and to identify threshold responses along this gradient.

MATERIALS AND METHODS
Study area
Our study area encompassed approximately 4,300 km2 and included nine counties in
north-central Virginia (Clarke, Culpeper, Fauquier, Frederick, Madison, Page,
Rappahannock, Shenandoah, and Warren) and two in western Maryland (Washington
and most of Frederick; Fig. 1), USA. The region has experienced high population growth
rates, ranging from 4% (Page County) to 36% (Culpeper County) in the past decade
(US Census Bureau, 2013). The region has also experienced an increase in exurban
settlements over the same time period (Suarez-Rubio, Lookingbill & Elmore, 2012),
stimulated at least in part by the close proximity of natural amenities (Suarez-Rubio,
Lookingbill & Wainger, 2012).

Breeding bird survey
Using the North America Breeding Bird Survey (BBS) (Peterjohn & Sauer, 1994;
Sauer, Fallon & Johnson, 2003), a large-scale annual roadside survey to monitor the
status and trend of breeding bird populations in the USA and southern Canada, we
selected two groups of species that represent contrasting habitat preferences (forest vs.
edge). Forest species—Ovenbird (Seiurus aurocapilla), Red-eyed Vireo (Vireo olivaceus),
American Redstart (Setophaga ruticilla), Wood Thrush (Hylocichla mustelina), Scarlet
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Figure 1 Study area (shaded region). Circles represent 125 North American Breeding Bird Survey (BBS)
routes that were uniformly selected from routes.

Tanager (Piranga olivacea), and Eastern Wood-Pewee (Contopus virens) (Poole, 2005)—
were defined as birds that use a wide variety of deciduous and mixed deciduous-
coniferous forests and that might favor interior forested habitats (Mikusiñski, Gromadzki &
Chylarecki, 2001). Forest-edge species—Eastern Towhee (Pipilo erythrophthalmus), Eastern
Phoebe (Sayornis phoebe), Gray Catbird (Dumetella carolinensis), Northern Cardinal
(Cardinalis cardinalis), and Indigo Bunting (Passerina cyanea) (Poole, 2005)—are those
species strongly associated with forest edges and open habitats (Mikusiñski, Gromadzki
& Chylarecki, 2001). These 11 species were also selected because they were detected on
at least 5% of surveys during the 1986–2009 interval. In addition, many of the species
are reported to have experienced population declines or reduced fecundity due to habitat
loss or fragmentation (Donovan & Flather, 2002; HaganIII, 1993; Sherry & Holmes, 1997;
US NABCI Committee, 2009).

BBS routes involve 39.4 km-long road transects, with 3-minute point count surveys
conducted at stops every 0.8 km. From each BBS route located in the study area, we selected
every fifth stop along the route to reduce overlap between adjacent areas around survey
stops and decrease the likelihood of spatial autocorrelation (Moran’s I = 0.108, p= 0.182).
We only considered survey stops that had detailed direction descriptions (i.e., geocoding
information and characterization of site-specific features) and fell within the study region
(125 survey points in total) (Fig. 1). We focused our analysis on survey stops instead of the
entire route because of our interest in local variability of breeding habitats.

Suarez-Rubio and Lookingbill (2016), PeerJ, DOI 10.7717/peerj.2039 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.2039


To characterize local characteristics of breeding habitats, we established potential zones
of influence (Glennon & Kretser, 2013) of 400-m and 1-km radius around the selected BBS
stops. These areas represented both breeding bird territories (Bowman, 2003; Mazerolle
& Hobson, 2004), which were assumed to be in the immediate surroundings of survey
stops, and areas feasibly visited during bird daily movements (Krementz & Powell, 2000;
Lang et al., 2002). Within these areas, we quantified the proportion of forest and exurban
development and the spatial pattern of exurban development from 1986 to 2009.

