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ABSTRACT
A frequent bottleneck in interpreting phylogenomic output is the need to screen often
thousands of trees for features of interest, particularly robust clades of specific taxa, as
evidence of monophyletic relationship and/or reticulated evolution. Here we present
PhySortR, a fast, flexible R package for classifying phylogenetic trees. Unlike existing
utilities, PhySortR allows for identification of both exclusive and non-exclusive clades
uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable
options to assess clades within the context of the whole tree. Using simulated and
empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis
of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in
yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a
command-line tool that is freely available and easily automatable.

Subjects Bioinformatics, Computational Biology
Keywords phylogenetics, phylogenomics, phylogenetic trees

INTRODUCTION
Phylogenomics increasingly involves the screening of thousands of phylogenetic trees
using specialised sorting algorithms that assign phylogenetic trees a classification based on
features of interest, e.g., strongly supported monophyletic relationships of taxa in question
(i.e., the ‘‘target’’ taxa). Here, phylogenetic trees in flat files (e.g., Newick format) are sorted
(i.e., classified) based on text-pattern matching. This principle is not to be confused with
the tree sort process, common in computer science, of rearranging binary data elements in
an ordered structure (Knuth, 1971). Currently available utilities, e.g., PhyloSort (Moustafa
& Bhattacharya, 2008) and SICLE (DeBlasio & Wisecaver, 2013) screen a set of phylogenetic
trees for the presence of clades that unite a set of user-defined target taxa (as indicated in
tip labels, i.e., leaves, on the tree) based on clade support that exceeds a defined threshold,
and sort these trees accordingly; SICLE (DeBlasio & Wisecaver, 2013) specifically identifies
all nearest neighbours (sister clades) of a single user-defined target. However, these tools
do not consider the proportion of non-target leaves and overall taxon composition in a
tree during the sorting process. Moreover, tools implemented in a graphical user interface
e.g., PhyloSort (Moustafa & Bhattacharya, 2008) do not allow for automation of multiple
analyses, thus limiting scalability.
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Here we present PhySortR, a fast, flexible R package for screening and sorting
phylogenetic trees. The command-line package provides the quick and highly flexible
sortTrees function, allowing for screening (within a tree) for ‘‘Exclusive’’ clades that contain
only the target leaves and/or ‘‘Non-Exclusive’’ clades that include a defined portion of
non-target leaves. Using simulated data, we assess the runtime of PhySortR based on the
number of trees and the number of leaves within a tree, and demonstrate the potential of
PhySortR in the analysis of multiple, large-scale empirical datasets.

MATERIALS & METHODS
Rationale and basic principles of PhySortR
Figure 1 shows four examples of tree topologies and their corresponding features relevant
to the sorting process of PhySortR, each with a target clade identified as Clade Z ; the first
tree (Fig. 1A) is an empirical tree of a putative sodium/sulphate symporter protein from an
earlier study (Bhattacharya et al., 2013), on which the other three hypothetical topologies
(Figs. 1B–1D) are based. PhySortR allows the user to specify one or more target terms using
the target.groups argument, providing that the leaves (tree-tip labels in the Newick files) are
named consistently across all input trees; this is a simple string-matching exercise, i.e., the
terms specified here determine taxon-level resolution of targets. In the examples shown in
Fig. 1, target.groups= ‘‘Rhodophyta,Viridiplantae,Stramenopiles.’’ The minimum support
for a clade (min.support ) can refer to bootstrap, Bayesian posterior probability, or any
other measure of support. Here, no prior assumption of tree root is made (i.e., all trees
are treated as unrooted), thus clade membership on both sides of each node is considered.
For instance, the node support for Clade Z (bootstrap 99%) in Fig. 1A is also considered
as the support for the opposing bacterial clade (Proteobacteria + Cyanobacteria) on the
tree. This is distinct from the assumption of the lowest common ancestor for a clade in
PhyloSort (Moustafa & Bhattacharya, 2008), in which subtree-rooting could be invoked
during a search.

