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ABSTRACT
Antibiotic resistance poses a significant global health threat, and soil is recognized as a
critical reservoir for antibiotic resistance genes (ARGs). To investigate soil microorgan-
isms in the areas where both humans and common domestic animals (such as pigs and
chickens) are present and active. In this study, we employed metagenomic sequencing
to investigate the soil resistome across four Chinese provinces—Yunnan, Guizhou,
Sichuan, and Jiangsu. From 111 soil samples, we generated metagenome-assembled
genomes (MAGs) and gene catalogs to analyze microbial community composition,
ARG distribution, and mobile genetic elements (MGEs). Our results revealed notable
regional differences in microbial communities and ARG profiles. Pseudomonadota
and Actinomycetota were the dominant phyla across samples, and ARG abundance
was significantly higher in Sichuan, Yunnan, and Jiangsu compared to Guizhou. We
also identified microbial taxa likely serving as ARG vectors, suggesting potential for
horizontal gene transfer. Functional annotation indicated that metabolic functions,
particularly carbohydrate and amino acid metabolism, were predominant, which
may be associated with the composition of organic matter in the soil environment.
Multidrug resistance genes are widespread in soil microbial communities and may
spread through food chains or soil-water-plant systems, posing potential ecological
and public health risks. MGEs showed significant regional variation and play a key role
in the horizontal spread of ARGs. Together, these findings provide new insights into
the soil antibiotic resistome and offer a foundation for developing targeted strategies
to manage environmental antibiotic resistance.
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INTRODUCTION
Antibiotic resistance is an urgent global health threat, driven by the transfer of resistant
bacteria and genes among humans, animals, and the environment (Larsson & Flach, 2022).
Antimicrobial resistance (AMR) is estimated to cause around 700,000 deaths annually and
could claim up to 20 million lives by 2050 if left unchecked (Abo Kamer et al., 2023; Darby
et al., 2023). Soil is one of the most diverse ecosystems on Earth in terms of microbial
diversity and is considered a major reservoir of ARGs and antibiotic-resistant bacteria
(ARBs) (Liu et al., 2024; Van Goethem et al., 2018). These ARGs are increasingly linked to
human health risks, while recent studies have also highlighted their close relationships with
soil development processes and microbial community succession (Chen et al., 2022). The
widespread exchange of resistance genes between environmental microbes and human-
associated microbial communities increases the risk of colonization by resistant microbes
(Hu, Gao & Zhu, 2017).

Metagenomics, the study of genetic material recovered directly from environmental
samples (Wang et al., 2024), has revolutionized how we study microbial communities and
their functions (Taş et al., 2021). Metagenome-assembled genomes (MAGs), constructed
from short DNA reads, offer greater power in identifying microbial populations within
complex environments (Almeida et al., 2019; Tyson et al., 2004). MAGs have expanded the
genomic landscape of underrepresented habitats like soil (Anthony et al., 2024), providing
new opportunities to study microbial ecology, function, and resistance gene dynamics
(Nelkner et al., 2019). This approach enables a more detailed analysis of ARG diversity,
abundance, potential hosts, and transmission mechanisms.

Previous research has underscored the role of soil microbiomes as a major gene pool
for antibiotic resistance (Klümper et al., 2024). Environmental and agricultural factors
contribute to regional differences in soil resistomes, with distinct microbial communities
and ARG levels observed under varying conditions (Seyoum et al., 2021; Wang et al.,
2020). Moreover, the sharp rise in infections caused by multidrug-resistant bacteria has
driven urgent efforts to monitor environmental ARGs and assess their public health risks
(Serwecińska, 2020). Most previous studies have focused on a single region or specific
type of environment, lacking systematic comparative analyses across geographically
and ecologically diverse areas. This is particularly true for regions where humans and
common domestic animals coexist intensively and engage in frequent activities, such as
areas that combine agricultural production with intensive livestock and poultry farming.
Existing research has rarely systematically linked the metabolic pathways of soil microbial
communities to ARG profiles. Nevertheless, microbial metabolic activities may affect the
emergence and spread of ARGs by altering the composition of soil organic matter or
microbial interaction networks.

This study focuses on the soil environments of four provinces in China: Yunnan,
Guizhou, Sichuan, and Jiangsu. These regions not only span different geographical and
climatic zones but also cover extensive areas with frequent human and domestic animal
(e.g., pigs, chickens) activities, providing conditions for exploring the regional variation of
soil resistomes. By employing metagenomic sequencing technology, we obtained MAGs
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and a comprehensive gene catalog from 111 soil samples. The aim is to systematically
analyze the composition of microbial communities, the distribution patterns of ARGs, the
characteristics of mobile genetic elements, and microbial functional profiles. Through this
approach, we seek to clarify the regional differences in soil resistomes, identify potential
microbial carriers of ARGs, reveal the association between mobile genetic elements and
the spread of ARGs. The aim is to provide new insights into the structure and dynamics
of the soil resistome, and thereby supporting the development of more effective strategies
to manage antibiotic resistance in soil environments and reduce associated human health
risks.

MATERIALS & METHODS
Sample collection, DNA extraction, and sequencing
Soil samples were collected from four Chinese provinces: Sichuan (25), Yunnan (28),
Guizhou (28), and Jiangsu (30). These regions were chosen to represent diverse geographic
and ecological settings, including mountainous and plateau areas in the southwest and
agricultural plains in the east. All four provinces are characterized by intensive human
activities and livestock production, providing representative environments for studying
human-animal-soil interactions. Sampling across these regions allowed the capture of
ecological and agricultural variation relevant to soil microbial communities and ARGs. In
total, 111 soil samples were obtained. With detailed metadata including location, altitude,
and GPS coordinates recorded for each site (Table S1). At each sampling site, surface soil
(0–1 cm depth) was collected according to a five-point sampling protocol using a sterile
soil shovel. The five sub-samples obtained from each point were then combined to form a
single composite sample. Subsequently, the composite soil was immediately passed through
a 2-mm sieve to remove plant debris and gravel. Approximately 1–3 g of the composite
soil was collected for each sample. To preserve sample integrity, all samples were frozen
on dry ice after collection and subsequently stored at −80 ◦C. Total genomic DNA was
extracted from soil samples using theMag-Bind® Soil DNAKit (Omega Bio-tek, Norcross,
GA, USA) following the manufacturer’s instructions. DNA concentration and purity were
determined using a NanoDrop 2000 spectrophotometer, and integrity was assessed by 1%
agarose gel electrophoresis.