We used a hierarchical Bayesian model to adjust BBS counts (Suarez-Rubio et al., 2013)
and account for BBS sources of variability such as observer differences (Sauer, Peterjohn
& Link, 1994), first-year observers’ skills (Erskine, 1978; Kendall, Peterjohn & Sauer, 1996),
environmental conditions (Robbins, Bystrak & Geissler, 1986), and habitat features (Sauer,
Pendleton & Orsillo, 1995). We modeled count data as hierarchical over-dispersed Poisson
and fit models using Markov Chain Monte Carlo (MCMC) methods in WinBUGS 1.4.3
(Lunn et al., 2000). We specified Cit as the count for each species on stop i and time t where
i= 1,...,N ; t = 1,...,T ; and N and T were the number of stops and the number of years
species were observed, respectively. Cit was assumed to be Poisson distributed with mean
µit

Cit ∼Pois(µit )

and the full model was:

log(µit )=β0stop+β1stop×Year t +β2×FirstYear it +Route it +Observer it +Error it

where each stop was assumed to have a separate intercept (β0) and time trend (β1). The
model included several sources of variability including unknown route environmental
conditions and habitat features (Route it ), observer effects (Observer it ), first-year observer
effects (FirstYear it ) and over-dispersion effects (Error it ). Given that route conditions could
also change among years, we also included year into the model. We used two Markov
chains for each model and examined model convergence and performance through
Gelman–Rubin diagnostics (Gelman, Carlin & Rubin, 2004; Link & Barker, 2010). Once
the model reached convergence, we derived estimates of the count at each stop and in each
year which were then used for the threshold analysis.

Defining exurban development
To characterize the land cover in the areas around survey stops, we classified Landsat 5
TM images (pixel size: 30 m) for 1986, 1993, 2000, and 2009. We performed standard
pre-processing procedures (atmospheric and topographic correction) prior to image
classification and conducted a supervised classification of areas of exurban development
using a training dataset generated from aerial photos. Exurban development was defined
as areas with housing densities between 1 unit per 0.4 ha and 1 unit per 16.3 ha (e.g., 6–250
houses per km2) (Brown et al., 2005). We identified exurban development using both
spectral and structural characteristics following the methods outlined in Suarez-Rubio,
Lookingbill & Elmore (2012). We derived spectral characteristics from spectral mixture
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analysis (Adams, Smith & Johnson, 1986) of the corrected Landsat images to estimate the
fractional cover of vegetation, substrate, non-photosynthetic vegetation, and shade within
each image. Based on spectral mixture analysis outputs, we built decision trees to classify
exurban development for each of the four image dates.

To further analyze pixels belonging to branches of the decision trees that could not
discriminate between exurban and urban areas based on spectral characteristics alone, we
used morphological spatial pattern analysis (MSPA) (Soille, 2003; Vogt et al., 2007). The
analysis evaluates map geometry by applying mathematical morphological operators to
allocate each pixel to one of a mutually exclusive set of classes. We used an 8-neighbor
rule as our structural element (i.e., both cardinal directions and diagonal neighbors are
considered) and edge width of one. Pixels that fell into the MSPA-Islet (representative
of isolated housing units), Bridge, Branch, and Loop classes (representative of associated
roads) were considered exurban development. All other MSPA classes were considered
urban development. Lastly, all cells originally designated as exurban development in the
decision tree were then added back to attain the final exurban development maps. Overall
classification accuracy for the final exurban development maps ranged from 93 to 98%
(kappa: 0.87–0.96) (Suarez-Rubio, Lookingbill & Elmore, 2012).

Analyzing the spatial pattern of exurban development
To examine the spatial pattern of exurban development, we used the final exurban
development maps as foreground and analyzed them using MSPA. Here, we focused
specifically on the Islet class which represented scattered, isolated housing units. Using
the MSPA classification output, we developed a compactness index to describe how
clustered exurban development was in the area surrounding each survey stop at each
time period considered. The compactness index was a measure of the proportion of
exurban development within any MSPA classes other than the Islet class (i.e., 1−(Exurban
Development islets/Exurban Development all classes)) and ranged from 0% (all Islets) to
100% (no Islets). Survey stops lacking exurban development within the potential zone of
influence were excluded from the analysis (28 and 20 survey stops for the 400-m and 1-km
radius buffers, respectively were excluded). Hence, dispersed exurban development was
represented by 0% and maximally clumped exurban development by 100% compactness
(see example in Fig. 2).