Existing utilities identify clades of interest without considering the occurrence of the
target leaves elsewhere on the tree. For example, when assessing a target clade in a 30-leaf
tree, PhyloSort will positively identify both (a) a robust 24-member clade (Clade Z in
Figs. 1A) and (b) a robust four-member clade (Clade Z in Fig. 1B), although (a) is the
more-convincing evidence of a close association between the targets and of greater biological
significance; here most of the target group is contained within Clade Z (Fig. 1A), compared
to the scenario in Fig. 1B, in which most of the target group, with no clear evidence of
overall monophyly, is placed externally to robust Clade Z . To address this issue, PhySortR
allows the user to define min.prop.target, the minimum required proportion of target(s)
present in a clade relative to the total number of target(s) found in a tree. The default value
of min.prop.target is set at 0.7 as guidance. At 1.0, a strict monophyletic relationship of the
target group is enforced (i.e., no target leaves occurring elsewhere on a tree). When the
value is set too low (e.g., at 0.1), one would identify a target clade that is more-narrowly
defined (e.g., Clade Z in Fig. 1B); such a clade could have limited biological significance.
This option provides users the flexibility to design a query that can be tailored to address
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Figure 1 The effect of minimum target proportion and clade exclusivity on a tree. Tree topologies and
their corresponding features relevant tomin.prop.target and clade.exclusivity in PhySortR, with a target
clade Z . The tree of a sodium/sulphate symporter protein (A) contains a strongly supported ‘‘Exclusive’’
clade Z of Rhodophyta + Viridiplantae + Stramenopiles. Different scenarios are shown using hypotheti-
cal tree topologies, for (B) a low target proportion within target clade, (C) a ‘‘Non-Exclusive’’ target clade
with a high extent of clade exclusivity, and (D) a low extent of clade exclusivity. A summary of the leaf
composition corresponding to key selection criteria of PhySortR for each tree is shown at the bottom.
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specific biological questions, e.g., to identify a clade of interest defined as narrowly or as
broadly as desired.

Alternatively, the user may wish to screen for a robust clade that contains the target
groups and a small proportion of ‘‘interrupting’’ non-target leaves, e.g., a 24-member clade
consisting of 23 leaves from the targets Rhodophyta, Viridiplantae, and Stramenopiles,
as well as one from a non-target leaf, Haptophyceae (Clade Z in Fig. 1C). Whereas the
haptophyte is ‘‘interrupting’’ the otherwise exclusive clade of Rhodophyta + Viridiplantae
+ Stramenopiles, the association among the targets is still of interest and the presence
of the haptophyte might be readily explained by lateral gene transfer (LGT) due to
plastid endosymbiosis (e.g., Bowler et al., 2008; Chan et al., 2011b; Howe et al., 2008).
Composite clades such as these are considered ‘‘Non-Exclusive’’ (Chan et al., 2011b) and
are not identified by existing sorting tools. The concept of exclusivity (Fig. 1A) versus
non-exclusivity (Fig. 1C) of clades in tree sorting has proven crucial in a number of
genome-wide studies that have investigated the impact of LGT on the evolution of diverse
algae and protists (e.g., Bhattacharya et al., 2013; Chan et al., 2011b; Curtis et al., 2012; Price
et al., 2012). In addition to biological implications (e.g., LGT or genetic recombination), by
allowing the presence of non-targets in a clade, the non-exclusive clades are also useful in
identifying the association of a target group against the backdrop of phylogenetic artefacts
(Stiller, 2011) that would weaken an otherwise strong phylogenetic signal, e.g., unbalanced
taxon sampling (or missing taxa) (Rosenberg & Kumar, 2003; Sanderson, McMahon & Steel,
2010), long-branch attraction (Felsenstein, 1978), or contamination. PhySortR identifies
both types of clade based on the proportion of target versus non-target leaves using the
option clade.exclusivity. At the default setting (clade.exclusivity = 0.9), the minimum
proportion of target leaves within a ‘‘Non-Exclusive’’ clade is 0.9, thus the maximum
proportion of non-target leaves allowed in the clade is 0.1 (i.e., 1 minus 0.9). For instance,
the proportion of target leaves within Clade Z (0.79) in Fig. 1D does not satisfy the criterion
of clade.exclusivity of 0.9; this clade is therefore not considered as ‘‘Non-Exclusive’’ at the
default setting. This option accepts any value <1.0, and is applicable only for sorting
‘‘Non-Exclusive’’ clades (see below); at 1.0 (no non-target leaves allowed), the clade is
considered ‘‘Exclusive’’.