DNA samples were fragmented to an average size of approximately 350 bp using a
Covaris M220 instrument (Gene Company Limited, China) for the preparation of paired-
end sequencing libraries. Library construction was carried out with the NEXTFLEX Rapid
DNA-Seq Kit (Bio Scientific, Austin, TX, USA). Adapters comprising the full complement
of sequencing primer binding sites were ligated to the blunt-ended DNA fragments.
Paired-end sequencing was conducted on an Illumina NovaSeq 6000 platform (Illumina
Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China), utilizing the NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) in accordance with the
manufacturer’s protocols (https://www.illumina.com/).
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Metagenomic assembly
Quality control and sequence assembly were performed using theMajorbio Cloud Platform
(http://www.majorbio.com). Adapter sequences and low-quality reads (length <50 bp or
quality value <20) were removed using fastp (version 0.23.0) (Chen et al., 2018). Host-
derived reads were removed by aligning against the human (GRCh38.p13), chicken
(GRCg7b), and pig (Sscrofa11.1) genomes using BWA (http://bio-bwa.sourceforge.net,
version 0.7.9a) (Li & Durbin, 2009). Clean reads were assembled using MEGAHIT (version
1.1.2) (Li et al., 2015).

Metagenomic binning and MAG quality control
Three tools, Metabat2 (version 2.12.1) (Kang et al., 2015), MaxBin2 (version 2.2.5)
(Alneberg et al., 2014), and CONCOCT (version 0.5.0) (Wu, Simmons & Singer, 2016),
were used for binning. The resulting bins were consolidated using DAS Tools (version
1.1.0) (Sieber et al., 2018). RefineM (version 0.0.24) (Parks et al., 2017) was used to filter
contigs based on genomic features such as GC content, tetranucleotide signatures, coverage,
and taxonomy.MAGcompleteness and contaminationwere assessedwithCheckM (version
1.0.12) (Parks et al., 2015) using lineage-specific marker genes. Only MAGs with ≥ 50%
completeness and <10% contamination were retained (Parks et al., 2017).

Pairwise comparisons were performed usingMash (Ondov et al., 2016) and dereplication
was conducted with dRep (version 3.4.2) (Olm et al., 2017), retaining the highest-quality
MAG for each cluster at ≥ 99% average nucleotide identity (ANI). MAG coverage was
calculated usingCoverM (version 0.6.1). Taxonomywas assigned usingGenomeTaxonomy
Database Toolkit (GTDB-Tk) (version 2.3.0) (Parks et al., 2018) based on 120 universal
single-copy marker genes from the Genome Taxonomy Database (GTDB).

Gene prediction and functional annotation
Gene prediction for all MAGs was performed using Prodigal (version 2.6.3) with the
-p meta parameter (Hyatt et al., 2010). Only genes with a nucleic-acid length ≥ 100 bp
were retained and subsequently translated into amino-acid sequences. The annotated
protein sequences were automatically aligned against multiple databases using Diamond
(Version 0.8.35, E-value ≤ 1e−5), including Kyoto Encyclopedia of Genes and Genomes
(http://www.genome.jp/kegg/), COG (https://www.ncbi.nlm.nih.gov/research/cog-project/),
CAZy (http://www.cazy.org/), CARD (https://card.mcmaster.ca/), and MGE (https:
//github.com/KatariinaParnanen/MobileGeneticElementDatabase).

Data analysis
In this study, violin plots, clustered heatmaps, pie charts, bar plots, correlation scatter
plots, and polar bar plots were generated using the Microbioinformatics platform
(https://www.bioinformatics.com.cn). The MAG species Sankey diagram, correlation
heatmap, and circular phylogenetic tree were generated using Python (v2.7.10). UpSet
Venn diagrams, dual-matrix correlation heatmaps, KEGG histograms, COG annotation
classification statistics, antibiotic resistance gene prediction classification statistics, and
gene potential mobility analysis charts were produced using the Majorbio platform
(http://www.majorbio.com). Additionally, UpSet Venn diagrams and interactive heatmap
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bar plots were generated with the assistance of the Paisainuo Gene Cloud platform
(https://www.bioinformatics.com.cn).

To investigate the relationships between species distribution and environmental variables
(including altitude, latitude, and longitude), as well as the associations between mobile
genetic element MGE types and ARG categories, Spearman’s correlation coefficient was
employed for analysis. Furthermore, Spearman’s rank correlation test was used to evaluate
the correlation between the abundance of ARGs and MGEs. Spearman’s correlation
calculation was employed, and significance was denoted by p-values, with * indicating
p< 0.05, ** indicating p< 0.01, and *** indicating p< 0.001.

RESULTS
Assembly of 1,136 microbial genomes from soil
We constructed a metagenomic assembly gene catalog using sequencing data from 111 soil
samples across four Chinese provinces (Fig. 1). High-throughput sequencing generated
1.276 Tb of raw data, averaging 11.50 Gb per sample. After stringent quality filtering, 1.258
Tb of high-quality data were retained, reflecting a 98.59% retention rate and an average
effective sequencing depth of 11.33 Gb per sample (Table S1).