Identifying species response to compactness of exurban
development
To examine the relationship between compactness of exurban development and bird
species at the survey stops, we fitted a non-parametric locally weighted polynomial
regression (loess) (Cleveland & Devlin, 1988). When the loess regression highlighted
nonlinearity in the relationship, then a change-point analysis was used to test for a
nonlinear threshold response.

We estimated potential species threshold responses to compactness of exurban
development using Threshold Indicator Taxa ANalysis (TITAN) (Baker & King, 2010).
TITAN allows the identification of change points in both occurrence frequency and relative
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Figure 2 Example of morphological spatial pattern analysis (MSPA) output used to derive level of
compactness of exurban development around selected BBS stops. The illustration shows compactness
around 1-km radius buffer of three different BBS stops in 2009 with similar amount of exurban develop-
ment (20.0± 1.3%) among the three landscapes.

abundance of individual species along an environmental gradient. It distinguishes responses
of individual species with low occurrence frequencies or highly variable abundances and
does not assume a linear response along all or part of an environmental gradient. TITAN
uses normalized species scores (z) to establish a change-point location that separates
the data into two groups and maximizes association of each species with one side of
the partition. Z scores measure the association of a species’ abundance weighted by
their occurrence and are normalized to facilitate cross-species comparison. Thus, TITAN
distinguishes if a species responds to an environmental stressor (in this case compactness
of exurban development) and whether the response is negative (z−) or positive (z+).

To measure quality of the response and assess uncertainty around change-point
locations, TITAN bootstraps the original dataset and recalculates change points with
each simulation. Uncertainty is expressed as quantiles of the change-point distribution.
Narrow intervals between upper and lower change-point quantiles (i.e., 5 and 95%)
indicate a nonlinear response in species abundance whereas broad quantile intervals are
characteristic of species with a linear or more gradual response. Diagnostic indices of the
quality of the response are purity and reliability. Purity is the proportion of bootstrap
replicates that agree with the direction of the change-point for the observed response. Pure
indicators (purity ≥ 0.95) are those that consistently assign the same response direction
during the resampling procedure. Reliability is the proportion of change-point individual
value scores (IndVal) among the bootstrap replicates that consistently have p-values below
defined probability levels (0.05). Reliable indicators (reliability ≥ 0.95) are those with
consistently large IndVal.

We ran TITAN (R package: TITAN2) (Baker & King, 2010) for the 11 selected bird
species and compactness index in R 3.1.1 (R Development Core Team, 2013). We used the
minimum number of observations on each side of the threshold split that is required by
TITAN (n= 5) and specified 250 permutations to compute z scores and diagnostic indices
as suggested by Baker & King (2010).
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Evaluating species responses to forest loss and forest fragmentation
in relation to compactness of exurban development
To evaluate the effects of compactness of exurban development in relation to other factors
known to affect birds (i.e., forest loss and forest fragmentation), we used generalized
additive models (GAMs) (Hastie & Tibshirani, 1990). GAMs were used to better account
for potential non-linear trends between the response and predictor variables (e.g., Guisan,
Edwards Jr & Hastie, 2002; Zuur et al., 2009). GAMs require fewer assumptions of data
distributions and error structures, assuming only that functions are additive and
components can be smoothed by local fitting to subsets of the data.

The models used adjusted counts for each bird species as dependent variables and
compactness of exurban development, proportion of exurban development, proportion of
forest, number of forest patches greater than 0.45 ha, and forest edge as predictor variables.
The latter variableswere estimated following Suarez-Rubio et al. (2013). Gaussian errors and
an identity link were used, and smoothing parameters were automatically selected based on
the effective degrees of freedom and a generalized cross validation criterion in R package
mgcv (Wood, 2001; Wood, 2006). We did a multi-model comparison using a stepwise
backwards selection process and calculated the Akaike information criterion (AICi) and the
1AICi to rank models and select a best-fitted model (Zuur et al., 2009). We used the results
to strengthen the inference regarding factors affecting birds in forested environments.
Models were evaluated based on graphical diagnostic plots and the explanatory power of a
model was assessed by examining the amount of the explained deviance. Predictors of the
best-fitted model with high significance levels (p< 0.01) were identified as key factors that
have strong effects on bird species.