Sorting of phylogenetic trees
In PhySortR, sortTrees is the function for sorting phylogenetic trees; the basic algorithm is
shown in Fig. 2, and all available arguments are detailed in Table 1. To run sortTrees, the
user must aggregate all phylogenetic trees to be sorted into a single directory. All tree files
must have an identical file extension (see extension; Table 1) and can be in either standard
or extended Newick (Cardona, Rossello & Valiente, 2008) format.

The target.groups parameter (Table 1) is the only compulsory argument; all other
arguments have defaults that the function will use if an alternative is not provided. To
avoid ambiguity, the terms passed to the function are matched to a tree’s tip labels by exact
substring-matching. Multiple terms passed to the function must be separated by a comma
(e.g., ‘‘Rhodophyta,Viridiplantae,Stramenopiles’’) and must be sufficiently specific in the
dataset for the purpose of the screening. For instance, ‘‘plantae’’ and ‘‘Viridiplantae’’ might
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Figure 2 Overview of the sorting algorithm in PhySortR.

not be appropriate in a single query because all tips that are identified by ‘‘Viridiplantae’’
will also be identified by ‘‘plantae.’’

Regardless of which parameters are passed to the mode argument, the function will
always return a list of the trees that have been identified as containing clades that meet
the specified criteria. If the move (mode = ‘‘m’’) or copy (mode = ‘‘c ’’) command is
given, subdirectories will be created in out.dir that contain trees with a particular clade,
i.e., the directory out.dir/Exclusive/ will be created for the trees with ‘‘Exclusive’’ clades and
out.dir/Non_Exclusive/ for trees with ‘‘Non-Exclusive’’ clades. If the function is instructed
to search for ‘‘Exclusive’’ trees it will also return trees that contain only target leaves, termed
‘‘All Exclusive’’ trees. These trees are a subset of ‘‘Exclusive’’ trees and will be transferred
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Table 1 List of arguments within sortTrees function in PhySortR.

Argument Description

target.groups A set of one or more terms that represent the target leaves.
Multiple terms are to be separated by a comma and enclosed in
quotation marks i.e., ‘‘Rhodophyta,Viridiplantae’’. This process
is case-sensitive; it uses partial string matching, so the terms
used must be unique i.e., ‘‘plantae’’ and ‘‘Viridiplantae’’ are not
appropriate as the first is a subset of the second.

min.support The minimum support (between 0–1 or 0–100 inclusive) for
any clade identified during sorting (default 0), dependent on
the range of support values noted in the tree file (e.g., bootstrap
support, Bayesian posterior probability, or any similar mea-
sure). A node with no identified support value is treated as hav-
ing a value of zero (0).

min.prop.target The minimum proportion (between 0.0–1.0 inclusive) of target
leaves to be present in a clade, out of the total target leaves in
the tree (default 0.7). At 0.5, ≥50% of all target leaves in a tree
must be in the clade; at 1.0, all target leaves in a tree must be in
the clade.

in.dir The path to the input directory containing all phylogenetic
trees to be sorted. If no value is given, the function defaults to
the user’s current working directory.

out.dir The output directory to be created within in.dir, for the trees
identified during sorting to be moved or copied to. If out.dir is
omitted, the default directory of Sorted_ Trees/ will be used. If
list mode (mode= ‘‘l’’) is given, this argument will be ignored,
and no directory will be created. The content of out.dir is de-
pendent on the clades.sorted parameter.