Dereplication at an average nucleotide identity (ANI) threshold of ≤ 99% and quality
filtering yielded 1,136 MAGs that met our predefined standards for medium-quality
assemblies (≥ 50% completeness and <10% contamination; Table S2). Among them, 176
MAGsmet theMIMAG standard for high-quality MAGs defined by the Genome Standards
Consortium (≥ 90% completeness and ≤ 5% contamination) (Bowers et al., 2017), while
the remaining 960 were classified as medium-quality. The average completeness across all
MAGs was 74.19%, with a mean contamination of 3.40% (Table S2).

To examine the genome characteristics of these soil-derived MAGs, we used metrics
including total genome length, contig number, predicted coding sequences (CDS), GC
content, N50, tRNA genes, rRNAs, and repetitive elements (Fig. S1A). The total genome
length of all MAGs combined was 3.17 Gb. On average, each MAG contained 725 contigs,
ranging from 1 to 3,135, indicating substantial variation in final assembly continuity among
MAGs. We predicted 3,548,612 CDS in total, with a mean of 3,123 CDS per MAG, offering
a rich resource for functional annotation.

The average GC content was 58.75%, ranging from 28.83% to 75.07%, reflecting the
diversity characteristics of the soil microbial genomes. It is worth noting that the upper
limit of 75.07% GC content comes from a Cellulosimicrobium funkei genome. Compared
with the NCBI database, this value has reached the highest level of GC content reported
for this species so far.

The overall average N50 was 12,271 bp. Notably, according to the MIMAG criteria (≥
90% completeness and ≤ 5% contamination) (Bowers et al., 2017), the 176 high-quality
MAGs also exhibited greater assembly continuity, with an N50 of up to 7,575,282 bp—
considerably higher than the average of 6,364,488 bp observed for medium-quality MAGs
(Table S3). In addition, we identified 36,249 tRNA genes, 684 rRNA genes, and 74,838
repetitive elements across the MAGs (Fig. S1A; Tables S3–S5).
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Figure 1 Overview of the assembled genomes and their functional annotations.
Full-size DOI: 10.7717/peerj.20348/fig-1

Microbial classification and composition
To classify the 1,136 MAGs, we aligned their sequences with the GTDB. The taxonomic
distribution improved at higher ranks: 1,115 MAGs were assigned to a class, 1,047 to an
order, 891 to a family, 223 to a genus, and 144 to a species (Table S6). All MAGs were
taxonomically annotated using GTDB (Fig. S1B), which revealed 23 bacterial phyla (1,103
MAGs) and three archaeal phyla (33 MAGs). The most abundant bacterial groups included
Actinomycetota (324 MAGs), Pseudomonadota (252 MAGs), and Bacteroidota (119
MAGs). Among archaeal MAGs, 20 out of 33 were unclassified at the species level. These
archaeal genomes were distributed across Thermoproteota (31 MAGs), Thermoplasmatota
(1 MAG), and Methanobacteriota (1 MAG). The average relative abundance of archaeal
phyla is approximately 7.12% (Table S6).

Using MAG-based Sankey diagrams, we analyzed species abundance across samples
at multiple taxonomic levels, visualizing patterns of community structure and regional
distribution. At the phylum level, Actinomycetota dominated the top 30 most abundant
MAGs. As the taxonomic resolution increased to genus and species, the Sankey diagram
displayed more complex branching. Some species showed regional enrichment; for
instance, MAG442 (Lactobacillus amylovorus) was significantly enriched in Yunnan
Province (Fig. 2A). Additionally, correlations were observed between MAGs abundance
and environmental variables such as altitude, latitude, and longitude. For example,
Dormibacterota abundance was positively correlated with altitude, while Armatimonadota
abundance was positively associated with both latitude and longitude (Fig. 2B).

Further analysis revealed patterns of microbial community composition across
provinces. Among the four regions, 58 MAGs were shared, including those from
Pseudomonadota (18 MAGs), Actinomycetota (17 MAGs), Thermoproteota (14 MAGs),
Cyanobacteriota (6 MAGs), Chloroflexota (2 MAGs), and Nitrospirota (1 MAG) (Fig. S2).
We also identified 651 unique MAGs: 261 from Sichuan, 216 from Yunnan, 27 from
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Figure 2 Composition and taxonomic characteristics of the soil MAGs community. (A) Sankey
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Columns represent different taxonomic levels; colored bands indicate species, with length proportional
to abundance. The colored bands connecting the pillars represent the correspondence between
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Full-size DOI: 10.7717/peerj.20348/fig-2

Guizhou, and 147 from Jiangsu (Fig. 2C). Bacterial taxa found inmore than 90% of samples
from a region were defined as core bacteria. In Guizhou, five phyla met this threshold,
indicating their wide distribution and potential ecological importance (Table S7).
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To explore regional differences, the top 10 MAGs with the highest relative abundance
were selected from the shared and endemic MAGs in each province in this study. We
compared the top 10 most abundant MAGs, both shared and region-specific, within
each province. At the genus level, shared MAGs in Yunnan, Guizhou, and Jiangsu showed
greater similarity compared to those fromSichuan.Genera such asMicrococcus (MAG1095),
Arthrobacter (MAG845), and VBCG01 (MAG104) were dominant in Yunnan, Guizhou,
and Jiangsu, while Chroococcidiopsis (MAG929), Arthrobacter (MAG802), and Paracoccus
(MAG292) were more abundant in Sichuan, indicating a distinct MAG composition in
that region (Fig. S3).

Genus-level analysis of region-specific MAGs also demonstrated clear provincial
differentiation. Dominant genera includedVAYN01,UBA4720, and JACDBZ01 in Sichuan;
o_Gloeomargaritales; g_Unclassified in Guizhou; Sphingomonas_I, 40CM-4-68-19, and
CADCTB01 in Yunnan; and Sphingomicrobium and VAYN01 in Jiangsu (Table S6).