RESULTS
Landscape composition and compactness of exurban development
around survey stops
Landscape composition around survey stops changed through time during the time period
studied, except for the 21%of stops that were inside protected areas (Table 1). The inclusion
here of MSPA classes that represented associated roads (i.e., Bridge, Branch, and Loop) in
addition to scattered isolated pixels (i.e., Islets) in the definition of exurban development
differed from other operational definitions of exurban development used in previous work;
as a result, the total amount of development that was classified as exurban was higher for
our study than was reported for more restrictive definitions (e.g., Suarez-Rubio, Lookingbill
& Elmore, 2012). For both the 400-m and 1-km radius buffers, there was a 6% increase in
exurban development from 1986 to 2009 (Table 1).

Compactness of exurban development also increased over time (Table 1). For the 400-m
radius buffer, compactness increased from 18% in 1986 to 39% in 2009. For the 1-km
radius buffer, compactness increased even more, from 11% in 1986 to 44% in 2009. For
both extents, the increase was higher between 2000 and 2009 than for any other time
period. Compactness was slightly correlated with the amount of exurban development
(Pearson’s correlation coefficient for 400-m buffer: 0.38, and 1-km buffer: 0.46) and not
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Table 1 Landscape composition and compactness of exurban development (mean± s.d.) at 400-m and
1-km radius buffer around selected Breeding Bird Survey stops from 1986 to 2009.

Variables 1986 1993 2000 2009

All survey stops
400-m radius buffer (n= 97)

Forest (%) 34.5± 32.3 33.6± 32.0 31.4± 31.0 24.9± 27.2
Exurban development (%) 11.4± 6.5 12.1± 6.6 13.4± 6.9 17.6± 9.4
Compactness (%) 17.6± 26.3 18.1± 25.8 25.1± 28.8 38.9± 34.3

1-km radius buffer (n= 105)
Forest (%) 41.2± 30.9 40.1± 30.5 38.5± 30.3 32.4± 28.6
Exurban development (%) 10.0± 4.6 10.9± 4.8 12.1± 5.3 16.1± 7.4
Compactness (%) 11.2± 12.6 13.6± 13.3 23.2± 18.0 43.9± 23.5

Survey stops in protected area (n = 26)
400-m radius buffer

Forest (%) 100.0± 0.0 100.0± 0.0 99.9± 0.4 99.9± 0.4
Exurban development (%) 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.3

1-km radius buffer
Forest (%) 98.7± 3.5 98.7± 3.7 98.6± 3.8 98.1± 4.5
Exurban development (%) 0.3± 1.0 0.3± 1.0 0.4± 1.1 0.7± 1.8

correlated with forest at either extent (Pearson’s correlation coefficient for 400-m buffer:
−0.15, 1-km buffer: 0.04).

Response of bird species to compactness of exurban development
Non-parametric locally weighted polynomial regression (loess) models indicated a
non-linear relationship between the compactness index and abundance of selected bird
species (Fig. 3). Forest species differed in their threshold response to compactness of
exurban development (Fig. 4). For the 400-m radius buffer, only one of the six forest species
(i.e., Scarlet Tanager) showed a significant and reliable threshold response to compactness.
Although Wood Thrush also responded negatively, the quality of the indicator was less
reliable (0.80) (Table 2). In contrast, for the 1-km radius buffer, almost all forest species
responded positively and reliably to the compactness of exurban development (Table 2).

Forest-edge species also had significant though less consistent threshold responses to
compactness of exurban development at both extents (Fig. 4). For the 400-m radius
buffer, Eastern Phoebe and Gray Catbird had a significant positive response to the
compactness metric, while Eastern Towhee responded negatively to compactness. For
the 1-km radius buffer, Eastern Phoebe, Gray Catbird, and Indigo Bunting responded
positively to compactness, with reliability values and change points spanning a wide range
of compactness values, similar to the finding for forest birds (e.g., Red-eyed Vireo, Eastern
Wood-Pewee; Fig. 4).