mode Option to control whether the function will move (‘‘m’’),
copy (‘‘c ’’) or list (‘‘l’’) the files containing trees identified
during sorting. In both move and copy modes the files will
be transferred to subdirectories within out.dir and a list of
the sorted trees will be returned. In the list mode, only the list
will be returned. The type of trees sorted is dependent on the
clades.sorted parameter.

clades.sorted Option to control sorting for ‘‘Exclusive’’ (‘‘E ’’) or ‘‘Non-
Exclusive’’ (‘‘NE ’’) clades. The default setting is to search for
both types of clades, i.e., ‘‘E,NE ’’. Sorting of ‘‘Exclusive’’ clades
will also generate a sub-group of ‘‘All Exclusive’’ trees. This
argument will affect what is returned by the function and what
subdirectories are created in out.dir.

extension The file extension of the input phylogenetic trees (default
‘‘.tre’’).

clade.exclusivity The minimum proportion of target leaves allowed in a ‘‘Non-
Exclusive’’ clade, applicable only when sorting NE clades. The
value must be ≥ 0.0 and <1.0. At default (0.9), ≥90% (but
not 100%) of the leaves in a NE clade must be target leaves
(i.e., <10% can be ‘‘interrupting’’ non-target leaves). Specifica-
tion of 1.0 is not allowed; 1.0 implies that all (100%) leaves in a
clade are target leaves (no non-target leaves allowed), thus the
clade would be ‘‘Exclusive,’’ not ‘‘Non-Exclusive.’’
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Figure 3 A phylogenetic tree represented in standard and extended Newick formats.

to a subdirectory (if the move/copy parameter is given) within the ‘‘Exclusive’’ directory
i.e., out.dir/Exclusive/All_Exclusive.

The clades.sorted parameter can be used to change the types of clades that the function
will search for. For example if clades.sorted = ‘‘E ’’ is given, the function will only search
for trees that have ‘‘Exclusive’’ clades, but if the default value of clades.sorted = ‘‘NE,E ’’ is
given, the function will search for both ‘‘Exclusive’’ and ‘‘Non-Exclusive’’ clades. During
each run the function will create a log file, called ‘‘out.dir.log,’’ in the in.dir directory. This
file will contain information about each identified clade, e.g., the names of the leaves in the
clade, the support for the clade, the proportion of ‘‘interrupting’’ leaves, and so forth.

Conversion of extended Newick format
Newick format is a standardised, machine-readable, plain-text representation of
phylogenetic trees (http://evolution.genetics.washington.edu/phylip/newick_doc.html)
that has been widely adopted in phylogenetic software. This format was later modified
to incorporate more-complex network information such as hybrid nodes, in the form of
extended Newick (eNewick) format; see Cardona, Rossello & Valiente (2008) for details.
The two formats are however very similar, as shown in the example tree topology in Fig. 3.
In Newick, the support value for a node precedes its branch length, separated by a colon.
In eNewick, the support value for a node, enclosed in square brackets, is placed after its
branch length (Fig. 3). Most phylogenetic programs accept trees only in the Newick format,
but more-recent programs of phylogenetic inference generate the tree output in eNewick
format by default. Taking this into consideration, PhySortR provides the convert.eNewick
function that takes a single phylogenetic tree in eNewick format and returns the same
tree in Newick format. This function in isolation can be used as a general-purpose tool
for converting phylogenetic trees in eNewick format into a format that is usable by the
popular phylogenetic packages in R, ape (Paradis, Claude & Strimmer, 2004) and phytools
(Revell, 2012).