Functional annotations of MAGs
The assembled MAGs were functionally annotated using three major databases: COG,
KEGG, and CAZy. We found that 42.69% (2,643,751), 30.8% (2,346,501), and 3.47%
(127,544) of the predicted proteins had at least one COG, KEGG, and CAZy function,
respectively (Fig. 3A). According to the COG classification, theMAGs were categorized into
four main groups: Cellular Processes and Signaling, Information Storage and Processing,
Metabolism, and Poorly Characterized functions. These groups include functional
descriptions of 25 specific COG types, with Metabolism being the most prevalent (Fig. 3A;
Table S8).

KEGG annotations revealed that protein functions were grouped into six major
metabolic systems. Approximately 77.52% of the annotated genes were involved in
metabolic functions (Fig. 3A), particularly those related to carbohydrate and amino
acid metabolism (Fig. 3B). These results were consistent with the COG data, reinforcing
the conclusion that soil microbes predominantly perform metabolic roles. The abundance
of carbohydrate- and amino acid-related pathways is likely due to the soil environment’s
characteristics, such as abundant humus, plant root exudates, and microbial residues
(Abdelrahman et al., 2016; Chantigny, Olk & Angers, 2025). These characteristics provide
ample substrates for these metabolic processes and drive soil microorganisms to adapt to
such conditions.

To further analyze genes related to carbohydrate metabolism, we used the CAZy
database (Fig. 3A). A total of 127,544 CAZyme-encoding genes were identified, classified
into seven CAZyme categories. Glycosyl transferases (GT) were the most abundant,
followed by glycoside hydrolases (GH) and carbohydrate esterases (CE). These genes
were unevenly distributed across MAGs. Notably, GH and GT were especially enriched
in Actinomycetota and Pseudomonadota (Fig. 3C). Among all MAGs, MAG975
(g_Actinocrispum; s_Unclassifiedand) contained the highest number of functionally
annotated genes across all three databases: 6,860 in COG, 5,775 in KEGG, and 517 in
CAZy (Table S9).
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To assess functional differences among region-specific MAGs, we analyzed the
top 10 relatively abundant unique MAGs from each province. Genes related to
cell wall/membrane/envelope biogenesis and amino acid transport/metabolism were
predominant in MAGs from Sichuan, while MAGs from Guizhou, Yunnan, and Jiangsu
were mainly enriched in genes associated with general function prediction, signal
transduction, and amino acid metabolism (Fig. S4; Table S8). At the genus level, KEGG
analysis showed that UBA4720 (Sichuan), Ferruginibacter (Guizhou), Sphingomonas_I
(Yunnan), and Sphingomicrobium (Jiangsu) had relatively high proportions of annotated
genes. Functional pathways common across these genera included global and overview
maps, carbohydratemetabolism, and amino acidmetabolism (Fig. S5A; Table S1). Similarly,
CAZy analysis indicated that genera such as UBA4720, Ferruginibacter, Sphingomonas, and
Flavisolibacter had relatively high proportions of CAZyme-encoding genes (Fig. S5B).

Antibiotic resistance gene profiling
To investigate antibiotic resistance in the soil microbiome, ARGs in 1,136 MAGs from
111 soil samples were annotated using the CARD database. A total of 35 drug resistance
classes, comprising 162 distinct ARG types, were identified (Table S10). Among all phyla,
Actinomycetota and Pseudomonadota harbored the greatest numbers of ARGs. ARGs were
also detected in archaeal phyla such as Thermoproteota and Methanobacteriota (Fig. 4A).
Among these, the phylum Methanobacteriota was found to carry 34 ARGs, encompassing
14 distinct ARG classes (Table S10). Multidrug, peptide, and glycopeptide ARGs were the
most widely distributed in the soil environment (Fig. 4B).

Genera QHVT01, Sphingobacterium, and UBA5704 contained the greatest number of
ARGs per genome among taxa represented by at least five MAGs (Fig. 4C), suggesting
their potential as ARG reservoirs. The widespread presence of ARGs raises concerns about
environmental dissemination through food chains or soil-water-plant systems, potentially
threatening ecological and human health.

MAG975 (g_Actinocrispum; s_Unclassified) andMAG635 (g_JADGHX01; s_Unclassified),
found only in Yunnan Province, harbored the highest number of ARGs according to CARD
predictions (Table S9), indicating possible high resistance potential and unique ecological
adaptability. All 1,136MAGs contained at least five ARGs (Table S10), further underscoring
the pervasive nature of resistance genes in soil microbial communities.

Of particular note, one Escherichia coli strain (MAG817) was identified with 81
distinct ARG types spanning 27 drug resistance classes (Table S11). These included
resistance to multidrug, peptide, glycopeptide, tetracycline, macrolide, aminoglycoside,
and fluoroquinolone antibiotics. Given the pathogenic nature of E. coli, this strain could
potentially be a drug-resistant superbug.

ARGs were also observed in several probiotic species, including Arthrobacter oxydans
(MAG82, MAG174, MAG670, MAG845), Glutamicibacter arilaitensis (MAG79, MAG161,
MAG537, MAG825), Pseudomonas_E helleri (MAG467), Priestia megaterium (MAG750),
and Lactobacillus reuteri (MAG783) (Table S10).

We also compared ARG abundance among soil-specific MAGs from the four provinces.
Sichuan, Yunnan, and Jiangsu soils contained significantly more ARGs than Guizhou, with
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aminoglycoside and phosphonic acid resistance genes being dominant across all regions.
In terms of ARG diversity, Sichuan had twice as many antibiotic classes (10) as Guizhou
(5), while Yunnan exhibited the greatest diversity with 12 types. Jiangsu followed closely
with nine types (Fig. 4D).