In general, reliability information was redundant with purity (i.e., species with ≥0.95
purity were usually also reliable) (Table 2). In some instances, the direction of the response
changed with extent of analysis. Wood Thrush responded positively to compactness of
exurban development for the 1-km radius buffer. Although the direction of the response
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Figure 3 Relationships between compactness of exurban development and adjusted counts of selected
bird species for (A) 400-m and (B) 1-km radius buffer around BBS stops. (continued on next page. . . )

changed for the 400-m radius buffer, the indicator was not reliable at this extent (reliability
= 0.80). For other species (e.g., Scarlet Tanager and Eastern Towhee), wide confidence
bands and low z scores at the 400-m extent, highlighted uncertainty when the abundance
distributions did not show a clear response. Therefore, where there were differences in the
reliability and direction of response at different extents, the 1-km relationships were more
reliable.
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Figure 3 (. . .continued)

Most species (both forest and forest-edge) had relatively broad bootstrapped
change-point distributions indicating that there were not sharp threshold responses to
compactness of exurban development (Fig. 4). In addition, the width of the bootstrapped
change-point distributions varied between the two buffer distances for only a few species.
For example, Eastern Phoebe was one of the few species with a sharp response to
compactness, but this occurred only at the 400-m radius buffer.
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Figure 4 Change points of significant (p < 0.05) and reliable (purity≥ 0.90 and reliability≥ 0.90)
indicator bird species of compactness of exurban development for (A) 400-m and (B) 1-km radius
buffer around selected BBS stops. Solid circles represent negative response to compactness (with
corresponding species on the left axes) and open circles correspond to a positive response (with
corresponding species on the right axes). Circles are sized based on z scores and lines represent the 5
and 95% percentiles among bootstrap replicates. Short lines indicate nonlinear response, whereas long
lines represent linear or more gradual response. Taxa IDs correspond to American Redstart (AMRE),
Eastern Wood-Pewee (EAWP), Ovenbird (OVEN), Red-eyed Vireo (REVI), Scarlet Tanager (SCTA),
Wood Thrush (WOTH), Eastern Phoebe (EAPH), Eastern Towhee (EATO), Gray Catbird (GRCA),
Indigo Bunting (INBU), and Northern Cardinal (NOCA). Underlined codes denote forest-edge species.

Response of bird species to forest loss and forest fragmentation in
relation to compactness of exurban development
When forest loss and forest fragmentation were included as predictor variables in addition
to the exurban development measures (i.e., proportion and compactness), forest had a
highly significant effect on all forest species modeled and most forest-edge species at the
1-km radius buffer (Table 3). Number of forest patches had a significant influence on
Red-eyed Vireo and Scarlet Tanager, and forest edge did not affect any of the forest species.
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Table 2 Threshold Indicator Taxa ANalysis (TITAN) results for the compactness index at the 400-m
and 1-km radius buffer. Significant (p < 0.05) and reliable (purity ≥ 0.90 and reliability ≥ 0.90) species
are shown in bold.

Species Direction
of effect

z Change point Purity Reliability p

Obs. 5% 95%

400-m radius buffer
Forest birds

AMRE − 0.94 0.00 0.00 84.92 0.54 0.31 0.180
EAWP − 1.28 89.19 0.00 89.58 0.54 0.47 0.116
OVEN − 1.84 0.00 0.00 87.40 0.59 0.38 0.052
REVI − 1.52 0.00 0.00 86.16 0.56 0.40 0.072
SCTA − 4.85 59.33 0.00 64.09 1.00 0.99 0.004
WOTH − 3.00 18.81 0.00 77.75 0.81 0.80 0.012

Forest-edge species
EAPH + 5.81 11.57 4.40 19.30 0.98 0.98 0.004
EATO − 3.06 66.60 0.00 82.98 0.93 0.91 0.004
GRCA + 3.26 0.00 0.00 78.92 0.96 0.94 0.008
INBU + 3.41 9.05 0.00 85.84 0.90 0.89 0.008
NOCA + 1.95 74.91 0.00 89.19 0.80 0.71 0.056

1-km radius buffer
Forest birds

AMRE + 7.03 78.26 27.58 80.66 1.00 1.00 0.004
EAWP + 4.45 21.11 4.00 31.27 0.99 0.98 0.004
OVEN + 5.16 51.70 16.07 61.89 0.99 0.99 0.004
REVI + 6.99 41.47 20.98 55.16 1.00 1.00 0.004
SCTA + 3.92 53.86 0.00 60.16 0.89 0.89 0.008
WOTH + 4.06 20.98 14.98 47.12 0.97 0.96 0.004