Simulation of phylogenetic trees
To test the scalability of the PhySortR package we simulated benchmarking datasets
composed of a given number of trees (N ) and leaves per tree (X); see Fig. S1 for detail.
All simulated trees are in the eNewick format. To simulate a tree with X = 100, we used
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a base phylogenetic tree with 1.05X tips, i.e., 105 tips. An ‘‘Exclusive’’ 20-leaf target clade
(i.e., 0.2X) is defined, tip labels of other non-target leaves are swapped (at random),
following which 0.05X (i.e., 5) of the overall tree branches (external to the target clade)
chosen at random were removed using phytools, resulting in the final tree of size X . This
tree was then replicated up to N number of trees as per our experimental design below.

Simulation of trees at different X follows the same strategy as per above, and for negative
controls, the target clade was simply omitted. For the first analysis, we generated sets of
input trees at N = 1,000, 2,000, 4,000, 6,000, 8,000 and 10,000 (each tree with X = 100;
Data S1). For the second analysis, we generated sets of input trees (N = 1,000) at tree size
X = 100, 200, 300, 400 and 500 (each tree of distinct size X is available as Data S2). For
the purpose of assessing scalability, all tree topologies are identical within a set of N trees,
i.e., a single technical replicate (Fig. S1). All benchmark analyses were carried out with 100
technical replicates (i.e., each replicate with a distinct base tree topology), on a desktop
computer (2.5 GHz Intel R© CoreTM i5 with 4 GB memory). The R script for simulating
these topologies and the corresponding templates are available as Data S3.

Comparative assessment of PhySortR versus PhyloSort
As input, here we used 897 empirical protein trees from an earlier study (Chan,
Reyes-Prieto & Bhattacharya, 2011a). Using PhySortR and PhyloSort (http://phylosort.
sourceforge.net/), we screened for trees that contain a strongly supported (bootstrap
≥ 90%) exclusive clade of Viridiplantae + Stramenopiles. The closest equivalent
parameter settings were used for PhySortR (target.groups= ‘‘Viridiplantae,Stramenopiles’’,
min.support = 90,min.prop.target = 1.00, clades.sorted = ‘‘E’’) and PhyloSort (Taxa regexp
= ([∧_]+_[∧_]+).∗, query taxa group 1 = all Viridiplantae leaves, query taxa group 2 = all
Stramenopiles leaves, Min bootstrap = 90, Exclusive mode). For PhyloSort, independent
analysis was done with the option Root by outgroup (PhyloSort-root hereinafter) and
without (PhyloSort-no-root).

Implementation and availability of PhySortR
PhySortR depends on two other phylogenetic packages in R, ape (Paradis, Claude &
Strimmer, 2004) and phytools (Revell, 2012). All three packages require R version 3.0 or
above to function, and they can be installed directly from CRAN in the R environment
(see Text S1 for detail). PhySortR is freely available as a platform-independent R package
from the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/
PhySortR/. Several examples are provided with the R package.

RESULTS & DISCUSSION
Figure 4 shows the runtime of PhySortR relative to the number of trees (N ) to be sorted
and the number of leaves (X) within a tree. As with any utility (DeBlasio & Wisecaver,
2013; Moustafa & Bhattacharya, 2008), the runtime of PhySortR is dependent on N and
X . We observed that the runtime scales linearly with N (Fig. 4A) and superlinearly with X
(Fig. 4B). In the extreme case, sorting through 10,000 trees of X = 100 took <400 s
(∼6.7 min), and sorting through 1,000 trees of X = 500 took <350 s (∼5.8 min). We
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Figure 4 Benchmarking results of PhySortR using simulated data. The mean runtime of PhySortR is
shown for analysis across datasets (A) with different numbers of trees, N , and (B) with different numbers
of leaves per tree, X . Values of runtime (in second) are mean across 100 replicates, error bars indicate the
standard deviation of the mean.

observed negligible differences in runtime with negative controls (trees containing no
identifiable clades) as input, compared to the test set in Fig. 4B. Our findings demonstrate
the potential of PhySortR in analysis of multiple, large-scale datasets.