Mobile genetic elements
MGEs are instrumental in the horizontal transmission of ARGs among microbial cells.
Understanding their distribution and the relationship betweenMGEs and ARGs is essential
for assessing antibiotic resistance dynamics. A total of 46,662 MGE-related genes were
identified across the 1,136 MAGs by aligning gene catalog protein sequences with the
MGE Database. These genes were grouped into 68 distinct MGEs and further classified
into five types: transposase, integrase, recombinase, conjugative transfer protein, and
transposon. Among these, transposase genes were the most abundant, suggesting their
major contribution to the dissemination of ARGs (Table S12).

MGEs can carry and promote the spread of ARGs through horizontal gene transfer
(HGT). Thus, the presence and distribution of ARGs and MGEs can serve as indicators of
the degree of antibiotic resistance contamination. To explore regional mechanisms of ARG
transmission, we analyzed MGE content within the unique MAGs from the four provinces.
Results revealed clear regional differences: Sichuan demonstrated the highest diversity (46),
followed by Yunnan (36), Jiangsu (27), and Guizhou (23). Regarding province-specific
MGE types, Sichuan had 12, Yunnan 5, Guizhou 2, and Jiangsu 1 (Fig. 5A). Among all
regions, transposase, XerD (site-specific tyrosine), and Tn3 were the dominant classes
(Fig. 5B). Further analysis of gene mobility across the 1,136 MAGs showed that among
contig regions shorter than 5 kb, ARGs most frequently appeared adjacent to transposase
genes. The genome of MAG975 (g_Actinocrispum; s_Unclassified) contained the highest
number of such co-located regions. Among these, the bcrA gene (n= 13) was most
commonly associated with transposase genes within the same contigs. This suggests a likely
mechanism for the horizontal transfer of bcrA mediated by transposases in this genome
(Table S12).

Previous studies have highlighted E. coli as a potential pathogen across various
environments. To evaluate the risk of ARG transfer at the strain level, we examined
the distribution of MGEs in the genome of MAG817 (E. coli). Transposase genes were
located adjacent to multiple ARGs within contigs shorter than five kb. For example, a
transposase gene was closely linked to the efrB gene (Fig. 5C). Given that MAG817 (E.
coli) was detected in eight out of 111 samples and has a relatively high abundance, this E.
coli strain may represent a heightened risk for ARG transmission through MGE-mediated
horizontal transfer.

To quantify the relationship between MGEs and ARGs, we performed Spearman and
linear regression analyses. A significant positive correlation was observed (y = 0.2349x
+ 0.8653, R2

= 0.5229, p< 0.001), indicating that higher MGE abundance may facilitate
ARG proliferation (Fig. 6A). This correlation was also supported by a heatmap (Fig. 6B).
Notably, when delving into the individual components of the mobilome, we found a more
complex relationship. While transposase genes exhibited a strong positive correlation
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Figure 5 Distribution andmobility potential of MGEs in soil MAGs. (A) Profile and Venn diagram of
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with peptide ARGs (Fig. 6C), intriguingly, the abundance of TraG (a key ATPase gene
essential for bacterial conjugation) was negatively correlated with the total ARG abundance
(Fig. 6B).

DISCUSSION
In this study, we constructed a gene catalog for soil microorganisms through metagenome
assembly, resulting in 1,136 MAGs. Unlike previous efforts, our sampling encompassed
geographically diverse regions across China, including Sichuan, Yunnan, Guizhou, and
Jiangsu Provinces. All samples were collected from local soils to reflect different regional
characteristics. The recovered MAGs met the medium-quality genome standards defined
by Bowers et al. (2017), with ≥ 50% completeness and <10% contamination. This dataset
expands the existing soil genome catalogs (Ma et al., 2023; Nayfach et al., 2021), providing
a valuable reference for studying uncultured microbiota in complex soil environments.

Taxonomic analysis revealed that the MAGs spanned 23 bacterial and three archaeal
phyla, with Actinomycetota and Pseudomonadota being the predominant bacterial phyla,
consistent with earlier soil microbiome studies (Cao et al., 2023). Research has found
that Actinomycetota often dominate agricultural soils (Yang et al., 2025), and their high
abundance is closely related to the degradation process of soil organic matter (Zhang et
al., 2019). The results from Alattas et al. (2024) indicate that Pseudomonas exhibits strong
adaptability in agricultural soils, which is consistent with our findings. Additionally, our
study revealed an archaeal relative abundance of 7.12%. According to reports by Cao et al.
(2012) the relative abundance of archaea in Chinese soils typically ranges from 0.20%
to 9.26%, indicating that the results of this study fall within the typical range. However,
compared to the global average archaeal relative abundance in soils, which is approximately
2% (Bates et al., 2011), the value observed in this study is slightly higher. This difference
may be attributed to the local warm and humid climate as well as active material cycling
conditions (Starke et al., 2021).