Forest-edge species
EAPH + 6.86 7.15 1.85 41.76 1.00 1.00 0.004
EATO + 2.73 78.26 0.00 81.38 0.86 0.84 0.016
GRCA + 5.25 28.74 12.46 31.33 1.00 0.99 0.004
INBU + 4.48 41.54 0.00 45.00 0.99 0.98 0.004
NOCA + 4.13 28.54 0.00 81.74 0.82 0.82 0.004

The effect of exurban development varied among forest species. Only Red-eyed Vireo was
significantly influenced by both proportion of exurban development and compactness
of exurban development. Eastern Wood-Pewee and Wood Thrush were influenced by
compactness of exurban development, whereas Scarlet Tanager was only influenced by
proportion of exurban development.

None of the forest-edge species were influenced by compactness of exurban development
at the 1-km radius buffer, although Eastern Phoebe, Eastern Towhee, Indigo Bunting, and
Northern Cardinal were affected by its proportion. Regarding forest fragmentation, Indigo
Bunting and Northern Cardinal were influenced by number of forest patches, whereas
Eastern Phoebe, Eastern Towhee, and Gray Catbird were affected by forest edge. Models
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Table 3 Summary of generalized additive models (GAM) for forest and forest-edge bird species at the 1-km radius buffer.Only species in which the model was a good
fit were included. Smoother is represented by s and year was included as a factor in the model therefore a smooth term did not apply.1AICi was used to rank models and
only full and best-fitted model are shown. Significant values (p< 0.01) are shown in bold.

Forest Exurban
development

Compactness Forest
patches
> 0.45 ha

Forest
edge

Year Deviance
explained
(%)

GCV 1AICi

Forest birds
EAWP Full s 6 5 2 1 1 3 30.3 0.654 2.719

p <0.001 0.049 0.001 0.745 0.356 0.016
Best-fitted s 7 5 2 3 30.2 0.649 0

p <0.001 0.067 <0.001 0.018
REVI Full s 1 1 1 7 2 3 66.5 0.554 0.120

p <0.001 0.004 <0.001 0.007 0.320 0.006
Best-fitted s 1 1 1 7 3 65.2 0.554 0

p <0.001 <0.001 <0.001 0.008 0.012
SCTA Full s 4 6 1 7 7 3 64.1 0.453 1.297

p <0.001 0.002 0.464 0.002 0.091 0.914
Best-fitted s 4 5 7 7 3 64.1 0.451 0

p <0.001 0.003 0.003 0.081 0.810
WOTH Full s 1 5 2 7 6 3 42.0 0.999 2.955

p <0.001 0.091 0.006 0.013 0.094 0.585
Best-fitted s 4 5 3 7 40.8 0.990 0

p <0.001 0.039 0.005 0.012

Forest-edge species
EAPH Full & best-fitted s 2 1 3 4 8 3 31.8 0.506 0

p <0.001 0.003 0.022 0.120 <0.001 0.003
EATO Full & best-fitted s 5 2 1 2 9 3 27.9 0.679 0

p <0.001 0.001 0.199 0.259 0.001 0.875
GRCA Full s 2 2 5 1 8 3 16.7 1.520 0.435

p 0.018 0.096 0.047 0.131 0.026 0.805
Best-fitted s 3 3 5 8 3 16.6 1.518 0

p 0.040 0.102 0.040 0.007 0.715
INBU Full s 8 7 1 5 1 3 29.5 0.415 3.484

p <0.001 0.001 0.233 0.006 0.234 0.634
Best-fitted s 7 7 5 28.2 0.411 0

p <0.001 <0.001 0.006
NOCA Full s 1 5 1 4 1 3 11.6 0.462 4.823

p 0.306 0.264 0.151 0.020 0.166 0.584
Best-fitted s 5 4 10.0 0.079 0

p 0.006 0.009
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at the 400-m buffer and for American Redstart and Ovenbird at the 1-km buffer did not
converge.