Unlike PhyloSort, no prior assumption of tree-rooting is made in PhySortR. To illustrate
the impact of tree-rooting assumption on the sorting process, we performed sorting among
897 empirical protein trees (Chan, Reyes-Prieto & Bhattacharya, 2011a) using PhySortR,
and compared them to PhyloSort with and without the rooting option (i.e., PhyloSort-root
and PhyloSort-no-root; see ‘Materials & Methods’ for detail). Here, in the search for an
‘‘Exclusive’’ clade of Viridiplantae + Stramenopiles with bootstrap ≥90%, 18, 33 and
46 trees were identified using PhyloSort-no-root, PhySortR and PhyloSort-root (Fig.
5A). In Fig. 5B, identification of the target clade (bootstrap 98%) is straightforward in
all methods; all methods also successfully recovered the same ten ‘‘All Exclusive’’ trees
(containing only leaves of Viridiplantae + Stramenopiles). Figure 5C shows a tree that is
identified only using PhyloSort-root. Here the target clade is positively identified due to
(the enabled) subtree-rooting of non-target leaves, not based on clade support. The absence
of other closely related leaves in the tree could reinforce the association of Viridiplantae
and Stramenopiles (i.e., the tree might be biologically meaningful), but the bootstrap 61%
(Fig. 5C) is below the specified threshold (90%) in the search; thus this tree is not recovered
using PhySortR and PhyloSort-no-root. Figure 5D shows a tree that is identified using
PhySortR and PhyloSort-root, but not PhyloSort-no-root. Here the condition of target
clade support is satisfied (i.e., bootstrap 98%; Fig. 5D), but with the subtree-rooting
option disabled, PhyloSort did not recover this tree in the search; this appears to be a false
negative. Whereas the results from PhyloSort and PhySortR are not directly comparable,
our results demonstrate the impact of the tree-rooting assumption on the sorting results
between the two programs. This underlying assumption in PhyloSort could lead to under-
or over-estimation of the number of positive identifications; instances of false positives

Stephens et al. (2016), PeerJ, DOI 10.7717/peerj.2038 9/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.2038


Figure 5 Trees sorted using PhySortR and PhyloSort. The Venn diagram depicting number of trees identified using PhySortR, PhyloSort-root
and PhyloSort-no-root is shown in (A). An example of tree output for trees that are identified in (B) all cases, (C) only PhyloSort-root, and (D) all
but PhyloSort-no-root are shown.

and false negatives will need to be manually verified based on the research question. Here,
PhySortR yields readily interpretable trees (e.g., Figs. 5B and 5D) that unambiguously
satisfy the query requirements.

Furthermore, the algorithm of PhySortR (Fig. 2) is distinct from existing utilities in two
key aspects: PhySortR considers in a tree (a) both exclusive and non-exclusive clades, and
(b) a clade of interest within the context of overall taxon composition. Both PhySortR and
PhyloSort were designed as tools for hypothesis testing, e.g., to identify a clade of target
leaves as putative evidence of genetic exchange and/or transfer. In comparison, SICLE was
designed for a fundamentally different task, the screening of all possible sister clades to a
single target group (instead of two or more targets as allowed in PhySortR and PhyloSort)
as a tool for hypothesis generation. These three programs are implemented in different
programming languages, i.e., PhySortR in R, PhyloSort in Java and SICLE in C++. The
sorting process of phylogenetic trees is therefore dependent not only on parameter settings
but also implementation and hardware; comparing computation time and results among
these tools is not straightforward.
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PhySortR is an R implementation based on the basic sorting principles of Chan et al.
(2011b) that has been widely adopted in other phylogenomic studies (Bhattacharya et al.,
2013; Curtis et al., 2012; Price et al., 2012). PhySortR incorporates existing functionalities
and data structures in the commonly used phylogenetic packages ape (Paradis, Claude
& Strimmer, 2004) and phytools (Revell, 2012), allowing for streamlined interoperability
within the R environment.Whereas ape and phytools accept onlyNewick as input, PhySortR
accepts tree files in both Newick and eNewick (Cardona, Rossello & Valiente, 2008) formats.
The R platform (R Core Team, 2015) is open source, platform-independent, and broadly ac-
cessible to researchers, with continued support. In addition, functional modularity and the
command-line interface of PhySortR enable batch automation and workflow integration.