There are significant differences in species composition among provinces. Compared to
Sichuan, the MAG composition of Yunnan, Guizhou, and Jiangsu showed greater genus-
level similarity. Still, each province contained distinct dominant genera—such as VAYN01,
UBA4720, and JACDBZ01 in Sichuan; o_Gloeomargaritales; g_Unclassified in Guizhou;
Sphingomonas_I, 40CM-4-68-19, and CADCTB01 in Yunnan; and Sphingomicrobium
and VAYN01 in Jiangsu—suggesting strong regional ecological differentiation. Notably,
MAG442 (Lactobacillus amylovorus) is considerably enriched in samples from Yunnan
Province. As a lactic acid bacterium commonly found in carbohydrate-rich environments
(Stefanovic, Fitzgerald & McAuliffe, 2017), this region-specific enrichment may be
associated with the environmental conditions of Yunnan Province, such as climate, soil
type, and vegetation cover. The province’s landforms are mainly characterized by plateaus,
basins, hills, and mid- to low-altitude mountains, with an overall tilt from northeast to
southwest. The sampling sites had an average elevation of 2,244.00 m, which is significantly
higher than the average of 666.61 m in other provinces, indicating a generally high-altitude
and rugged terrain. The region experiences a low-latitude plateau monsoon climate, with
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Figure 6 Correlation between ARGs andMGEs. (A) Scatter plot illustrating the linear correlation be-
tween total ARG and MGE abundance across 1,136 MAGs. (B) Heatmap showing correlation coefficients
between MGE types and ARG classes. Significance is indicated by: *p< 0.05; **p< 0.01; ***p< 0.001. (C)
Scatterplot showing strong positive correlation between peptide ARGs and transposase MGEs.
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an annual mean temperature of 15 ◦C, an average relative humidity of about 64%, and
annual precipitation ranging from 634.6 to 1,060 mm, most of which occurs between June
and September. Consequently, these differences are likely driven by local environmental
factors, soil chemical properties, and the niche-specific adaptations of microorganisms
(Bomfim et al., 2025; Thammanu et al., 2021).

Soil microbial communities are essential for maintaining ecosystem stability and
resilience (He et al., 2025; Peng et al., 2025; Wagg et al., 2019; Wu et al., 2021). However,
the vast majority remain uncultured, limiting our understanding of their metabolic and
ecological functions. Metagenomic approaches allow for in-depth exploration of microbial
functional potential. Functional annotation using the COG and KEGG databases indicated
that metabolism is the primary function of these communities, particularly pathways
related to carbohydrate and amino acid metabolism. Amino acid metabolism involves
the breakdown of proteins into absorbable units (Miska, Fetterer & Wong, 2014), while
carbohydrate metabolism plays a role in energy production and nutrient cycling. Soil
organic matter, especially polysaccharide-rich humus, may contribute to the prominence
of these pathways. CAZy annotations further highlighted genes involved in GT and GH
activity, with some contributions fromCE and PL. The enrichment of GT and GH indicates
a significant enhancement of both carbohydrate synthesis capacity (function of GT) and
degradation capacity (function of GH) bymicroorganisms in the soil of the study area. This
phenomenon aligns with the central role of these enzymes in the local soil carbon cycle.
Studies by Jiménez, Chaves-Moreno & Van Elsas (2015) and Storlazzi, Takesue & Hendrix
(2025) have demonstrated that GT and GH dominate the carbohydrate-active enzyme
spectrum in forest soils, while research by Salam (2018) has shown their predominant
role in the carbohydrate-active enzyme profiles of agricultural soils, which is consistent
with the conclusions of our study. In addition, at the genus level, the high abundance of
CAZyme-encoding genes in Sphingomonas is consistent with their known polysaccharide
metabolism functions (White, Sutton & Ringelberg, 1996). In contrast, the significant CAZy
potential observed in Ferruginibacter, Flavisolibacter, and UBA4720 is a relatively new
finding.

The prevalence of ARGs in soil microorganisms has become an important research
focus (Liu et al., 2024;Willms et al., 2020). This study investigated the distribution of ARGs
in 111 soil samples from Yunnan, Guizhou, Sichuan, and Jiangsu. These findings are
consistent with previous reports showing ARG persistence in environments lacking direct
antibiotic exposure (Fu et al., 2025; Willms et al., 2020). The widespread occurrence of
ARGs suggests long-term environmental reservoirs and potential natural origins (Ondon
et al., 2021). Pseudomonadota and Actinomycetota were identified as the primary ARG
hosts, in agreement with other reports (Mamo, Abera & Tafesse, 2024; Zheng et al., 2022).
Notably, ARGs were also detected in E. coli and in probiotics such as Arthrobacter oxydan
and Glutamicibacter arilaitensis, suggesting both pathogenic and commensal bacteria may
act as resistance reservoirs. Furthermore, Methanobacteriota harbors representatives of
nearly every major category of ARGs. The presence of ARGs in Methanobacteriota is
likely the result of a combination of natural evolutionary processes, specific environmental
conditions, and selective pressures from diverse sources (Evariste, 2023). However, it is
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still uncertain whether natural environmental conditions primarily drive the formation
of these ARGs or whether external pressures play a dominant role. Therefore, future
studies should place greater emphasis on elucidating the evolutionary pathways of ARGs in
Methanobacteriota and other archaea to comprehensively understand the ecological roles
of these genes across diverse environments.

In addition, we have found that the ARG profiles of soils from different regions show
significant differences, which are closely related to land use, pollution levels, and the
composition of soil microbial communities (Deng et al., 2025; Yang et al., 2021). Soils in
Sichuan, Yunnan, and Jiangsu have higher ARG diversity, possibly due to more intensive
agricultural activities and antibiotic use (McKinney et al., 2018). Soils in Guizhou have
fewer types of ARGs, possibly due to lower human interference and agricultural pollution
(Wu et al., 2023). Furthermore, analysis of the relationship between environmental factors
and ARG abundance revealed a positive correlation between higher elevation and the
prevalence of certain ARG subtypes, such as Mupirocin-like and Phenicol resistance genes.
This pattern may be attributed to cooler temperatures and limited human activity in
high-altitude areas, which could influence the survival and proliferation of ARG-harboring
microorganisms (Zhang et al., 2025).