DISCUSSION
Our results suggest that both forest birds and some forest-edge species responded to spatial
patterns of exurban development at the landscape extent (1-km radius buffer) (Fig. 4B).
Contrary to our prediction, forest birds exhibited a positive response to compactness of
exurban development with change points between 21% and 78% (Table 2). These results
indicate that frequency and abundance of forest birds increase as compactness increases.
There are a few potential explanations for this pattern. First, although compactness
of exurban development increased over time, these bird species were also increasing
in abundance generally in the region (Suarez-Rubio et al., 2013) partly due to forest
regrowth (Bowen et al., 2007) and protected areas adjacent to the study area. Second, forest
disturbance associated with exurban development may benefit forest birds, especially forest
birds such as American Redstart and Red-eyed Vireo that seem to occur more frequently
in early and mid-successional forests and even start to decline as forests mature
(Holmes & Sherry, 2001; Hunt, 1998). Lastly, even though forest decreased around survey
stops, forest cover was nonetheless above the minimum amount of habitat necessary
for the persistence of forest birds (>30%; Andrén, 1994; Betts, Forbes & Diamond, 2007;
Radford, Bennett & Cheers, 2005; Suarez-Rubio et al., 2013; Zuckerberg & Porter, 2010).

When the effects of compactness of exurban development were assessed in relation
to forest loss and forest fragmentation, proportion of forest had a highly significant
effect compared to compactness in most cases (Table 3). This indicates that for forest
birds, proportion of forest at the landscape extent may be more important than exurban
development. However, proportion of exurban development and compactness also had a
significant effect, which suggests that if proportion of exurban development or compactness
continues this would inevitably lead to the loss of forest species.

Surprisingly, Indigo Bunting and Gray Catbird (i.e., forest-edge species) also responded
positively to compactness of exurban development at the landscape extent with change
points similar to those exhibited by forest birds (Table 2 and Fig. 4B). Although Indigo
Bunting is known for its strong preference for edges, and surely human habitatmodification
(e.g., clearing of woods) increases suitable habitat for buntings (Payne, 2006), bunting
numbers have declined in eastern North America since the last quarter of the twentieth
century (Sauer et al., 2014). These declines have been associated with increasing levels of
brood parasitism and predation that occur in fragmented habitats (Donovan & Flather,
2002; Robinson et al., 1995) but also with forest regrowth, which has reduced shrubby
habitats that they tend to use (DeGraaf & Yamasaki, 2003). It is important to note that
when forest loss and forest fragmentation were also considered, the effect of compactness
was not significant and proportion of forest and exurban development had a greater
influence. This suggests that buntings may be more sensitive to habitat quantity than the
spatial pattern of exurban development.

Gray Catbird is frequently associated with suburbia and also prefers early successional
habitats, and shrubs around houses have probably increased the availability of breeding
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habitat for this species (Smith et al., 2011). Although compact exurban development may
minimize the disturbance associated with domestic predators introduced in exurban areas
that usually prey directly on nests (Balogh, Ryder & Marra, 2011; Lepczyk, Mertig & Liu,
2003; Lumpkin, Pearson & Turner, 2012), the effects of compactness diminished when
forest loss and fragmentation were also taken into account at the landscape extent.

At the local extent (i.e., 400-m radius buffer), Scarlet Tanager responded negatively,
whereas Gray Catbird responded positively to compactness of exurban development,
with both exhibiting gradual responses (Fig. 4A). Scarlet Tanager is an interior forest
species that is very sensitive to forest fragmentation (Rosenberg, Lowe & Dhondt, 1999).
In a previous study, this species was found to have a negative response to the
amount of exurban development at very low levels (Suarez-Rubio et al., 2013). Thus,
Scarlet Tanager appears to be negatively affected by exurban development regardless
of its spatial configuration, which was also the case for the landscape extent.
The positive response of Gray Catbird to compactness of exurban development
perhaps indicates that predation pressure by introduced domestic predators in
exurban areas (Lepczyk, Mertig & Liu, 2003; Lumpkin, Pearson & Turner, 2012) affects
catbirds at the local extent. Exurban areas have large numbers of non-native plant
species (Gavier-Pizarro et al., 2010; Lenth, Knight & Gilgert, 2006; Maestas, Knight &
Gilgert, 2003), and there is some evidence that nests in exotic shrubs are twice as likely to be
depredated and suffer higher rates of nest failure than nests in native shrubs (Borgmann &
Rodewald, 2004), although this is not always the case (Meyer, Schmidt & Robertson, 2015).