ACKNOWLEDGEMENTS
We thank two anonymous reviewers for their constructive comments and suggestions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Australian Research Council Discovery Project
(DP150101875) grant awarded to MAR, CXC and DB. TGS is supported by an Australian
Postgraduate Award. CXC is supported by a Great Barrier Reef Foundation Bioinformatics
Fellowship awarded to MAR. DB acknowledges support from the National Science
Foundation (1004213). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Australian Research Council Discovery Project: DP150101875.
Australian Postgraduate Award.
Great Barrier Reef Foundation Bioinformatics Fellowship.
National Science Foundation: 1004213.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Timothy G. Stephens and Cheong Xin Chan conceived and designed the experiments,
performed the experiments, analyzed the data, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
• Debashish Bhattacharya and Mark A. Ragan contributed reagents/materials/analysis
tools, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Source code and manual of this toolkit are freely available from Comprehensive R
Archive Network (CRAN): https://cran.r-project.org/web/packages/PhySortR/.

Stephens et al. (2016), PeerJ, DOI 10.7717/peerj.2038 11/13

https://peerj.com
https://cran.r-project.org/web/packages/PhySortR/
http://dx.doi.org/10.7717/peerj.2038


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.2038#supplemental-information.

REFERENCES
Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC,

Henrissat B, Coutinho PM, Krishnan A, Zauner S, Morath S, Hilliou F, Egizi A,
PerrineauMM, Yoon HS. 2013. Genome of the red alga Porphyridium purpureum.
Nature Communications 4:1941 DOI 10.1038/ncomms2931.

Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens
C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber
A, Heijde M, KatinkaM,Mock T, Valentin K, Verret F, Berges JA, Brownlee C,
Cadoret JP, Chiovitti A, Choi CJ, Coesel S, DeMartino A, Detter JC, Durkin
C, Falciatore A, Fournet J, Haruta M, HuysmanMJ, Jenkins BD, Jiroutova K,
Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist
E, LommerM,Martin-Jézéquel V, Lopez PJ, Lucas S, MangognaM,McGinnis
K, Medlin LK, Montsant A, Oudot-Le SecqMP, Napoli C, ObornikM, Parker
MS, Petit JL, Porcel BM, Poulsen N, RobisonM, Rychlewski L, Rynearson TA,
Schmutz J, Shapiro H, Siaut M, Stanley M, SussmanMR, Taylor AR, Vardi A,
Von Dassow P, VyvermanW,Willis A,Wyrwicz LS, Rokhsar DS,Weissenbach J,
Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV. 2008. The Phaeodactylum
genome reveals the evolutionary history of diatom genomes. Nature 456:239–244
DOI 10.1038/nature07410.

Cardona G, Rossello F, Valiente G. 2008. Extended Newick: it is time for a standard
representation of phylogenetic networks. BMC Bioinformatics 9:532
DOI 10.1186/1471-2105-9-532.

Chan CX, Reyes-Prieto A, Bhattacharya D. 2011a. Red and green algal origin of diatom
membrane transporters: insights into environmental adaptation and cell evolution.
PLoS ONE 6:e29138 DOI 10.1371/journal.pone.0029138.

Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D.
2011b. Red and green algal monophyly and extensive gene sharing found in a rich
repertoire of red algal genes. Current Biology 21:328–333
DOI 10.1016/j.cub.2011.01.037.

Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball
SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Syme-
onidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, OborníkM,
Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford
DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Höppner MP, Ishida
K, Kim E, Kořený L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T,
Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy
SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden
AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R,

Stephens et al. (2016), PeerJ, DOI 10.7717/peerj.2038 12/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.2038#supplemental-information
http://dx.doi.org/10.7717/peerj.2038#supplemental-information
http://dx.doi.org/10.1038/ncomms2931
http://dx.doi.org/10.1038/nature07410
http://dx.doi.org/10.1038/nature07410
http://dx.doi.org/10.1186/1471-2105-9-532
http://dx.doi.org/10.1371/journal.pone.0029138
http://dx.doi.org/10.1016/j.cub.2011.01.037
http://dx.doi.org/10.7717/peerj.2038


Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, GrayMW,
Grigoriev IV, Archibald JM. 2012. Algal genomes reveal evolutionary mosaicism and
the fate of nucleomorphs. Nature 492:59–65
DOI 10.1038/nature11681.

DeBlasio D,Wisecaver J. 2013. SICLE: a high-throughput tool for extracting evolution-
ary relationships from phylogenetic trees. ArXiv preprint. arXiv:1303.5785.

Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively
misleading. Systematic Zoology 27:401–410 DOI 10.2307/2412923.

Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW. 2008. The origin of
plastids. Philosophical Transactions of the Royal Society of London, Series B: Biological
Sciences 363:2675–2685 DOI 10.1098/rstb.2008.0050.

Knuth DE. 1971. Optimum binary search trees. Acta Informatica 1:14–25
DOI 10.1007/BF00264289.

Moustafa A, Bhattacharya D. 2008. PhyloSort: a user-friendly phylogenetic sorting
tool and its application to estimating the cyanobacterial contribution to the nuclear
genome of Chlamydomonas. BMC Evolutionary Biology 8:6
DOI 10.1186/1471-2148-8-6.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in
R language. Bioinformatics 20:289–290 DOI 10.1093/bioinformatics/btg412.

Price DC, Chan CX, Yoon HS, Yang EC, Qiu H,Weber AP, Schwacke R, Gross
J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JA, Lang BF,
Burger G, Steiner JM, LöffelhardtW,Meuser JE, Posewitz MC, Ball S, Arias MC,
Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green
BR, Rajah VD, Boore J, Bhattacharya D. 2012. Cyanophora paradoxa genome
elucidates origin of photosynthesis in algae and plants. Science 335:843–847
DOI 10.1126/science.1213561.

R Core Team. 2015. R: a language and environment for statistical computing . Vienna: R
Foundation for Statistical Computing.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other
things).Methods in Ecology and Evolution 3:217–223
DOI 10.1111/j.2041-210X.2011.00169.x.

RosenbergMS, Kumar S. 2003. Taxon sampling, bioinformatics, and phylogenomics.
Systematic Biology 52:119–124 DOI 10.1080/10635150390132894.

SandersonMJ, McMahonMM, Steel M. 2010. Phylogenomics with incomplete
taxon coverage: the limits to inference. BMC Evolutionary Biology 10:155
DOI 10.1186/1471-2148-10-155.

Stiller JW. 2011. Experimental design and statistical rigor in phylogenomics of horizontal
and endosymbiotic gene transfer. BMC Evolutionary Biology 11:259
DOI 10.1186/1471-2148-11-259.

Stephens et al. (2016), PeerJ, DOI 10.7717/peerj.2038 13/13

https://peerj.com
http://dx.doi.org/10.1038/nature11681
http://arXiv.org/abs/1303.5785
http://dx.doi.org/10.2307/2412923
http://dx.doi.org/10.1098/rstb.2008.0050
http://dx.doi.org/10.1007/BF00264289
http://dx.doi.org/10.1186/1471-2148-8-6
http://dx.doi.org/10.1093/bioinformatics/btg412
http://dx.doi.org/10.1126/science.1213561
http://dx.doi.org/10.1126/science.1213561
http://dx.doi.org/10.1111/j.2041-210X.2011.00169.x
http://dx.doi.org/10.1080/10635150390132894
http://dx.doi.org/10.1186/1471-2148-10-155
http://dx.doi.org/10.1186/1471-2148-10-155
http://dx.doi.org/10.1186/1471-2148-11-259
http://dx.doi.org/10.7717/peerj.2038