HGT facilitated by MGEs, including conjugative plasmids, integrative conjugation
elements, integrons, and transposons, is a primary mechanism driving the spread of
antibiotic resistance (Heuer, Schmitt & Smalla, 2011). We detected diverse MGEs across all
soil samples, with transposases being the most abundant. Transposases are key enzymes
that mediate the movement of transposons, and their essential function is to facilitate the
transfer of adjacent genetic fragments, including ARGs (Qian & Adhya, 2017). Some studies
have mentioned that in soil metagenomic data, the abundance of ARGs is significantly
positively correlated with the abundance of transposase genes, which can serve as indirect
evidence of the transposition element-mediated spread of ARGs (Li et al., 2022), consistent
with our research results. This observed dominance of transposases is biologically intuitive,
as they are fundamental drivers of gene mobility. Interestingly, we observed a significant
negative correlation between TraG, a TraG-like coupling protein associated with the
type IV secretion system (T4SS) and known to bind nucleotides/ATP (Schröder & Lanka,
2003; Wallden, Rivera-Calzada & Waksman, 2010; Zechner, Lang & Schildbach, 2012) and
ARGs. TraG-family proteins function within conjugation-type T4SSs that mediate plasmid
transfer and horizontal gene flow in microbial communities (Gordils-Valentin et al., 2024;
Wallden, Rivera-Calzada & Waksman, 2010; Zechner, Lang & Schildbach, 2012). However,
the inverse relationship with ARGs suggests that the presence of TraG-associated secretion
machinery may not necessarily coincide with the enrichment of resistance genes. One
possible explanation is that TraG-containing systems can be linked to mobile elements
or plasmids carrying functions other than antibiotic resistance (for example, diverse
metabolic traits), reflecting distinct selective pressures (Palomino et al., 2023; Smalla,
Jechalke & Top, 2015). Alternatively, the negative correlation may indicate a trade-off
between maintaining conjugative machinery and the accumulation of ARGs, where the
energetic burden of building/operating conjugation systems and the broader fitness costs of
plasmid carriage limit their co-occurrence (Hall et al., 2021; Kusumawardhani et al., 2022;
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Rajer & Sandegren, 2022; San Millan & MacLean, 2017). This suggests that the contribution
of different HGT mechanisms to the resistome may vary under specific environmental
conditions. While further experimental validation is required, this observation highlights
the complex ecology of secretion systems and resistance gene distribution. Regional
variation inMGE type diversity was evident, suggesting local environmental pressures (e.g.,
land use, heavy metals, or farming practices) may influence HGT dynamics. For example,
MAG975 (g_Actinocrispum; s_Unclassified), the bcrA gene frequently co-occurred with
transposases, indicating a potential HGT hotspot. Meanwhile, E. coli (MAG817) contained
multiple ARGs adjacent to MGEs within short contigs, suggesting high mobility potential.
Despite being found in only eight samples, its abundance and genomic organization
indicate it could pose environmental or public health risks.

CONCLUSIONS
This study systematically analyzed the diversity, distribution characteristics and
transmission mechanisms of ARGs in soil microbial communities in four provinces of
China. The results showed that soil microorganisms have rich metabolic functions and
regionally specific resistance genes and MGEs. Pseudomonadota and Actinomycetota were
the main hosts of ARGs, among which strains such as E. coli carried multiple resistance
genes, suggesting that they may play a key role in the transmission of ARGs. In addition,
the detection of MGEs in all samples further confirmed their mediating function in the
horizontal transfer of ARGs. There were significant regional differences in the microbial
community structure and ARGs profiles among samples from different provinces. These
results provide important evidence for understanding the distribution patterns, host
characteristics and transmission mechanisms of ARGs in the soil environment, and also
provide scientific support for formulating targeted strategies for the prevention and
control of drug resistance. Future research can further combine soil physical and chemical
properties and land use patterns and other environmental variables to deeply analyze the
driving mechanisms of the formation and transmission of ARGs.
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Taş N, De Jong AE, Li Y, Trubl G, Xue Y, Dove NC. 2021.Metagenomic tools in
microbial ecology research. Current Opinion in Biotechnology 67:184–191
DOI 10.1016/j.copbio.2021.01.019.

Thammanu S, Marod D, Han H, Bhusal N, Asanok L, Ketdee P, Gaewsingha N, Lee S,
Chung J. 2021. The influence of environmental factors on species composition and
distribution in a community forest in Northern Thailand. Journal of Forestry Research
32:649–662 DOI 10.1007/s11676-020-01239-y.

Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev
VV, Rubin EM, Rokhsar DS, Banfield JF. 2004. Community structure and
metabolism through reconstruction of microbial genomes from the environment.
Nature 428:37–43 DOI 10.1038/nature02340.

Han et al. (2025), PeerJ, DOI 10.7717/peerj.20348 24/26

https://peerj.com
http://dx.doi.org/10.1186/s42269-018-0013-6
http://dx.doi.org/10.1128/microbiolspec.MTBP-0016-2017
http://dx.doi.org/10.1128/jb.185.15.4371-4381.2003
http://dx.doi.org/10.3390/w12123313
http://dx.doi.org/10.1016/j.scitotenv.2021.146835
http://dx.doi.org/10.1038/s41564-018-0171-1
http://dx.doi.org/10.1128/microbiolspec.PLAS-0038-2014
http://dx.doi.org/10.1016/j.jprot.2021.104147
http://dx.doi.org/10.1016/j.fm.2016.08.009
http://dx.doi.org/10.1016/j.scitotenv.2025.178965
http://dx.doi.org/10.1016/j.copbio.2021.01.019
http://dx.doi.org/10.1007/s11676-020-01239-y
http://dx.doi.org/10.1038/nature02340
http://dx.doi.org/10.7717/peerj.20348


Van GoethemMW, Pierneef R, Bezuidt OKI, Van DePeer Y, Cowan DA, Makhalanyane
TP. 2018. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine
Antarctic soils.Microbiome 6:40 DOI 10.1186/s40168-018-0424-5.

Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, vander HeijdenMGA. 2019. Fungal-
bacterial diversity and microbiome complexity predict ecosystem functioning.
Nature Communications 10:4841 DOI 10.1038/s41467-019-12798-y.