Interestingly, most forest birds did not exhibit threshold responses to compactness
of exurban development at the local extent. This difference in response at the local and
landscape extent suggests that the effects of compactness of exurban development are scale
dependent. Smith, Fahrig & Francis (2011) demonstrated that effects of fragmentation
change with the extent of analysis because ecological processes (e.g., predation) act at
different spatial scales. Thus, the effects of compactness of exurban development might be
associated with the size of the disturbance zone. Other studies have found an ecological
effect zone of up to 200 m from exurban homes in which avian densities were altered
(Glennon & Kretser, 2013; Odell & Knight, 2001).

Our results reveal that the responses of forest birds varied, but extended well beyond
a 200-m radius. When considering a 400-m zone of influence, most forest birds did not
respond significantly to the spatial pattern of exurban development. However, the spatial
compactness of development was associated with a positive response at the 1-km zone
for nearly all forest bird species. Previous studies have shown that forest birds are very
sensitive to the proportion of exurban development (e.g., Pidgeon et al., 2007; Suarez-Rubio
et al., 2013). Our results show that forest birds are also sensitive to its spatial configuration
at large extents. In general, if exurban development occurs in the landscape, it affects
the entire 400-m radius buffer regardless of its arrangement, but by aggregating exurban
development within the 1-km radius buffer, safe zones were retained that could support
forest birds and the effects of compactness of exurban development were reduced.

By assessing the spatial pattern of exurban development for the multiple images, we
were able to capture the dynamics of landscape change over time (Table 1) as was also
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done previously for the conterminous United States (e.g., Mockrin et al., 2012; Pidgeon et
al., 2014). As exurban areas grew, scattered, isolated exurban development became more
contiguous and clumped. Thus, our results demonstrate the effects of the spatial pattern
of exurban development within the larger context of forest habitat loss. At the level of
individual survey stops, the positive but weak correlation between exurban development
and compactness indicates that there is variance in spatial configuration that is independent
from the overall amount of exurban development.

Although the total amount of exurban development around survey stops increased
compared to previous operational definitions (Suarez-Rubio et al., 2013), forest loss and
forest fragmentation did not vary when definitions were compared (Appendix S1). Thus,
by including both isolated and scattered housing units and associated roads into our
definition, we were able to reflect the substantial expansion of exurban development that
has occurred in the region (e.g., Suarez-Rubio, Lookingbill & Elmore, 2012). In addition, by
considering the effects of the spatial pattern of exurban development together with forest
loss and forest fragmentation, we identified the importance of compactness in light of
other factors that are known to affect forest birds.

Nonetheless, some caveats arise. The use of bird counts along BBS routes may not
fully reflect occurrence and abundance of more sensitive species such as Kentucky
Warbler. Although counts along roadsides have been shown to be representative of
changes occurring over much broader areas (Keller & Scallan, 1999), our findings cannot
be generalized beyond the range of housing density included in this study (e.g., to wilder
or more urbanized areas). In addition, the compactness index was developed to assess
the clumpiness of exurban housing and assumed presence of housing units; thus it is not
suitable for comparison to areas without development.

A critical unknown of exurban growth is the possible cumulative impacts on wildlife.
Evaluating potential cumulative impacts requires an enhanced understanding of both
the density and patterns of residential development and of the distinct effects of
these two components of landscape change (Pidgeon et al., 2014; Theobald, Miller &
Hobbs, 1997). We have taken a first step by identifying the extent at which forest and
forest-edge species respond to the spatial patterning of exurban development and highlight
that the positive response of forest birds to compactness at the larger extent should be
viewed with caution in the larger context of a systematic trajectory of bird diversity decline
(Pidgeon et al., 2014). If exurban growth continues to increase, as trends suggest, this will
lead towards more contagious development. Thus, management efforts should try to
concentrate development away from ecological sensitive areas, create or maintain safe
zones, and minimize forest loss or fragmentation (i.e., increase compactness) to support
forest birds.
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