Wallden K, Rivera-Calzada A,Waksman G. 2010. Type IV secretion systems: versatility
and diversity in function. Cellular Microbiology 12:1203–1212
DOI 10.1111/j.1462-5822.2010.01499.x.

Wang T, Li P, Bai X, Tian S, YangM, Leng D, Kui H, Zhang S, Yan X, Zheng Q, Luo P,
He C, Jia Y,Wu Z, Qiu H, Li J, Wan F, Ali MA, Mao R, Liu YX, Li D. 2024. Vaginal
microbiota are associated with in vitro fertilization during female infertility. Imeta
3:e185 DOI 10.1002/imt2.185.

Wang L,Wang J, Wang J, Zhu L, Conkle JL, Yang R. 2020. Soil types influence the
characteristic of antibiotic resistance genes in greenhouse soil with long-term
manure application. Journal of Hazardous Materials 392:122334
DOI 10.1016/j.jhazmat.2020.122334.

White DC, Sutton SD, Ringelberg DB. 1996. The genus Sphingomonas: physiology and
ecology. Current Opinion in Biotechnology 7:301–306
DOI 10.1016/S0958-1669(96)80034-6.

Willms IM, Yuan J, Penone C, Goldmann K, Vogt J, Wubet T, Schöning I, Schrumpf
M, Buscot F, Nacke H. 2020. Distribution of medically relevant antibiotic resistance
genes and mobile genetic elements in soils of temperate forests and grasslands
varying in land use. Gene 11(2):150 DOI 10.3390/genes11020150.

WuMH, Chen SY, Chen JW, Xue K, Chen SL,Wang XM, Chen T, Kang SC, Rui
JP, Thies JE, Bardgett RD,Wang YF. 2021. Reduced microbial stability in the
active layer is associated with carbon loss under alpine permafrost degradation.
Proceedings of the National Academy of Sciences of the United States of America
118(25):e2025321118 DOI 10.1073/pnas.2025321118.

Wu J, Guo S, Lin H, Li K, Li Z, Wang J, GazeWH, Zou J. 2023. Uncovering the preva-
lence and drivers of antibiotic resistance genes in soils across different land-use types.
Journal of Environmental Management 344:118920
DOI 10.1016/j.jenvman.2023.118920.

WuYW, Simmons BA, Singer SW. 2016.MaxBin 2.0: an automated binning algorithm
to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607
DOI 10.1093/bioinformatics/btv638.

Yang X, Zhang K, Chen Y, Zheng C, Lei C, Song X,Wen B, Yuan X, Liu H, Zhu J.
2025. Impact of different concentrations of biogas slurry as a fertilizer substitute on
the structure and gene distribution of microbial communities in oilseed rape soil.
Frontiers in Veterinary Science 12:1563124 DOI 10.3389/fvets.2025.1563124.

Yang F, Zhang F, Li H,WuH, Zhao H, Cheng X, Ba Y, Huang H, Chen S, Zhu J.
2021. Contribution of environmental factors on the distribution of antibiotic

Han et al. (2025), PeerJ, DOI 10.7717/peerj.20348 25/26

https://peerj.com
http://dx.doi.org/10.1186/s40168-018-0424-5
http://dx.doi.org/10.1038/s41467-019-12798-y
http://dx.doi.org/10.1111/j.1462-5822.2010.01499.x
http://dx.doi.org/10.1002/imt2.185
http://dx.doi.org/10.1016/j.jhazmat.2020.122334
http://dx.doi.org/10.1016/S0958-1669(96)80034-6
http://dx.doi.org/10.3390/genes11020150
http://dx.doi.org/10.1073/pnas.2025321118
http://dx.doi.org/10.1016/j.jenvman.2023.118920
http://dx.doi.org/10.1093/bioinformatics/btv638
http://dx.doi.org/10.3389/fvets.2025.1563124
http://dx.doi.org/10.7717/peerj.20348


resistance genes in agricultural soil. European Journal of Soil Biology 102:103269
DOI 10.1016/j.ejsobi.2020.103269.

Zechner EL, Lang S, Schildbach JF. 2012. Assembly and mechanisms of bacterial type IV
secretion machines. Philosophical Transactions of the Royal Society of London, Series B,
Biological Sciences 367:1073–1087 DOI 10.1098/rstb.2011.0207.

Zhang B,Wu X, Tai X, Sun L,WuM, ZhangW, Chen X, Zhang G, Chen T, Liu G,
Dyson P. 2019. Variation in actinobacterial community composition and potential
function in different soil ecosystems belonging to the arid Heihe river basin of
northwest China. Frontiers in Microbiology 10:2209 DOI 10.3389/fmicb.2019.02209.

Zhang B, Yang R, Liu Y, Guo J, Yang J, Qin X,Wang S, Liu J, Yang X, ZhangW, Liu G,
Chen T. 2025. From glacier forelands to human settlements: patterns, environmental
drivers, and risks of antibiotic resistance genes. Journal of Hazardous Materials
494:138455 DOI 10.1016/j.jhazmat.2025.138455.

Zheng D, Yin G, LiuM, Hou L, Yang Y, Van Boeckel TP, Zheng Y, Li Y. 2022. Global
biogeography and projection of soil antibiotic resistance genes. Science Advances
8:eabq8015 DOI 10.1126/sciadv.abq8015.

Han et al. (2025), PeerJ, DOI 10.7717/peerj.20348 26/26

https://peerj.com
http://dx.doi.org/10.1016/j.ejsobi.2020.103269
http://dx.doi.org/10.1098/rstb.2011.0207
http://dx.doi.org/10.3389/fmicb.2019.02209
http://dx.doi.org/10.1016/j.jhazmat.2025.138455
http://dx.doi.org/10.1126/sciadv.abq8015
http://dx.doi.org/10.7717/peerj.20348

